1 //===- UnifyFunctionExitNodes.cpp - Make all functions have a single exit -===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass is used to ensure that functions have at most one return
11 // instruction in them.  Additionally, it keeps track of which node is the new
12 // exit node of the CFG.  If there are no exit nodes in the CFG, the getExitNode
13 // method will return a null pointer.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/Type.h"
23 #include "llvm/Transforms/Scalar.h"
24 using namespace llvm;
25 
26 char UnifyFunctionExitNodes::ID = 0;
27 INITIALIZE_PASS(UnifyFunctionExitNodes, "mergereturn",
28                 "Unify function exit nodes", false, false)
29 
createUnifyFunctionExitNodesPass()30 Pass *llvm::createUnifyFunctionExitNodesPass() {
31   return new UnifyFunctionExitNodes();
32 }
33 
getAnalysisUsage(AnalysisUsage & AU) const34 void UnifyFunctionExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{
35   // We preserve the non-critical-edgeness property
36   AU.addPreservedID(BreakCriticalEdgesID);
37   // This is a cluster of orthogonal Transforms
38   AU.addPreservedID(LowerSwitchID);
39 }
40 
41 // UnifyAllExitNodes - Unify all exit nodes of the CFG by creating a new
42 // BasicBlock, and converting all returns to unconditional branches to this
43 // new basic block.  The singular exit node is returned.
44 //
45 // If there are no return stmts in the Function, a null pointer is returned.
46 //
runOnFunction(Function & F)47 bool UnifyFunctionExitNodes::runOnFunction(Function &F) {
48   // Loop over all of the blocks in a function, tracking all of the blocks that
49   // return.
50   //
51   std::vector<BasicBlock*> ReturningBlocks;
52   std::vector<BasicBlock*> UnreachableBlocks;
53   for (BasicBlock &I : F)
54     if (isa<ReturnInst>(I.getTerminator()))
55       ReturningBlocks.push_back(&I);
56     else if (isa<UnreachableInst>(I.getTerminator()))
57       UnreachableBlocks.push_back(&I);
58 
59   // Then unreachable blocks.
60   if (UnreachableBlocks.empty()) {
61     UnreachableBlock = nullptr;
62   } else if (UnreachableBlocks.size() == 1) {
63     UnreachableBlock = UnreachableBlocks.front();
64   } else {
65     UnreachableBlock = BasicBlock::Create(F.getContext(),
66                                           "UnifiedUnreachableBlock", &F);
67     new UnreachableInst(F.getContext(), UnreachableBlock);
68 
69     for (std::vector<BasicBlock*>::iterator I = UnreachableBlocks.begin(),
70            E = UnreachableBlocks.end(); I != E; ++I) {
71       BasicBlock *BB = *I;
72       BB->getInstList().pop_back();  // Remove the unreachable inst.
73       BranchInst::Create(UnreachableBlock, BB);
74     }
75   }
76 
77   // Now handle return blocks.
78   if (ReturningBlocks.empty()) {
79     ReturnBlock = nullptr;
80     return false;                          // No blocks return
81   } else if (ReturningBlocks.size() == 1) {
82     ReturnBlock = ReturningBlocks.front(); // Already has a single return block
83     return false;
84   }
85 
86   // Otherwise, we need to insert a new basic block into the function, add a PHI
87   // nodes (if the function returns values), and convert all of the return
88   // instructions into unconditional branches.
89   //
90   BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(),
91                                                "UnifiedReturnBlock", &F);
92 
93   PHINode *PN = nullptr;
94   if (F.getReturnType()->isVoidTy()) {
95     ReturnInst::Create(F.getContext(), nullptr, NewRetBlock);
96   } else {
97     // If the function doesn't return void... add a PHI node to the block...
98     PN = PHINode::Create(F.getReturnType(), ReturningBlocks.size(),
99                          "UnifiedRetVal");
100     NewRetBlock->getInstList().push_back(PN);
101     ReturnInst::Create(F.getContext(), PN, NewRetBlock);
102   }
103 
104   // Loop over all of the blocks, replacing the return instruction with an
105   // unconditional branch.
106   //
107   for (std::vector<BasicBlock*>::iterator I = ReturningBlocks.begin(),
108          E = ReturningBlocks.end(); I != E; ++I) {
109     BasicBlock *BB = *I;
110 
111     // Add an incoming element to the PHI node for every return instruction that
112     // is merging into this new block...
113     if (PN)
114       PN->addIncoming(BB->getTerminator()->getOperand(0), BB);
115 
116     BB->getInstList().pop_back();  // Remove the return insn
117     BranchInst::Create(NewRetBlock, BB);
118   }
119   ReturnBlock = NewRetBlock;
120   return true;
121 }
122