1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass looks for equivalent functions that are mergable and folds them.
11 //
12 // Order relation is defined on set of functions. It was made through
13 // special function comparison procedure that returns
14 // 0 when functions are equal,
15 // -1 when Left function is less than right function, and
16 // 1 for opposite case. We need total-ordering, so we need to maintain
17 // four properties on the functions set:
18 // a <= a (reflexivity)
19 // if a <= b and b <= a then a = b (antisymmetry)
20 // if a <= b and b <= c then a <= c (transitivity).
21 // for all a and b: a <= b or b <= a (totality).
22 //
23 // Comparison iterates through each instruction in each basic block.
24 // Functions are kept on binary tree. For each new function F we perform
25 // lookup in binary tree.
26 // In practice it works the following way:
27 // -- We define Function* container class with custom "operator<" (FunctionPtr).
28 // -- "FunctionPtr" instances are stored in std::set collection, so every
29 // std::set::insert operation will give you result in log(N) time.
30 //
31 // As an optimization, a hash of the function structure is calculated first, and
32 // two functions are only compared if they have the same hash. This hash is
33 // cheap to compute, and has the property that if function F == G according to
34 // the comparison function, then hash(F) == hash(G). This consistency property
35 // is critical to ensuring all possible merging opportunities are exploited.
36 // Collisions in the hash affect the speed of the pass but not the correctness
37 // or determinism of the resulting transformation.
38 //
39 // When a match is found the functions are folded. If both functions are
40 // overridable, we move the functionality into a new internal function and
41 // leave two overridable thunks to it.
42 //
43 //===----------------------------------------------------------------------===//
44 //
45 // Future work:
46 //
47 // * virtual functions.
48 //
49 // Many functions have their address taken by the virtual function table for
50 // the object they belong to. However, as long as it's only used for a lookup
51 // and call, this is irrelevant, and we'd like to fold such functions.
52 //
53 // * be smarter about bitcasts.
54 //
55 // In order to fold functions, we will sometimes add either bitcast instructions
56 // or bitcast constant expressions. Unfortunately, this can confound further
57 // analysis since the two functions differ where one has a bitcast and the
58 // other doesn't. We should learn to look through bitcasts.
59 //
60 // * Compare complex types with pointer types inside.
61 // * Compare cross-reference cases.
62 // * Compare complex expressions.
63 //
64 // All the three issues above could be described as ability to prove that
65 // fA == fB == fC == fE == fF == fG in example below:
66 //
67 // void fA() {
68 // fB();
69 // }
70 // void fB() {
71 // fA();
72 // }
73 //
74 // void fE() {
75 // fF();
76 // }
77 // void fF() {
78 // fG();
79 // }
80 // void fG() {
81 // fE();
82 // }
83 //
84 // Simplest cross-reference case (fA <--> fB) was implemented in previous
85 // versions of MergeFunctions, though it presented only in two function pairs
86 // in test-suite (that counts >50k functions)
87 // Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A)
88 // could cover much more cases.
89 //
90 //===----------------------------------------------------------------------===//
91
92 #include "llvm/Transforms/IPO.h"
93 #include "llvm/ADT/DenseSet.h"
94 #include "llvm/ADT/FoldingSet.h"
95 #include "llvm/ADT/STLExtras.h"
96 #include "llvm/ADT/SmallSet.h"
97 #include "llvm/ADT/Statistic.h"
98 #include "llvm/ADT/Hashing.h"
99 #include "llvm/IR/CallSite.h"
100 #include "llvm/IR/Constants.h"
101 #include "llvm/IR/DataLayout.h"
102 #include "llvm/IR/IRBuilder.h"
103 #include "llvm/IR/InlineAsm.h"
104 #include "llvm/IR/Instructions.h"
105 #include "llvm/IR/LLVMContext.h"
106 #include "llvm/IR/Module.h"
107 #include "llvm/IR/Operator.h"
108 #include "llvm/IR/ValueHandle.h"
109 #include "llvm/IR/ValueMap.h"
110 #include "llvm/Pass.h"
111 #include "llvm/Support/CommandLine.h"
112 #include "llvm/Support/Debug.h"
113 #include "llvm/Support/ErrorHandling.h"
114 #include "llvm/Support/raw_ostream.h"
115 #include <vector>
116
117 using namespace llvm;
118
119 #define DEBUG_TYPE "mergefunc"
120
121 STATISTIC(NumFunctionsMerged, "Number of functions merged");
122 STATISTIC(NumThunksWritten, "Number of thunks generated");
123 STATISTIC(NumAliasesWritten, "Number of aliases generated");
124 STATISTIC(NumDoubleWeak, "Number of new functions created");
125
126 static cl::opt<unsigned> NumFunctionsForSanityCheck(
127 "mergefunc-sanity",
128 cl::desc("How many functions in module could be used for "
129 "MergeFunctions pass sanity check. "
130 "'0' disables this check. Works only with '-debug' key."),
131 cl::init(0), cl::Hidden);
132
133 namespace {
134
135 /// GlobalNumberState assigns an integer to each global value in the program,
136 /// which is used by the comparison routine to order references to globals. This
137 /// state must be preserved throughout the pass, because Functions and other
138 /// globals need to maintain their relative order. Globals are assigned a number
139 /// when they are first visited. This order is deterministic, and so the
140 /// assigned numbers are as well. When two functions are merged, neither number
141 /// is updated. If the symbols are weak, this would be incorrect. If they are
142 /// strong, then one will be replaced at all references to the other, and so
143 /// direct callsites will now see one or the other symbol, and no update is
144 /// necessary. Note that if we were guaranteed unique names, we could just
145 /// compare those, but this would not work for stripped bitcodes or for those
146 /// few symbols without a name.
147 class GlobalNumberState {
148 struct Config : ValueMapConfig<GlobalValue*> {
149 enum { FollowRAUW = false };
150 };
151 // Each GlobalValue is mapped to an identifier. The Config ensures when RAUW
152 // occurs, the mapping does not change. Tracking changes is unnecessary, and
153 // also problematic for weak symbols (which may be overwritten).
154 typedef ValueMap<GlobalValue *, uint64_t, Config> ValueNumberMap;
155 ValueNumberMap GlobalNumbers;
156 // The next unused serial number to assign to a global.
157 uint64_t NextNumber;
158 public:
GlobalNumberState()159 GlobalNumberState() : GlobalNumbers(), NextNumber(0) {}
getNumber(GlobalValue * Global)160 uint64_t getNumber(GlobalValue* Global) {
161 ValueNumberMap::iterator MapIter;
162 bool Inserted;
163 std::tie(MapIter, Inserted) = GlobalNumbers.insert({Global, NextNumber});
164 if (Inserted)
165 NextNumber++;
166 return MapIter->second;
167 }
clear()168 void clear() {
169 GlobalNumbers.clear();
170 }
171 };
172
173 /// FunctionComparator - Compares two functions to determine whether or not
174 /// they will generate machine code with the same behaviour. DataLayout is
175 /// used if available. The comparator always fails conservatively (erring on the
176 /// side of claiming that two functions are different).
177 class FunctionComparator {
178 public:
FunctionComparator(const Function * F1,const Function * F2,GlobalNumberState * GN)179 FunctionComparator(const Function *F1, const Function *F2,
180 GlobalNumberState* GN)
181 : FnL(F1), FnR(F2), GlobalNumbers(GN) {}
182
183 /// Test whether the two functions have equivalent behaviour.
184 int compare();
185 /// Hash a function. Equivalent functions will have the same hash, and unequal
186 /// functions will have different hashes with high probability.
187 typedef uint64_t FunctionHash;
188 static FunctionHash functionHash(Function &);
189
190 private:
191 /// Test whether two basic blocks have equivalent behaviour.
192 int cmpBasicBlocks(const BasicBlock *BBL, const BasicBlock *BBR);
193
194 /// Constants comparison.
195 /// Its analog to lexicographical comparison between hypothetical numbers
196 /// of next format:
197 /// <bitcastability-trait><raw-bit-contents>
198 ///
199 /// 1. Bitcastability.
200 /// Check whether L's type could be losslessly bitcasted to R's type.
201 /// On this stage method, in case when lossless bitcast is not possible
202 /// method returns -1 or 1, thus also defining which type is greater in
203 /// context of bitcastability.
204 /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight
205 /// to the contents comparison.
206 /// If types differ, remember types comparison result and check
207 /// whether we still can bitcast types.
208 /// Stage 1: Types that satisfies isFirstClassType conditions are always
209 /// greater then others.
210 /// Stage 2: Vector is greater then non-vector.
211 /// If both types are vectors, then vector with greater bitwidth is
212 /// greater.
213 /// If both types are vectors with the same bitwidth, then types
214 /// are bitcastable, and we can skip other stages, and go to contents
215 /// comparison.
216 /// Stage 3: Pointer types are greater than non-pointers. If both types are
217 /// pointers of the same address space - go to contents comparison.
218 /// Different address spaces: pointer with greater address space is
219 /// greater.
220 /// Stage 4: Types are neither vectors, nor pointers. And they differ.
221 /// We don't know how to bitcast them. So, we better don't do it,
222 /// and return types comparison result (so it determines the
223 /// relationship among constants we don't know how to bitcast).
224 ///
225 /// Just for clearance, let's see how the set of constants could look
226 /// on single dimension axis:
227 ///
228 /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
229 /// Where: NFCT - Not a FirstClassType
230 /// FCT - FirstClassTyp:
231 ///
232 /// 2. Compare raw contents.
233 /// It ignores types on this stage and only compares bits from L and R.
234 /// Returns 0, if L and R has equivalent contents.
235 /// -1 or 1 if values are different.
236 /// Pretty trivial:
237 /// 2.1. If contents are numbers, compare numbers.
238 /// Ints with greater bitwidth are greater. Ints with same bitwidths
239 /// compared by their contents.
240 /// 2.2. "And so on". Just to avoid discrepancies with comments
241 /// perhaps it would be better to read the implementation itself.
242 /// 3. And again about overall picture. Let's look back at how the ordered set
243 /// of constants will look like:
244 /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
245 ///
246 /// Now look, what could be inside [FCT, "others"], for example:
247 /// [FCT, "others"] =
248 /// [
249 /// [double 0.1], [double 1.23],
250 /// [i32 1], [i32 2],
251 /// { double 1.0 }, ; StructTyID, NumElements = 1
252 /// { i32 1 }, ; StructTyID, NumElements = 1
253 /// { double 1, i32 1 }, ; StructTyID, NumElements = 2
254 /// { i32 1, double 1 } ; StructTyID, NumElements = 2
255 /// ]
256 ///
257 /// Let's explain the order. Float numbers will be less than integers, just
258 /// because of cmpType terms: FloatTyID < IntegerTyID.
259 /// Floats (with same fltSemantics) are sorted according to their value.
260 /// Then you can see integers, and they are, like a floats,
261 /// could be easy sorted among each others.
262 /// The structures. Structures are grouped at the tail, again because of their
263 /// TypeID: StructTyID > IntegerTyID > FloatTyID.
264 /// Structures with greater number of elements are greater. Structures with
265 /// greater elements going first are greater.
266 /// The same logic with vectors, arrays and other possible complex types.
267 ///
268 /// Bitcastable constants.
269 /// Let's assume, that some constant, belongs to some group of
270 /// "so-called-equal" values with different types, and at the same time
271 /// belongs to another group of constants with equal types
272 /// and "really" equal values.
273 ///
274 /// Now, prove that this is impossible:
275 ///
276 /// If constant A with type TyA is bitcastable to B with type TyB, then:
277 /// 1. All constants with equal types to TyA, are bitcastable to B. Since
278 /// those should be vectors (if TyA is vector), pointers
279 /// (if TyA is pointer), or else (if TyA equal to TyB), those types should
280 /// be equal to TyB.
281 /// 2. All constants with non-equal, but bitcastable types to TyA, are
282 /// bitcastable to B.
283 /// Once again, just because we allow it to vectors and pointers only.
284 /// This statement could be expanded as below:
285 /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to
286 /// vector B, and thus bitcastable to B as well.
287 /// 2.2. All pointers of the same address space, no matter what they point to,
288 /// bitcastable. So if C is pointer, it could be bitcasted to A and to B.
289 /// So any constant equal or bitcastable to A is equal or bitcastable to B.
290 /// QED.
291 ///
292 /// In another words, for pointers and vectors, we ignore top-level type and
293 /// look at their particular properties (bit-width for vectors, and
294 /// address space for pointers).
295 /// If these properties are equal - compare their contents.
296 int cmpConstants(const Constant *L, const Constant *R);
297
298 /// Compares two global values by number. Uses the GlobalNumbersState to
299 /// identify the same gobals across function calls.
300 int cmpGlobalValues(GlobalValue *L, GlobalValue *R);
301
302 /// Assign or look up previously assigned numbers for the two values, and
303 /// return whether the numbers are equal. Numbers are assigned in the order
304 /// visited.
305 /// Comparison order:
306 /// Stage 0: Value that is function itself is always greater then others.
307 /// If left and right values are references to their functions, then
308 /// they are equal.
309 /// Stage 1: Constants are greater than non-constants.
310 /// If both left and right are constants, then the result of
311 /// cmpConstants is used as cmpValues result.
312 /// Stage 2: InlineAsm instances are greater than others. If both left and
313 /// right are InlineAsm instances, InlineAsm* pointers casted to
314 /// integers and compared as numbers.
315 /// Stage 3: For all other cases we compare order we meet these values in
316 /// their functions. If right value was met first during scanning,
317 /// then left value is greater.
318 /// In another words, we compare serial numbers, for more details
319 /// see comments for sn_mapL and sn_mapR.
320 int cmpValues(const Value *L, const Value *R);
321
322 /// Compare two Instructions for equivalence, similar to
323 /// Instruction::isSameOperationAs but with modifications to the type
324 /// comparison.
325 /// Stages are listed in "most significant stage first" order:
326 /// On each stage below, we do comparison between some left and right
327 /// operation parts. If parts are non-equal, we assign parts comparison
328 /// result to the operation comparison result and exit from method.
329 /// Otherwise we proceed to the next stage.
330 /// Stages:
331 /// 1. Operations opcodes. Compared as numbers.
332 /// 2. Number of operands.
333 /// 3. Operation types. Compared with cmpType method.
334 /// 4. Compare operation subclass optional data as stream of bytes:
335 /// just convert it to integers and call cmpNumbers.
336 /// 5. Compare in operation operand types with cmpType in
337 /// most significant operand first order.
338 /// 6. Last stage. Check operations for some specific attributes.
339 /// For example, for Load it would be:
340 /// 6.1.Load: volatile (as boolean flag)
341 /// 6.2.Load: alignment (as integer numbers)
342 /// 6.3.Load: synch-scope (as integer numbers)
343 /// 6.4.Load: range metadata (as integer numbers)
344 /// On this stage its better to see the code, since its not more than 10-15
345 /// strings for particular instruction, and could change sometimes.
346 int cmpOperations(const Instruction *L, const Instruction *R) const;
347
348 /// Compare two GEPs for equivalent pointer arithmetic.
349 /// Parts to be compared for each comparison stage,
350 /// most significant stage first:
351 /// 1. Address space. As numbers.
352 /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method).
353 /// 3. Pointer operand type (using cmpType method).
354 /// 4. Number of operands.
355 /// 5. Compare operands, using cmpValues method.
356 int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR);
cmpGEPs(const GetElementPtrInst * GEPL,const GetElementPtrInst * GEPR)357 int cmpGEPs(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) {
358 return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
359 }
360
361 /// cmpType - compares two types,
362 /// defines total ordering among the types set.
363 ///
364 /// Return values:
365 /// 0 if types are equal,
366 /// -1 if Left is less than Right,
367 /// +1 if Left is greater than Right.
368 ///
369 /// Description:
370 /// Comparison is broken onto stages. Like in lexicographical comparison
371 /// stage coming first has higher priority.
372 /// On each explanation stage keep in mind total ordering properties.
373 ///
374 /// 0. Before comparison we coerce pointer types of 0 address space to
375 /// integer.
376 /// We also don't bother with same type at left and right, so
377 /// just return 0 in this case.
378 ///
379 /// 1. If types are of different kind (different type IDs).
380 /// Return result of type IDs comparison, treating them as numbers.
381 /// 2. If types are integers, check that they have the same width. If they
382 /// are vectors, check that they have the same count and subtype.
383 /// 3. Types have the same ID, so check whether they are one of:
384 /// * Void
385 /// * Float
386 /// * Double
387 /// * X86_FP80
388 /// * FP128
389 /// * PPC_FP128
390 /// * Label
391 /// * Metadata
392 /// We can treat these types as equal whenever their IDs are same.
393 /// 4. If Left and Right are pointers, return result of address space
394 /// comparison (numbers comparison). We can treat pointer types of same
395 /// address space as equal.
396 /// 5. If types are complex.
397 /// Then both Left and Right are to be expanded and their element types will
398 /// be checked with the same way. If we get Res != 0 on some stage, return it.
399 /// Otherwise return 0.
400 /// 6. For all other cases put llvm_unreachable.
401 int cmpTypes(Type *TyL, Type *TyR) const;
402
403 int cmpNumbers(uint64_t L, uint64_t R) const;
404 int cmpAPInts(const APInt &L, const APInt &R) const;
405 int cmpAPFloats(const APFloat &L, const APFloat &R) const;
406 int cmpInlineAsm(const InlineAsm *L, const InlineAsm *R) const;
407 int cmpMem(StringRef L, StringRef R) const;
408 int cmpAttrs(const AttributeSet L, const AttributeSet R) const;
409 int cmpRangeMetadata(const MDNode* L, const MDNode* R) const;
410 int cmpOperandBundlesSchema(const Instruction *L, const Instruction *R) const;
411
412 // The two functions undergoing comparison.
413 const Function *FnL, *FnR;
414
415 /// Assign serial numbers to values from left function, and values from
416 /// right function.
417 /// Explanation:
418 /// Being comparing functions we need to compare values we meet at left and
419 /// right sides.
420 /// Its easy to sort things out for external values. It just should be
421 /// the same value at left and right.
422 /// But for local values (those were introduced inside function body)
423 /// we have to ensure they were introduced at exactly the same place,
424 /// and plays the same role.
425 /// Let's assign serial number to each value when we meet it first time.
426 /// Values that were met at same place will be with same serial numbers.
427 /// In this case it would be good to explain few points about values assigned
428 /// to BBs and other ways of implementation (see below).
429 ///
430 /// 1. Safety of BB reordering.
431 /// It's safe to change the order of BasicBlocks in function.
432 /// Relationship with other functions and serial numbering will not be
433 /// changed in this case.
434 /// As follows from FunctionComparator::compare(), we do CFG walk: we start
435 /// from the entry, and then take each terminator. So it doesn't matter how in
436 /// fact BBs are ordered in function. And since cmpValues are called during
437 /// this walk, the numbering depends only on how BBs located inside the CFG.
438 /// So the answer is - yes. We will get the same numbering.
439 ///
440 /// 2. Impossibility to use dominance properties of values.
441 /// If we compare two instruction operands: first is usage of local
442 /// variable AL from function FL, and second is usage of local variable AR
443 /// from FR, we could compare their origins and check whether they are
444 /// defined at the same place.
445 /// But, we are still not able to compare operands of PHI nodes, since those
446 /// could be operands from further BBs we didn't scan yet.
447 /// So it's impossible to use dominance properties in general.
448 DenseMap<const Value*, int> sn_mapL, sn_mapR;
449
450 // The global state we will use
451 GlobalNumberState* GlobalNumbers;
452 };
453
454 class FunctionNode {
455 mutable AssertingVH<Function> F;
456 FunctionComparator::FunctionHash Hash;
457 public:
458 // Note the hash is recalculated potentially multiple times, but it is cheap.
FunctionNode(Function * F)459 FunctionNode(Function *F)
460 : F(F), Hash(FunctionComparator::functionHash(*F)) {}
getFunc() const461 Function *getFunc() const { return F; }
getHash() const462 FunctionComparator::FunctionHash getHash() const { return Hash; }
463
464 /// Replace the reference to the function F by the function G, assuming their
465 /// implementations are equal.
replaceBy(Function * G) const466 void replaceBy(Function *G) const {
467 F = G;
468 }
469
release()470 void release() { F = nullptr; }
471 };
472 } // end anonymous namespace
473
cmpNumbers(uint64_t L,uint64_t R) const474 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
475 if (L < R) return -1;
476 if (L > R) return 1;
477 return 0;
478 }
479
cmpAPInts(const APInt & L,const APInt & R) const480 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
481 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
482 return Res;
483 if (L.ugt(R)) return 1;
484 if (R.ugt(L)) return -1;
485 return 0;
486 }
487
cmpAPFloats(const APFloat & L,const APFloat & R) const488 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
489 // Floats are ordered first by semantics (i.e. float, double, half, etc.),
490 // then by value interpreted as a bitstring (aka APInt).
491 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
492 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
493 APFloat::semanticsPrecision(SR)))
494 return Res;
495 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
496 APFloat::semanticsMaxExponent(SR)))
497 return Res;
498 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
499 APFloat::semanticsMinExponent(SR)))
500 return Res;
501 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
502 APFloat::semanticsSizeInBits(SR)))
503 return Res;
504 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
505 }
506
cmpMem(StringRef L,StringRef R) const507 int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
508 // Prevent heavy comparison, compare sizes first.
509 if (int Res = cmpNumbers(L.size(), R.size()))
510 return Res;
511
512 // Compare strings lexicographically only when it is necessary: only when
513 // strings are equal in size.
514 return L.compare(R);
515 }
516
cmpAttrs(const AttributeSet L,const AttributeSet R) const517 int FunctionComparator::cmpAttrs(const AttributeSet L,
518 const AttributeSet R) const {
519 if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots()))
520 return Res;
521
522 for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) {
523 AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i),
524 RE = R.end(i);
525 for (; LI != LE && RI != RE; ++LI, ++RI) {
526 Attribute LA = *LI;
527 Attribute RA = *RI;
528 if (LA < RA)
529 return -1;
530 if (RA < LA)
531 return 1;
532 }
533 if (LI != LE)
534 return 1;
535 if (RI != RE)
536 return -1;
537 }
538 return 0;
539 }
540
cmpRangeMetadata(const MDNode * L,const MDNode * R) const541 int FunctionComparator::cmpRangeMetadata(const MDNode* L,
542 const MDNode* R) const {
543 if (L == R)
544 return 0;
545 if (!L)
546 return -1;
547 if (!R)
548 return 1;
549 // Range metadata is a sequence of numbers. Make sure they are the same
550 // sequence.
551 // TODO: Note that as this is metadata, it is possible to drop and/or merge
552 // this data when considering functions to merge. Thus this comparison would
553 // return 0 (i.e. equivalent), but merging would become more complicated
554 // because the ranges would need to be unioned. It is not likely that
555 // functions differ ONLY in this metadata if they are actually the same
556 // function semantically.
557 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
558 return Res;
559 for (size_t I = 0; I < L->getNumOperands(); ++I) {
560 ConstantInt* LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
561 ConstantInt* RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
562 if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
563 return Res;
564 }
565 return 0;
566 }
567
cmpOperandBundlesSchema(const Instruction * L,const Instruction * R) const568 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L,
569 const Instruction *R) const {
570 ImmutableCallSite LCS(L);
571 ImmutableCallSite RCS(R);
572
573 assert(LCS && RCS && "Must be calls or invokes!");
574 assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!");
575
576 if (int Res =
577 cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
578 return Res;
579
580 for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) {
581 auto OBL = LCS.getOperandBundleAt(i);
582 auto OBR = RCS.getOperandBundleAt(i);
583
584 if (int Res = OBL.getTagName().compare(OBR.getTagName()))
585 return Res;
586
587 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
588 return Res;
589 }
590
591 return 0;
592 }
593
594 /// Constants comparison:
595 /// 1. Check whether type of L constant could be losslessly bitcasted to R
596 /// type.
597 /// 2. Compare constant contents.
598 /// For more details see declaration comments.
cmpConstants(const Constant * L,const Constant * R)599 int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) {
600
601 Type *TyL = L->getType();
602 Type *TyR = R->getType();
603
604 // Check whether types are bitcastable. This part is just re-factored
605 // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
606 // we also pack into result which type is "less" for us.
607 int TypesRes = cmpTypes(TyL, TyR);
608 if (TypesRes != 0) {
609 // Types are different, but check whether we can bitcast them.
610 if (!TyL->isFirstClassType()) {
611 if (TyR->isFirstClassType())
612 return -1;
613 // Neither TyL nor TyR are values of first class type. Return the result
614 // of comparing the types
615 return TypesRes;
616 }
617 if (!TyR->isFirstClassType()) {
618 if (TyL->isFirstClassType())
619 return 1;
620 return TypesRes;
621 }
622
623 // Vector -> Vector conversions are always lossless if the two vector types
624 // have the same size, otherwise not.
625 unsigned TyLWidth = 0;
626 unsigned TyRWidth = 0;
627
628 if (auto *VecTyL = dyn_cast<VectorType>(TyL))
629 TyLWidth = VecTyL->getBitWidth();
630 if (auto *VecTyR = dyn_cast<VectorType>(TyR))
631 TyRWidth = VecTyR->getBitWidth();
632
633 if (TyLWidth != TyRWidth)
634 return cmpNumbers(TyLWidth, TyRWidth);
635
636 // Zero bit-width means neither TyL nor TyR are vectors.
637 if (!TyLWidth) {
638 PointerType *PTyL = dyn_cast<PointerType>(TyL);
639 PointerType *PTyR = dyn_cast<PointerType>(TyR);
640 if (PTyL && PTyR) {
641 unsigned AddrSpaceL = PTyL->getAddressSpace();
642 unsigned AddrSpaceR = PTyR->getAddressSpace();
643 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
644 return Res;
645 }
646 if (PTyL)
647 return 1;
648 if (PTyR)
649 return -1;
650
651 // TyL and TyR aren't vectors, nor pointers. We don't know how to
652 // bitcast them.
653 return TypesRes;
654 }
655 }
656
657 // OK, types are bitcastable, now check constant contents.
658
659 if (L->isNullValue() && R->isNullValue())
660 return TypesRes;
661 if (L->isNullValue() && !R->isNullValue())
662 return 1;
663 if (!L->isNullValue() && R->isNullValue())
664 return -1;
665
666 auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L));
667 auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R));
668 if (GlobalValueL && GlobalValueR) {
669 return cmpGlobalValues(GlobalValueL, GlobalValueR);
670 }
671
672 if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
673 return Res;
674
675 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
676 const auto *SeqR = cast<ConstantDataSequential>(R);
677 // This handles ConstantDataArray and ConstantDataVector. Note that we
678 // compare the two raw data arrays, which might differ depending on the host
679 // endianness. This isn't a problem though, because the endiness of a module
680 // will affect the order of the constants, but this order is the same
681 // for a given input module and host platform.
682 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
683 }
684
685 switch (L->getValueID()) {
686 case Value::UndefValueVal:
687 case Value::ConstantTokenNoneVal:
688 return TypesRes;
689 case Value::ConstantIntVal: {
690 const APInt &LInt = cast<ConstantInt>(L)->getValue();
691 const APInt &RInt = cast<ConstantInt>(R)->getValue();
692 return cmpAPInts(LInt, RInt);
693 }
694 case Value::ConstantFPVal: {
695 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
696 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
697 return cmpAPFloats(LAPF, RAPF);
698 }
699 case Value::ConstantArrayVal: {
700 const ConstantArray *LA = cast<ConstantArray>(L);
701 const ConstantArray *RA = cast<ConstantArray>(R);
702 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
703 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
704 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
705 return Res;
706 for (uint64_t i = 0; i < NumElementsL; ++i) {
707 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
708 cast<Constant>(RA->getOperand(i))))
709 return Res;
710 }
711 return 0;
712 }
713 case Value::ConstantStructVal: {
714 const ConstantStruct *LS = cast<ConstantStruct>(L);
715 const ConstantStruct *RS = cast<ConstantStruct>(R);
716 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
717 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
718 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
719 return Res;
720 for (unsigned i = 0; i != NumElementsL; ++i) {
721 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
722 cast<Constant>(RS->getOperand(i))))
723 return Res;
724 }
725 return 0;
726 }
727 case Value::ConstantVectorVal: {
728 const ConstantVector *LV = cast<ConstantVector>(L);
729 const ConstantVector *RV = cast<ConstantVector>(R);
730 unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
731 unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
732 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
733 return Res;
734 for (uint64_t i = 0; i < NumElementsL; ++i) {
735 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
736 cast<Constant>(RV->getOperand(i))))
737 return Res;
738 }
739 return 0;
740 }
741 case Value::ConstantExprVal: {
742 const ConstantExpr *LE = cast<ConstantExpr>(L);
743 const ConstantExpr *RE = cast<ConstantExpr>(R);
744 unsigned NumOperandsL = LE->getNumOperands();
745 unsigned NumOperandsR = RE->getNumOperands();
746 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
747 return Res;
748 for (unsigned i = 0; i < NumOperandsL; ++i) {
749 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
750 cast<Constant>(RE->getOperand(i))))
751 return Res;
752 }
753 return 0;
754 }
755 case Value::BlockAddressVal: {
756 const BlockAddress *LBA = cast<BlockAddress>(L);
757 const BlockAddress *RBA = cast<BlockAddress>(R);
758 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
759 return Res;
760 if (LBA->getFunction() == RBA->getFunction()) {
761 // They are BBs in the same function. Order by which comes first in the
762 // BB order of the function. This order is deterministic.
763 Function* F = LBA->getFunction();
764 BasicBlock *LBB = LBA->getBasicBlock();
765 BasicBlock *RBB = RBA->getBasicBlock();
766 if (LBB == RBB)
767 return 0;
768 for(BasicBlock &BB : F->getBasicBlockList()) {
769 if (&BB == LBB) {
770 assert(&BB != RBB);
771 return -1;
772 }
773 if (&BB == RBB)
774 return 1;
775 }
776 llvm_unreachable("Basic Block Address does not point to a basic block in "
777 "its function.");
778 return -1;
779 } else {
780 // cmpValues said the functions are the same. So because they aren't
781 // literally the same pointer, they must respectively be the left and
782 // right functions.
783 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
784 // cmpValues will tell us if these are equivalent BasicBlocks, in the
785 // context of their respective functions.
786 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
787 }
788 }
789 default: // Unknown constant, abort.
790 DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
791 llvm_unreachable("Constant ValueID not recognized.");
792 return -1;
793 }
794 }
795
cmpGlobalValues(GlobalValue * L,GlobalValue * R)796 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue* R) {
797 return cmpNumbers(GlobalNumbers->getNumber(L), GlobalNumbers->getNumber(R));
798 }
799
800 /// cmpType - compares two types,
801 /// defines total ordering among the types set.
802 /// See method declaration comments for more details.
cmpTypes(Type * TyL,Type * TyR) const803 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
804 PointerType *PTyL = dyn_cast<PointerType>(TyL);
805 PointerType *PTyR = dyn_cast<PointerType>(TyR);
806
807 const DataLayout &DL = FnL->getParent()->getDataLayout();
808 if (PTyL && PTyL->getAddressSpace() == 0)
809 TyL = DL.getIntPtrType(TyL);
810 if (PTyR && PTyR->getAddressSpace() == 0)
811 TyR = DL.getIntPtrType(TyR);
812
813 if (TyL == TyR)
814 return 0;
815
816 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
817 return Res;
818
819 switch (TyL->getTypeID()) {
820 default:
821 llvm_unreachable("Unknown type!");
822 // Fall through in Release mode.
823 case Type::IntegerTyID:
824 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
825 cast<IntegerType>(TyR)->getBitWidth());
826 case Type::VectorTyID: {
827 VectorType *VTyL = cast<VectorType>(TyL), *VTyR = cast<VectorType>(TyR);
828 if (int Res = cmpNumbers(VTyL->getNumElements(), VTyR->getNumElements()))
829 return Res;
830 return cmpTypes(VTyL->getElementType(), VTyR->getElementType());
831 }
832 // TyL == TyR would have returned true earlier, because types are uniqued.
833 case Type::VoidTyID:
834 case Type::FloatTyID:
835 case Type::DoubleTyID:
836 case Type::X86_FP80TyID:
837 case Type::FP128TyID:
838 case Type::PPC_FP128TyID:
839 case Type::LabelTyID:
840 case Type::MetadataTyID:
841 case Type::TokenTyID:
842 return 0;
843
844 case Type::PointerTyID: {
845 assert(PTyL && PTyR && "Both types must be pointers here.");
846 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
847 }
848
849 case Type::StructTyID: {
850 StructType *STyL = cast<StructType>(TyL);
851 StructType *STyR = cast<StructType>(TyR);
852 if (STyL->getNumElements() != STyR->getNumElements())
853 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
854
855 if (STyL->isPacked() != STyR->isPacked())
856 return cmpNumbers(STyL->isPacked(), STyR->isPacked());
857
858 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
859 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
860 return Res;
861 }
862 return 0;
863 }
864
865 case Type::FunctionTyID: {
866 FunctionType *FTyL = cast<FunctionType>(TyL);
867 FunctionType *FTyR = cast<FunctionType>(TyR);
868 if (FTyL->getNumParams() != FTyR->getNumParams())
869 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
870
871 if (FTyL->isVarArg() != FTyR->isVarArg())
872 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
873
874 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
875 return Res;
876
877 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
878 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
879 return Res;
880 }
881 return 0;
882 }
883
884 case Type::ArrayTyID: {
885 ArrayType *ATyL = cast<ArrayType>(TyL);
886 ArrayType *ATyR = cast<ArrayType>(TyR);
887 if (ATyL->getNumElements() != ATyR->getNumElements())
888 return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements());
889 return cmpTypes(ATyL->getElementType(), ATyR->getElementType());
890 }
891 }
892 }
893
894 // Determine whether the two operations are the same except that pointer-to-A
895 // and pointer-to-B are equivalent. This should be kept in sync with
896 // Instruction::isSameOperationAs.
897 // Read method declaration comments for more details.
cmpOperations(const Instruction * L,const Instruction * R) const898 int FunctionComparator::cmpOperations(const Instruction *L,
899 const Instruction *R) const {
900 // Differences from Instruction::isSameOperationAs:
901 // * replace type comparison with calls to isEquivalentType.
902 // * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
903 // * because of the above, we don't test for the tail bit on calls later on
904 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
905 return Res;
906
907 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
908 return Res;
909
910 if (int Res = cmpTypes(L->getType(), R->getType()))
911 return Res;
912
913 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
914 R->getRawSubclassOptionalData()))
915 return Res;
916
917 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
918 if (int Res = cmpTypes(AI->getAllocatedType(),
919 cast<AllocaInst>(R)->getAllocatedType()))
920 return Res;
921 if (int Res =
922 cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment()))
923 return Res;
924 }
925
926 // We have two instructions of identical opcode and #operands. Check to see
927 // if all operands are the same type
928 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
929 if (int Res =
930 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
931 return Res;
932 }
933
934 // Check special state that is a part of some instructions.
935 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
936 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
937 return Res;
938 if (int Res =
939 cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
940 return Res;
941 if (int Res =
942 cmpNumbers(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
943 return Res;
944 if (int Res =
945 cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope()))
946 return Res;
947 return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range),
948 cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
949 }
950 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
951 if (int Res =
952 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
953 return Res;
954 if (int Res =
955 cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
956 return Res;
957 if (int Res =
958 cmpNumbers(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
959 return Res;
960 return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope());
961 }
962 if (const CmpInst *CI = dyn_cast<CmpInst>(L))
963 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
964 if (const CallInst *CI = dyn_cast<CallInst>(L)) {
965 if (int Res = cmpNumbers(CI->getCallingConv(),
966 cast<CallInst>(R)->getCallingConv()))
967 return Res;
968 if (int Res =
969 cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes()))
970 return Res;
971 if (int Res = cmpOperandBundlesSchema(CI, R))
972 return Res;
973 return cmpRangeMetadata(
974 CI->getMetadata(LLVMContext::MD_range),
975 cast<CallInst>(R)->getMetadata(LLVMContext::MD_range));
976 }
977 if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) {
978 if (int Res = cmpNumbers(II->getCallingConv(),
979 cast<InvokeInst>(R)->getCallingConv()))
980 return Res;
981 if (int Res =
982 cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes()))
983 return Res;
984 if (int Res = cmpOperandBundlesSchema(II, R))
985 return Res;
986 return cmpRangeMetadata(
987 II->getMetadata(LLVMContext::MD_range),
988 cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range));
989 }
990 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
991 ArrayRef<unsigned> LIndices = IVI->getIndices();
992 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
993 if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
994 return Res;
995 for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
996 if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
997 return Res;
998 }
999 }
1000 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
1001 ArrayRef<unsigned> LIndices = EVI->getIndices();
1002 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
1003 if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
1004 return Res;
1005 for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
1006 if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
1007 return Res;
1008 }
1009 }
1010 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
1011 if (int Res =
1012 cmpNumbers(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
1013 return Res;
1014 return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope());
1015 }
1016
1017 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
1018 if (int Res = cmpNumbers(CXI->isVolatile(),
1019 cast<AtomicCmpXchgInst>(R)->isVolatile()))
1020 return Res;
1021 if (int Res = cmpNumbers(CXI->isWeak(),
1022 cast<AtomicCmpXchgInst>(R)->isWeak()))
1023 return Res;
1024 if (int Res = cmpNumbers(CXI->getSuccessOrdering(),
1025 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
1026 return Res;
1027 if (int Res = cmpNumbers(CXI->getFailureOrdering(),
1028 cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
1029 return Res;
1030 return cmpNumbers(CXI->getSynchScope(),
1031 cast<AtomicCmpXchgInst>(R)->getSynchScope());
1032 }
1033 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
1034 if (int Res = cmpNumbers(RMWI->getOperation(),
1035 cast<AtomicRMWInst>(R)->getOperation()))
1036 return Res;
1037 if (int Res = cmpNumbers(RMWI->isVolatile(),
1038 cast<AtomicRMWInst>(R)->isVolatile()))
1039 return Res;
1040 if (int Res = cmpNumbers(RMWI->getOrdering(),
1041 cast<AtomicRMWInst>(R)->getOrdering()))
1042 return Res;
1043 return cmpNumbers(RMWI->getSynchScope(),
1044 cast<AtomicRMWInst>(R)->getSynchScope());
1045 }
1046 return 0;
1047 }
1048
1049 // Determine whether two GEP operations perform the same underlying arithmetic.
1050 // Read method declaration comments for more details.
cmpGEPs(const GEPOperator * GEPL,const GEPOperator * GEPR)1051 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
1052 const GEPOperator *GEPR) {
1053
1054 unsigned int ASL = GEPL->getPointerAddressSpace();
1055 unsigned int ASR = GEPR->getPointerAddressSpace();
1056
1057 if (int Res = cmpNumbers(ASL, ASR))
1058 return Res;
1059
1060 // When we have target data, we can reduce the GEP down to the value in bytes
1061 // added to the address.
1062 const DataLayout &DL = FnL->getParent()->getDataLayout();
1063 unsigned BitWidth = DL.getPointerSizeInBits(ASL);
1064 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
1065 if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
1066 GEPR->accumulateConstantOffset(DL, OffsetR))
1067 return cmpAPInts(OffsetL, OffsetR);
1068 if (int Res = cmpTypes(GEPL->getSourceElementType(),
1069 GEPR->getSourceElementType()))
1070 return Res;
1071
1072 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
1073 return Res;
1074
1075 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
1076 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
1077 return Res;
1078 }
1079
1080 return 0;
1081 }
1082
cmpInlineAsm(const InlineAsm * L,const InlineAsm * R) const1083 int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
1084 const InlineAsm *R) const {
1085 // InlineAsm's are uniqued. If they are the same pointer, obviously they are
1086 // the same, otherwise compare the fields.
1087 if (L == R)
1088 return 0;
1089 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
1090 return Res;
1091 if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
1092 return Res;
1093 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
1094 return Res;
1095 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
1096 return Res;
1097 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
1098 return Res;
1099 if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
1100 return Res;
1101 llvm_unreachable("InlineAsm blocks were not uniqued.");
1102 return 0;
1103 }
1104
1105 /// Compare two values used by the two functions under pair-wise comparison. If
1106 /// this is the first time the values are seen, they're added to the mapping so
1107 /// that we will detect mismatches on next use.
1108 /// See comments in declaration for more details.
cmpValues(const Value * L,const Value * R)1109 int FunctionComparator::cmpValues(const Value *L, const Value *R) {
1110 // Catch self-reference case.
1111 if (L == FnL) {
1112 if (R == FnR)
1113 return 0;
1114 return -1;
1115 }
1116 if (R == FnR) {
1117 if (L == FnL)
1118 return 0;
1119 return 1;
1120 }
1121
1122 const Constant *ConstL = dyn_cast<Constant>(L);
1123 const Constant *ConstR = dyn_cast<Constant>(R);
1124 if (ConstL && ConstR) {
1125 if (L == R)
1126 return 0;
1127 return cmpConstants(ConstL, ConstR);
1128 }
1129
1130 if (ConstL)
1131 return 1;
1132 if (ConstR)
1133 return -1;
1134
1135 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
1136 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
1137
1138 if (InlineAsmL && InlineAsmR)
1139 return cmpInlineAsm(InlineAsmL, InlineAsmR);
1140 if (InlineAsmL)
1141 return 1;
1142 if (InlineAsmR)
1143 return -1;
1144
1145 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
1146 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
1147
1148 return cmpNumbers(LeftSN.first->second, RightSN.first->second);
1149 }
1150 // Test whether two basic blocks have equivalent behaviour.
cmpBasicBlocks(const BasicBlock * BBL,const BasicBlock * BBR)1151 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
1152 const BasicBlock *BBR) {
1153 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
1154 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
1155
1156 do {
1157 if (int Res = cmpValues(&*InstL, &*InstR))
1158 return Res;
1159
1160 const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL);
1161 const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR);
1162
1163 if (GEPL && !GEPR)
1164 return 1;
1165 if (GEPR && !GEPL)
1166 return -1;
1167
1168 if (GEPL && GEPR) {
1169 if (int Res =
1170 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
1171 return Res;
1172 if (int Res = cmpGEPs(GEPL, GEPR))
1173 return Res;
1174 } else {
1175 if (int Res = cmpOperations(&*InstL, &*InstR))
1176 return Res;
1177 assert(InstL->getNumOperands() == InstR->getNumOperands());
1178
1179 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
1180 Value *OpL = InstL->getOperand(i);
1181 Value *OpR = InstR->getOperand(i);
1182 if (int Res = cmpValues(OpL, OpR))
1183 return Res;
1184 // cmpValues should ensure this is true.
1185 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
1186 }
1187 }
1188
1189 ++InstL, ++InstR;
1190 } while (InstL != InstLE && InstR != InstRE);
1191
1192 if (InstL != InstLE && InstR == InstRE)
1193 return 1;
1194 if (InstL == InstLE && InstR != InstRE)
1195 return -1;
1196 return 0;
1197 }
1198
1199 // Test whether the two functions have equivalent behaviour.
compare()1200 int FunctionComparator::compare() {
1201 sn_mapL.clear();
1202 sn_mapR.clear();
1203
1204 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
1205 return Res;
1206
1207 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
1208 return Res;
1209
1210 if (FnL->hasGC()) {
1211 if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
1212 return Res;
1213 }
1214
1215 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
1216 return Res;
1217
1218 if (FnL->hasSection()) {
1219 if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
1220 return Res;
1221 }
1222
1223 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
1224 return Res;
1225
1226 // TODO: if it's internal and only used in direct calls, we could handle this
1227 // case too.
1228 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
1229 return Res;
1230
1231 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
1232 return Res;
1233
1234 assert(FnL->arg_size() == FnR->arg_size() &&
1235 "Identically typed functions have different numbers of args!");
1236
1237 // Visit the arguments so that they get enumerated in the order they're
1238 // passed in.
1239 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
1240 ArgRI = FnR->arg_begin(),
1241 ArgLE = FnL->arg_end();
1242 ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
1243 if (cmpValues(&*ArgLI, &*ArgRI) != 0)
1244 llvm_unreachable("Arguments repeat!");
1245 }
1246
1247 // We do a CFG-ordered walk since the actual ordering of the blocks in the
1248 // linked list is immaterial. Our walk starts at the entry block for both
1249 // functions, then takes each block from each terminator in order. As an
1250 // artifact, this also means that unreachable blocks are ignored.
1251 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
1252 SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
1253
1254 FnLBBs.push_back(&FnL->getEntryBlock());
1255 FnRBBs.push_back(&FnR->getEntryBlock());
1256
1257 VisitedBBs.insert(FnLBBs[0]);
1258 while (!FnLBBs.empty()) {
1259 const BasicBlock *BBL = FnLBBs.pop_back_val();
1260 const BasicBlock *BBR = FnRBBs.pop_back_val();
1261
1262 if (int Res = cmpValues(BBL, BBR))
1263 return Res;
1264
1265 if (int Res = cmpBasicBlocks(BBL, BBR))
1266 return Res;
1267
1268 const TerminatorInst *TermL = BBL->getTerminator();
1269 const TerminatorInst *TermR = BBR->getTerminator();
1270
1271 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
1272 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
1273 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
1274 continue;
1275
1276 FnLBBs.push_back(TermL->getSuccessor(i));
1277 FnRBBs.push_back(TermR->getSuccessor(i));
1278 }
1279 }
1280 return 0;
1281 }
1282
1283 namespace {
1284 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a
1285 // hash of a sequence of 64bit ints, but the entire input does not need to be
1286 // available at once. This interface is necessary for functionHash because it
1287 // needs to accumulate the hash as the structure of the function is traversed
1288 // without saving these values to an intermediate buffer. This form of hashing
1289 // is not often needed, as usually the object to hash is just read from a
1290 // buffer.
1291 class HashAccumulator64 {
1292 uint64_t Hash;
1293 public:
1294 // Initialize to random constant, so the state isn't zero.
HashAccumulator64()1295 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
add(uint64_t V)1296 void add(uint64_t V) {
1297 Hash = llvm::hashing::detail::hash_16_bytes(Hash, V);
1298 }
1299 // No finishing is required, because the entire hash value is used.
getHash()1300 uint64_t getHash() { return Hash; }
1301 };
1302 } // end anonymous namespace
1303
1304 // A function hash is calculated by considering only the number of arguments and
1305 // whether a function is varargs, the order of basic blocks (given by the
1306 // successors of each basic block in depth first order), and the order of
1307 // opcodes of each instruction within each of these basic blocks. This mirrors
1308 // the strategy compare() uses to compare functions by walking the BBs in depth
1309 // first order and comparing each instruction in sequence. Because this hash
1310 // does not look at the operands, it is insensitive to things such as the
1311 // target of calls and the constants used in the function, which makes it useful
1312 // when possibly merging functions which are the same modulo constants and call
1313 // targets.
functionHash(Function & F)1314 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
1315 HashAccumulator64 H;
1316 H.add(F.isVarArg());
1317 H.add(F.arg_size());
1318
1319 SmallVector<const BasicBlock *, 8> BBs;
1320 SmallSet<const BasicBlock *, 16> VisitedBBs;
1321
1322 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
1323 // accumulating the hash of the function "structure." (BB and opcode sequence)
1324 BBs.push_back(&F.getEntryBlock());
1325 VisitedBBs.insert(BBs[0]);
1326 while (!BBs.empty()) {
1327 const BasicBlock *BB = BBs.pop_back_val();
1328 // This random value acts as a block header, as otherwise the partition of
1329 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
1330 H.add(45798);
1331 for (auto &Inst : *BB) {
1332 H.add(Inst.getOpcode());
1333 }
1334 const TerminatorInst *Term = BB->getTerminator();
1335 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
1336 if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
1337 continue;
1338 BBs.push_back(Term->getSuccessor(i));
1339 }
1340 }
1341 return H.getHash();
1342 }
1343
1344
1345 namespace {
1346
1347 /// MergeFunctions finds functions which will generate identical machine code,
1348 /// by considering all pointer types to be equivalent. Once identified,
1349 /// MergeFunctions will fold them by replacing a call to one to a call to a
1350 /// bitcast of the other.
1351 ///
1352 class MergeFunctions : public ModulePass {
1353 public:
1354 static char ID;
MergeFunctions()1355 MergeFunctions()
1356 : ModulePass(ID), FnTree(FunctionNodeCmp(&GlobalNumbers)), FNodesInTree(),
1357 HasGlobalAliases(false) {
1358 initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
1359 }
1360
1361 bool runOnModule(Module &M) override;
1362
1363 private:
1364 // The function comparison operator is provided here so that FunctionNodes do
1365 // not need to become larger with another pointer.
1366 class FunctionNodeCmp {
1367 GlobalNumberState* GlobalNumbers;
1368 public:
FunctionNodeCmp(GlobalNumberState * GN)1369 FunctionNodeCmp(GlobalNumberState* GN) : GlobalNumbers(GN) {}
operator ()(const FunctionNode & LHS,const FunctionNode & RHS) const1370 bool operator()(const FunctionNode &LHS, const FunctionNode &RHS) const {
1371 // Order first by hashes, then full function comparison.
1372 if (LHS.getHash() != RHS.getHash())
1373 return LHS.getHash() < RHS.getHash();
1374 FunctionComparator FCmp(LHS.getFunc(), RHS.getFunc(), GlobalNumbers);
1375 return FCmp.compare() == -1;
1376 }
1377 };
1378 typedef std::set<FunctionNode, FunctionNodeCmp> FnTreeType;
1379
1380 GlobalNumberState GlobalNumbers;
1381
1382 /// A work queue of functions that may have been modified and should be
1383 /// analyzed again.
1384 std::vector<WeakVH> Deferred;
1385
1386 /// Checks the rules of order relation introduced among functions set.
1387 /// Returns true, if sanity check has been passed, and false if failed.
1388 bool doSanityCheck(std::vector<WeakVH> &Worklist);
1389
1390 /// Insert a ComparableFunction into the FnTree, or merge it away if it's
1391 /// equal to one that's already present.
1392 bool insert(Function *NewFunction);
1393
1394 /// Remove a Function from the FnTree and queue it up for a second sweep of
1395 /// analysis.
1396 void remove(Function *F);
1397
1398 /// Find the functions that use this Value and remove them from FnTree and
1399 /// queue the functions.
1400 void removeUsers(Value *V);
1401
1402 /// Replace all direct calls of Old with calls of New. Will bitcast New if
1403 /// necessary to make types match.
1404 void replaceDirectCallers(Function *Old, Function *New);
1405
1406 /// Merge two equivalent functions. Upon completion, G may be deleted, or may
1407 /// be converted into a thunk. In either case, it should never be visited
1408 /// again.
1409 void mergeTwoFunctions(Function *F, Function *G);
1410
1411 /// Replace G with a thunk or an alias to F. Deletes G.
1412 void writeThunkOrAlias(Function *F, Function *G);
1413
1414 /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
1415 /// of G with bitcast(F). Deletes G.
1416 void writeThunk(Function *F, Function *G);
1417
1418 /// Replace G with an alias to F. Deletes G.
1419 void writeAlias(Function *F, Function *G);
1420
1421 /// Replace function F with function G in the function tree.
1422 void replaceFunctionInTree(const FunctionNode &FN, Function *G);
1423
1424 /// The set of all distinct functions. Use the insert() and remove() methods
1425 /// to modify it. The map allows efficient lookup and deferring of Functions.
1426 FnTreeType FnTree;
1427 // Map functions to the iterators of the FunctionNode which contains them
1428 // in the FnTree. This must be updated carefully whenever the FnTree is
1429 // modified, i.e. in insert(), remove(), and replaceFunctionInTree(), to avoid
1430 // dangling iterators into FnTree. The invariant that preserves this is that
1431 // there is exactly one mapping F -> FN for each FunctionNode FN in FnTree.
1432 ValueMap<Function*, FnTreeType::iterator> FNodesInTree;
1433
1434 /// Whether or not the target supports global aliases.
1435 bool HasGlobalAliases;
1436 };
1437
1438 } // end anonymous namespace
1439
1440 char MergeFunctions::ID = 0;
1441 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
1442
createMergeFunctionsPass()1443 ModulePass *llvm::createMergeFunctionsPass() {
1444 return new MergeFunctions();
1445 }
1446
doSanityCheck(std::vector<WeakVH> & Worklist)1447 bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) {
1448 if (const unsigned Max = NumFunctionsForSanityCheck) {
1449 unsigned TripleNumber = 0;
1450 bool Valid = true;
1451
1452 dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n";
1453
1454 unsigned i = 0;
1455 for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end();
1456 I != E && i < Max; ++I, ++i) {
1457 unsigned j = i;
1458 for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) {
1459 Function *F1 = cast<Function>(*I);
1460 Function *F2 = cast<Function>(*J);
1461 int Res1 = FunctionComparator(F1, F2, &GlobalNumbers).compare();
1462 int Res2 = FunctionComparator(F2, F1, &GlobalNumbers).compare();
1463
1464 // If F1 <= F2, then F2 >= F1, otherwise report failure.
1465 if (Res1 != -Res2) {
1466 dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber
1467 << "\n";
1468 F1->dump();
1469 F2->dump();
1470 Valid = false;
1471 }
1472
1473 if (Res1 == 0)
1474 continue;
1475
1476 unsigned k = j;
1477 for (std::vector<WeakVH>::iterator K = J; K != E && k < Max;
1478 ++k, ++K, ++TripleNumber) {
1479 if (K == J)
1480 continue;
1481
1482 Function *F3 = cast<Function>(*K);
1483 int Res3 = FunctionComparator(F1, F3, &GlobalNumbers).compare();
1484 int Res4 = FunctionComparator(F2, F3, &GlobalNumbers).compare();
1485
1486 bool Transitive = true;
1487
1488 if (Res1 != 0 && Res1 == Res4) {
1489 // F1 > F2, F2 > F3 => F1 > F3
1490 Transitive = Res3 == Res1;
1491 } else if (Res3 != 0 && Res3 == -Res4) {
1492 // F1 > F3, F3 > F2 => F1 > F2
1493 Transitive = Res3 == Res1;
1494 } else if (Res4 != 0 && -Res3 == Res4) {
1495 // F2 > F3, F3 > F1 => F2 > F1
1496 Transitive = Res4 == -Res1;
1497 }
1498
1499 if (!Transitive) {
1500 dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: "
1501 << TripleNumber << "\n";
1502 dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", "
1503 << Res4 << "\n";
1504 F1->dump();
1505 F2->dump();
1506 F3->dump();
1507 Valid = false;
1508 }
1509 }
1510 }
1511 }
1512
1513 dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n";
1514 return Valid;
1515 }
1516 return true;
1517 }
1518
runOnModule(Module & M)1519 bool MergeFunctions::runOnModule(Module &M) {
1520 bool Changed = false;
1521
1522 // All functions in the module, ordered by hash. Functions with a unique
1523 // hash value are easily eliminated.
1524 std::vector<std::pair<FunctionComparator::FunctionHash, Function *>>
1525 HashedFuncs;
1526 for (Function &Func : M) {
1527 if (!Func.isDeclaration() && !Func.hasAvailableExternallyLinkage()) {
1528 HashedFuncs.push_back({FunctionComparator::functionHash(Func), &Func});
1529 }
1530 }
1531
1532 std::stable_sort(
1533 HashedFuncs.begin(), HashedFuncs.end(),
1534 [](const std::pair<FunctionComparator::FunctionHash, Function *> &a,
1535 const std::pair<FunctionComparator::FunctionHash, Function *> &b) {
1536 return a.first < b.first;
1537 });
1538
1539 auto S = HashedFuncs.begin();
1540 for (auto I = HashedFuncs.begin(), IE = HashedFuncs.end(); I != IE; ++I) {
1541 // If the hash value matches the previous value or the next one, we must
1542 // consider merging it. Otherwise it is dropped and never considered again.
1543 if ((I != S && std::prev(I)->first == I->first) ||
1544 (std::next(I) != IE && std::next(I)->first == I->first) ) {
1545 Deferred.push_back(WeakVH(I->second));
1546 }
1547 }
1548
1549 do {
1550 std::vector<WeakVH> Worklist;
1551 Deferred.swap(Worklist);
1552
1553 DEBUG(doSanityCheck(Worklist));
1554
1555 DEBUG(dbgs() << "size of module: " << M.size() << '\n');
1556 DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
1557
1558 // Insert only strong functions and merge them. Strong function merging
1559 // always deletes one of them.
1560 for (std::vector<WeakVH>::iterator I = Worklist.begin(),
1561 E = Worklist.end(); I != E; ++I) {
1562 if (!*I) continue;
1563 Function *F = cast<Function>(*I);
1564 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
1565 !F->mayBeOverridden()) {
1566 Changed |= insert(F);
1567 }
1568 }
1569
1570 // Insert only weak functions and merge them. By doing these second we
1571 // create thunks to the strong function when possible. When two weak
1572 // functions are identical, we create a new strong function with two weak
1573 // weak thunks to it which are identical but not mergable.
1574 for (std::vector<WeakVH>::iterator I = Worklist.begin(),
1575 E = Worklist.end(); I != E; ++I) {
1576 if (!*I) continue;
1577 Function *F = cast<Function>(*I);
1578 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
1579 F->mayBeOverridden()) {
1580 Changed |= insert(F);
1581 }
1582 }
1583 DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n');
1584 } while (!Deferred.empty());
1585
1586 FnTree.clear();
1587 GlobalNumbers.clear();
1588
1589 return Changed;
1590 }
1591
1592 // Replace direct callers of Old with New.
replaceDirectCallers(Function * Old,Function * New)1593 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
1594 Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
1595 for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) {
1596 Use *U = &*UI;
1597 ++UI;
1598 CallSite CS(U->getUser());
1599 if (CS && CS.isCallee(U)) {
1600 // Transfer the called function's attributes to the call site. Due to the
1601 // bitcast we will 'lose' ABI changing attributes because the 'called
1602 // function' is no longer a Function* but the bitcast. Code that looks up
1603 // the attributes from the called function will fail.
1604
1605 // FIXME: This is not actually true, at least not anymore. The callsite
1606 // will always have the same ABI affecting attributes as the callee,
1607 // because otherwise the original input has UB. Note that Old and New
1608 // always have matching ABI, so no attributes need to be changed.
1609 // Transferring other attributes may help other optimizations, but that
1610 // should be done uniformly and not in this ad-hoc way.
1611 auto &Context = New->getContext();
1612 auto NewFuncAttrs = New->getAttributes();
1613 auto CallSiteAttrs = CS.getAttributes();
1614
1615 CallSiteAttrs = CallSiteAttrs.addAttributes(
1616 Context, AttributeSet::ReturnIndex, NewFuncAttrs.getRetAttributes());
1617
1618 for (unsigned argIdx = 0; argIdx < CS.arg_size(); argIdx++) {
1619 AttributeSet Attrs = NewFuncAttrs.getParamAttributes(argIdx);
1620 if (Attrs.getNumSlots())
1621 CallSiteAttrs = CallSiteAttrs.addAttributes(Context, argIdx, Attrs);
1622 }
1623
1624 CS.setAttributes(CallSiteAttrs);
1625
1626 remove(CS.getInstruction()->getParent()->getParent());
1627 U->set(BitcastNew);
1628 }
1629 }
1630 }
1631
1632 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
writeThunkOrAlias(Function * F,Function * G)1633 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
1634 if (HasGlobalAliases && G->hasUnnamedAddr()) {
1635 if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
1636 G->hasWeakLinkage()) {
1637 writeAlias(F, G);
1638 return;
1639 }
1640 }
1641
1642 writeThunk(F, G);
1643 }
1644
1645 // Helper for writeThunk,
1646 // Selects proper bitcast operation,
1647 // but a bit simpler then CastInst::getCastOpcode.
createCast(IRBuilder<false> & Builder,Value * V,Type * DestTy)1648 static Value *createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) {
1649 Type *SrcTy = V->getType();
1650 if (SrcTy->isStructTy()) {
1651 assert(DestTy->isStructTy());
1652 assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
1653 Value *Result = UndefValue::get(DestTy);
1654 for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
1655 Value *Element = createCast(
1656 Builder, Builder.CreateExtractValue(V, makeArrayRef(I)),
1657 DestTy->getStructElementType(I));
1658
1659 Result =
1660 Builder.CreateInsertValue(Result, Element, makeArrayRef(I));
1661 }
1662 return Result;
1663 }
1664 assert(!DestTy->isStructTy());
1665 if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
1666 return Builder.CreateIntToPtr(V, DestTy);
1667 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
1668 return Builder.CreatePtrToInt(V, DestTy);
1669 else
1670 return Builder.CreateBitCast(V, DestTy);
1671 }
1672
1673 // Replace G with a simple tail call to bitcast(F). Also replace direct uses
1674 // of G with bitcast(F). Deletes G.
writeThunk(Function * F,Function * G)1675 void MergeFunctions::writeThunk(Function *F, Function *G) {
1676 if (!G->mayBeOverridden()) {
1677 // Redirect direct callers of G to F.
1678 replaceDirectCallers(G, F);
1679 }
1680
1681 // If G was internal then we may have replaced all uses of G with F. If so,
1682 // stop here and delete G. There's no need for a thunk.
1683 if (G->hasLocalLinkage() && G->use_empty()) {
1684 G->eraseFromParent();
1685 return;
1686 }
1687
1688 Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
1689 G->getParent());
1690 BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
1691 IRBuilder<false> Builder(BB);
1692
1693 SmallVector<Value *, 16> Args;
1694 unsigned i = 0;
1695 FunctionType *FFTy = F->getFunctionType();
1696 for (Argument & AI : NewG->args()) {
1697 Args.push_back(createCast(Builder, &AI, FFTy->getParamType(i)));
1698 ++i;
1699 }
1700
1701 CallInst *CI = Builder.CreateCall(F, Args);
1702 CI->setTailCall();
1703 CI->setCallingConv(F->getCallingConv());
1704 CI->setAttributes(F->getAttributes());
1705 if (NewG->getReturnType()->isVoidTy()) {
1706 Builder.CreateRetVoid();
1707 } else {
1708 Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType()));
1709 }
1710
1711 NewG->copyAttributesFrom(G);
1712 NewG->takeName(G);
1713 removeUsers(G);
1714 G->replaceAllUsesWith(NewG);
1715 G->eraseFromParent();
1716
1717 DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
1718 ++NumThunksWritten;
1719 }
1720
1721 // Replace G with an alias to F and delete G.
writeAlias(Function * F,Function * G)1722 void MergeFunctions::writeAlias(Function *F, Function *G) {
1723 auto *GA = GlobalAlias::create(G->getLinkage(), "", F);
1724 F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
1725 GA->takeName(G);
1726 GA->setVisibility(G->getVisibility());
1727 removeUsers(G);
1728 G->replaceAllUsesWith(GA);
1729 G->eraseFromParent();
1730
1731 DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
1732 ++NumAliasesWritten;
1733 }
1734
1735 // Merge two equivalent functions. Upon completion, Function G is deleted.
mergeTwoFunctions(Function * F,Function * G)1736 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
1737 if (F->mayBeOverridden()) {
1738 assert(G->mayBeOverridden());
1739
1740 // Make them both thunks to the same internal function.
1741 Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
1742 F->getParent());
1743 H->copyAttributesFrom(F);
1744 H->takeName(F);
1745 removeUsers(F);
1746 F->replaceAllUsesWith(H);
1747
1748 unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
1749
1750 if (HasGlobalAliases) {
1751 writeAlias(F, G);
1752 writeAlias(F, H);
1753 } else {
1754 writeThunk(F, G);
1755 writeThunk(F, H);
1756 }
1757
1758 F->setAlignment(MaxAlignment);
1759 F->setLinkage(GlobalValue::PrivateLinkage);
1760 ++NumDoubleWeak;
1761 } else {
1762 writeThunkOrAlias(F, G);
1763 }
1764
1765 ++NumFunctionsMerged;
1766 }
1767
1768 /// Replace function F by function G.
replaceFunctionInTree(const FunctionNode & FN,Function * G)1769 void MergeFunctions::replaceFunctionInTree(const FunctionNode &FN,
1770 Function *G) {
1771 Function *F = FN.getFunc();
1772 assert(FunctionComparator(F, G, &GlobalNumbers).compare() == 0 &&
1773 "The two functions must be equal");
1774
1775 auto I = FNodesInTree.find(F);
1776 assert(I != FNodesInTree.end() && "F should be in FNodesInTree");
1777 assert(FNodesInTree.count(G) == 0 && "FNodesInTree should not contain G");
1778
1779 FnTreeType::iterator IterToFNInFnTree = I->second;
1780 assert(&(*IterToFNInFnTree) == &FN && "F should map to FN in FNodesInTree.");
1781 // Remove F -> FN and insert G -> FN
1782 FNodesInTree.erase(I);
1783 FNodesInTree.insert({G, IterToFNInFnTree});
1784 // Replace F with G in FN, which is stored inside the FnTree.
1785 FN.replaceBy(G);
1786 }
1787
1788 // Insert a ComparableFunction into the FnTree, or merge it away if equal to one
1789 // that was already inserted.
insert(Function * NewFunction)1790 bool MergeFunctions::insert(Function *NewFunction) {
1791 std::pair<FnTreeType::iterator, bool> Result =
1792 FnTree.insert(FunctionNode(NewFunction));
1793
1794 if (Result.second) {
1795 assert(FNodesInTree.count(NewFunction) == 0);
1796 FNodesInTree.insert({NewFunction, Result.first});
1797 DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n');
1798 return false;
1799 }
1800
1801 const FunctionNode &OldF = *Result.first;
1802
1803 // Don't merge tiny functions, since it can just end up making the function
1804 // larger.
1805 // FIXME: Should still merge them if they are unnamed_addr and produce an
1806 // alias.
1807 if (NewFunction->size() == 1) {
1808 if (NewFunction->front().size() <= 2) {
1809 DEBUG(dbgs() << NewFunction->getName()
1810 << " is to small to bother merging\n");
1811 return false;
1812 }
1813 }
1814
1815 // Impose a total order (by name) on the replacement of functions. This is
1816 // important when operating on more than one module independently to prevent
1817 // cycles of thunks calling each other when the modules are linked together.
1818 //
1819 // When one function is weak and the other is strong there is an order imposed
1820 // already. We process strong functions before weak functions.
1821 if ((OldF.getFunc()->mayBeOverridden() && NewFunction->mayBeOverridden()) ||
1822 (!OldF.getFunc()->mayBeOverridden() && !NewFunction->mayBeOverridden()))
1823 if (OldF.getFunc()->getName() > NewFunction->getName()) {
1824 // Swap the two functions.
1825 Function *F = OldF.getFunc();
1826 replaceFunctionInTree(*Result.first, NewFunction);
1827 NewFunction = F;
1828 assert(OldF.getFunc() != F && "Must have swapped the functions.");
1829 }
1830
1831 // Never thunk a strong function to a weak function.
1832 assert(!OldF.getFunc()->mayBeOverridden() || NewFunction->mayBeOverridden());
1833
1834 DEBUG(dbgs() << " " << OldF.getFunc()->getName()
1835 << " == " << NewFunction->getName() << '\n');
1836
1837 Function *DeleteF = NewFunction;
1838 mergeTwoFunctions(OldF.getFunc(), DeleteF);
1839 return true;
1840 }
1841
1842 // Remove a function from FnTree. If it was already in FnTree, add
1843 // it to Deferred so that we'll look at it in the next round.
remove(Function * F)1844 void MergeFunctions::remove(Function *F) {
1845 auto I = FNodesInTree.find(F);
1846 if (I != FNodesInTree.end()) {
1847 DEBUG(dbgs() << "Deferred " << F->getName()<< ".\n");
1848 FnTree.erase(I->second);
1849 // I->second has been invalidated, remove it from the FNodesInTree map to
1850 // preserve the invariant.
1851 FNodesInTree.erase(I);
1852 Deferred.emplace_back(F);
1853 }
1854 }
1855
1856 // For each instruction used by the value, remove() the function that contains
1857 // the instruction. This should happen right before a call to RAUW.
removeUsers(Value * V)1858 void MergeFunctions::removeUsers(Value *V) {
1859 std::vector<Value *> Worklist;
1860 Worklist.push_back(V);
1861 SmallSet<Value*, 8> Visited;
1862 Visited.insert(V);
1863 while (!Worklist.empty()) {
1864 Value *V = Worklist.back();
1865 Worklist.pop_back();
1866
1867 for (User *U : V->users()) {
1868 if (Instruction *I = dyn_cast<Instruction>(U)) {
1869 remove(I->getParent()->getParent());
1870 } else if (isa<GlobalValue>(U)) {
1871 // do nothing
1872 } else if (Constant *C = dyn_cast<Constant>(U)) {
1873 for (User *UU : C->users()) {
1874 if (!Visited.insert(UU).second)
1875 Worklist.push_back(UU);
1876 }
1877 }
1878 }
1879 }
1880 }
1881