1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass statically checks for common and easily-identified constructs
11 // which produce undefined or likely unintended behavior in LLVM IR.
12 //
13 // It is not a guarantee of correctness, in two ways. First, it isn't
14 // comprehensive. There are checks which could be done statically which are
15 // not yet implemented. Some of these are indicated by TODO comments, but
16 // those aren't comprehensive either. Second, many conditions cannot be
17 // checked statically. This pass does no dynamic instrumentation, so it
18 // can't check for all possible problems.
19 //
20 // Another limitation is that it assumes all code will be executed. A store
21 // through a null pointer in a basic block which is never reached is harmless,
22 // but this pass will warn about it anyway. This is the main reason why most
23 // of these checks live here instead of in the Verifier pass.
24 //
25 // Optimization passes may make conditions that this pass checks for more or
26 // less obvious. If an optimization pass appears to be introducing a warning,
27 // it may be that the optimization pass is merely exposing an existing
28 // condition in the code.
29 //
30 // This code may be run before instcombine. In many cases, instcombine checks
31 // for the same kinds of things and turns instructions with undefined behavior
32 // into unreachable (or equivalent). Because of this, this pass makes some
33 // effort to look through bitcasts and so on.
34 //
35 //===----------------------------------------------------------------------===//
36 
37 #include "llvm/Analysis/Lint.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallSet.h"
40 #include "llvm/Analysis/AliasAnalysis.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/ConstantFolding.h"
43 #include "llvm/Analysis/InstructionSimplify.h"
44 #include "llvm/Analysis/Loads.h"
45 #include "llvm/Analysis/Passes.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/Analysis/ValueTracking.h"
48 #include "llvm/IR/CallSite.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/InstVisitor.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/LegacyPassManager.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
59 using namespace llvm;
60 
61 namespace {
62   namespace MemRef {
63     static const unsigned Read     = 1;
64     static const unsigned Write    = 2;
65     static const unsigned Callee   = 4;
66     static const unsigned Branchee = 8;
67   }
68 
69   class Lint : public FunctionPass, public InstVisitor<Lint> {
70     friend class InstVisitor<Lint>;
71 
72     void visitFunction(Function &F);
73 
74     void visitCallSite(CallSite CS);
75     void visitMemoryReference(Instruction &I, Value *Ptr,
76                               uint64_t Size, unsigned Align,
77                               Type *Ty, unsigned Flags);
78     void visitEHBeginCatch(IntrinsicInst *II);
79     void visitEHEndCatch(IntrinsicInst *II);
80 
81     void visitCallInst(CallInst &I);
82     void visitInvokeInst(InvokeInst &I);
83     void visitReturnInst(ReturnInst &I);
84     void visitLoadInst(LoadInst &I);
85     void visitStoreInst(StoreInst &I);
86     void visitXor(BinaryOperator &I);
87     void visitSub(BinaryOperator &I);
88     void visitLShr(BinaryOperator &I);
89     void visitAShr(BinaryOperator &I);
90     void visitShl(BinaryOperator &I);
91     void visitSDiv(BinaryOperator &I);
92     void visitUDiv(BinaryOperator &I);
93     void visitSRem(BinaryOperator &I);
94     void visitURem(BinaryOperator &I);
95     void visitAllocaInst(AllocaInst &I);
96     void visitVAArgInst(VAArgInst &I);
97     void visitIndirectBrInst(IndirectBrInst &I);
98     void visitExtractElementInst(ExtractElementInst &I);
99     void visitInsertElementInst(InsertElementInst &I);
100     void visitUnreachableInst(UnreachableInst &I);
101 
102     Value *findValue(Value *V, bool OffsetOk) const;
103     Value *findValueImpl(Value *V, bool OffsetOk,
104                          SmallPtrSetImpl<Value *> &Visited) const;
105 
106   public:
107     Module *Mod;
108     const DataLayout *DL;
109     AliasAnalysis *AA;
110     AssumptionCache *AC;
111     DominatorTree *DT;
112     TargetLibraryInfo *TLI;
113 
114     std::string Messages;
115     raw_string_ostream MessagesStr;
116 
117     static char ID; // Pass identification, replacement for typeid
Lint()118     Lint() : FunctionPass(ID), MessagesStr(Messages) {
119       initializeLintPass(*PassRegistry::getPassRegistry());
120     }
121 
122     bool runOnFunction(Function &F) override;
123 
getAnalysisUsage(AnalysisUsage & AU) const124     void getAnalysisUsage(AnalysisUsage &AU) const override {
125       AU.setPreservesAll();
126       AU.addRequired<AAResultsWrapperPass>();
127       AU.addRequired<AssumptionCacheTracker>();
128       AU.addRequired<TargetLibraryInfoWrapperPass>();
129       AU.addRequired<DominatorTreeWrapperPass>();
130     }
print(raw_ostream & O,const Module * M) const131     void print(raw_ostream &O, const Module *M) const override {}
132 
WriteValues(ArrayRef<const Value * > Vs)133     void WriteValues(ArrayRef<const Value *> Vs) {
134       for (const Value *V : Vs) {
135         if (!V)
136           continue;
137         if (isa<Instruction>(V)) {
138           MessagesStr << *V << '\n';
139         } else {
140           V->printAsOperand(MessagesStr, true, Mod);
141           MessagesStr << '\n';
142         }
143       }
144     }
145 
146     /// \brief A check failed, so printout out the condition and the message.
147     ///
148     /// This provides a nice place to put a breakpoint if you want to see why
149     /// something is not correct.
CheckFailed(const Twine & Message)150     void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }
151 
152     /// \brief A check failed (with values to print).
153     ///
154     /// This calls the Message-only version so that the above is easier to set
155     /// a breakpoint on.
156     template <typename T1, typename... Ts>
CheckFailed(const Twine & Message,const T1 & V1,const Ts &...Vs)157     void CheckFailed(const Twine &Message, const T1 &V1, const Ts &...Vs) {
158       CheckFailed(Message);
159       WriteValues({V1, Vs...});
160     }
161   };
162 }
163 
164 char Lint::ID = 0;
165 INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
166                       false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)167 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
168 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
169 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
170 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
171 INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
172                     false, true)
173 
174 // Assert - We know that cond should be true, if not print an error message.
175 #define Assert(C, ...) \
176     do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
177 
178 // Lint::run - This is the main Analysis entry point for a
179 // function.
180 //
181 bool Lint::runOnFunction(Function &F) {
182   Mod = F.getParent();
183   DL = &F.getParent()->getDataLayout();
184   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
185   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
186   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
187   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
188   visit(F);
189   dbgs() << MessagesStr.str();
190   Messages.clear();
191   return false;
192 }
193 
visitFunction(Function & F)194 void Lint::visitFunction(Function &F) {
195   // This isn't undefined behavior, it's just a little unusual, and it's a
196   // fairly common mistake to neglect to name a function.
197   Assert(F.hasName() || F.hasLocalLinkage(),
198          "Unusual: Unnamed function with non-local linkage", &F);
199 
200   // TODO: Check for irreducible control flow.
201 }
202 
visitCallSite(CallSite CS)203 void Lint::visitCallSite(CallSite CS) {
204   Instruction &I = *CS.getInstruction();
205   Value *Callee = CS.getCalledValue();
206 
207   visitMemoryReference(I, Callee, MemoryLocation::UnknownSize, 0, nullptr,
208                        MemRef::Callee);
209 
210   if (Function *F = dyn_cast<Function>(findValue(Callee,
211                                                  /*OffsetOk=*/false))) {
212     Assert(CS.getCallingConv() == F->getCallingConv(),
213            "Undefined behavior: Caller and callee calling convention differ",
214            &I);
215 
216     FunctionType *FT = F->getFunctionType();
217     unsigned NumActualArgs = CS.arg_size();
218 
219     Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
220                           : FT->getNumParams() == NumActualArgs,
221            "Undefined behavior: Call argument count mismatches callee "
222            "argument count",
223            &I);
224 
225     Assert(FT->getReturnType() == I.getType(),
226            "Undefined behavior: Call return type mismatches "
227            "callee return type",
228            &I);
229 
230     // Check argument types (in case the callee was casted) and attributes.
231     // TODO: Verify that caller and callee attributes are compatible.
232     Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
233     CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
234     for (; AI != AE; ++AI) {
235       Value *Actual = *AI;
236       if (PI != PE) {
237         Argument *Formal = &*PI++;
238         Assert(Formal->getType() == Actual->getType(),
239                "Undefined behavior: Call argument type mismatches "
240                "callee parameter type",
241                &I);
242 
243         // Check that noalias arguments don't alias other arguments. This is
244         // not fully precise because we don't know the sizes of the dereferenced
245         // memory regions.
246         if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy())
247           for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI)
248             if (AI != BI && (*BI)->getType()->isPointerTy()) {
249               AliasResult Result = AA->alias(*AI, *BI);
250               Assert(Result != MustAlias && Result != PartialAlias,
251                      "Unusual: noalias argument aliases another argument", &I);
252             }
253 
254         // Check that an sret argument points to valid memory.
255         if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
256           Type *Ty =
257             cast<PointerType>(Formal->getType())->getElementType();
258           visitMemoryReference(I, Actual, DL->getTypeStoreSize(Ty),
259                                DL->getABITypeAlignment(Ty), Ty,
260                                MemRef::Read | MemRef::Write);
261         }
262       }
263     }
264   }
265 
266   if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall())
267     for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
268          AI != AE; ++AI) {
269       Value *Obj = findValue(*AI, /*OffsetOk=*/true);
270       Assert(!isa<AllocaInst>(Obj),
271              "Undefined behavior: Call with \"tail\" keyword references "
272              "alloca",
273              &I);
274     }
275 
276 
277   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
278     switch (II->getIntrinsicID()) {
279     default: break;
280 
281     // TODO: Check more intrinsics
282 
283     case Intrinsic::memcpy: {
284       MemCpyInst *MCI = cast<MemCpyInst>(&I);
285       // TODO: If the size is known, use it.
286       visitMemoryReference(I, MCI->getDest(), MemoryLocation::UnknownSize,
287                            MCI->getAlignment(), nullptr, MemRef::Write);
288       visitMemoryReference(I, MCI->getSource(), MemoryLocation::UnknownSize,
289                            MCI->getAlignment(), nullptr, MemRef::Read);
290 
291       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
292       // isn't expressive enough for what we really want to do. Known partial
293       // overlap is not distinguished from the case where nothing is known.
294       uint64_t Size = 0;
295       if (const ConstantInt *Len =
296               dyn_cast<ConstantInt>(findValue(MCI->getLength(),
297                                               /*OffsetOk=*/false)))
298         if (Len->getValue().isIntN(32))
299           Size = Len->getValue().getZExtValue();
300       Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
301                  MustAlias,
302              "Undefined behavior: memcpy source and destination overlap", &I);
303       break;
304     }
305     case Intrinsic::memmove: {
306       MemMoveInst *MMI = cast<MemMoveInst>(&I);
307       // TODO: If the size is known, use it.
308       visitMemoryReference(I, MMI->getDest(), MemoryLocation::UnknownSize,
309                            MMI->getAlignment(), nullptr, MemRef::Write);
310       visitMemoryReference(I, MMI->getSource(), MemoryLocation::UnknownSize,
311                            MMI->getAlignment(), nullptr, MemRef::Read);
312       break;
313     }
314     case Intrinsic::memset: {
315       MemSetInst *MSI = cast<MemSetInst>(&I);
316       // TODO: If the size is known, use it.
317       visitMemoryReference(I, MSI->getDest(), MemoryLocation::UnknownSize,
318                            MSI->getAlignment(), nullptr, MemRef::Write);
319       break;
320     }
321 
322     case Intrinsic::vastart:
323       Assert(I.getParent()->getParent()->isVarArg(),
324              "Undefined behavior: va_start called in a non-varargs function",
325              &I);
326 
327       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
328                            nullptr, MemRef::Read | MemRef::Write);
329       break;
330     case Intrinsic::vacopy:
331       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
332                            nullptr, MemRef::Write);
333       visitMemoryReference(I, CS.getArgument(1), MemoryLocation::UnknownSize, 0,
334                            nullptr, MemRef::Read);
335       break;
336     case Intrinsic::vaend:
337       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
338                            nullptr, MemRef::Read | MemRef::Write);
339       break;
340 
341     case Intrinsic::stackrestore:
342       // Stackrestore doesn't read or write memory, but it sets the
343       // stack pointer, which the compiler may read from or write to
344       // at any time, so check it for both readability and writeability.
345       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
346                            nullptr, MemRef::Read | MemRef::Write);
347       break;
348     }
349 }
350 
visitCallInst(CallInst & I)351 void Lint::visitCallInst(CallInst &I) {
352   return visitCallSite(&I);
353 }
354 
visitInvokeInst(InvokeInst & I)355 void Lint::visitInvokeInst(InvokeInst &I) {
356   return visitCallSite(&I);
357 }
358 
visitReturnInst(ReturnInst & I)359 void Lint::visitReturnInst(ReturnInst &I) {
360   Function *F = I.getParent()->getParent();
361   Assert(!F->doesNotReturn(),
362          "Unusual: Return statement in function with noreturn attribute", &I);
363 
364   if (Value *V = I.getReturnValue()) {
365     Value *Obj = findValue(V, /*OffsetOk=*/true);
366     Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
367   }
368 }
369 
370 // TODO: Check that the reference is in bounds.
371 // TODO: Check readnone/readonly function attributes.
visitMemoryReference(Instruction & I,Value * Ptr,uint64_t Size,unsigned Align,Type * Ty,unsigned Flags)372 void Lint::visitMemoryReference(Instruction &I,
373                                 Value *Ptr, uint64_t Size, unsigned Align,
374                                 Type *Ty, unsigned Flags) {
375   // If no memory is being referenced, it doesn't matter if the pointer
376   // is valid.
377   if (Size == 0)
378     return;
379 
380   Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
381   Assert(!isa<ConstantPointerNull>(UnderlyingObject),
382          "Undefined behavior: Null pointer dereference", &I);
383   Assert(!isa<UndefValue>(UnderlyingObject),
384          "Undefined behavior: Undef pointer dereference", &I);
385   Assert(!isa<ConstantInt>(UnderlyingObject) ||
386              !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
387          "Unusual: All-ones pointer dereference", &I);
388   Assert(!isa<ConstantInt>(UnderlyingObject) ||
389              !cast<ConstantInt>(UnderlyingObject)->isOne(),
390          "Unusual: Address one pointer dereference", &I);
391 
392   if (Flags & MemRef::Write) {
393     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
394       Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
395              &I);
396     Assert(!isa<Function>(UnderlyingObject) &&
397                !isa<BlockAddress>(UnderlyingObject),
398            "Undefined behavior: Write to text section", &I);
399   }
400   if (Flags & MemRef::Read) {
401     Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
402            &I);
403     Assert(!isa<BlockAddress>(UnderlyingObject),
404            "Undefined behavior: Load from block address", &I);
405   }
406   if (Flags & MemRef::Callee) {
407     Assert(!isa<BlockAddress>(UnderlyingObject),
408            "Undefined behavior: Call to block address", &I);
409   }
410   if (Flags & MemRef::Branchee) {
411     Assert(!isa<Constant>(UnderlyingObject) ||
412                isa<BlockAddress>(UnderlyingObject),
413            "Undefined behavior: Branch to non-blockaddress", &I);
414   }
415 
416   // Check for buffer overflows and misalignment.
417   // Only handles memory references that read/write something simple like an
418   // alloca instruction or a global variable.
419   int64_t Offset = 0;
420   if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) {
421     // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
422     // something we can handle and if so extract the size of this base object
423     // along with its alignment.
424     uint64_t BaseSize = MemoryLocation::UnknownSize;
425     unsigned BaseAlign = 0;
426 
427     if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
428       Type *ATy = AI->getAllocatedType();
429       if (!AI->isArrayAllocation() && ATy->isSized())
430         BaseSize = DL->getTypeAllocSize(ATy);
431       BaseAlign = AI->getAlignment();
432       if (BaseAlign == 0 && ATy->isSized())
433         BaseAlign = DL->getABITypeAlignment(ATy);
434     } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
435       // If the global may be defined differently in another compilation unit
436       // then don't warn about funky memory accesses.
437       if (GV->hasDefinitiveInitializer()) {
438         Type *GTy = GV->getType()->getElementType();
439         if (GTy->isSized())
440           BaseSize = DL->getTypeAllocSize(GTy);
441         BaseAlign = GV->getAlignment();
442         if (BaseAlign == 0 && GTy->isSized())
443           BaseAlign = DL->getABITypeAlignment(GTy);
444       }
445     }
446 
447     // Accesses from before the start or after the end of the object are not
448     // defined.
449     Assert(Size == MemoryLocation::UnknownSize ||
450                BaseSize == MemoryLocation::UnknownSize ||
451                (Offset >= 0 && Offset + Size <= BaseSize),
452            "Undefined behavior: Buffer overflow", &I);
453 
454     // Accesses that say that the memory is more aligned than it is are not
455     // defined.
456     if (Align == 0 && Ty && Ty->isSized())
457       Align = DL->getABITypeAlignment(Ty);
458     Assert(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
459            "Undefined behavior: Memory reference address is misaligned", &I);
460   }
461 }
462 
visitLoadInst(LoadInst & I)463 void Lint::visitLoadInst(LoadInst &I) {
464   visitMemoryReference(I, I.getPointerOperand(),
465                        DL->getTypeStoreSize(I.getType()), I.getAlignment(),
466                        I.getType(), MemRef::Read);
467 }
468 
visitStoreInst(StoreInst & I)469 void Lint::visitStoreInst(StoreInst &I) {
470   visitMemoryReference(I, I.getPointerOperand(),
471                        DL->getTypeStoreSize(I.getOperand(0)->getType()),
472                        I.getAlignment(),
473                        I.getOperand(0)->getType(), MemRef::Write);
474 }
475 
visitXor(BinaryOperator & I)476 void Lint::visitXor(BinaryOperator &I) {
477   Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
478          "Undefined result: xor(undef, undef)", &I);
479 }
480 
visitSub(BinaryOperator & I)481 void Lint::visitSub(BinaryOperator &I) {
482   Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
483          "Undefined result: sub(undef, undef)", &I);
484 }
485 
visitLShr(BinaryOperator & I)486 void Lint::visitLShr(BinaryOperator &I) {
487   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1),
488                                                         /*OffsetOk=*/false)))
489     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
490            "Undefined result: Shift count out of range", &I);
491 }
492 
visitAShr(BinaryOperator & I)493 void Lint::visitAShr(BinaryOperator &I) {
494   if (ConstantInt *CI =
495           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
496     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
497            "Undefined result: Shift count out of range", &I);
498 }
499 
visitShl(BinaryOperator & I)500 void Lint::visitShl(BinaryOperator &I) {
501   if (ConstantInt *CI =
502           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
503     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
504            "Undefined result: Shift count out of range", &I);
505 }
506 
isZero(Value * V,const DataLayout & DL,DominatorTree * DT,AssumptionCache * AC)507 static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
508                    AssumptionCache *AC) {
509   // Assume undef could be zero.
510   if (isa<UndefValue>(V))
511     return true;
512 
513   VectorType *VecTy = dyn_cast<VectorType>(V->getType());
514   if (!VecTy) {
515     unsigned BitWidth = V->getType()->getIntegerBitWidth();
516     APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
517     computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC,
518                      dyn_cast<Instruction>(V), DT);
519     return KnownZero.isAllOnesValue();
520   }
521 
522   // Per-component check doesn't work with zeroinitializer
523   Constant *C = dyn_cast<Constant>(V);
524   if (!C)
525     return false;
526 
527   if (C->isZeroValue())
528     return true;
529 
530   // For a vector, KnownZero will only be true if all values are zero, so check
531   // this per component
532   unsigned BitWidth = VecTy->getElementType()->getIntegerBitWidth();
533   for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
534     Constant *Elem = C->getAggregateElement(I);
535     if (isa<UndefValue>(Elem))
536       return true;
537 
538     APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
539     computeKnownBits(Elem, KnownZero, KnownOne, DL);
540     if (KnownZero.isAllOnesValue())
541       return true;
542   }
543 
544   return false;
545 }
546 
visitSDiv(BinaryOperator & I)547 void Lint::visitSDiv(BinaryOperator &I) {
548   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
549          "Undefined behavior: Division by zero", &I);
550 }
551 
visitUDiv(BinaryOperator & I)552 void Lint::visitUDiv(BinaryOperator &I) {
553   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
554          "Undefined behavior: Division by zero", &I);
555 }
556 
visitSRem(BinaryOperator & I)557 void Lint::visitSRem(BinaryOperator &I) {
558   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
559          "Undefined behavior: Division by zero", &I);
560 }
561 
visitURem(BinaryOperator & I)562 void Lint::visitURem(BinaryOperator &I) {
563   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
564          "Undefined behavior: Division by zero", &I);
565 }
566 
visitAllocaInst(AllocaInst & I)567 void Lint::visitAllocaInst(AllocaInst &I) {
568   if (isa<ConstantInt>(I.getArraySize()))
569     // This isn't undefined behavior, it's just an obvious pessimization.
570     Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
571            "Pessimization: Static alloca outside of entry block", &I);
572 
573   // TODO: Check for an unusual size (MSB set?)
574 }
575 
visitVAArgInst(VAArgInst & I)576 void Lint::visitVAArgInst(VAArgInst &I) {
577   visitMemoryReference(I, I.getOperand(0), MemoryLocation::UnknownSize, 0,
578                        nullptr, MemRef::Read | MemRef::Write);
579 }
580 
visitIndirectBrInst(IndirectBrInst & I)581 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
582   visitMemoryReference(I, I.getAddress(), MemoryLocation::UnknownSize, 0,
583                        nullptr, MemRef::Branchee);
584 
585   Assert(I.getNumDestinations() != 0,
586          "Undefined behavior: indirectbr with no destinations", &I);
587 }
588 
visitExtractElementInst(ExtractElementInst & I)589 void Lint::visitExtractElementInst(ExtractElementInst &I) {
590   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
591                                                         /*OffsetOk=*/false)))
592     Assert(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
593            "Undefined result: extractelement index out of range", &I);
594 }
595 
visitInsertElementInst(InsertElementInst & I)596 void Lint::visitInsertElementInst(InsertElementInst &I) {
597   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2),
598                                                         /*OffsetOk=*/false)))
599     Assert(CI->getValue().ult(I.getType()->getNumElements()),
600            "Undefined result: insertelement index out of range", &I);
601 }
602 
visitUnreachableInst(UnreachableInst & I)603 void Lint::visitUnreachableInst(UnreachableInst &I) {
604   // This isn't undefined behavior, it's merely suspicious.
605   Assert(&I == &I.getParent()->front() ||
606              std::prev(I.getIterator())->mayHaveSideEffects(),
607          "Unusual: unreachable immediately preceded by instruction without "
608          "side effects",
609          &I);
610 }
611 
612 /// findValue - Look through bitcasts and simple memory reference patterns
613 /// to identify an equivalent, but more informative, value.  If OffsetOk
614 /// is true, look through getelementptrs with non-zero offsets too.
615 ///
616 /// Most analysis passes don't require this logic, because instcombine
617 /// will simplify most of these kinds of things away. But it's a goal of
618 /// this Lint pass to be useful even on non-optimized IR.
findValue(Value * V,bool OffsetOk) const619 Value *Lint::findValue(Value *V, bool OffsetOk) const {
620   SmallPtrSet<Value *, 4> Visited;
621   return findValueImpl(V, OffsetOk, Visited);
622 }
623 
624 /// findValueImpl - Implementation helper for findValue.
findValueImpl(Value * V,bool OffsetOk,SmallPtrSetImpl<Value * > & Visited) const625 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
626                            SmallPtrSetImpl<Value *> &Visited) const {
627   // Detect self-referential values.
628   if (!Visited.insert(V).second)
629     return UndefValue::get(V->getType());
630 
631   // TODO: Look through sext or zext cast, when the result is known to
632   // be interpreted as signed or unsigned, respectively.
633   // TODO: Look through eliminable cast pairs.
634   // TODO: Look through calls with unique return values.
635   // TODO: Look through vector insert/extract/shuffle.
636   V = OffsetOk ? GetUnderlyingObject(V, *DL) : V->stripPointerCasts();
637   if (LoadInst *L = dyn_cast<LoadInst>(V)) {
638     BasicBlock::iterator BBI = L->getIterator();
639     BasicBlock *BB = L->getParent();
640     SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
641     for (;;) {
642       if (!VisitedBlocks.insert(BB).second)
643         break;
644       if (Value *U =
645           FindAvailableLoadedValue(L->getPointerOperand(),
646                                    BB, BBI, DefMaxInstsToScan, AA))
647         return findValueImpl(U, OffsetOk, Visited);
648       if (BBI != BB->begin()) break;
649       BB = BB->getUniquePredecessor();
650       if (!BB) break;
651       BBI = BB->end();
652     }
653   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
654     if (Value *W = PN->hasConstantValue())
655       if (W != V)
656         return findValueImpl(W, OffsetOk, Visited);
657   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
658     if (CI->isNoopCast(*DL))
659       return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
660   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
661     if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
662                                      Ex->getIndices()))
663       if (W != V)
664         return findValueImpl(W, OffsetOk, Visited);
665   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
666     // Same as above, but for ConstantExpr instead of Instruction.
667     if (Instruction::isCast(CE->getOpcode())) {
668       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
669                                CE->getOperand(0)->getType(), CE->getType(),
670                                DL->getIntPtrType(V->getType())))
671         return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
672     } else if (CE->getOpcode() == Instruction::ExtractValue) {
673       ArrayRef<unsigned> Indices = CE->getIndices();
674       if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
675         if (W != V)
676           return findValueImpl(W, OffsetOk, Visited);
677     }
678   }
679 
680   // As a last resort, try SimplifyInstruction or constant folding.
681   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
682     if (Value *W = SimplifyInstruction(Inst, *DL, TLI, DT, AC))
683       return findValueImpl(W, OffsetOk, Visited);
684   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
685     if (Value *W = ConstantFoldConstantExpression(CE, *DL, TLI))
686       if (W != V)
687         return findValueImpl(W, OffsetOk, Visited);
688   }
689 
690   return V;
691 }
692 
693 //===----------------------------------------------------------------------===//
694 //  Implement the public interfaces to this file...
695 //===----------------------------------------------------------------------===//
696 
createLintPass()697 FunctionPass *llvm::createLintPass() {
698   return new Lint();
699 }
700 
701 /// lintFunction - Check a function for errors, printing messages on stderr.
702 ///
lintFunction(const Function & f)703 void llvm::lintFunction(const Function &f) {
704   Function &F = const_cast<Function&>(f);
705   assert(!F.isDeclaration() && "Cannot lint external functions");
706 
707   legacy::FunctionPassManager FPM(F.getParent());
708   Lint *V = new Lint();
709   FPM.add(V);
710   FPM.run(F);
711 }
712 
713 /// lintModule - Check a module for errors, printing messages on stderr.
714 ///
lintModule(const Module & M)715 void llvm::lintModule(const Module &M) {
716   legacy::PassManager PM;
717   Lint *V = new Lint();
718   PM.add(V);
719   PM.run(const_cast<Module&>(M));
720 }
721