1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements sparse conditional constant propagation and merging:
11 //
12 // Specifically, this:
13 //   * Assumes values are constant unless proven otherwise
14 //   * Assumes BasicBlocks are dead unless proven otherwise
15 //   * Proves values to be constant, and replaces them with constants
16 //   * Proves conditional branches to be unconditional
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Transforms/Scalar.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/PointerIntPair.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/InstVisitor.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/IPO.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 #include <algorithm>
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "sccp"
46 
47 STATISTIC(NumInstRemoved, "Number of instructions removed");
48 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
49 
50 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
51 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
52 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
53 
54 namespace {
55 /// LatticeVal class - This class represents the different lattice values that
56 /// an LLVM value may occupy.  It is a simple class with value semantics.
57 ///
58 class LatticeVal {
59   enum LatticeValueTy {
60     /// undefined - This LLVM Value has no known value yet.
61     undefined,
62 
63     /// constant - This LLVM Value has a specific constant value.
64     constant,
65 
66     /// forcedconstant - This LLVM Value was thought to be undef until
67     /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
68     /// with another (different) constant, it goes to overdefined, instead of
69     /// asserting.
70     forcedconstant,
71 
72     /// overdefined - This instruction is not known to be constant, and we know
73     /// it has a value.
74     overdefined
75   };
76 
77   /// Val: This stores the current lattice value along with the Constant* for
78   /// the constant if this is a 'constant' or 'forcedconstant' value.
79   PointerIntPair<Constant *, 2, LatticeValueTy> Val;
80 
getLatticeValue() const81   LatticeValueTy getLatticeValue() const {
82     return Val.getInt();
83   }
84 
85 public:
LatticeVal()86   LatticeVal() : Val(nullptr, undefined) {}
87 
isUndefined() const88   bool isUndefined() const { return getLatticeValue() == undefined; }
isConstant() const89   bool isConstant() const {
90     return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
91   }
isOverdefined() const92   bool isOverdefined() const { return getLatticeValue() == overdefined; }
93 
getConstant() const94   Constant *getConstant() const {
95     assert(isConstant() && "Cannot get the constant of a non-constant!");
96     return Val.getPointer();
97   }
98 
99   /// markOverdefined - Return true if this is a change in status.
markOverdefined()100   bool markOverdefined() {
101     if (isOverdefined())
102       return false;
103 
104     Val.setInt(overdefined);
105     return true;
106   }
107 
108   /// markConstant - Return true if this is a change in status.
markConstant(Constant * V)109   bool markConstant(Constant *V) {
110     if (getLatticeValue() == constant) { // Constant but not forcedconstant.
111       assert(getConstant() == V && "Marking constant with different value");
112       return false;
113     }
114 
115     if (isUndefined()) {
116       Val.setInt(constant);
117       assert(V && "Marking constant with NULL");
118       Val.setPointer(V);
119     } else {
120       assert(getLatticeValue() == forcedconstant &&
121              "Cannot move from overdefined to constant!");
122       // Stay at forcedconstant if the constant is the same.
123       if (V == getConstant()) return false;
124 
125       // Otherwise, we go to overdefined.  Assumptions made based on the
126       // forced value are possibly wrong.  Assuming this is another constant
127       // could expose a contradiction.
128       Val.setInt(overdefined);
129     }
130     return true;
131   }
132 
133   /// getConstantInt - If this is a constant with a ConstantInt value, return it
134   /// otherwise return null.
getConstantInt() const135   ConstantInt *getConstantInt() const {
136     if (isConstant())
137       return dyn_cast<ConstantInt>(getConstant());
138     return nullptr;
139   }
140 
markForcedConstant(Constant * V)141   void markForcedConstant(Constant *V) {
142     assert(isUndefined() && "Can't force a defined value!");
143     Val.setInt(forcedconstant);
144     Val.setPointer(V);
145   }
146 };
147 } // end anonymous namespace.
148 
149 
150 namespace {
151 
152 //===----------------------------------------------------------------------===//
153 //
154 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
155 /// Constant Propagation.
156 ///
157 class SCCPSolver : public InstVisitor<SCCPSolver> {
158   const DataLayout &DL;
159   const TargetLibraryInfo *TLI;
160   SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
161   DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
162 
163   /// StructValueState - This maintains ValueState for values that have
164   /// StructType, for example for formal arguments, calls, insertelement, etc.
165   ///
166   DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
167 
168   /// GlobalValue - If we are tracking any values for the contents of a global
169   /// variable, we keep a mapping from the constant accessor to the element of
170   /// the global, to the currently known value.  If the value becomes
171   /// overdefined, it's entry is simply removed from this map.
172   DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
173 
174   /// TrackedRetVals - If we are tracking arguments into and the return
175   /// value out of a function, it will have an entry in this map, indicating
176   /// what the known return value for the function is.
177   DenseMap<Function*, LatticeVal> TrackedRetVals;
178 
179   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
180   /// that return multiple values.
181   DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
182 
183   /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
184   /// represented here for efficient lookup.
185   SmallPtrSet<Function*, 16> MRVFunctionsTracked;
186 
187   /// TrackingIncomingArguments - This is the set of functions for whose
188   /// arguments we make optimistic assumptions about and try to prove as
189   /// constants.
190   SmallPtrSet<Function*, 16> TrackingIncomingArguments;
191 
192   /// The reason for two worklists is that overdefined is the lowest state
193   /// on the lattice, and moving things to overdefined as fast as possible
194   /// makes SCCP converge much faster.
195   ///
196   /// By having a separate worklist, we accomplish this because everything
197   /// possibly overdefined will become overdefined at the soonest possible
198   /// point.
199   SmallVector<Value*, 64> OverdefinedInstWorkList;
200   SmallVector<Value*, 64> InstWorkList;
201 
202 
203   SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
204 
205   /// KnownFeasibleEdges - Entries in this set are edges which have already had
206   /// PHI nodes retriggered.
207   typedef std::pair<BasicBlock*, BasicBlock*> Edge;
208   DenseSet<Edge> KnownFeasibleEdges;
209 public:
SCCPSolver(const DataLayout & DL,const TargetLibraryInfo * tli)210   SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli)
211       : DL(DL), TLI(tli) {}
212 
213   /// MarkBlockExecutable - This method can be used by clients to mark all of
214   /// the blocks that are known to be intrinsically live in the processed unit.
215   ///
216   /// This returns true if the block was not considered live before.
MarkBlockExecutable(BasicBlock * BB)217   bool MarkBlockExecutable(BasicBlock *BB) {
218     if (!BBExecutable.insert(BB).second)
219       return false;
220     DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
221     BBWorkList.push_back(BB);  // Add the block to the work list!
222     return true;
223   }
224 
225   /// TrackValueOfGlobalVariable - Clients can use this method to
226   /// inform the SCCPSolver that it should track loads and stores to the
227   /// specified global variable if it can.  This is only legal to call if
228   /// performing Interprocedural SCCP.
TrackValueOfGlobalVariable(GlobalVariable * GV)229   void TrackValueOfGlobalVariable(GlobalVariable *GV) {
230     // We only track the contents of scalar globals.
231     if (GV->getType()->getElementType()->isSingleValueType()) {
232       LatticeVal &IV = TrackedGlobals[GV];
233       if (!isa<UndefValue>(GV->getInitializer()))
234         IV.markConstant(GV->getInitializer());
235     }
236   }
237 
238   /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
239   /// and out of the specified function (which cannot have its address taken),
240   /// this method must be called.
AddTrackedFunction(Function * F)241   void AddTrackedFunction(Function *F) {
242     // Add an entry, F -> undef.
243     if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
244       MRVFunctionsTracked.insert(F);
245       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
246         TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
247                                                      LatticeVal()));
248     } else
249       TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
250   }
251 
AddArgumentTrackedFunction(Function * F)252   void AddArgumentTrackedFunction(Function *F) {
253     TrackingIncomingArguments.insert(F);
254   }
255 
256   /// Solve - Solve for constants and executable blocks.
257   ///
258   void Solve();
259 
260   /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
261   /// that branches on undef values cannot reach any of their successors.
262   /// However, this is not a safe assumption.  After we solve dataflow, this
263   /// method should be use to handle this.  If this returns true, the solver
264   /// should be rerun.
265   bool ResolvedUndefsIn(Function &F);
266 
isBlockExecutable(BasicBlock * BB) const267   bool isBlockExecutable(BasicBlock *BB) const {
268     return BBExecutable.count(BB);
269   }
270 
getLatticeValueFor(Value * V) const271   LatticeVal getLatticeValueFor(Value *V) const {
272     DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
273     assert(I != ValueState.end() && "V is not in valuemap!");
274     return I->second;
275   }
276 
277   /// getTrackedRetVals - Get the inferred return value map.
278   ///
getTrackedRetVals()279   const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
280     return TrackedRetVals;
281   }
282 
283   /// getTrackedGlobals - Get and return the set of inferred initializers for
284   /// global variables.
getTrackedGlobals()285   const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
286     return TrackedGlobals;
287   }
288 
markOverdefined(Value * V)289   void markOverdefined(Value *V) {
290     assert(!V->getType()->isStructTy() && "Should use other method");
291     markOverdefined(ValueState[V], V);
292   }
293 
294   /// markAnythingOverdefined - Mark the specified value overdefined.  This
295   /// works with both scalars and structs.
markAnythingOverdefined(Value * V)296   void markAnythingOverdefined(Value *V) {
297     if (StructType *STy = dyn_cast<StructType>(V->getType()))
298       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
299         markOverdefined(getStructValueState(V, i), V);
300     else
301       markOverdefined(V);
302   }
303 
304 private:
305   // markConstant - Make a value be marked as "constant".  If the value
306   // is not already a constant, add it to the instruction work list so that
307   // the users of the instruction are updated later.
308   //
markConstant(LatticeVal & IV,Value * V,Constant * C)309   void markConstant(LatticeVal &IV, Value *V, Constant *C) {
310     if (!IV.markConstant(C)) return;
311     DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
312     if (IV.isOverdefined())
313       OverdefinedInstWorkList.push_back(V);
314     else
315       InstWorkList.push_back(V);
316   }
317 
markConstant(Value * V,Constant * C)318   void markConstant(Value *V, Constant *C) {
319     assert(!V->getType()->isStructTy() && "Should use other method");
320     markConstant(ValueState[V], V, C);
321   }
322 
markForcedConstant(Value * V,Constant * C)323   void markForcedConstant(Value *V, Constant *C) {
324     assert(!V->getType()->isStructTy() && "Should use other method");
325     LatticeVal &IV = ValueState[V];
326     IV.markForcedConstant(C);
327     DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
328     if (IV.isOverdefined())
329       OverdefinedInstWorkList.push_back(V);
330     else
331       InstWorkList.push_back(V);
332   }
333 
334 
335   // markOverdefined - Make a value be marked as "overdefined". If the
336   // value is not already overdefined, add it to the overdefined instruction
337   // work list so that the users of the instruction are updated later.
markOverdefined(LatticeVal & IV,Value * V)338   void markOverdefined(LatticeVal &IV, Value *V) {
339     if (!IV.markOverdefined()) return;
340 
341     DEBUG(dbgs() << "markOverdefined: ";
342           if (Function *F = dyn_cast<Function>(V))
343             dbgs() << "Function '" << F->getName() << "'\n";
344           else
345             dbgs() << *V << '\n');
346     // Only instructions go on the work list
347     OverdefinedInstWorkList.push_back(V);
348   }
349 
mergeInValue(LatticeVal & IV,Value * V,LatticeVal MergeWithV)350   void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
351     if (IV.isOverdefined() || MergeWithV.isUndefined())
352       return;  // Noop.
353     if (MergeWithV.isOverdefined())
354       markOverdefined(IV, V);
355     else if (IV.isUndefined())
356       markConstant(IV, V, MergeWithV.getConstant());
357     else if (IV.getConstant() != MergeWithV.getConstant())
358       markOverdefined(IV, V);
359   }
360 
mergeInValue(Value * V,LatticeVal MergeWithV)361   void mergeInValue(Value *V, LatticeVal MergeWithV) {
362     assert(!V->getType()->isStructTy() && "Should use other method");
363     mergeInValue(ValueState[V], V, MergeWithV);
364   }
365 
366 
367   /// getValueState - Return the LatticeVal object that corresponds to the
368   /// value.  This function handles the case when the value hasn't been seen yet
369   /// by properly seeding constants etc.
getValueState(Value * V)370   LatticeVal &getValueState(Value *V) {
371     assert(!V->getType()->isStructTy() && "Should use getStructValueState");
372 
373     std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
374       ValueState.insert(std::make_pair(V, LatticeVal()));
375     LatticeVal &LV = I.first->second;
376 
377     if (!I.second)
378       return LV;  // Common case, already in the map.
379 
380     if (Constant *C = dyn_cast<Constant>(V)) {
381       // Undef values remain undefined.
382       if (!isa<UndefValue>(V))
383         LV.markConstant(C);          // Constants are constant
384     }
385 
386     // All others are underdefined by default.
387     return LV;
388   }
389 
390   /// getStructValueState - Return the LatticeVal object that corresponds to the
391   /// value/field pair.  This function handles the case when the value hasn't
392   /// been seen yet by properly seeding constants etc.
getStructValueState(Value * V,unsigned i)393   LatticeVal &getStructValueState(Value *V, unsigned i) {
394     assert(V->getType()->isStructTy() && "Should use getValueState");
395     assert(i < cast<StructType>(V->getType())->getNumElements() &&
396            "Invalid element #");
397 
398     std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
399               bool> I = StructValueState.insert(
400                         std::make_pair(std::make_pair(V, i), LatticeVal()));
401     LatticeVal &LV = I.first->second;
402 
403     if (!I.second)
404       return LV;  // Common case, already in the map.
405 
406     if (Constant *C = dyn_cast<Constant>(V)) {
407       Constant *Elt = C->getAggregateElement(i);
408 
409       if (!Elt)
410         LV.markOverdefined();      // Unknown sort of constant.
411       else if (isa<UndefValue>(Elt))
412         ; // Undef values remain undefined.
413       else
414         LV.markConstant(Elt);      // Constants are constant.
415     }
416 
417     // All others are underdefined by default.
418     return LV;
419   }
420 
421 
422   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
423   /// work list if it is not already executable.
markEdgeExecutable(BasicBlock * Source,BasicBlock * Dest)424   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
425     if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
426       return;  // This edge is already known to be executable!
427 
428     if (!MarkBlockExecutable(Dest)) {
429       // If the destination is already executable, we just made an *edge*
430       // feasible that wasn't before.  Revisit the PHI nodes in the block
431       // because they have potentially new operands.
432       DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
433             << " -> " << Dest->getName() << '\n');
434 
435       PHINode *PN;
436       for (BasicBlock::iterator I = Dest->begin();
437            (PN = dyn_cast<PHINode>(I)); ++I)
438         visitPHINode(*PN);
439     }
440   }
441 
442   // getFeasibleSuccessors - Return a vector of booleans to indicate which
443   // successors are reachable from a given terminator instruction.
444   //
445   void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs);
446 
447   // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
448   // block to the 'To' basic block is currently feasible.
449   //
450   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
451 
452   // OperandChangedState - This method is invoked on all of the users of an
453   // instruction that was just changed state somehow.  Based on this
454   // information, we need to update the specified user of this instruction.
455   //
OperandChangedState(Instruction * I)456   void OperandChangedState(Instruction *I) {
457     if (BBExecutable.count(I->getParent()))   // Inst is executable?
458       visit(*I);
459   }
460 
461 private:
462   friend class InstVisitor<SCCPSolver>;
463 
464   // visit implementations - Something changed in this instruction.  Either an
465   // operand made a transition, or the instruction is newly executable.  Change
466   // the value type of I to reflect these changes if appropriate.
467   void visitPHINode(PHINode &I);
468 
469   // Terminators
470   void visitReturnInst(ReturnInst &I);
471   void visitTerminatorInst(TerminatorInst &TI);
472 
473   void visitCastInst(CastInst &I);
474   void visitSelectInst(SelectInst &I);
475   void visitBinaryOperator(Instruction &I);
476   void visitCmpInst(CmpInst &I);
477   void visitExtractElementInst(ExtractElementInst &I);
478   void visitInsertElementInst(InsertElementInst &I);
479   void visitShuffleVectorInst(ShuffleVectorInst &I);
480   void visitExtractValueInst(ExtractValueInst &EVI);
481   void visitInsertValueInst(InsertValueInst &IVI);
visitLandingPadInst(LandingPadInst & I)482   void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
visitFuncletPadInst(FuncletPadInst & FPI)483   void visitFuncletPadInst(FuncletPadInst &FPI) {
484     markAnythingOverdefined(&FPI);
485   }
visitCatchSwitchInst(CatchSwitchInst & CPI)486   void visitCatchSwitchInst(CatchSwitchInst &CPI) {
487     markAnythingOverdefined(&CPI);
488     visitTerminatorInst(CPI);
489   }
490 
491   // Instructions that cannot be folded away.
492   void visitStoreInst     (StoreInst &I);
493   void visitLoadInst      (LoadInst &I);
494   void visitGetElementPtrInst(GetElementPtrInst &I);
visitCallInst(CallInst & I)495   void visitCallInst      (CallInst &I) {
496     visitCallSite(&I);
497   }
visitInvokeInst(InvokeInst & II)498   void visitInvokeInst    (InvokeInst &II) {
499     visitCallSite(&II);
500     visitTerminatorInst(II);
501   }
502   void visitCallSite      (CallSite CS);
visitResumeInst(TerminatorInst & I)503   void visitResumeInst    (TerminatorInst &I) { /*returns void*/ }
visitUnreachableInst(TerminatorInst & I)504   void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
visitFenceInst(FenceInst & I)505   void visitFenceInst     (FenceInst &I) { /*returns void*/ }
visitAtomicCmpXchgInst(AtomicCmpXchgInst & I)506   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
507     markAnythingOverdefined(&I);
508   }
visitAtomicRMWInst(AtomicRMWInst & I)509   void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
visitAllocaInst(Instruction & I)510   void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
visitVAArgInst(Instruction & I)511   void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); }
512 
visitInstruction(Instruction & I)513   void visitInstruction(Instruction &I) {
514     // If a new instruction is added to LLVM that we don't handle.
515     dbgs() << "SCCP: Don't know how to handle: " << I << '\n';
516     markAnythingOverdefined(&I);   // Just in case
517   }
518 };
519 
520 } // end anonymous namespace
521 
522 
523 // getFeasibleSuccessors - Return a vector of booleans to indicate which
524 // successors are reachable from a given terminator instruction.
525 //
getFeasibleSuccessors(TerminatorInst & TI,SmallVectorImpl<bool> & Succs)526 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
527                                        SmallVectorImpl<bool> &Succs) {
528   Succs.resize(TI.getNumSuccessors());
529   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
530     if (BI->isUnconditional()) {
531       Succs[0] = true;
532       return;
533     }
534 
535     LatticeVal BCValue = getValueState(BI->getCondition());
536     ConstantInt *CI = BCValue.getConstantInt();
537     if (!CI) {
538       // Overdefined condition variables, and branches on unfoldable constant
539       // conditions, mean the branch could go either way.
540       if (!BCValue.isUndefined())
541         Succs[0] = Succs[1] = true;
542       return;
543     }
544 
545     // Constant condition variables mean the branch can only go a single way.
546     Succs[CI->isZero()] = true;
547     return;
548   }
549 
550   // Unwinding instructions successors are always executable.
551   if (TI.isExceptional()) {
552     Succs.assign(TI.getNumSuccessors(), true);
553     return;
554   }
555 
556   if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
557     if (!SI->getNumCases()) {
558       Succs[0] = true;
559       return;
560     }
561     LatticeVal SCValue = getValueState(SI->getCondition());
562     ConstantInt *CI = SCValue.getConstantInt();
563 
564     if (!CI) {   // Overdefined or undefined condition?
565       // All destinations are executable!
566       if (!SCValue.isUndefined())
567         Succs.assign(TI.getNumSuccessors(), true);
568       return;
569     }
570 
571     Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true;
572     return;
573   }
574 
575   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
576   if (isa<IndirectBrInst>(&TI)) {
577     // Just mark all destinations executable!
578     Succs.assign(TI.getNumSuccessors(), true);
579     return;
580   }
581 
582 #ifndef NDEBUG
583   dbgs() << "Unknown terminator instruction: " << TI << '\n';
584 #endif
585   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
586 }
587 
588 
589 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
590 // block to the 'To' basic block is currently feasible.
591 //
isEdgeFeasible(BasicBlock * From,BasicBlock * To)592 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
593   assert(BBExecutable.count(To) && "Dest should always be alive!");
594 
595   // Make sure the source basic block is executable!!
596   if (!BBExecutable.count(From)) return false;
597 
598   // Check to make sure this edge itself is actually feasible now.
599   TerminatorInst *TI = From->getTerminator();
600   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
601     if (BI->isUnconditional())
602       return true;
603 
604     LatticeVal BCValue = getValueState(BI->getCondition());
605 
606     // Overdefined condition variables mean the branch could go either way,
607     // undef conditions mean that neither edge is feasible yet.
608     ConstantInt *CI = BCValue.getConstantInt();
609     if (!CI)
610       return !BCValue.isUndefined();
611 
612     // Constant condition variables mean the branch can only go a single way.
613     return BI->getSuccessor(CI->isZero()) == To;
614   }
615 
616   // Unwinding instructions successors are always executable.
617   if (TI->isExceptional())
618     return true;
619 
620   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
621     if (SI->getNumCases() < 1)
622       return true;
623 
624     LatticeVal SCValue = getValueState(SI->getCondition());
625     ConstantInt *CI = SCValue.getConstantInt();
626 
627     if (!CI)
628       return !SCValue.isUndefined();
629 
630     return SI->findCaseValue(CI).getCaseSuccessor() == To;
631   }
632 
633   // Just mark all destinations executable!
634   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
635   if (isa<IndirectBrInst>(TI))
636     return true;
637 
638 #ifndef NDEBUG
639   dbgs() << "Unknown terminator instruction: " << *TI << '\n';
640 #endif
641   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
642 }
643 
644 // visit Implementations - Something changed in this instruction, either an
645 // operand made a transition, or the instruction is newly executable.  Change
646 // the value type of I to reflect these changes if appropriate.  This method
647 // makes sure to do the following actions:
648 //
649 // 1. If a phi node merges two constants in, and has conflicting value coming
650 //    from different branches, or if the PHI node merges in an overdefined
651 //    value, then the PHI node becomes overdefined.
652 // 2. If a phi node merges only constants in, and they all agree on value, the
653 //    PHI node becomes a constant value equal to that.
654 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
655 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
656 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
657 // 6. If a conditional branch has a value that is constant, make the selected
658 //    destination executable
659 // 7. If a conditional branch has a value that is overdefined, make all
660 //    successors executable.
661 //
visitPHINode(PHINode & PN)662 void SCCPSolver::visitPHINode(PHINode &PN) {
663   // If this PN returns a struct, just mark the result overdefined.
664   // TODO: We could do a lot better than this if code actually uses this.
665   if (PN.getType()->isStructTy())
666     return markAnythingOverdefined(&PN);
667 
668   if (getValueState(&PN).isOverdefined())
669     return;  // Quick exit
670 
671   // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
672   // and slow us down a lot.  Just mark them overdefined.
673   if (PN.getNumIncomingValues() > 64)
674     return markOverdefined(&PN);
675 
676   // Look at all of the executable operands of the PHI node.  If any of them
677   // are overdefined, the PHI becomes overdefined as well.  If they are all
678   // constant, and they agree with each other, the PHI becomes the identical
679   // constant.  If they are constant and don't agree, the PHI is overdefined.
680   // If there are no executable operands, the PHI remains undefined.
681   //
682   Constant *OperandVal = nullptr;
683   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
684     LatticeVal IV = getValueState(PN.getIncomingValue(i));
685     if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
686 
687     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
688       continue;
689 
690     if (IV.isOverdefined())    // PHI node becomes overdefined!
691       return markOverdefined(&PN);
692 
693     if (!OperandVal) {   // Grab the first value.
694       OperandVal = IV.getConstant();
695       continue;
696     }
697 
698     // There is already a reachable operand.  If we conflict with it,
699     // then the PHI node becomes overdefined.  If we agree with it, we
700     // can continue on.
701 
702     // Check to see if there are two different constants merging, if so, the PHI
703     // node is overdefined.
704     if (IV.getConstant() != OperandVal)
705       return markOverdefined(&PN);
706   }
707 
708   // If we exited the loop, this means that the PHI node only has constant
709   // arguments that agree with each other(and OperandVal is the constant) or
710   // OperandVal is null because there are no defined incoming arguments.  If
711   // this is the case, the PHI remains undefined.
712   //
713   if (OperandVal)
714     markConstant(&PN, OperandVal);      // Acquire operand value
715 }
716 
visitReturnInst(ReturnInst & I)717 void SCCPSolver::visitReturnInst(ReturnInst &I) {
718   if (I.getNumOperands() == 0) return;  // ret void
719 
720   Function *F = I.getParent()->getParent();
721   Value *ResultOp = I.getOperand(0);
722 
723   // If we are tracking the return value of this function, merge it in.
724   if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
725     DenseMap<Function*, LatticeVal>::iterator TFRVI =
726       TrackedRetVals.find(F);
727     if (TFRVI != TrackedRetVals.end()) {
728       mergeInValue(TFRVI->second, F, getValueState(ResultOp));
729       return;
730     }
731   }
732 
733   // Handle functions that return multiple values.
734   if (!TrackedMultipleRetVals.empty()) {
735     if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
736       if (MRVFunctionsTracked.count(F))
737         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
738           mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
739                        getStructValueState(ResultOp, i));
740 
741   }
742 }
743 
visitTerminatorInst(TerminatorInst & TI)744 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
745   SmallVector<bool, 16> SuccFeasible;
746   getFeasibleSuccessors(TI, SuccFeasible);
747 
748   BasicBlock *BB = TI.getParent();
749 
750   // Mark all feasible successors executable.
751   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
752     if (SuccFeasible[i])
753       markEdgeExecutable(BB, TI.getSuccessor(i));
754 }
755 
visitCastInst(CastInst & I)756 void SCCPSolver::visitCastInst(CastInst &I) {
757   LatticeVal OpSt = getValueState(I.getOperand(0));
758   if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
759     markOverdefined(&I);
760   else if (OpSt.isConstant())        // Propagate constant value
761     markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
762                                            OpSt.getConstant(), I.getType()));
763 }
764 
765 
visitExtractValueInst(ExtractValueInst & EVI)766 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
767   // If this returns a struct, mark all elements over defined, we don't track
768   // structs in structs.
769   if (EVI.getType()->isStructTy())
770     return markAnythingOverdefined(&EVI);
771 
772   // If this is extracting from more than one level of struct, we don't know.
773   if (EVI.getNumIndices() != 1)
774     return markOverdefined(&EVI);
775 
776   Value *AggVal = EVI.getAggregateOperand();
777   if (AggVal->getType()->isStructTy()) {
778     unsigned i = *EVI.idx_begin();
779     LatticeVal EltVal = getStructValueState(AggVal, i);
780     mergeInValue(getValueState(&EVI), &EVI, EltVal);
781   } else {
782     // Otherwise, must be extracting from an array.
783     return markOverdefined(&EVI);
784   }
785 }
786 
visitInsertValueInst(InsertValueInst & IVI)787 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
788   StructType *STy = dyn_cast<StructType>(IVI.getType());
789   if (!STy)
790     return markOverdefined(&IVI);
791 
792   // If this has more than one index, we can't handle it, drive all results to
793   // undef.
794   if (IVI.getNumIndices() != 1)
795     return markAnythingOverdefined(&IVI);
796 
797   Value *Aggr = IVI.getAggregateOperand();
798   unsigned Idx = *IVI.idx_begin();
799 
800   // Compute the result based on what we're inserting.
801   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
802     // This passes through all values that aren't the inserted element.
803     if (i != Idx) {
804       LatticeVal EltVal = getStructValueState(Aggr, i);
805       mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
806       continue;
807     }
808 
809     Value *Val = IVI.getInsertedValueOperand();
810     if (Val->getType()->isStructTy())
811       // We don't track structs in structs.
812       markOverdefined(getStructValueState(&IVI, i), &IVI);
813     else {
814       LatticeVal InVal = getValueState(Val);
815       mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
816     }
817   }
818 }
819 
visitSelectInst(SelectInst & I)820 void SCCPSolver::visitSelectInst(SelectInst &I) {
821   // If this select returns a struct, just mark the result overdefined.
822   // TODO: We could do a lot better than this if code actually uses this.
823   if (I.getType()->isStructTy())
824     return markAnythingOverdefined(&I);
825 
826   LatticeVal CondValue = getValueState(I.getCondition());
827   if (CondValue.isUndefined())
828     return;
829 
830   if (ConstantInt *CondCB = CondValue.getConstantInt()) {
831     Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
832     mergeInValue(&I, getValueState(OpVal));
833     return;
834   }
835 
836   // Otherwise, the condition is overdefined or a constant we can't evaluate.
837   // See if we can produce something better than overdefined based on the T/F
838   // value.
839   LatticeVal TVal = getValueState(I.getTrueValue());
840   LatticeVal FVal = getValueState(I.getFalseValue());
841 
842   // select ?, C, C -> C.
843   if (TVal.isConstant() && FVal.isConstant() &&
844       TVal.getConstant() == FVal.getConstant())
845     return markConstant(&I, FVal.getConstant());
846 
847   if (TVal.isUndefined())   // select ?, undef, X -> X.
848     return mergeInValue(&I, FVal);
849   if (FVal.isUndefined())   // select ?, X, undef -> X.
850     return mergeInValue(&I, TVal);
851   markOverdefined(&I);
852 }
853 
854 // Handle Binary Operators.
visitBinaryOperator(Instruction & I)855 void SCCPSolver::visitBinaryOperator(Instruction &I) {
856   LatticeVal V1State = getValueState(I.getOperand(0));
857   LatticeVal V2State = getValueState(I.getOperand(1));
858 
859   LatticeVal &IV = ValueState[&I];
860   if (IV.isOverdefined()) return;
861 
862   if (V1State.isConstant() && V2State.isConstant())
863     return markConstant(IV, &I,
864                         ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
865                                           V2State.getConstant()));
866 
867   // If something is undef, wait for it to resolve.
868   if (!V1State.isOverdefined() && !V2State.isOverdefined())
869     return;
870 
871   // Otherwise, one of our operands is overdefined.  Try to produce something
872   // better than overdefined with some tricks.
873 
874   // If this is an AND or OR with 0 or -1, it doesn't matter that the other
875   // operand is overdefined.
876   if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
877     LatticeVal *NonOverdefVal = nullptr;
878     if (!V1State.isOverdefined())
879       NonOverdefVal = &V1State;
880     else if (!V2State.isOverdefined())
881       NonOverdefVal = &V2State;
882 
883     if (NonOverdefVal) {
884       if (NonOverdefVal->isUndefined()) {
885         // Could annihilate value.
886         if (I.getOpcode() == Instruction::And)
887           markConstant(IV, &I, Constant::getNullValue(I.getType()));
888         else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
889           markConstant(IV, &I, Constant::getAllOnesValue(PT));
890         else
891           markConstant(IV, &I,
892                        Constant::getAllOnesValue(I.getType()));
893         return;
894       }
895 
896       if (I.getOpcode() == Instruction::And) {
897         // X and 0 = 0
898         if (NonOverdefVal->getConstant()->isNullValue())
899           return markConstant(IV, &I, NonOverdefVal->getConstant());
900       } else {
901         if (ConstantInt *CI = NonOverdefVal->getConstantInt())
902           if (CI->isAllOnesValue())     // X or -1 = -1
903             return markConstant(IV, &I, NonOverdefVal->getConstant());
904       }
905     }
906   }
907 
908 
909   markOverdefined(&I);
910 }
911 
912 // Handle ICmpInst instruction.
visitCmpInst(CmpInst & I)913 void SCCPSolver::visitCmpInst(CmpInst &I) {
914   LatticeVal V1State = getValueState(I.getOperand(0));
915   LatticeVal V2State = getValueState(I.getOperand(1));
916 
917   LatticeVal &IV = ValueState[&I];
918   if (IV.isOverdefined()) return;
919 
920   if (V1State.isConstant() && V2State.isConstant())
921     return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
922                                                          V1State.getConstant(),
923                                                         V2State.getConstant()));
924 
925   // If operands are still undefined, wait for it to resolve.
926   if (!V1State.isOverdefined() && !V2State.isOverdefined())
927     return;
928 
929   markOverdefined(&I);
930 }
931 
visitExtractElementInst(ExtractElementInst & I)932 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
933   // TODO : SCCP does not handle vectors properly.
934   return markOverdefined(&I);
935 
936 #if 0
937   LatticeVal &ValState = getValueState(I.getOperand(0));
938   LatticeVal &IdxState = getValueState(I.getOperand(1));
939 
940   if (ValState.isOverdefined() || IdxState.isOverdefined())
941     markOverdefined(&I);
942   else if(ValState.isConstant() && IdxState.isConstant())
943     markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
944                                                      IdxState.getConstant()));
945 #endif
946 }
947 
visitInsertElementInst(InsertElementInst & I)948 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
949   // TODO : SCCP does not handle vectors properly.
950   return markOverdefined(&I);
951 #if 0
952   LatticeVal &ValState = getValueState(I.getOperand(0));
953   LatticeVal &EltState = getValueState(I.getOperand(1));
954   LatticeVal &IdxState = getValueState(I.getOperand(2));
955 
956   if (ValState.isOverdefined() || EltState.isOverdefined() ||
957       IdxState.isOverdefined())
958     markOverdefined(&I);
959   else if(ValState.isConstant() && EltState.isConstant() &&
960           IdxState.isConstant())
961     markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
962                                                     EltState.getConstant(),
963                                                     IdxState.getConstant()));
964   else if (ValState.isUndefined() && EltState.isConstant() &&
965            IdxState.isConstant())
966     markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
967                                                    EltState.getConstant(),
968                                                    IdxState.getConstant()));
969 #endif
970 }
971 
visitShuffleVectorInst(ShuffleVectorInst & I)972 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
973   // TODO : SCCP does not handle vectors properly.
974   return markOverdefined(&I);
975 #if 0
976   LatticeVal &V1State   = getValueState(I.getOperand(0));
977   LatticeVal &V2State   = getValueState(I.getOperand(1));
978   LatticeVal &MaskState = getValueState(I.getOperand(2));
979 
980   if (MaskState.isUndefined() ||
981       (V1State.isUndefined() && V2State.isUndefined()))
982     return;  // Undefined output if mask or both inputs undefined.
983 
984   if (V1State.isOverdefined() || V2State.isOverdefined() ||
985       MaskState.isOverdefined()) {
986     markOverdefined(&I);
987   } else {
988     // A mix of constant/undef inputs.
989     Constant *V1 = V1State.isConstant() ?
990         V1State.getConstant() : UndefValue::get(I.getType());
991     Constant *V2 = V2State.isConstant() ?
992         V2State.getConstant() : UndefValue::get(I.getType());
993     Constant *Mask = MaskState.isConstant() ?
994       MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
995     markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
996   }
997 #endif
998 }
999 
1000 // Handle getelementptr instructions.  If all operands are constants then we
1001 // can turn this into a getelementptr ConstantExpr.
1002 //
visitGetElementPtrInst(GetElementPtrInst & I)1003 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1004   if (ValueState[&I].isOverdefined()) return;
1005 
1006   SmallVector<Constant*, 8> Operands;
1007   Operands.reserve(I.getNumOperands());
1008 
1009   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1010     LatticeVal State = getValueState(I.getOperand(i));
1011     if (State.isUndefined())
1012       return;  // Operands are not resolved yet.
1013 
1014     if (State.isOverdefined())
1015       return markOverdefined(&I);
1016 
1017     assert(State.isConstant() && "Unknown state!");
1018     Operands.push_back(State.getConstant());
1019   }
1020 
1021   Constant *Ptr = Operands[0];
1022   auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
1023   markConstant(&I, ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr,
1024                                                   Indices));
1025 }
1026 
visitStoreInst(StoreInst & SI)1027 void SCCPSolver::visitStoreInst(StoreInst &SI) {
1028   // If this store is of a struct, ignore it.
1029   if (SI.getOperand(0)->getType()->isStructTy())
1030     return;
1031 
1032   if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1033     return;
1034 
1035   GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1036   DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1037   if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1038 
1039   // Get the value we are storing into the global, then merge it.
1040   mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
1041   if (I->second.isOverdefined())
1042     TrackedGlobals.erase(I);      // No need to keep tracking this!
1043 }
1044 
1045 
1046 // Handle load instructions.  If the operand is a constant pointer to a constant
1047 // global, we can replace the load with the loaded constant value!
visitLoadInst(LoadInst & I)1048 void SCCPSolver::visitLoadInst(LoadInst &I) {
1049   // If this load is of a struct, just mark the result overdefined.
1050   if (I.getType()->isStructTy())
1051     return markAnythingOverdefined(&I);
1052 
1053   LatticeVal PtrVal = getValueState(I.getOperand(0));
1054   if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1055 
1056   LatticeVal &IV = ValueState[&I];
1057   if (IV.isOverdefined()) return;
1058 
1059   if (!PtrVal.isConstant() || I.isVolatile())
1060     return markOverdefined(IV, &I);
1061 
1062   Constant *Ptr = PtrVal.getConstant();
1063 
1064   // load null -> null
1065   if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
1066     return markConstant(IV, &I, UndefValue::get(I.getType()));
1067 
1068   // Transform load (constant global) into the value loaded.
1069   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1070     if (!TrackedGlobals.empty()) {
1071       // If we are tracking this global, merge in the known value for it.
1072       DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1073         TrackedGlobals.find(GV);
1074       if (It != TrackedGlobals.end()) {
1075         mergeInValue(IV, &I, It->second);
1076         return;
1077       }
1078     }
1079   }
1080 
1081   // Transform load from a constant into a constant if possible.
1082   if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, DL))
1083     return markConstant(IV, &I, C);
1084 
1085   // Otherwise we cannot say for certain what value this load will produce.
1086   // Bail out.
1087   markOverdefined(IV, &I);
1088 }
1089 
visitCallSite(CallSite CS)1090 void SCCPSolver::visitCallSite(CallSite CS) {
1091   Function *F = CS.getCalledFunction();
1092   Instruction *I = CS.getInstruction();
1093 
1094   // The common case is that we aren't tracking the callee, either because we
1095   // are not doing interprocedural analysis or the callee is indirect, or is
1096   // external.  Handle these cases first.
1097   if (!F || F->isDeclaration()) {
1098 CallOverdefined:
1099     // Void return and not tracking callee, just bail.
1100     if (I->getType()->isVoidTy()) return;
1101 
1102     // Otherwise, if we have a single return value case, and if the function is
1103     // a declaration, maybe we can constant fold it.
1104     if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
1105         canConstantFoldCallTo(F)) {
1106 
1107       SmallVector<Constant*, 8> Operands;
1108       for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1109            AI != E; ++AI) {
1110         LatticeVal State = getValueState(*AI);
1111 
1112         if (State.isUndefined())
1113           return;  // Operands are not resolved yet.
1114         if (State.isOverdefined())
1115           return markOverdefined(I);
1116         assert(State.isConstant() && "Unknown state!");
1117         Operands.push_back(State.getConstant());
1118       }
1119 
1120       if (getValueState(I).isOverdefined())
1121         return;
1122 
1123       // If we can constant fold this, mark the result of the call as a
1124       // constant.
1125       if (Constant *C = ConstantFoldCall(F, Operands, TLI))
1126         return markConstant(I, C);
1127     }
1128 
1129     // Otherwise, we don't know anything about this call, mark it overdefined.
1130     return markAnythingOverdefined(I);
1131   }
1132 
1133   // If this is a local function that doesn't have its address taken, mark its
1134   // entry block executable and merge in the actual arguments to the call into
1135   // the formal arguments of the function.
1136   if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
1137     MarkBlockExecutable(&F->front());
1138 
1139     // Propagate information from this call site into the callee.
1140     CallSite::arg_iterator CAI = CS.arg_begin();
1141     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1142          AI != E; ++AI, ++CAI) {
1143       // If this argument is byval, and if the function is not readonly, there
1144       // will be an implicit copy formed of the input aggregate.
1145       if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1146         markOverdefined(&*AI);
1147         continue;
1148       }
1149 
1150       if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
1151         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1152           LatticeVal CallArg = getStructValueState(*CAI, i);
1153           mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg);
1154         }
1155       } else {
1156         mergeInValue(&*AI, getValueState(*CAI));
1157       }
1158     }
1159   }
1160 
1161   // If this is a single/zero retval case, see if we're tracking the function.
1162   if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
1163     if (!MRVFunctionsTracked.count(F))
1164       goto CallOverdefined;  // Not tracking this callee.
1165 
1166     // If we are tracking this callee, propagate the result of the function
1167     // into this call site.
1168     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1169       mergeInValue(getStructValueState(I, i), I,
1170                    TrackedMultipleRetVals[std::make_pair(F, i)]);
1171   } else {
1172     DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1173     if (TFRVI == TrackedRetVals.end())
1174       goto CallOverdefined;  // Not tracking this callee.
1175 
1176     // If so, propagate the return value of the callee into this call result.
1177     mergeInValue(I, TFRVI->second);
1178   }
1179 }
1180 
Solve()1181 void SCCPSolver::Solve() {
1182   // Process the work lists until they are empty!
1183   while (!BBWorkList.empty() || !InstWorkList.empty() ||
1184          !OverdefinedInstWorkList.empty()) {
1185     // Process the overdefined instruction's work list first, which drives other
1186     // things to overdefined more quickly.
1187     while (!OverdefinedInstWorkList.empty()) {
1188       Value *I = OverdefinedInstWorkList.pop_back_val();
1189 
1190       DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1191 
1192       // "I" got into the work list because it either made the transition from
1193       // bottom to constant, or to overdefined.
1194       //
1195       // Anything on this worklist that is overdefined need not be visited
1196       // since all of its users will have already been marked as overdefined
1197       // Update all of the users of this instruction's value.
1198       //
1199       for (User *U : I->users())
1200         if (Instruction *UI = dyn_cast<Instruction>(U))
1201           OperandChangedState(UI);
1202     }
1203 
1204     // Process the instruction work list.
1205     while (!InstWorkList.empty()) {
1206       Value *I = InstWorkList.pop_back_val();
1207 
1208       DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1209 
1210       // "I" got into the work list because it made the transition from undef to
1211       // constant.
1212       //
1213       // Anything on this worklist that is overdefined need not be visited
1214       // since all of its users will have already been marked as overdefined.
1215       // Update all of the users of this instruction's value.
1216       //
1217       if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1218         for (User *U : I->users())
1219           if (Instruction *UI = dyn_cast<Instruction>(U))
1220             OperandChangedState(UI);
1221     }
1222 
1223     // Process the basic block work list.
1224     while (!BBWorkList.empty()) {
1225       BasicBlock *BB = BBWorkList.back();
1226       BBWorkList.pop_back();
1227 
1228       DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1229 
1230       // Notify all instructions in this basic block that they are newly
1231       // executable.
1232       visit(BB);
1233     }
1234   }
1235 }
1236 
1237 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1238 /// that branches on undef values cannot reach any of their successors.
1239 /// However, this is not a safe assumption.  After we solve dataflow, this
1240 /// method should be use to handle this.  If this returns true, the solver
1241 /// should be rerun.
1242 ///
1243 /// This method handles this by finding an unresolved branch and marking it one
1244 /// of the edges from the block as being feasible, even though the condition
1245 /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1246 /// CFG and only slightly pessimizes the analysis results (by marking one,
1247 /// potentially infeasible, edge feasible).  This cannot usefully modify the
1248 /// constraints on the condition of the branch, as that would impact other users
1249 /// of the value.
1250 ///
1251 /// This scan also checks for values that use undefs, whose results are actually
1252 /// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1253 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1254 /// even if X isn't defined.
ResolvedUndefsIn(Function & F)1255 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1256   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1257     if (!BBExecutable.count(&*BB))
1258       continue;
1259 
1260     for (Instruction &I : *BB) {
1261       // Look for instructions which produce undef values.
1262       if (I.getType()->isVoidTy()) continue;
1263 
1264       if (StructType *STy = dyn_cast<StructType>(I.getType())) {
1265         // Only a few things that can be structs matter for undef.
1266 
1267         // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
1268         if (CallSite CS = CallSite(&I))
1269           if (Function *F = CS.getCalledFunction())
1270             if (MRVFunctionsTracked.count(F))
1271               continue;
1272 
1273         // extractvalue and insertvalue don't need to be marked; they are
1274         // tracked as precisely as their operands.
1275         if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1276           continue;
1277 
1278         // Send the results of everything else to overdefined.  We could be
1279         // more precise than this but it isn't worth bothering.
1280         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1281           LatticeVal &LV = getStructValueState(&I, i);
1282           if (LV.isUndefined())
1283             markOverdefined(LV, &I);
1284         }
1285         continue;
1286       }
1287 
1288       LatticeVal &LV = getValueState(&I);
1289       if (!LV.isUndefined()) continue;
1290 
1291       // extractvalue is safe; check here because the argument is a struct.
1292       if (isa<ExtractValueInst>(I))
1293         continue;
1294 
1295       // Compute the operand LatticeVals, for convenience below.
1296       // Anything taking a struct is conservatively assumed to require
1297       // overdefined markings.
1298       if (I.getOperand(0)->getType()->isStructTy()) {
1299         markOverdefined(&I);
1300         return true;
1301       }
1302       LatticeVal Op0LV = getValueState(I.getOperand(0));
1303       LatticeVal Op1LV;
1304       if (I.getNumOperands() == 2) {
1305         if (I.getOperand(1)->getType()->isStructTy()) {
1306           markOverdefined(&I);
1307           return true;
1308         }
1309 
1310         Op1LV = getValueState(I.getOperand(1));
1311       }
1312       // If this is an instructions whose result is defined even if the input is
1313       // not fully defined, propagate the information.
1314       Type *ITy = I.getType();
1315       switch (I.getOpcode()) {
1316       case Instruction::Add:
1317       case Instruction::Sub:
1318       case Instruction::Trunc:
1319       case Instruction::FPTrunc:
1320       case Instruction::BitCast:
1321         break; // Any undef -> undef
1322       case Instruction::FSub:
1323       case Instruction::FAdd:
1324       case Instruction::FMul:
1325       case Instruction::FDiv:
1326       case Instruction::FRem:
1327         // Floating-point binary operation: be conservative.
1328         if (Op0LV.isUndefined() && Op1LV.isUndefined())
1329           markForcedConstant(&I, Constant::getNullValue(ITy));
1330         else
1331           markOverdefined(&I);
1332         return true;
1333       case Instruction::ZExt:
1334       case Instruction::SExt:
1335       case Instruction::FPToUI:
1336       case Instruction::FPToSI:
1337       case Instruction::FPExt:
1338       case Instruction::PtrToInt:
1339       case Instruction::IntToPtr:
1340       case Instruction::SIToFP:
1341       case Instruction::UIToFP:
1342         // undef -> 0; some outputs are impossible
1343         markForcedConstant(&I, Constant::getNullValue(ITy));
1344         return true;
1345       case Instruction::Mul:
1346       case Instruction::And:
1347         // Both operands undef -> undef
1348         if (Op0LV.isUndefined() && Op1LV.isUndefined())
1349           break;
1350         // undef * X -> 0.   X could be zero.
1351         // undef & X -> 0.   X could be zero.
1352         markForcedConstant(&I, Constant::getNullValue(ITy));
1353         return true;
1354 
1355       case Instruction::Or:
1356         // Both operands undef -> undef
1357         if (Op0LV.isUndefined() && Op1LV.isUndefined())
1358           break;
1359         // undef | X -> -1.   X could be -1.
1360         markForcedConstant(&I, Constant::getAllOnesValue(ITy));
1361         return true;
1362 
1363       case Instruction::Xor:
1364         // undef ^ undef -> 0; strictly speaking, this is not strictly
1365         // necessary, but we try to be nice to people who expect this
1366         // behavior in simple cases
1367         if (Op0LV.isUndefined() && Op1LV.isUndefined()) {
1368           markForcedConstant(&I, Constant::getNullValue(ITy));
1369           return true;
1370         }
1371         // undef ^ X -> undef
1372         break;
1373 
1374       case Instruction::SDiv:
1375       case Instruction::UDiv:
1376       case Instruction::SRem:
1377       case Instruction::URem:
1378         // X / undef -> undef.  No change.
1379         // X % undef -> undef.  No change.
1380         if (Op1LV.isUndefined()) break;
1381 
1382         // undef / X -> 0.   X could be maxint.
1383         // undef % X -> 0.   X could be 1.
1384         markForcedConstant(&I, Constant::getNullValue(ITy));
1385         return true;
1386 
1387       case Instruction::AShr:
1388         // X >>a undef -> undef.
1389         if (Op1LV.isUndefined()) break;
1390 
1391         // undef >>a X -> all ones
1392         markForcedConstant(&I, Constant::getAllOnesValue(ITy));
1393         return true;
1394       case Instruction::LShr:
1395       case Instruction::Shl:
1396         // X << undef -> undef.
1397         // X >> undef -> undef.
1398         if (Op1LV.isUndefined()) break;
1399 
1400         // undef << X -> 0
1401         // undef >> X -> 0
1402         markForcedConstant(&I, Constant::getNullValue(ITy));
1403         return true;
1404       case Instruction::Select:
1405         Op1LV = getValueState(I.getOperand(1));
1406         // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1407         if (Op0LV.isUndefined()) {
1408           if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1409             Op1LV = getValueState(I.getOperand(2));
1410         } else if (Op1LV.isUndefined()) {
1411           // c ? undef : undef -> undef.  No change.
1412           Op1LV = getValueState(I.getOperand(2));
1413           if (Op1LV.isUndefined())
1414             break;
1415           // Otherwise, c ? undef : x -> x.
1416         } else {
1417           // Leave Op1LV as Operand(1)'s LatticeValue.
1418         }
1419 
1420         if (Op1LV.isConstant())
1421           markForcedConstant(&I, Op1LV.getConstant());
1422         else
1423           markOverdefined(&I);
1424         return true;
1425       case Instruction::Load:
1426         // A load here means one of two things: a load of undef from a global,
1427         // a load from an unknown pointer.  Either way, having it return undef
1428         // is okay.
1429         break;
1430       case Instruction::ICmp:
1431         // X == undef -> undef.  Other comparisons get more complicated.
1432         if (cast<ICmpInst>(&I)->isEquality())
1433           break;
1434         markOverdefined(&I);
1435         return true;
1436       case Instruction::Call:
1437       case Instruction::Invoke: {
1438         // There are two reasons a call can have an undef result
1439         // 1. It could be tracked.
1440         // 2. It could be constant-foldable.
1441         // Because of the way we solve return values, tracked calls must
1442         // never be marked overdefined in ResolvedUndefsIn.
1443         if (Function *F = CallSite(&I).getCalledFunction())
1444           if (TrackedRetVals.count(F))
1445             break;
1446 
1447         // If the call is constant-foldable, we mark it overdefined because
1448         // we do not know what return values are valid.
1449         markOverdefined(&I);
1450         return true;
1451       }
1452       default:
1453         // If we don't know what should happen here, conservatively mark it
1454         // overdefined.
1455         markOverdefined(&I);
1456         return true;
1457       }
1458     }
1459 
1460     // Check to see if we have a branch or switch on an undefined value.  If so
1461     // we force the branch to go one way or the other to make the successor
1462     // values live.  It doesn't really matter which way we force it.
1463     TerminatorInst *TI = BB->getTerminator();
1464     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1465       if (!BI->isConditional()) continue;
1466       if (!getValueState(BI->getCondition()).isUndefined())
1467         continue;
1468 
1469       // If the input to SCCP is actually branch on undef, fix the undef to
1470       // false.
1471       if (isa<UndefValue>(BI->getCondition())) {
1472         BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1473         markEdgeExecutable(&*BB, TI->getSuccessor(1));
1474         return true;
1475       }
1476 
1477       // Otherwise, it is a branch on a symbolic value which is currently
1478       // considered to be undef.  Handle this by forcing the input value to the
1479       // branch to false.
1480       markForcedConstant(BI->getCondition(),
1481                          ConstantInt::getFalse(TI->getContext()));
1482       return true;
1483     }
1484 
1485     if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1486       if (!SI->getNumCases())
1487         continue;
1488       if (!getValueState(SI->getCondition()).isUndefined())
1489         continue;
1490 
1491       // If the input to SCCP is actually switch on undef, fix the undef to
1492       // the first constant.
1493       if (isa<UndefValue>(SI->getCondition())) {
1494         SI->setCondition(SI->case_begin().getCaseValue());
1495         markEdgeExecutable(&*BB, SI->case_begin().getCaseSuccessor());
1496         return true;
1497       }
1498 
1499       markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue());
1500       return true;
1501     }
1502   }
1503 
1504   return false;
1505 }
1506 
1507 
1508 namespace {
1509   //===--------------------------------------------------------------------===//
1510   //
1511   /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1512   /// Sparse Conditional Constant Propagator.
1513   ///
1514   struct SCCP : public FunctionPass {
getAnalysisUsage__anon10360b9e0311::SCCP1515     void getAnalysisUsage(AnalysisUsage &AU) const override {
1516       AU.addRequired<TargetLibraryInfoWrapperPass>();
1517       AU.addPreserved<GlobalsAAWrapperPass>();
1518     }
1519     static char ID; // Pass identification, replacement for typeid
SCCP__anon10360b9e0311::SCCP1520     SCCP() : FunctionPass(ID) {
1521       initializeSCCPPass(*PassRegistry::getPassRegistry());
1522     }
1523 
1524     // runOnFunction - Run the Sparse Conditional Constant Propagation
1525     // algorithm, and return true if the function was modified.
1526     //
1527     bool runOnFunction(Function &F) override;
1528   };
1529 } // end anonymous namespace
1530 
1531 char SCCP::ID = 0;
1532 INITIALIZE_PASS(SCCP, "sccp",
1533                 "Sparse Conditional Constant Propagation", false, false)
1534 
1535 // createSCCPPass - This is the public interface to this file.
createSCCPPass()1536 FunctionPass *llvm::createSCCPPass() {
1537   return new SCCP();
1538 }
1539 
DeleteInstructionInBlock(BasicBlock * BB)1540 static void DeleteInstructionInBlock(BasicBlock *BB) {
1541   DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
1542   ++NumDeadBlocks;
1543 
1544   // Check to see if there are non-terminating instructions to delete.
1545   if (isa<TerminatorInst>(BB->begin()))
1546     return;
1547 
1548   // Delete the instructions backwards, as it has a reduced likelihood of having
1549   // to update as many def-use and use-def chains.
1550   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1551   while (EndInst != BB->begin()) {
1552     // Delete the next to last instruction.
1553     Instruction *Inst = &*--EndInst->getIterator();
1554     if (!Inst->use_empty())
1555       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1556     if (Inst->isEHPad()) {
1557       EndInst = Inst;
1558       continue;
1559     }
1560     BB->getInstList().erase(Inst);
1561     ++NumInstRemoved;
1562   }
1563 }
1564 
1565 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1566 // and return true if the function was modified.
1567 //
runOnFunction(Function & F)1568 bool SCCP::runOnFunction(Function &F) {
1569   if (skipOptnoneFunction(F))
1570     return false;
1571 
1572   DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
1573   const DataLayout &DL = F.getParent()->getDataLayout();
1574   const TargetLibraryInfo *TLI =
1575       &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1576   SCCPSolver Solver(DL, TLI);
1577 
1578   // Mark the first block of the function as being executable.
1579   Solver.MarkBlockExecutable(&F.front());
1580 
1581   // Mark all arguments to the function as being overdefined.
1582   for (Argument &AI : F.args())
1583     Solver.markAnythingOverdefined(&AI);
1584 
1585   // Solve for constants.
1586   bool ResolvedUndefs = true;
1587   while (ResolvedUndefs) {
1588     Solver.Solve();
1589     DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1590     ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1591   }
1592 
1593   bool MadeChanges = false;
1594 
1595   // If we decided that there are basic blocks that are dead in this function,
1596   // delete their contents now.  Note that we cannot actually delete the blocks,
1597   // as we cannot modify the CFG of the function.
1598 
1599   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1600     if (!Solver.isBlockExecutable(&*BB)) {
1601       DeleteInstructionInBlock(&*BB);
1602       MadeChanges = true;
1603       continue;
1604     }
1605 
1606     // Iterate over all of the instructions in a function, replacing them with
1607     // constants if we have found them to be of constant values.
1608     //
1609     for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1610       Instruction *Inst = &*BI++;
1611       if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
1612         continue;
1613 
1614       // TODO: Reconstruct structs from their elements.
1615       if (Inst->getType()->isStructTy())
1616         continue;
1617 
1618       LatticeVal IV = Solver.getLatticeValueFor(Inst);
1619       if (IV.isOverdefined())
1620         continue;
1621 
1622       Constant *Const = IV.isConstant()
1623         ? IV.getConstant() : UndefValue::get(Inst->getType());
1624       DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst << '\n');
1625 
1626       // Replaces all of the uses of a variable with uses of the constant.
1627       Inst->replaceAllUsesWith(Const);
1628 
1629       // Delete the instruction.
1630       Inst->eraseFromParent();
1631 
1632       // Hey, we just changed something!
1633       MadeChanges = true;
1634       ++NumInstRemoved;
1635     }
1636   }
1637 
1638   return MadeChanges;
1639 }
1640 
1641 namespace {
1642   //===--------------------------------------------------------------------===//
1643   //
1644   /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1645   /// Constant Propagation.
1646   ///
1647   struct IPSCCP : public ModulePass {
getAnalysisUsage__anon10360b9e0411::IPSCCP1648     void getAnalysisUsage(AnalysisUsage &AU) const override {
1649       AU.addRequired<TargetLibraryInfoWrapperPass>();
1650     }
1651     static char ID;
IPSCCP__anon10360b9e0411::IPSCCP1652     IPSCCP() : ModulePass(ID) {
1653       initializeIPSCCPPass(*PassRegistry::getPassRegistry());
1654     }
1655     bool runOnModule(Module &M) override;
1656   };
1657 } // end anonymous namespace
1658 
1659 char IPSCCP::ID = 0;
1660 INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp",
1661                 "Interprocedural Sparse Conditional Constant Propagation",
1662                 false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)1663 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1664 INITIALIZE_PASS_END(IPSCCP, "ipsccp",
1665                 "Interprocedural Sparse Conditional Constant Propagation",
1666                 false, false)
1667 
1668 // createIPSCCPPass - This is the public interface to this file.
1669 ModulePass *llvm::createIPSCCPPass() {
1670   return new IPSCCP();
1671 }
1672 
1673 
AddressIsTaken(const GlobalValue * GV)1674 static bool AddressIsTaken(const GlobalValue *GV) {
1675   // Delete any dead constantexpr klingons.
1676   GV->removeDeadConstantUsers();
1677 
1678   for (const Use &U : GV->uses()) {
1679     const User *UR = U.getUser();
1680     if (const StoreInst *SI = dyn_cast<StoreInst>(UR)) {
1681       if (SI->getOperand(0) == GV || SI->isVolatile())
1682         return true;  // Storing addr of GV.
1683     } else if (isa<InvokeInst>(UR) || isa<CallInst>(UR)) {
1684       // Make sure we are calling the function, not passing the address.
1685       ImmutableCallSite CS(cast<Instruction>(UR));
1686       if (!CS.isCallee(&U))
1687         return true;
1688     } else if (const LoadInst *LI = dyn_cast<LoadInst>(UR)) {
1689       if (LI->isVolatile())
1690         return true;
1691     } else if (isa<BlockAddress>(UR)) {
1692       // blockaddress doesn't take the address of the function, it takes addr
1693       // of label.
1694     } else {
1695       return true;
1696     }
1697   }
1698   return false;
1699 }
1700 
runOnModule(Module & M)1701 bool IPSCCP::runOnModule(Module &M) {
1702   const DataLayout &DL = M.getDataLayout();
1703   const TargetLibraryInfo *TLI =
1704       &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1705   SCCPSolver Solver(DL, TLI);
1706 
1707   // AddressTakenFunctions - This set keeps track of the address-taken functions
1708   // that are in the input.  As IPSCCP runs through and simplifies code,
1709   // functions that were address taken can end up losing their
1710   // address-taken-ness.  Because of this, we keep track of their addresses from
1711   // the first pass so we can use them for the later simplification pass.
1712   SmallPtrSet<Function*, 32> AddressTakenFunctions;
1713 
1714   // Loop over all functions, marking arguments to those with their addresses
1715   // taken or that are external as overdefined.
1716   //
1717   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1718     if (F->isDeclaration())
1719       continue;
1720 
1721     // If this is a strong or ODR definition of this function, then we can
1722     // propagate information about its result into callsites of it.
1723     if (!F->mayBeOverridden())
1724       Solver.AddTrackedFunction(&*F);
1725 
1726     // If this function only has direct calls that we can see, we can track its
1727     // arguments and return value aggressively, and can assume it is not called
1728     // unless we see evidence to the contrary.
1729     if (F->hasLocalLinkage()) {
1730       if (AddressIsTaken(&*F))
1731         AddressTakenFunctions.insert(&*F);
1732       else {
1733         Solver.AddArgumentTrackedFunction(&*F);
1734         continue;
1735       }
1736     }
1737 
1738     // Assume the function is called.
1739     Solver.MarkBlockExecutable(&F->front());
1740 
1741     // Assume nothing about the incoming arguments.
1742     for (Argument &AI : F->args())
1743       Solver.markAnythingOverdefined(&AI);
1744   }
1745 
1746   // Loop over global variables.  We inform the solver about any internal global
1747   // variables that do not have their 'addresses taken'.  If they don't have
1748   // their addresses taken, we can propagate constants through them.
1749   for (GlobalVariable &G : M.globals())
1750     if (!G.isConstant() && G.hasLocalLinkage() && !AddressIsTaken(&G))
1751       Solver.TrackValueOfGlobalVariable(&G);
1752 
1753   // Solve for constants.
1754   bool ResolvedUndefs = true;
1755   while (ResolvedUndefs) {
1756     Solver.Solve();
1757 
1758     DEBUG(dbgs() << "RESOLVING UNDEFS\n");
1759     ResolvedUndefs = false;
1760     for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1761       ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1762   }
1763 
1764   bool MadeChanges = false;
1765 
1766   // Iterate over all of the instructions in the module, replacing them with
1767   // constants if we have found them to be of constant values.
1768   //
1769   SmallVector<BasicBlock*, 512> BlocksToErase;
1770 
1771   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1772     if (F->isDeclaration())
1773       continue;
1774 
1775     if (Solver.isBlockExecutable(&F->front())) {
1776       for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1777            AI != E; ++AI) {
1778         if (AI->use_empty() || AI->getType()->isStructTy()) continue;
1779 
1780         // TODO: Could use getStructLatticeValueFor to find out if the entire
1781         // result is a constant and replace it entirely if so.
1782 
1783         LatticeVal IV = Solver.getLatticeValueFor(&*AI);
1784         if (IV.isOverdefined()) continue;
1785 
1786         Constant *CST = IV.isConstant() ?
1787         IV.getConstant() : UndefValue::get(AI->getType());
1788         DEBUG(dbgs() << "***  Arg " << *AI << " = " << *CST <<"\n");
1789 
1790         // Replaces all of the uses of a variable with uses of the
1791         // constant.
1792         AI->replaceAllUsesWith(CST);
1793         ++IPNumArgsElimed;
1794       }
1795     }
1796 
1797     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
1798       if (!Solver.isBlockExecutable(&*BB)) {
1799         DeleteInstructionInBlock(&*BB);
1800         MadeChanges = true;
1801 
1802         TerminatorInst *TI = BB->getTerminator();
1803         for (BasicBlock *Succ : TI->successors()) {
1804           if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1805             Succ->removePredecessor(&*BB);
1806         }
1807         if (!TI->use_empty())
1808           TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1809         TI->eraseFromParent();
1810         new UnreachableInst(M.getContext(), &*BB);
1811 
1812         if (&*BB != &F->front())
1813           BlocksToErase.push_back(&*BB);
1814         continue;
1815       }
1816 
1817       for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1818         Instruction *Inst = &*BI++;
1819         if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
1820           continue;
1821 
1822         // TODO: Could use getStructLatticeValueFor to find out if the entire
1823         // result is a constant and replace it entirely if so.
1824 
1825         LatticeVal IV = Solver.getLatticeValueFor(Inst);
1826         if (IV.isOverdefined())
1827           continue;
1828 
1829         Constant *Const = IV.isConstant()
1830           ? IV.getConstant() : UndefValue::get(Inst->getType());
1831         DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst << '\n');
1832 
1833         // Replaces all of the uses of a variable with uses of the
1834         // constant.
1835         Inst->replaceAllUsesWith(Const);
1836 
1837         // Delete the instruction.
1838         if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1839           Inst->eraseFromParent();
1840 
1841         // Hey, we just changed something!
1842         MadeChanges = true;
1843         ++IPNumInstRemoved;
1844       }
1845     }
1846 
1847     // Now that all instructions in the function are constant folded, erase dead
1848     // blocks, because we can now use ConstantFoldTerminator to get rid of
1849     // in-edges.
1850     for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1851       // If there are any PHI nodes in this successor, drop entries for BB now.
1852       BasicBlock *DeadBB = BlocksToErase[i];
1853       for (Value::user_iterator UI = DeadBB->user_begin(),
1854                                 UE = DeadBB->user_end();
1855            UI != UE;) {
1856         // Grab the user and then increment the iterator early, as the user
1857         // will be deleted. Step past all adjacent uses from the same user.
1858         Instruction *I = dyn_cast<Instruction>(*UI);
1859         do { ++UI; } while (UI != UE && *UI == I);
1860 
1861         // Ignore blockaddress users; BasicBlock's dtor will handle them.
1862         if (!I) continue;
1863 
1864         bool Folded = ConstantFoldTerminator(I->getParent());
1865         if (!Folded) {
1866           // The constant folder may not have been able to fold the terminator
1867           // if this is a branch or switch on undef.  Fold it manually as a
1868           // branch to the first successor.
1869 #ifndef NDEBUG
1870           if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1871             assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1872                    "Branch should be foldable!");
1873           } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1874             assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1875           } else {
1876             llvm_unreachable("Didn't fold away reference to block!");
1877           }
1878 #endif
1879 
1880           // Make this an uncond branch to the first successor.
1881           TerminatorInst *TI = I->getParent()->getTerminator();
1882           BranchInst::Create(TI->getSuccessor(0), TI);
1883 
1884           // Remove entries in successor phi nodes to remove edges.
1885           for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1886             TI->getSuccessor(i)->removePredecessor(TI->getParent());
1887 
1888           // Remove the old terminator.
1889           TI->eraseFromParent();
1890         }
1891       }
1892 
1893       // Finally, delete the basic block.
1894       F->getBasicBlockList().erase(DeadBB);
1895     }
1896     BlocksToErase.clear();
1897   }
1898 
1899   // If we inferred constant or undef return values for a function, we replaced
1900   // all call uses with the inferred value.  This means we don't need to bother
1901   // actually returning anything from the function.  Replace all return
1902   // instructions with return undef.
1903   //
1904   // Do this in two stages: first identify the functions we should process, then
1905   // actually zap their returns.  This is important because we can only do this
1906   // if the address of the function isn't taken.  In cases where a return is the
1907   // last use of a function, the order of processing functions would affect
1908   // whether other functions are optimizable.
1909   SmallVector<ReturnInst*, 8> ReturnsToZap;
1910 
1911   // TODO: Process multiple value ret instructions also.
1912   const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1913   for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1914        E = RV.end(); I != E; ++I) {
1915     Function *F = I->first;
1916     if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
1917       continue;
1918 
1919     // We can only do this if we know that nothing else can call the function.
1920     if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
1921       continue;
1922 
1923     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1924       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1925         if (!isa<UndefValue>(RI->getOperand(0)))
1926           ReturnsToZap.push_back(RI);
1927   }
1928 
1929   // Zap all returns which we've identified as zap to change.
1930   for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
1931     Function *F = ReturnsToZap[i]->getParent()->getParent();
1932     ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
1933   }
1934 
1935   // If we inferred constant or undef values for globals variables, we can
1936   // delete the global and any stores that remain to it.
1937   const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1938   for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1939          E = TG.end(); I != E; ++I) {
1940     GlobalVariable *GV = I->first;
1941     assert(!I->second.isOverdefined() &&
1942            "Overdefined values should have been taken out of the map!");
1943     DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1944     while (!GV->use_empty()) {
1945       StoreInst *SI = cast<StoreInst>(GV->user_back());
1946       SI->eraseFromParent();
1947     }
1948     M.getGlobalList().erase(GV);
1949     ++IPNumGlobalConst;
1950   }
1951 
1952   return MadeChanges;
1953 }
1954