1 // layout.cc -- lay out output file sections for gold
2 
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 // __STDC_FORMAT_MACROS is needed to turn on macros in inttypes.h.
29 #define __STDC_FORMAT_MACROS
30 #include <inttypes.h>
31 #include <iostream>
32 #include <fstream>
33 #include <utility>
34 #include <fcntl.h>
35 #include <fnmatch.h>
36 #include <unistd.h>
37 #include "libiberty.h"
38 #include "md5.h"
39 #include "sha1.h"
40 
41 #include "parameters.h"
42 #include "options.h"
43 #include "mapfile.h"
44 #include "script.h"
45 #include "script-sections.h"
46 #include "output.h"
47 #include "symtab.h"
48 #include "dynobj.h"
49 #include "ehframe.h"
50 #include "gdb-index.h"
51 #include "compressed_output.h"
52 #include "reduced_debug_output.h"
53 #include "object.h"
54 #include "reloc.h"
55 #include "descriptors.h"
56 #include "plugin.h"
57 #include "incremental.h"
58 #include "layout.h"
59 
60 namespace gold
61 {
62 
63 // Class Free_list.
64 
65 // The total number of free lists used.
66 unsigned int Free_list::num_lists = 0;
67 // The total number of free list nodes used.
68 unsigned int Free_list::num_nodes = 0;
69 // The total number of calls to Free_list::remove.
70 unsigned int Free_list::num_removes = 0;
71 // The total number of nodes visited during calls to Free_list::remove.
72 unsigned int Free_list::num_remove_visits = 0;
73 // The total number of calls to Free_list::allocate.
74 unsigned int Free_list::num_allocates = 0;
75 // The total number of nodes visited during calls to Free_list::allocate.
76 unsigned int Free_list::num_allocate_visits = 0;
77 
78 // Initialize the free list.  Creates a single free list node that
79 // describes the entire region of length LEN.  If EXTEND is true,
80 // allocate() is allowed to extend the region beyond its initial
81 // length.
82 
83 void
init(off_t len,bool extend)84 Free_list::init(off_t len, bool extend)
85 {
86   this->list_.push_front(Free_list_node(0, len));
87   this->last_remove_ = this->list_.begin();
88   this->extend_ = extend;
89   this->length_ = len;
90   ++Free_list::num_lists;
91   ++Free_list::num_nodes;
92 }
93 
94 // Remove a chunk from the free list.  Because we start with a single
95 // node that covers the entire section, and remove chunks from it one
96 // at a time, we do not need to coalesce chunks or handle cases that
97 // span more than one free node.  We expect to remove chunks from the
98 // free list in order, and we expect to have only a few chunks of free
99 // space left (corresponding to files that have changed since the last
100 // incremental link), so a simple linear list should provide sufficient
101 // performance.
102 
103 void
remove(off_t start,off_t end)104 Free_list::remove(off_t start, off_t end)
105 {
106   if (start == end)
107     return;
108   gold_assert(start < end);
109 
110   ++Free_list::num_removes;
111 
112   Iterator p = this->last_remove_;
113   if (p->start_ > start)
114     p = this->list_.begin();
115 
116   for (; p != this->list_.end(); ++p)
117     {
118       ++Free_list::num_remove_visits;
119       // Find a node that wholly contains the indicated region.
120       if (p->start_ <= start && p->end_ >= end)
121 	{
122 	  // Case 1: the indicated region spans the whole node.
123 	  // Add some fuzz to avoid creating tiny free chunks.
124 	  if (p->start_ + 3 >= start && p->end_ <= end + 3)
125 	    p = this->list_.erase(p);
126 	  // Case 2: remove a chunk from the start of the node.
127 	  else if (p->start_ + 3 >= start)
128 	    p->start_ = end;
129 	  // Case 3: remove a chunk from the end of the node.
130 	  else if (p->end_ <= end + 3)
131 	    p->end_ = start;
132 	  // Case 4: remove a chunk from the middle, and split
133 	  // the node into two.
134 	  else
135 	    {
136 	      Free_list_node newnode(p->start_, start);
137 	      p->start_ = end;
138 	      this->list_.insert(p, newnode);
139 	      ++Free_list::num_nodes;
140 	    }
141 	  this->last_remove_ = p;
142 	  return;
143 	}
144     }
145 
146   // Did not find a node containing the given chunk.  This could happen
147   // because a small chunk was already removed due to the fuzz.
148   gold_debug(DEBUG_INCREMENTAL,
149 	     "Free_list::remove(%d,%d) not found",
150 	     static_cast<int>(start), static_cast<int>(end));
151 }
152 
153 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
154 // if a sufficiently large chunk of free space is not found.
155 // We use a simple first-fit algorithm.
156 
157 off_t
allocate(off_t len,uint64_t align,off_t minoff)158 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
159 {
160   gold_debug(DEBUG_INCREMENTAL,
161 	     "Free_list::allocate(%08lx, %d, %08lx)",
162 	     static_cast<long>(len), static_cast<int>(align),
163 	     static_cast<long>(minoff));
164   if (len == 0)
165     return align_address(minoff, align);
166 
167   ++Free_list::num_allocates;
168 
169   // We usually want to drop free chunks smaller than 4 bytes.
170   // If we need to guarantee a minimum hole size, though, we need
171   // to keep track of all free chunks.
172   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
173 
174   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
175     {
176       ++Free_list::num_allocate_visits;
177       off_t start = p->start_ > minoff ? p->start_ : minoff;
178       start = align_address(start, align);
179       off_t end = start + len;
180       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
181 	{
182 	  this->length_ = end;
183 	  p->end_ = end;
184 	}
185       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
186 	{
187 	  if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
188 	    this->list_.erase(p);
189 	  else if (p->start_ + fuzz >= start)
190 	    p->start_ = end;
191 	  else if (p->end_ <= end + fuzz)
192 	    p->end_ = start;
193 	  else
194 	    {
195 	      Free_list_node newnode(p->start_, start);
196 	      p->start_ = end;
197 	      this->list_.insert(p, newnode);
198 	      ++Free_list::num_nodes;
199 	    }
200 	  return start;
201 	}
202     }
203   if (this->extend_)
204     {
205       off_t start = align_address(this->length_, align);
206       this->length_ = start + len;
207       return start;
208     }
209   return -1;
210 }
211 
212 // Dump the free list (for debugging).
213 void
dump()214 Free_list::dump()
215 {
216   gold_info("Free list:\n     start      end   length\n");
217   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
218     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
219 	      static_cast<long>(p->end_),
220 	      static_cast<long>(p->end_ - p->start_));
221 }
222 
223 // Print the statistics for the free lists.
224 void
print_stats()225 Free_list::print_stats()
226 {
227   fprintf(stderr, _("%s: total free lists: %u\n"),
228 	  program_name, Free_list::num_lists);
229   fprintf(stderr, _("%s: total free list nodes: %u\n"),
230 	  program_name, Free_list::num_nodes);
231   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
232 	  program_name, Free_list::num_removes);
233   fprintf(stderr, _("%s: nodes visited: %u\n"),
234 	  program_name, Free_list::num_remove_visits);
235   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
236 	  program_name, Free_list::num_allocates);
237   fprintf(stderr, _("%s: nodes visited: %u\n"),
238 	  program_name, Free_list::num_allocate_visits);
239 }
240 
241 // A Hash_task computes the MD5 checksum of an array of char.
242 // It has a blocker on either side (i.e., the task cannot run until
243 // the first is unblocked, and it unblocks the second after running).
244 
245 class Hash_task : public Task
246 {
247  public:
Hash_task(const unsigned char * src,size_t size,unsigned char * dst,Task_token * build_id_blocker,Task_token * final_blocker)248   Hash_task(const unsigned char* src,
249 	    size_t size,
250 	    unsigned char* dst,
251 	    Task_token* build_id_blocker,
252 	    Task_token* final_blocker)
253     : src_(src), size_(size), dst_(dst), build_id_blocker_(build_id_blocker),
254       final_blocker_(final_blocker)
255   { }
256 
257   void
run(Workqueue *)258   run(Workqueue*)
259   { md5_buffer(reinterpret_cast<const char*>(src_), size_, dst_); }
260 
261   Task_token*
262   is_runnable();
263 
264   // Unblock FINAL_BLOCKER_ when done.
265   void
locks(Task_locker * tl)266   locks(Task_locker* tl)
267   { tl->add(this, this->final_blocker_); }
268 
269   std::string
get_name() const270   get_name() const
271   { return "Hash_task"; }
272 
273  private:
274   const unsigned char* const src_;
275   const size_t size_;
276   unsigned char* const dst_;
277   Task_token* const build_id_blocker_;
278   Task_token* const final_blocker_;
279 };
280 
281 Task_token*
is_runnable()282 Hash_task::is_runnable()
283 {
284   if (this->build_id_blocker_->is_blocked())
285     return this->build_id_blocker_;
286   return NULL;
287 }
288 
289 // Layout::Relaxation_debug_check methods.
290 
291 // Check that sections and special data are in reset states.
292 // We do not save states for Output_sections and special Output_data.
293 // So we check that they have not assigned any addresses or offsets.
294 // clean_up_after_relaxation simply resets their addresses and offsets.
295 void
check_output_data_for_reset_values(const Layout::Section_list & sections,const Layout::Data_list & special_outputs,const Layout::Data_list & relax_outputs)296 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
297     const Layout::Section_list& sections,
298     const Layout::Data_list& special_outputs,
299     const Layout::Data_list& relax_outputs)
300 {
301   for(Layout::Section_list::const_iterator p = sections.begin();
302       p != sections.end();
303       ++p)
304     gold_assert((*p)->address_and_file_offset_have_reset_values());
305 
306   for(Layout::Data_list::const_iterator p = special_outputs.begin();
307       p != special_outputs.end();
308       ++p)
309     gold_assert((*p)->address_and_file_offset_have_reset_values());
310 
311   gold_assert(relax_outputs.empty());
312 }
313 
314 // Save information of SECTIONS for checking later.
315 
316 void
read_sections(const Layout::Section_list & sections)317 Layout::Relaxation_debug_check::read_sections(
318     const Layout::Section_list& sections)
319 {
320   for(Layout::Section_list::const_iterator p = sections.begin();
321       p != sections.end();
322       ++p)
323     {
324       Output_section* os = *p;
325       Section_info info;
326       info.output_section = os;
327       info.address = os->is_address_valid() ? os->address() : 0;
328       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
329       info.offset = os->is_offset_valid()? os->offset() : -1 ;
330       this->section_infos_.push_back(info);
331     }
332 }
333 
334 // Verify SECTIONS using previously recorded information.
335 
336 void
verify_sections(const Layout::Section_list & sections)337 Layout::Relaxation_debug_check::verify_sections(
338     const Layout::Section_list& sections)
339 {
340   size_t i = 0;
341   for(Layout::Section_list::const_iterator p = sections.begin();
342       p != sections.end();
343       ++p, ++i)
344     {
345       Output_section* os = *p;
346       uint64_t address = os->is_address_valid() ? os->address() : 0;
347       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
348       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
349 
350       if (i >= this->section_infos_.size())
351 	{
352 	  gold_fatal("Section_info of %s missing.\n", os->name());
353 	}
354       const Section_info& info = this->section_infos_[i];
355       if (os != info.output_section)
356 	gold_fatal("Section order changed.  Expecting %s but see %s\n",
357 		   info.output_section->name(), os->name());
358       if (address != info.address
359 	  || data_size != info.data_size
360 	  || offset != info.offset)
361 	gold_fatal("Section %s changed.\n", os->name());
362     }
363 }
364 
365 // Layout_task_runner methods.
366 
367 // Lay out the sections.  This is called after all the input objects
368 // have been read.
369 
370 void
run(Workqueue * workqueue,const Task * task)371 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
372 {
373   // See if any of the input definitions violate the One Definition Rule.
374   // TODO: if this is too slow, do this as a task, rather than inline.
375   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
376 
377   Layout* layout = this->layout_;
378   off_t file_size = layout->finalize(this->input_objects_,
379 				     this->symtab_,
380 				     this->target_,
381 				     task);
382 
383   // Now we know the final size of the output file and we know where
384   // each piece of information goes.
385 
386   if (this->mapfile_ != NULL)
387     {
388       this->mapfile_->print_discarded_sections(this->input_objects_);
389       layout->print_to_mapfile(this->mapfile_);
390     }
391 
392   Output_file* of;
393   if (layout->incremental_base() == NULL)
394     {
395       of = new Output_file(parameters->options().output_file_name());
396       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
397 	of->set_is_temporary();
398       of->open(file_size);
399     }
400   else
401     {
402       of = layout->incremental_base()->output_file();
403 
404       // Apply the incremental relocations for symbols whose values
405       // have changed.  We do this before we resize the file and start
406       // writing anything else to it, so that we can read the old
407       // incremental information from the file before (possibly)
408       // overwriting it.
409       if (parameters->incremental_update())
410 	layout->incremental_base()->apply_incremental_relocs(this->symtab_,
411 							     this->layout_,
412 							     of);
413 
414       of->resize(file_size);
415     }
416 
417   // Queue up the final set of tasks.
418   gold::queue_final_tasks(this->options_, this->input_objects_,
419 			  this->symtab_, layout, workqueue, of);
420 }
421 
422 // Layout methods.
423 
Layout(int number_of_input_files,Script_options * script_options)424 Layout::Layout(int number_of_input_files, Script_options* script_options)
425   : number_of_input_files_(number_of_input_files),
426     script_options_(script_options),
427     namepool_(),
428     sympool_(),
429     dynpool_(),
430     signatures_(),
431     section_name_map_(),
432     segment_list_(),
433     section_list_(),
434     unattached_section_list_(),
435     special_output_list_(),
436     relax_output_list_(),
437     section_headers_(NULL),
438     tls_segment_(NULL),
439     relro_segment_(NULL),
440     interp_segment_(NULL),
441     increase_relro_(0),
442     symtab_section_(NULL),
443     symtab_xindex_(NULL),
444     dynsym_section_(NULL),
445     dynsym_xindex_(NULL),
446     dynamic_section_(NULL),
447     dynamic_symbol_(NULL),
448     dynamic_data_(NULL),
449     eh_frame_section_(NULL),
450     eh_frame_data_(NULL),
451     added_eh_frame_data_(false),
452     eh_frame_hdr_section_(NULL),
453     gdb_index_data_(NULL),
454     build_id_note_(NULL),
455     array_of_hashes_(NULL),
456     size_of_array_of_hashes_(0),
457     input_view_(NULL),
458     debug_abbrev_(NULL),
459     debug_info_(NULL),
460     group_signatures_(),
461     output_file_size_(-1),
462     have_added_input_section_(false),
463     sections_are_attached_(false),
464     input_requires_executable_stack_(false),
465     input_with_gnu_stack_note_(false),
466     input_without_gnu_stack_note_(false),
467     has_static_tls_(false),
468     any_postprocessing_sections_(false),
469     resized_signatures_(false),
470     have_stabstr_section_(false),
471     section_ordering_specified_(false),
472     unique_segment_for_sections_specified_(false),
473     incremental_inputs_(NULL),
474     record_output_section_data_from_script_(false),
475     script_output_section_data_list_(),
476     segment_states_(NULL),
477     relaxation_debug_check_(NULL),
478     section_order_map_(),
479     section_segment_map_(),
480     input_section_position_(),
481     input_section_glob_(),
482     incremental_base_(NULL),
483     free_list_()
484 {
485   // Make space for more than enough segments for a typical file.
486   // This is just for efficiency--it's OK if we wind up needing more.
487   this->segment_list_.reserve(12);
488 
489   // We expect two unattached Output_data objects: the file header and
490   // the segment headers.
491   this->special_output_list_.reserve(2);
492 
493   // Initialize structure needed for an incremental build.
494   if (parameters->incremental())
495     this->incremental_inputs_ = new Incremental_inputs;
496 
497   // The section name pool is worth optimizing in all cases, because
498   // it is small, but there are often overlaps due to .rel sections.
499   this->namepool_.set_optimize();
500 }
501 
502 // For incremental links, record the base file to be modified.
503 
504 void
set_incremental_base(Incremental_binary * base)505 Layout::set_incremental_base(Incremental_binary* base)
506 {
507   this->incremental_base_ = base;
508   this->free_list_.init(base->output_file()->filesize(), true);
509 }
510 
511 // Hash a key we use to look up an output section mapping.
512 
513 size_t
operator ()(const Layout::Key & k) const514 Layout::Hash_key::operator()(const Layout::Key& k) const
515 {
516  return k.first + k.second.first + k.second.second;
517 }
518 
519 // These are the debug sections that are actually used by gdb.
520 // Currently, we've checked versions of gdb up to and including 7.4.
521 // We only check the part of the name that follows ".debug_" or
522 // ".zdebug_".
523 
524 static const char* gdb_sections[] =
525 {
526   "abbrev",
527   "addr",         // Fission extension
528   // "aranges",   // not used by gdb as of 7.4
529   "frame",
530   "gdb_scripts",
531   "info",
532   "types",
533   "line",
534   "loc",
535   "macinfo",
536   "macro",
537   // "pubnames",  // not used by gdb as of 7.4
538   // "pubtypes",  // not used by gdb as of 7.4
539   // "gnu_pubnames",  // Fission extension
540   // "gnu_pubtypes",  // Fission extension
541   "ranges",
542   "str",
543   "str_offsets",
544 };
545 
546 // This is the minimum set of sections needed for line numbers.
547 
548 static const char* lines_only_debug_sections[] =
549 {
550   "abbrev",
551   // "addr",      // Fission extension
552   // "aranges",   // not used by gdb as of 7.4
553   // "frame",
554   // "gdb_scripts",
555   "info",
556   // "types",
557   "line",
558   // "loc",
559   // "macinfo",
560   // "macro",
561   // "pubnames",  // not used by gdb as of 7.4
562   // "pubtypes",  // not used by gdb as of 7.4
563   // "gnu_pubnames",  // Fission extension
564   // "gnu_pubtypes",  // Fission extension
565   // "ranges",
566   "str",
567   "str_offsets",  // Fission extension
568 };
569 
570 // These sections are the DWARF fast-lookup tables, and are not needed
571 // when building a .gdb_index section.
572 
573 static const char* gdb_fast_lookup_sections[] =
574 {
575   "aranges",
576   "pubnames",
577   "gnu_pubnames",
578   "pubtypes",
579   "gnu_pubtypes",
580 };
581 
582 // Returns whether the given debug section is in the list of
583 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
584 // portion of the name following ".debug_" or ".zdebug_".
585 
586 static inline bool
is_gdb_debug_section(const char * suffix)587 is_gdb_debug_section(const char* suffix)
588 {
589   // We can do this faster: binary search or a hashtable.  But why bother?
590   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
591     if (strcmp(suffix, gdb_sections[i]) == 0)
592       return true;
593   return false;
594 }
595 
596 // Returns whether the given section is needed for lines-only debugging.
597 
598 static inline bool
is_lines_only_debug_section(const char * suffix)599 is_lines_only_debug_section(const char* suffix)
600 {
601   // We can do this faster: binary search or a hashtable.  But why bother?
602   for (size_t i = 0;
603        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
604        ++i)
605     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
606       return true;
607   return false;
608 }
609 
610 // Returns whether the given section is a fast-lookup section that
611 // will not be needed when building a .gdb_index section.
612 
613 static inline bool
is_gdb_fast_lookup_section(const char * suffix)614 is_gdb_fast_lookup_section(const char* suffix)
615 {
616   // We can do this faster: binary search or a hashtable.  But why bother?
617   for (size_t i = 0;
618        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
619        ++i)
620     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
621       return true;
622   return false;
623 }
624 
625 // Sometimes we compress sections.  This is typically done for
626 // sections that are not part of normal program execution (such as
627 // .debug_* sections), and where the readers of these sections know
628 // how to deal with compressed sections.  This routine doesn't say for
629 // certain whether we'll compress -- it depends on commandline options
630 // as well -- just whether this section is a candidate for compression.
631 // (The Output_compressed_section class decides whether to compress
632 // a given section, and picks the name of the compressed section.)
633 
634 static bool
is_compressible_debug_section(const char * secname)635 is_compressible_debug_section(const char* secname)
636 {
637   return (is_prefix_of(".debug", secname));
638 }
639 
640 // We may see compressed debug sections in input files.  Return TRUE
641 // if this is the name of a compressed debug section.
642 
643 bool
is_compressed_debug_section(const char * secname)644 is_compressed_debug_section(const char* secname)
645 {
646   return (is_prefix_of(".zdebug", secname));
647 }
648 
649 // Whether to include this section in the link.
650 
651 template<int size, bool big_endian>
652 bool
include_section(Sized_relobj_file<size,big_endian> *,const char * name,const elfcpp::Shdr<size,big_endian> & shdr)653 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
654 			const elfcpp::Shdr<size, big_endian>& shdr)
655 {
656   if (!parameters->options().relocatable()
657       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
658     return false;
659 
660   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
661 
662   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
663       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
664     return parameters->target().should_include_section(sh_type);
665 
666   switch (sh_type)
667     {
668     case elfcpp::SHT_NULL:
669     case elfcpp::SHT_SYMTAB:
670     case elfcpp::SHT_DYNSYM:
671     case elfcpp::SHT_HASH:
672     case elfcpp::SHT_DYNAMIC:
673     case elfcpp::SHT_SYMTAB_SHNDX:
674       return false;
675 
676     case elfcpp::SHT_STRTAB:
677       // Discard the sections which have special meanings in the ELF
678       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
679       // checking the sh_link fields of the appropriate sections.
680       return (strcmp(name, ".dynstr") != 0
681 	      && strcmp(name, ".strtab") != 0
682 	      && strcmp(name, ".shstrtab") != 0);
683 
684     case elfcpp::SHT_RELA:
685     case elfcpp::SHT_REL:
686     case elfcpp::SHT_GROUP:
687       // If we are emitting relocations these should be handled
688       // elsewhere.
689       gold_assert(!parameters->options().relocatable());
690       return false;
691 
692     case elfcpp::SHT_PROGBITS:
693       if (parameters->options().strip_debug()
694 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
695 	{
696 	  if (is_debug_info_section(name))
697 	    return false;
698 	}
699       if (parameters->options().strip_debug_non_line()
700 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
701 	{
702 	  // Debugging sections can only be recognized by name.
703 	  if (is_prefix_of(".debug_", name)
704 	      && !is_lines_only_debug_section(name + 7))
705 	    return false;
706 	  if (is_prefix_of(".zdebug_", name)
707 	      && !is_lines_only_debug_section(name + 8))
708 	    return false;
709 	}
710       if (parameters->options().strip_debug_gdb()
711 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
712 	{
713 	  // Debugging sections can only be recognized by name.
714 	  if (is_prefix_of(".debug_", name)
715 	      && !is_gdb_debug_section(name + 7))
716 	    return false;
717 	  if (is_prefix_of(".zdebug_", name)
718 	      && !is_gdb_debug_section(name + 8))
719 	    return false;
720 	}
721       if (parameters->options().gdb_index()
722 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
723 	{
724 	  // When building .gdb_index, we can strip .debug_pubnames,
725 	  // .debug_pubtypes, and .debug_aranges sections.
726 	  if (is_prefix_of(".debug_", name)
727 	      && is_gdb_fast_lookup_section(name + 7))
728 	    return false;
729 	  if (is_prefix_of(".zdebug_", name)
730 	      && is_gdb_fast_lookup_section(name + 8))
731 	    return false;
732 	}
733       if (parameters->options().strip_lto_sections()
734 	  && !parameters->options().relocatable()
735 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
736 	{
737 	  // Ignore LTO sections containing intermediate code.
738 	  if (is_prefix_of(".gnu.lto_", name))
739 	    return false;
740 	}
741       // The GNU linker strips .gnu_debuglink sections, so we do too.
742       // This is a feature used to keep debugging information in
743       // separate files.
744       if (strcmp(name, ".gnu_debuglink") == 0)
745 	return false;
746       return true;
747 
748     default:
749       return true;
750     }
751 }
752 
753 // Return an output section named NAME, or NULL if there is none.
754 
755 Output_section*
find_output_section(const char * name) const756 Layout::find_output_section(const char* name) const
757 {
758   for (Section_list::const_iterator p = this->section_list_.begin();
759        p != this->section_list_.end();
760        ++p)
761     if (strcmp((*p)->name(), name) == 0)
762       return *p;
763   return NULL;
764 }
765 
766 // Return an output segment of type TYPE, with segment flags SET set
767 // and segment flags CLEAR clear.  Return NULL if there is none.
768 
769 Output_segment*
find_output_segment(elfcpp::PT type,elfcpp::Elf_Word set,elfcpp::Elf_Word clear) const770 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
771 			    elfcpp::Elf_Word clear) const
772 {
773   for (Segment_list::const_iterator p = this->segment_list_.begin();
774        p != this->segment_list_.end();
775        ++p)
776     if (static_cast<elfcpp::PT>((*p)->type()) == type
777 	&& ((*p)->flags() & set) == set
778 	&& ((*p)->flags() & clear) == 0)
779       return *p;
780   return NULL;
781 }
782 
783 // When we put a .ctors or .dtors section with more than one word into
784 // a .init_array or .fini_array section, we need to reverse the words
785 // in the .ctors/.dtors section.  This is because .init_array executes
786 // constructors front to back, where .ctors executes them back to
787 // front, and vice-versa for .fini_array/.dtors.  Although we do want
788 // to remap .ctors/.dtors into .init_array/.fini_array because it can
789 // be more efficient, we don't want to change the order in which
790 // constructors/destructors are run.  This set just keeps track of
791 // these sections which need to be reversed.  It is only changed by
792 // Layout::layout.  It should be a private member of Layout, but that
793 // would require layout.h to #include object.h to get the definition
794 // of Section_id.
795 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
796 
797 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
798 // .init_array/.fini_array section.
799 
800 bool
is_ctors_in_init_array(Relobj * relobj,unsigned int shndx) const801 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
802 {
803   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
804 	  != ctors_sections_in_init_array.end());
805 }
806 
807 // Return the output section to use for section NAME with type TYPE
808 // and section flags FLAGS.  NAME must be canonicalized in the string
809 // pool, and NAME_KEY is the key.  ORDER is where this should appear
810 // in the output sections.  IS_RELRO is true for a relro section.
811 
812 Output_section*
get_output_section(const char * name,Stringpool::Key name_key,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags,Output_section_order order,bool is_relro)813 Layout::get_output_section(const char* name, Stringpool::Key name_key,
814 			   elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
815 			   Output_section_order order, bool is_relro)
816 {
817   elfcpp::Elf_Word lookup_type = type;
818 
819   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
820   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
821   // .init_array, .fini_array, and .preinit_array sections by name
822   // whatever their type in the input file.  We do this because the
823   // types are not always right in the input files.
824   if (lookup_type == elfcpp::SHT_INIT_ARRAY
825       || lookup_type == elfcpp::SHT_FINI_ARRAY
826       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
827     lookup_type = elfcpp::SHT_PROGBITS;
828 
829   elfcpp::Elf_Xword lookup_flags = flags;
830 
831   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
832   // read-write with read-only sections.  Some other ELF linkers do
833   // not do this.  FIXME: Perhaps there should be an option
834   // controlling this.
835   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
836 
837   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
838   const std::pair<Key, Output_section*> v(key, NULL);
839   std::pair<Section_name_map::iterator, bool> ins(
840     this->section_name_map_.insert(v));
841 
842   if (!ins.second)
843     return ins.first->second;
844   else
845     {
846       // This is the first time we've seen this name/type/flags
847       // combination.  For compatibility with the GNU linker, we
848       // combine sections with contents and zero flags with sections
849       // with non-zero flags.  This is a workaround for cases where
850       // assembler code forgets to set section flags.  FIXME: Perhaps
851       // there should be an option to control this.
852       Output_section* os = NULL;
853 
854       if (lookup_type == elfcpp::SHT_PROGBITS)
855 	{
856 	  if (flags == 0)
857 	    {
858 	      Output_section* same_name = this->find_output_section(name);
859 	      if (same_name != NULL
860 		  && (same_name->type() == elfcpp::SHT_PROGBITS
861 		      || same_name->type() == elfcpp::SHT_INIT_ARRAY
862 		      || same_name->type() == elfcpp::SHT_FINI_ARRAY
863 		      || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
864 		  && (same_name->flags() & elfcpp::SHF_TLS) == 0)
865 		os = same_name;
866 	    }
867 	  else if ((flags & elfcpp::SHF_TLS) == 0)
868 	    {
869 	      elfcpp::Elf_Xword zero_flags = 0;
870 	      const Key zero_key(name_key, std::make_pair(lookup_type,
871 							  zero_flags));
872 	      Section_name_map::iterator p =
873 		  this->section_name_map_.find(zero_key);
874 	      if (p != this->section_name_map_.end())
875 		os = p->second;
876 	    }
877 	}
878 
879       if (os == NULL)
880 	os = this->make_output_section(name, type, flags, order, is_relro);
881 
882       ins.first->second = os;
883       return os;
884     }
885 }
886 
887 // Returns TRUE iff NAME (an input section from RELOBJ) will
888 // be mapped to an output section that should be KEPT.
889 
890 bool
keep_input_section(const Relobj * relobj,const char * name)891 Layout::keep_input_section(const Relobj* relobj, const char* name)
892 {
893   if (! this->script_options_->saw_sections_clause())
894     return false;
895 
896   Script_sections* ss = this->script_options_->script_sections();
897   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
898   Output_section** output_section_slot;
899   Script_sections::Section_type script_section_type;
900   bool keep;
901 
902   name = ss->output_section_name(file_name, name, &output_section_slot,
903 				 &script_section_type, &keep);
904   return name != NULL && keep;
905 }
906 
907 // Clear the input section flags that should not be copied to the
908 // output section.
909 
910 elfcpp::Elf_Xword
get_output_section_flags(elfcpp::Elf_Xword input_section_flags)911 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
912 {
913   // Some flags in the input section should not be automatically
914   // copied to the output section.
915   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
916 			    | elfcpp::SHF_GROUP
917 			    | elfcpp::SHF_MERGE
918 			    | elfcpp::SHF_STRINGS);
919 
920   // We only clear the SHF_LINK_ORDER flag in for
921   // a non-relocatable link.
922   if (!parameters->options().relocatable())
923     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
924 
925   return input_section_flags;
926 }
927 
928 // Pick the output section to use for section NAME, in input file
929 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
930 // linker created section.  IS_INPUT_SECTION is true if we are
931 // choosing an output section for an input section found in a input
932 // file.  ORDER is where this section should appear in the output
933 // sections.  IS_RELRO is true for a relro section.  This will return
934 // NULL if the input section should be discarded.
935 
936 Output_section*
choose_output_section(const Relobj * relobj,const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags,bool is_input_section,Output_section_order order,bool is_relro)937 Layout::choose_output_section(const Relobj* relobj, const char* name,
938 			      elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
939 			      bool is_input_section, Output_section_order order,
940 			      bool is_relro)
941 {
942   // We should not see any input sections after we have attached
943   // sections to segments.
944   gold_assert(!is_input_section || !this->sections_are_attached_);
945 
946   flags = this->get_output_section_flags(flags);
947 
948   if (this->script_options_->saw_sections_clause())
949     {
950       // We are using a SECTIONS clause, so the output section is
951       // chosen based only on the name.
952 
953       Script_sections* ss = this->script_options_->script_sections();
954       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
955       Output_section** output_section_slot;
956       Script_sections::Section_type script_section_type;
957       const char* orig_name = name;
958       bool keep;
959       name = ss->output_section_name(file_name, name, &output_section_slot,
960 				     &script_section_type, &keep);
961 
962       if (name == NULL)
963 	{
964 	  gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
965 				     "because it is not allowed by the "
966 				     "SECTIONS clause of the linker script"),
967 		     orig_name);
968 	  // The SECTIONS clause says to discard this input section.
969 	  return NULL;
970 	}
971 
972       // We can only handle script section types ST_NONE and ST_NOLOAD.
973       switch (script_section_type)
974 	{
975 	case Script_sections::ST_NONE:
976 	  break;
977 	case Script_sections::ST_NOLOAD:
978 	  flags &= elfcpp::SHF_ALLOC;
979 	  break;
980 	default:
981 	  gold_unreachable();
982 	}
983 
984       // If this is an orphan section--one not mentioned in the linker
985       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
986       // default processing below.
987 
988       if (output_section_slot != NULL)
989 	{
990 	  if (*output_section_slot != NULL)
991 	    {
992 	      (*output_section_slot)->update_flags_for_input_section(flags);
993 	      return *output_section_slot;
994 	    }
995 
996 	  // We don't put sections found in the linker script into
997 	  // SECTION_NAME_MAP_.  That keeps us from getting confused
998 	  // if an orphan section is mapped to a section with the same
999 	  // name as one in the linker script.
1000 
1001 	  name = this->namepool_.add(name, false, NULL);
1002 
1003 	  Output_section* os = this->make_output_section(name, type, flags,
1004 							 order, is_relro);
1005 
1006 	  os->set_found_in_sections_clause();
1007 
1008 	  // Special handling for NOLOAD sections.
1009 	  if (script_section_type == Script_sections::ST_NOLOAD)
1010 	    {
1011 	      os->set_is_noload();
1012 
1013 	      // The constructor of Output_section sets addresses of non-ALLOC
1014 	      // sections to 0 by default.  We don't want that for NOLOAD
1015 	      // sections even if they have no SHF_ALLOC flag.
1016 	      if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1017 		  && os->is_address_valid())
1018 		{
1019 		  gold_assert(os->address() == 0
1020 			      && !os->is_offset_valid()
1021 			      && !os->is_data_size_valid());
1022 		  os->reset_address_and_file_offset();
1023 		}
1024 	    }
1025 
1026 	  *output_section_slot = os;
1027 	  return os;
1028 	}
1029     }
1030 
1031   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1032 
1033   size_t len = strlen(name);
1034   char* uncompressed_name = NULL;
1035 
1036   // Compressed debug sections should be mapped to the corresponding
1037   // uncompressed section.
1038   if (is_compressed_debug_section(name))
1039     {
1040       uncompressed_name = new char[len];
1041       uncompressed_name[0] = '.';
1042       gold_assert(name[0] == '.' && name[1] == 'z');
1043       strncpy(&uncompressed_name[1], &name[2], len - 2);
1044       uncompressed_name[len - 1] = '\0';
1045       len -= 1;
1046       name = uncompressed_name;
1047     }
1048 
1049   // Turn NAME from the name of the input section into the name of the
1050   // output section.
1051   if (is_input_section
1052       && !this->script_options_->saw_sections_clause()
1053       && !parameters->options().relocatable())
1054     {
1055       const char *orig_name = name;
1056       name = parameters->target().output_section_name(relobj, name, &len);
1057       if (name == NULL)
1058 	name = Layout::output_section_name(relobj, orig_name, &len);
1059     }
1060 
1061   Stringpool::Key name_key;
1062   name = this->namepool_.add_with_length(name, len, true, &name_key);
1063 
1064   if (uncompressed_name != NULL)
1065     delete[] uncompressed_name;
1066 
1067   // Find or make the output section.  The output section is selected
1068   // based on the section name, type, and flags.
1069   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1070 }
1071 
1072 // For incremental links, record the initial fixed layout of a section
1073 // from the base file, and return a pointer to the Output_section.
1074 
1075 template<int size, bool big_endian>
1076 Output_section*
init_fixed_output_section(const char * name,elfcpp::Shdr<size,big_endian> & shdr)1077 Layout::init_fixed_output_section(const char* name,
1078 				  elfcpp::Shdr<size, big_endian>& shdr)
1079 {
1080   unsigned int sh_type = shdr.get_sh_type();
1081 
1082   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1083   // PRE_INIT_ARRAY, and NOTE sections.
1084   // All others will be created from scratch and reallocated.
1085   if (!can_incremental_update(sh_type))
1086     return NULL;
1087 
1088   // If we're generating a .gdb_index section, we need to regenerate
1089   // it from scratch.
1090   if (parameters->options().gdb_index()
1091       && sh_type == elfcpp::SHT_PROGBITS
1092       && strcmp(name, ".gdb_index") == 0)
1093     return NULL;
1094 
1095   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1096   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1097   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1098   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1099   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1100       shdr.get_sh_addralign();
1101 
1102   // Make the output section.
1103   Stringpool::Key name_key;
1104   name = this->namepool_.add(name, true, &name_key);
1105   Output_section* os = this->get_output_section(name, name_key, sh_type,
1106 						sh_flags, ORDER_INVALID, false);
1107   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1108   if (sh_type != elfcpp::SHT_NOBITS)
1109     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1110   return os;
1111 }
1112 
1113 // Return the index by which an input section should be ordered.  This
1114 // is used to sort some .text sections, for compatibility with GNU ld.
1115 
1116 int
special_ordering_of_input_section(const char * name)1117 Layout::special_ordering_of_input_section(const char* name)
1118 {
1119   // The GNU linker has some special handling for some sections that
1120   // wind up in the .text section.  Sections that start with these
1121   // prefixes must appear first, and must appear in the order listed
1122   // here.
1123   static const char* const text_section_sort[] =
1124   {
1125     ".text.unlikely",
1126     ".text.exit",
1127     ".text.startup",
1128     ".text.hot"
1129   };
1130 
1131   for (size_t i = 0;
1132        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1133        i++)
1134     if (is_prefix_of(text_section_sort[i], name))
1135       return i;
1136 
1137   return -1;
1138 }
1139 
1140 // Return the output section to use for input section SHNDX, with name
1141 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1142 // index of a relocation section which applies to this section, or 0
1143 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1144 // relocation section if there is one.  Set *OFF to the offset of this
1145 // input section without the output section.  Return NULL if the
1146 // section should be discarded.  Set *OFF to -1 if the section
1147 // contents should not be written directly to the output file, but
1148 // will instead receive special handling.
1149 
1150 template<int size, bool big_endian>
1151 Output_section*
layout(Sized_relobj_file<size,big_endian> * object,unsigned int shndx,const char * name,const elfcpp::Shdr<size,big_endian> & shdr,unsigned int reloc_shndx,unsigned int,off_t * off)1152 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1153 	       const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1154 	       unsigned int reloc_shndx, unsigned int, off_t* off)
1155 {
1156   *off = 0;
1157 
1158   if (!this->include_section(object, name, shdr))
1159     return NULL;
1160 
1161   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1162 
1163   // In a relocatable link a grouped section must not be combined with
1164   // any other sections.
1165   Output_section* os;
1166   if (parameters->options().relocatable()
1167       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1168     {
1169       name = this->namepool_.add(name, true, NULL);
1170       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1171 				     ORDER_INVALID, false);
1172     }
1173   else
1174     {
1175       // Plugins can choose to place one or more subsets of sections in
1176       // unique segments and this is done by mapping these section subsets
1177       // to unique output sections.  Check if this section needs to be
1178       // remapped to a unique output section.
1179       Section_segment_map::iterator it
1180 	  = this->section_segment_map_.find(Const_section_id(object, shndx));
1181       if (it == this->section_segment_map_.end())
1182 	{
1183 	  os = this->choose_output_section(object, name, sh_type,
1184 					   shdr.get_sh_flags(), true,
1185 					   ORDER_INVALID, false);
1186 	}
1187       else
1188 	{
1189 	  // We know the name of the output section, directly call
1190 	  // get_output_section here by-passing choose_output_section.
1191 	  elfcpp::Elf_Xword flags
1192 	    = this->get_output_section_flags(shdr.get_sh_flags());
1193 
1194 	  const char* os_name = it->second->name;
1195 	  Stringpool::Key name_key;
1196 	  os_name = this->namepool_.add(os_name, true, &name_key);
1197 	  os = this->get_output_section(os_name, name_key, sh_type, flags,
1198 					ORDER_INVALID, false);
1199 	  if (!os->is_unique_segment())
1200 	    {
1201 	      os->set_is_unique_segment();
1202 	      os->set_extra_segment_flags(it->second->flags);
1203 	      os->set_segment_alignment(it->second->align);
1204 	    }
1205 	}
1206       if (os == NULL)
1207 	return NULL;
1208     }
1209 
1210   // By default the GNU linker sorts input sections whose names match
1211   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1212   // sections are sorted by name.  This is used to implement
1213   // constructor priority ordering.  We are compatible.  When we put
1214   // .ctor sections in .init_array and .dtor sections in .fini_array,
1215   // we must also sort plain .ctor and .dtor sections.
1216   if (!this->script_options_->saw_sections_clause()
1217       && !parameters->options().relocatable()
1218       && (is_prefix_of(".ctors.", name)
1219 	  || is_prefix_of(".dtors.", name)
1220 	  || is_prefix_of(".init_array.", name)
1221 	  || is_prefix_of(".fini_array.", name)
1222 	  || (parameters->options().ctors_in_init_array()
1223 	      && (strcmp(name, ".ctors") == 0
1224 		  || strcmp(name, ".dtors") == 0))))
1225     os->set_must_sort_attached_input_sections();
1226 
1227   // By default the GNU linker sorts some special text sections ahead
1228   // of others.  We are compatible.
1229   if (parameters->options().text_reorder()
1230       && !this->script_options_->saw_sections_clause()
1231       && !this->is_section_ordering_specified()
1232       && !parameters->options().relocatable()
1233       && Layout::special_ordering_of_input_section(name) >= 0)
1234     os->set_must_sort_attached_input_sections();
1235 
1236   // If this is a .ctors or .ctors.* section being mapped to a
1237   // .init_array section, or a .dtors or .dtors.* section being mapped
1238   // to a .fini_array section, we will need to reverse the words if
1239   // there is more than one.  Record this section for later.  See
1240   // ctors_sections_in_init_array above.
1241   if (!this->script_options_->saw_sections_clause()
1242       && !parameters->options().relocatable()
1243       && shdr.get_sh_size() > size / 8
1244       && (((strcmp(name, ".ctors") == 0
1245 	    || is_prefix_of(".ctors.", name))
1246 	   && strcmp(os->name(), ".init_array") == 0)
1247 	  || ((strcmp(name, ".dtors") == 0
1248 	       || is_prefix_of(".dtors.", name))
1249 	      && strcmp(os->name(), ".fini_array") == 0)))
1250     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1251 
1252   // FIXME: Handle SHF_LINK_ORDER somewhere.
1253 
1254   elfcpp::Elf_Xword orig_flags = os->flags();
1255 
1256   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1257 			       this->script_options_->saw_sections_clause());
1258 
1259   // If the flags changed, we may have to change the order.
1260   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1261     {
1262       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1263       elfcpp::Elf_Xword new_flags =
1264 	os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1265       if (orig_flags != new_flags)
1266 	os->set_order(this->default_section_order(os, false));
1267     }
1268 
1269   this->have_added_input_section_ = true;
1270 
1271   return os;
1272 }
1273 
1274 // Maps section SECN to SEGMENT s.
1275 void
insert_section_segment_map(Const_section_id secn,Unique_segment_info * s)1276 Layout::insert_section_segment_map(Const_section_id secn,
1277 				   Unique_segment_info *s)
1278 {
1279   gold_assert(this->unique_segment_for_sections_specified_);
1280   this->section_segment_map_[secn] = s;
1281 }
1282 
1283 // Handle a relocation section when doing a relocatable link.
1284 
1285 template<int size, bool big_endian>
1286 Output_section*
layout_reloc(Sized_relobj_file<size,big_endian> * object,unsigned int,const elfcpp::Shdr<size,big_endian> & shdr,Output_section * data_section,Relocatable_relocs * rr)1287 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1288 		     unsigned int,
1289 		     const elfcpp::Shdr<size, big_endian>& shdr,
1290 		     Output_section* data_section,
1291 		     Relocatable_relocs* rr)
1292 {
1293   gold_assert(parameters->options().relocatable()
1294 	      || parameters->options().emit_relocs());
1295 
1296   int sh_type = shdr.get_sh_type();
1297 
1298   std::string name;
1299   if (sh_type == elfcpp::SHT_REL)
1300     name = ".rel";
1301   else if (sh_type == elfcpp::SHT_RELA)
1302     name = ".rela";
1303   else
1304     gold_unreachable();
1305   name += data_section->name();
1306 
1307   // In a relocatable link relocs for a grouped section must not be
1308   // combined with other reloc sections.
1309   Output_section* os;
1310   if (!parameters->options().relocatable()
1311       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1312     os = this->choose_output_section(object, name.c_str(), sh_type,
1313 				     shdr.get_sh_flags(), false,
1314 				     ORDER_INVALID, false);
1315   else
1316     {
1317       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1318       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1319 				     ORDER_INVALID, false);
1320     }
1321 
1322   os->set_should_link_to_symtab();
1323   os->set_info_section(data_section);
1324 
1325   Output_section_data* posd;
1326   if (sh_type == elfcpp::SHT_REL)
1327     {
1328       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1329       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1330 					   size,
1331 					   big_endian>(rr);
1332     }
1333   else if (sh_type == elfcpp::SHT_RELA)
1334     {
1335       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1336       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1337 					   size,
1338 					   big_endian>(rr);
1339     }
1340   else
1341     gold_unreachable();
1342 
1343   os->add_output_section_data(posd);
1344   rr->set_output_data(posd);
1345 
1346   return os;
1347 }
1348 
1349 // Handle a group section when doing a relocatable link.
1350 
1351 template<int size, bool big_endian>
1352 void
layout_group(Symbol_table * symtab,Sized_relobj_file<size,big_endian> * object,unsigned int,const char * group_section_name,const char * signature,const elfcpp::Shdr<size,big_endian> & shdr,elfcpp::Elf_Word flags,std::vector<unsigned int> * shndxes)1353 Layout::layout_group(Symbol_table* symtab,
1354 		     Sized_relobj_file<size, big_endian>* object,
1355 		     unsigned int,
1356 		     const char* group_section_name,
1357 		     const char* signature,
1358 		     const elfcpp::Shdr<size, big_endian>& shdr,
1359 		     elfcpp::Elf_Word flags,
1360 		     std::vector<unsigned int>* shndxes)
1361 {
1362   gold_assert(parameters->options().relocatable());
1363   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1364   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1365   Output_section* os = this->make_output_section(group_section_name,
1366 						 elfcpp::SHT_GROUP,
1367 						 shdr.get_sh_flags(),
1368 						 ORDER_INVALID, false);
1369 
1370   // We need to find a symbol with the signature in the symbol table.
1371   // If we don't find one now, we need to look again later.
1372   Symbol* sym = symtab->lookup(signature, NULL);
1373   if (sym != NULL)
1374     os->set_info_symndx(sym);
1375   else
1376     {
1377       // Reserve some space to minimize reallocations.
1378       if (this->group_signatures_.empty())
1379 	this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1380 
1381       // We will wind up using a symbol whose name is the signature.
1382       // So just put the signature in the symbol name pool to save it.
1383       signature = symtab->canonicalize_name(signature);
1384       this->group_signatures_.push_back(Group_signature(os, signature));
1385     }
1386 
1387   os->set_should_link_to_symtab();
1388   os->set_entsize(4);
1389 
1390   section_size_type entry_count =
1391     convert_to_section_size_type(shdr.get_sh_size() / 4);
1392   Output_section_data* posd =
1393     new Output_data_group<size, big_endian>(object, entry_count, flags,
1394 					    shndxes);
1395   os->add_output_section_data(posd);
1396 }
1397 
1398 // Special GNU handling of sections name .eh_frame.  They will
1399 // normally hold exception frame data as defined by the C++ ABI
1400 // (http://codesourcery.com/cxx-abi/).
1401 
1402 template<int size, bool big_endian>
1403 Output_section*
layout_eh_frame(Sized_relobj_file<size,big_endian> * object,const unsigned char * symbols,off_t symbols_size,const unsigned char * symbol_names,off_t symbol_names_size,unsigned int shndx,const elfcpp::Shdr<size,big_endian> & shdr,unsigned int reloc_shndx,unsigned int reloc_type,off_t * off)1404 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1405 			const unsigned char* symbols,
1406 			off_t symbols_size,
1407 			const unsigned char* symbol_names,
1408 			off_t symbol_names_size,
1409 			unsigned int shndx,
1410 			const elfcpp::Shdr<size, big_endian>& shdr,
1411 			unsigned int reloc_shndx, unsigned int reloc_type,
1412 			off_t* off)
1413 {
1414   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1415 	      || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1416   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1417 
1418   Output_section* os = this->make_eh_frame_section(object);
1419   if (os == NULL)
1420     return NULL;
1421 
1422   gold_assert(this->eh_frame_section_ == os);
1423 
1424   elfcpp::Elf_Xword orig_flags = os->flags();
1425 
1426   Eh_frame::Eh_frame_section_disposition disp =
1427       Eh_frame::EH_UNRECOGNIZED_SECTION;
1428   if (!parameters->incremental())
1429     {
1430       disp = this->eh_frame_data_->add_ehframe_input_section(object,
1431 							     symbols,
1432 							     symbols_size,
1433 							     symbol_names,
1434 							     symbol_names_size,
1435 							     shndx,
1436 							     reloc_shndx,
1437 							     reloc_type);
1438     }
1439 
1440   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1441     {
1442       os->update_flags_for_input_section(shdr.get_sh_flags());
1443 
1444       // A writable .eh_frame section is a RELRO section.
1445       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1446 	  != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1447 	{
1448 	  os->set_is_relro();
1449 	  os->set_order(ORDER_RELRO);
1450 	}
1451 
1452       *off = -1;
1453       return os;
1454     }
1455 
1456   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1457     {
1458       // We found the end marker section, so now we can add the set of
1459       // optimized sections to the output section.  We need to postpone
1460       // adding this until we've found a section we can optimize so that
1461       // the .eh_frame section in crtbeginT.o winds up at the start of
1462       // the output section.
1463       os->add_output_section_data(this->eh_frame_data_);
1464       this->added_eh_frame_data_ = true;
1465      }
1466 
1467   // We couldn't handle this .eh_frame section for some reason.
1468   // Add it as a normal section.
1469   bool saw_sections_clause = this->script_options_->saw_sections_clause();
1470   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1471 			       reloc_shndx, saw_sections_clause);
1472   this->have_added_input_section_ = true;
1473 
1474   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1475       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1476     os->set_order(this->default_section_order(os, false));
1477 
1478   return os;
1479 }
1480 
1481 void
finalize_eh_frame_section()1482 Layout::finalize_eh_frame_section()
1483 {
1484   // If we never found an end marker section, we need to add the
1485   // optimized eh sections to the output section now.
1486   if (!parameters->incremental()
1487       && this->eh_frame_section_ != NULL
1488       && !this->added_eh_frame_data_)
1489     {
1490       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1491       this->added_eh_frame_data_ = true;
1492     }
1493 }
1494 
1495 // Create and return the magic .eh_frame section.  Create
1496 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1497 // input .eh_frame section; it may be NULL.
1498 
1499 Output_section*
make_eh_frame_section(const Relobj * object)1500 Layout::make_eh_frame_section(const Relobj* object)
1501 {
1502   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1503   // SHT_PROGBITS.
1504   Output_section* os = this->choose_output_section(object, ".eh_frame",
1505 						   elfcpp::SHT_PROGBITS,
1506 						   elfcpp::SHF_ALLOC, false,
1507 						   ORDER_EHFRAME, false);
1508   if (os == NULL)
1509     return NULL;
1510 
1511   if (this->eh_frame_section_ == NULL)
1512     {
1513       this->eh_frame_section_ = os;
1514       this->eh_frame_data_ = new Eh_frame();
1515 
1516       // For incremental linking, we do not optimize .eh_frame sections
1517       // or create a .eh_frame_hdr section.
1518       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1519 	{
1520 	  Output_section* hdr_os =
1521 	    this->choose_output_section(NULL, ".eh_frame_hdr",
1522 					elfcpp::SHT_PROGBITS,
1523 					elfcpp::SHF_ALLOC, false,
1524 					ORDER_EHFRAME, false);
1525 
1526 	  if (hdr_os != NULL)
1527 	    {
1528 	      Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1529 							this->eh_frame_data_);
1530 	      hdr_os->add_output_section_data(hdr_posd);
1531 
1532 	      hdr_os->set_after_input_sections();
1533 
1534 	      if (!this->script_options_->saw_phdrs_clause())
1535 		{
1536 		  Output_segment* hdr_oseg;
1537 		  hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1538 						       elfcpp::PF_R);
1539 		  hdr_oseg->add_output_section_to_nonload(hdr_os,
1540 							  elfcpp::PF_R);
1541 		}
1542 
1543 	      this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1544 	    }
1545 	}
1546     }
1547 
1548   return os;
1549 }
1550 
1551 // Add an exception frame for a PLT.  This is called from target code.
1552 
1553 void
add_eh_frame_for_plt(Output_data * plt,const unsigned char * cie_data,size_t cie_length,const unsigned char * fde_data,size_t fde_length)1554 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1555 			     size_t cie_length, const unsigned char* fde_data,
1556 			     size_t fde_length)
1557 {
1558   if (parameters->incremental())
1559     {
1560       // FIXME: Maybe this could work some day....
1561       return;
1562     }
1563   Output_section* os = this->make_eh_frame_section(NULL);
1564   if (os == NULL)
1565     return;
1566   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1567 					    fde_data, fde_length);
1568   if (!this->added_eh_frame_data_)
1569     {
1570       os->add_output_section_data(this->eh_frame_data_);
1571       this->added_eh_frame_data_ = true;
1572     }
1573 }
1574 
1575 // Scan a .debug_info or .debug_types section, and add summary
1576 // information to the .gdb_index section.
1577 
1578 template<int size, bool big_endian>
1579 void
add_to_gdb_index(bool is_type_unit,Sized_relobj<size,big_endian> * object,const unsigned char * symbols,off_t symbols_size,unsigned int shndx,unsigned int reloc_shndx,unsigned int reloc_type)1580 Layout::add_to_gdb_index(bool is_type_unit,
1581 			 Sized_relobj<size, big_endian>* object,
1582 			 const unsigned char* symbols,
1583 			 off_t symbols_size,
1584 			 unsigned int shndx,
1585 			 unsigned int reloc_shndx,
1586 			 unsigned int reloc_type)
1587 {
1588   if (this->gdb_index_data_ == NULL)
1589     {
1590       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1591 						       elfcpp::SHT_PROGBITS, 0,
1592 						       false, ORDER_INVALID,
1593 						       false);
1594       if (os == NULL)
1595 	return;
1596 
1597       this->gdb_index_data_ = new Gdb_index(os);
1598       os->add_output_section_data(this->gdb_index_data_);
1599       os->set_after_input_sections();
1600     }
1601 
1602   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1603 					 symbols_size, shndx, reloc_shndx,
1604 					 reloc_type);
1605 }
1606 
1607 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1608 // the output section.
1609 
1610 Output_section*
add_output_section_data(const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags,Output_section_data * posd,Output_section_order order,bool is_relro)1611 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1612 				elfcpp::Elf_Xword flags,
1613 				Output_section_data* posd,
1614 				Output_section_order order, bool is_relro)
1615 {
1616   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1617 						   false, order, is_relro);
1618   if (os != NULL)
1619     os->add_output_section_data(posd);
1620   return os;
1621 }
1622 
1623 // Map section flags to segment flags.
1624 
1625 elfcpp::Elf_Word
section_flags_to_segment(elfcpp::Elf_Xword flags)1626 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1627 {
1628   elfcpp::Elf_Word ret = elfcpp::PF_R;
1629   if ((flags & elfcpp::SHF_WRITE) != 0)
1630     ret |= elfcpp::PF_W;
1631   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1632     ret |= elfcpp::PF_X;
1633   return ret;
1634 }
1635 
1636 // Make a new Output_section, and attach it to segments as
1637 // appropriate.  ORDER is the order in which this section should
1638 // appear in the output segment.  IS_RELRO is true if this is a relro
1639 // (read-only after relocations) section.
1640 
1641 Output_section*
make_output_section(const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags,Output_section_order order,bool is_relro)1642 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1643 			    elfcpp::Elf_Xword flags,
1644 			    Output_section_order order, bool is_relro)
1645 {
1646   Output_section* os;
1647   if ((flags & elfcpp::SHF_ALLOC) == 0
1648       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1649       && is_compressible_debug_section(name))
1650     os = new Output_compressed_section(&parameters->options(), name, type,
1651 				       flags);
1652   else if ((flags & elfcpp::SHF_ALLOC) == 0
1653 	   && parameters->options().strip_debug_non_line()
1654 	   && strcmp(".debug_abbrev", name) == 0)
1655     {
1656       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1657 	  name, type, flags);
1658       if (this->debug_info_)
1659 	this->debug_info_->set_abbreviations(this->debug_abbrev_);
1660     }
1661   else if ((flags & elfcpp::SHF_ALLOC) == 0
1662 	   && parameters->options().strip_debug_non_line()
1663 	   && strcmp(".debug_info", name) == 0)
1664     {
1665       os = this->debug_info_ = new Output_reduced_debug_info_section(
1666 	  name, type, flags);
1667       if (this->debug_abbrev_)
1668 	this->debug_info_->set_abbreviations(this->debug_abbrev_);
1669     }
1670   else
1671     {
1672       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1673       // not have correct section types.  Force them here.
1674       if (type == elfcpp::SHT_PROGBITS)
1675 	{
1676 	  if (is_prefix_of(".init_array", name))
1677 	    type = elfcpp::SHT_INIT_ARRAY;
1678 	  else if (is_prefix_of(".preinit_array", name))
1679 	    type = elfcpp::SHT_PREINIT_ARRAY;
1680 	  else if (is_prefix_of(".fini_array", name))
1681 	    type = elfcpp::SHT_FINI_ARRAY;
1682 	}
1683 
1684       // FIXME: const_cast is ugly.
1685       Target* target = const_cast<Target*>(&parameters->target());
1686       os = target->make_output_section(name, type, flags);
1687     }
1688 
1689   // With -z relro, we have to recognize the special sections by name.
1690   // There is no other way.
1691   bool is_relro_local = false;
1692   if (!this->script_options_->saw_sections_clause()
1693       && parameters->options().relro()
1694       && (flags & elfcpp::SHF_ALLOC) != 0
1695       && (flags & elfcpp::SHF_WRITE) != 0)
1696     {
1697       if (type == elfcpp::SHT_PROGBITS)
1698 	{
1699 	  if ((flags & elfcpp::SHF_TLS) != 0)
1700 	    is_relro = true;
1701 	  else if (strcmp(name, ".data.rel.ro") == 0)
1702 	    is_relro = true;
1703 	  else if (strcmp(name, ".data.rel.ro.local") == 0)
1704 	    {
1705 	      is_relro = true;
1706 	      is_relro_local = true;
1707 	    }
1708 	  else if (strcmp(name, ".ctors") == 0
1709 		   || strcmp(name, ".dtors") == 0
1710 		   || strcmp(name, ".jcr") == 0)
1711 	    is_relro = true;
1712 	}
1713       else if (type == elfcpp::SHT_INIT_ARRAY
1714 	       || type == elfcpp::SHT_FINI_ARRAY
1715 	       || type == elfcpp::SHT_PREINIT_ARRAY)
1716 	is_relro = true;
1717     }
1718 
1719   if (is_relro)
1720     os->set_is_relro();
1721 
1722   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1723     order = this->default_section_order(os, is_relro_local);
1724 
1725   os->set_order(order);
1726 
1727   parameters->target().new_output_section(os);
1728 
1729   this->section_list_.push_back(os);
1730 
1731   // The GNU linker by default sorts some sections by priority, so we
1732   // do the same.  We need to know that this might happen before we
1733   // attach any input sections.
1734   if (!this->script_options_->saw_sections_clause()
1735       && !parameters->options().relocatable()
1736       && (strcmp(name, ".init_array") == 0
1737 	  || strcmp(name, ".fini_array") == 0
1738 	  || (!parameters->options().ctors_in_init_array()
1739 	      && (strcmp(name, ".ctors") == 0
1740 		  || strcmp(name, ".dtors") == 0))))
1741     os->set_may_sort_attached_input_sections();
1742 
1743   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1744   // sections before other .text sections.  We are compatible.  We
1745   // need to know that this might happen before we attach any input
1746   // sections.
1747   if (parameters->options().text_reorder()
1748       && !this->script_options_->saw_sections_clause()
1749       && !this->is_section_ordering_specified()
1750       && !parameters->options().relocatable()
1751       && strcmp(name, ".text") == 0)
1752     os->set_may_sort_attached_input_sections();
1753 
1754   // GNU linker sorts section by name with --sort-section=name.
1755   if (strcmp(parameters->options().sort_section(), "name") == 0)
1756       os->set_must_sort_attached_input_sections();
1757 
1758   // Check for .stab*str sections, as .stab* sections need to link to
1759   // them.
1760   if (type == elfcpp::SHT_STRTAB
1761       && !this->have_stabstr_section_
1762       && strncmp(name, ".stab", 5) == 0
1763       && strcmp(name + strlen(name) - 3, "str") == 0)
1764     this->have_stabstr_section_ = true;
1765 
1766   // During a full incremental link, we add patch space to most
1767   // PROGBITS and NOBITS sections.  Flag those that may be
1768   // arbitrarily padded.
1769   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1770       && order != ORDER_INTERP
1771       && order != ORDER_INIT
1772       && order != ORDER_PLT
1773       && order != ORDER_FINI
1774       && order != ORDER_RELRO_LAST
1775       && order != ORDER_NON_RELRO_FIRST
1776       && strcmp(name, ".eh_frame") != 0
1777       && strcmp(name, ".ctors") != 0
1778       && strcmp(name, ".dtors") != 0
1779       && strcmp(name, ".jcr") != 0)
1780     {
1781       os->set_is_patch_space_allowed();
1782 
1783       // Certain sections require "holes" to be filled with
1784       // specific fill patterns.  These fill patterns may have
1785       // a minimum size, so we must prevent allocations from the
1786       // free list that leave a hole smaller than the minimum.
1787       if (strcmp(name, ".debug_info") == 0)
1788 	os->set_free_space_fill(new Output_fill_debug_info(false));
1789       else if (strcmp(name, ".debug_types") == 0)
1790 	os->set_free_space_fill(new Output_fill_debug_info(true));
1791       else if (strcmp(name, ".debug_line") == 0)
1792 	os->set_free_space_fill(new Output_fill_debug_line());
1793     }
1794 
1795   // If we have already attached the sections to segments, then we
1796   // need to attach this one now.  This happens for sections created
1797   // directly by the linker.
1798   if (this->sections_are_attached_)
1799     this->attach_section_to_segment(&parameters->target(), os);
1800 
1801   return os;
1802 }
1803 
1804 // Return the default order in which a section should be placed in an
1805 // output segment.  This function captures a lot of the ideas in
1806 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1807 // linker created section is normally set when the section is created;
1808 // this function is used for input sections.
1809 
1810 Output_section_order
default_section_order(Output_section * os,bool is_relro_local)1811 Layout::default_section_order(Output_section* os, bool is_relro_local)
1812 {
1813   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1814   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1815   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1816   bool is_bss = false;
1817 
1818   switch (os->type())
1819     {
1820     default:
1821     case elfcpp::SHT_PROGBITS:
1822       break;
1823     case elfcpp::SHT_NOBITS:
1824       is_bss = true;
1825       break;
1826     case elfcpp::SHT_RELA:
1827     case elfcpp::SHT_REL:
1828       if (!is_write)
1829 	return ORDER_DYNAMIC_RELOCS;
1830       break;
1831     case elfcpp::SHT_HASH:
1832     case elfcpp::SHT_DYNAMIC:
1833     case elfcpp::SHT_SHLIB:
1834     case elfcpp::SHT_DYNSYM:
1835     case elfcpp::SHT_GNU_HASH:
1836     case elfcpp::SHT_GNU_verdef:
1837     case elfcpp::SHT_GNU_verneed:
1838     case elfcpp::SHT_GNU_versym:
1839       if (!is_write)
1840 	return ORDER_DYNAMIC_LINKER;
1841       break;
1842     case elfcpp::SHT_NOTE:
1843       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1844     }
1845 
1846   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1847     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1848 
1849   if (!is_bss && !is_write)
1850     {
1851       if (is_execinstr)
1852 	{
1853 	  if (strcmp(os->name(), ".init") == 0)
1854 	    return ORDER_INIT;
1855 	  else if (strcmp(os->name(), ".fini") == 0)
1856 	    return ORDER_FINI;
1857 	}
1858       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1859     }
1860 
1861   if (os->is_relro())
1862     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1863 
1864   if (os->is_small_section())
1865     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1866   if (os->is_large_section())
1867     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1868 
1869   return is_bss ? ORDER_BSS : ORDER_DATA;
1870 }
1871 
1872 // Attach output sections to segments.  This is called after we have
1873 // seen all the input sections.
1874 
1875 void
attach_sections_to_segments(const Target * target)1876 Layout::attach_sections_to_segments(const Target* target)
1877 {
1878   for (Section_list::iterator p = this->section_list_.begin();
1879        p != this->section_list_.end();
1880        ++p)
1881     this->attach_section_to_segment(target, *p);
1882 
1883   this->sections_are_attached_ = true;
1884 }
1885 
1886 // Attach an output section to a segment.
1887 
1888 void
attach_section_to_segment(const Target * target,Output_section * os)1889 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1890 {
1891   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1892     this->unattached_section_list_.push_back(os);
1893   else
1894     this->attach_allocated_section_to_segment(target, os);
1895 }
1896 
1897 // Attach an allocated output section to a segment.
1898 
1899 void
attach_allocated_section_to_segment(const Target * target,Output_section * os)1900 Layout::attach_allocated_section_to_segment(const Target* target,
1901 					    Output_section* os)
1902 {
1903   elfcpp::Elf_Xword flags = os->flags();
1904   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1905 
1906   if (parameters->options().relocatable())
1907     return;
1908 
1909   // If we have a SECTIONS clause, we can't handle the attachment to
1910   // segments until after we've seen all the sections.
1911   if (this->script_options_->saw_sections_clause())
1912     return;
1913 
1914   gold_assert(!this->script_options_->saw_phdrs_clause());
1915 
1916   // This output section goes into a PT_LOAD segment.
1917 
1918   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1919 
1920   // If this output section's segment has extra flags that need to be set,
1921   // coming from a linker plugin, do that.
1922   seg_flags |= os->extra_segment_flags();
1923 
1924   // Check for --section-start.
1925   uint64_t addr;
1926   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1927 
1928   // In general the only thing we really care about for PT_LOAD
1929   // segments is whether or not they are writable or executable,
1930   // so that is how we search for them.
1931   // Large data sections also go into their own PT_LOAD segment.
1932   // People who need segments sorted on some other basis will
1933   // have to use a linker script.
1934 
1935   Segment_list::const_iterator p;
1936   if (!os->is_unique_segment())
1937     {
1938       for (p = this->segment_list_.begin();
1939 	   p != this->segment_list_.end();
1940 	   ++p)
1941 	{
1942 	  if ((*p)->type() != elfcpp::PT_LOAD)
1943 	    continue;
1944 	  if ((*p)->is_unique_segment())
1945 	    continue;
1946 	  if (!parameters->options().omagic()
1947 	      && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1948 	    continue;
1949 	  if ((target->isolate_execinstr() || parameters->options().rosegment())
1950 	      && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1951 	    continue;
1952 	  // If -Tbss was specified, we need to separate the data and BSS
1953 	  // segments.
1954 	  if (parameters->options().user_set_Tbss())
1955 	    {
1956 	      if ((os->type() == elfcpp::SHT_NOBITS)
1957 		  == (*p)->has_any_data_sections())
1958 		continue;
1959 	    }
1960 	  if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1961 	    continue;
1962 
1963 	  if (is_address_set)
1964 	    {
1965 	      if ((*p)->are_addresses_set())
1966 		continue;
1967 
1968 	      (*p)->add_initial_output_data(os);
1969 	      (*p)->update_flags_for_output_section(seg_flags);
1970 	      (*p)->set_addresses(addr, addr);
1971 	      break;
1972 	    }
1973 
1974 	  (*p)->add_output_section_to_load(this, os, seg_flags);
1975 	  break;
1976 	}
1977     }
1978 
1979   if (p == this->segment_list_.end()
1980       || os->is_unique_segment())
1981     {
1982       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1983 						       seg_flags);
1984       if (os->is_large_data_section())
1985 	oseg->set_is_large_data_segment();
1986       oseg->add_output_section_to_load(this, os, seg_flags);
1987       if (is_address_set)
1988 	oseg->set_addresses(addr, addr);
1989       // Check if segment should be marked unique.  For segments marked
1990       // unique by linker plugins, set the new alignment if specified.
1991       if (os->is_unique_segment())
1992 	{
1993 	  oseg->set_is_unique_segment();
1994 	  if (os->segment_alignment() != 0)
1995 	    oseg->set_minimum_p_align(os->segment_alignment());
1996 	}
1997     }
1998 
1999   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2000   // segment.
2001   if (os->type() == elfcpp::SHT_NOTE)
2002     {
2003       // See if we already have an equivalent PT_NOTE segment.
2004       for (p = this->segment_list_.begin();
2005 	   p != segment_list_.end();
2006 	   ++p)
2007 	{
2008 	  if ((*p)->type() == elfcpp::PT_NOTE
2009 	      && (((*p)->flags() & elfcpp::PF_W)
2010 		  == (seg_flags & elfcpp::PF_W)))
2011 	    {
2012 	      (*p)->add_output_section_to_nonload(os, seg_flags);
2013 	      break;
2014 	    }
2015 	}
2016 
2017       if (p == this->segment_list_.end())
2018 	{
2019 	  Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2020 							   seg_flags);
2021 	  oseg->add_output_section_to_nonload(os, seg_flags);
2022 	}
2023     }
2024 
2025   // If we see a loadable SHF_TLS section, we create a PT_TLS
2026   // segment.  There can only be one such segment.
2027   if ((flags & elfcpp::SHF_TLS) != 0)
2028     {
2029       if (this->tls_segment_ == NULL)
2030 	this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2031       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2032     }
2033 
2034   // If -z relro is in effect, and we see a relro section, we create a
2035   // PT_GNU_RELRO segment.  There can only be one such segment.
2036   if (os->is_relro() && parameters->options().relro())
2037     {
2038       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2039       if (this->relro_segment_ == NULL)
2040 	this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2041       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2042     }
2043 
2044   // If we see a section named .interp, put it into a PT_INTERP
2045   // segment.  This seems broken to me, but this is what GNU ld does,
2046   // and glibc expects it.
2047   if (strcmp(os->name(), ".interp") == 0
2048       && !this->script_options_->saw_phdrs_clause())
2049     {
2050       if (this->interp_segment_ == NULL)
2051 	this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2052       else
2053 	gold_warning(_("multiple '.interp' sections in input files "
2054 		       "may cause confusing PT_INTERP segment"));
2055       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2056     }
2057 }
2058 
2059 // Make an output section for a script.
2060 
2061 Output_section*
make_output_section_for_script(const char * name,Script_sections::Section_type section_type)2062 Layout::make_output_section_for_script(
2063     const char* name,
2064     Script_sections::Section_type section_type)
2065 {
2066   name = this->namepool_.add(name, false, NULL);
2067   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2068   if (section_type == Script_sections::ST_NOLOAD)
2069     sh_flags = 0;
2070   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2071 						 sh_flags, ORDER_INVALID,
2072 						 false);
2073   os->set_found_in_sections_clause();
2074   if (section_type == Script_sections::ST_NOLOAD)
2075     os->set_is_noload();
2076   return os;
2077 }
2078 
2079 // Return the number of segments we expect to see.
2080 
2081 size_t
expected_segment_count() const2082 Layout::expected_segment_count() const
2083 {
2084   size_t ret = this->segment_list_.size();
2085 
2086   // If we didn't see a SECTIONS clause in a linker script, we should
2087   // already have the complete list of segments.  Otherwise we ask the
2088   // SECTIONS clause how many segments it expects, and add in the ones
2089   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2090 
2091   if (!this->script_options_->saw_sections_clause())
2092     return ret;
2093   else
2094     {
2095       const Script_sections* ss = this->script_options_->script_sections();
2096       return ret + ss->expected_segment_count(this);
2097     }
2098 }
2099 
2100 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2101 // is whether we saw a .note.GNU-stack section in the object file.
2102 // GNU_STACK_FLAGS is the section flags.  The flags give the
2103 // protection required for stack memory.  We record this in an
2104 // executable as a PT_GNU_STACK segment.  If an object file does not
2105 // have a .note.GNU-stack segment, we must assume that it is an old
2106 // object.  On some targets that will force an executable stack.
2107 
2108 void
layout_gnu_stack(bool seen_gnu_stack,uint64_t gnu_stack_flags,const Object * obj)2109 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2110 			 const Object* obj)
2111 {
2112   if (!seen_gnu_stack)
2113     {
2114       this->input_without_gnu_stack_note_ = true;
2115       if (parameters->options().warn_execstack()
2116 	  && parameters->target().is_default_stack_executable())
2117 	gold_warning(_("%s: missing .note.GNU-stack section"
2118 		       " implies executable stack"),
2119 		     obj->name().c_str());
2120     }
2121   else
2122     {
2123       this->input_with_gnu_stack_note_ = true;
2124       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2125 	{
2126 	  this->input_requires_executable_stack_ = true;
2127 	  if (parameters->options().warn_execstack())
2128 	    gold_warning(_("%s: requires executable stack"),
2129 			 obj->name().c_str());
2130 	}
2131     }
2132 }
2133 
2134 // Create automatic note sections.
2135 
2136 void
create_notes()2137 Layout::create_notes()
2138 {
2139   this->create_gold_note();
2140   this->create_executable_stack_info();
2141   this->create_build_id();
2142 }
2143 
2144 // Create the dynamic sections which are needed before we read the
2145 // relocs.
2146 
2147 void
create_initial_dynamic_sections(Symbol_table * symtab)2148 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2149 {
2150   if (parameters->doing_static_link())
2151     return;
2152 
2153   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2154 						       elfcpp::SHT_DYNAMIC,
2155 						       (elfcpp::SHF_ALLOC
2156 							| elfcpp::SHF_WRITE),
2157 						       false, ORDER_RELRO,
2158 						       true);
2159 
2160   // A linker script may discard .dynamic, so check for NULL.
2161   if (this->dynamic_section_ != NULL)
2162     {
2163       this->dynamic_symbol_ =
2164 	symtab->define_in_output_data("_DYNAMIC", NULL,
2165 				      Symbol_table::PREDEFINED,
2166 				      this->dynamic_section_, 0, 0,
2167 				      elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2168 				      elfcpp::STV_HIDDEN, 0, false, false);
2169 
2170       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2171 
2172       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2173     }
2174 }
2175 
2176 // For each output section whose name can be represented as C symbol,
2177 // define __start and __stop symbols for the section.  This is a GNU
2178 // extension.
2179 
2180 void
define_section_symbols(Symbol_table * symtab)2181 Layout::define_section_symbols(Symbol_table* symtab)
2182 {
2183   for (Section_list::const_iterator p = this->section_list_.begin();
2184        p != this->section_list_.end();
2185        ++p)
2186     {
2187       const char* const name = (*p)->name();
2188       if (is_cident(name))
2189 	{
2190 	  const std::string name_string(name);
2191 	  const std::string start_name(cident_section_start_prefix
2192 				       + name_string);
2193 	  const std::string stop_name(cident_section_stop_prefix
2194 				      + name_string);
2195 
2196 	  symtab->define_in_output_data(start_name.c_str(),
2197 					NULL, // version
2198 					Symbol_table::PREDEFINED,
2199 					*p,
2200 					0, // value
2201 					0, // symsize
2202 					elfcpp::STT_NOTYPE,
2203 					elfcpp::STB_GLOBAL,
2204 					elfcpp::STV_DEFAULT,
2205 					0, // nonvis
2206 					false, // offset_is_from_end
2207 					true); // only_if_ref
2208 
2209 	  symtab->define_in_output_data(stop_name.c_str(),
2210 					NULL, // version
2211 					Symbol_table::PREDEFINED,
2212 					*p,
2213 					0, // value
2214 					0, // symsize
2215 					elfcpp::STT_NOTYPE,
2216 					elfcpp::STB_GLOBAL,
2217 					elfcpp::STV_DEFAULT,
2218 					0, // nonvis
2219 					true, // offset_is_from_end
2220 					true); // only_if_ref
2221 	}
2222     }
2223 }
2224 
2225 // Define symbols for group signatures.
2226 
2227 void
define_group_signatures(Symbol_table * symtab)2228 Layout::define_group_signatures(Symbol_table* symtab)
2229 {
2230   for (Group_signatures::iterator p = this->group_signatures_.begin();
2231        p != this->group_signatures_.end();
2232        ++p)
2233     {
2234       Symbol* sym = symtab->lookup(p->signature, NULL);
2235       if (sym != NULL)
2236 	p->section->set_info_symndx(sym);
2237       else
2238 	{
2239 	  // Force the name of the group section to the group
2240 	  // signature, and use the group's section symbol as the
2241 	  // signature symbol.
2242 	  if (strcmp(p->section->name(), p->signature) != 0)
2243 	    {
2244 	      const char* name = this->namepool_.add(p->signature,
2245 						     true, NULL);
2246 	      p->section->set_name(name);
2247 	    }
2248 	  p->section->set_needs_symtab_index();
2249 	  p->section->set_info_section_symndx(p->section);
2250 	}
2251     }
2252 
2253   this->group_signatures_.clear();
2254 }
2255 
2256 // Find the first read-only PT_LOAD segment, creating one if
2257 // necessary.
2258 
2259 Output_segment*
find_first_load_seg(const Target * target)2260 Layout::find_first_load_seg(const Target* target)
2261 {
2262   Output_segment* best = NULL;
2263   for (Segment_list::const_iterator p = this->segment_list_.begin();
2264        p != this->segment_list_.end();
2265        ++p)
2266     {
2267       if ((*p)->type() == elfcpp::PT_LOAD
2268 	  && ((*p)->flags() & elfcpp::PF_R) != 0
2269 	  && (parameters->options().omagic()
2270 	      || ((*p)->flags() & elfcpp::PF_W) == 0)
2271 	  && (!target->isolate_execinstr()
2272 	      || ((*p)->flags() & elfcpp::PF_X) == 0))
2273 	{
2274 	  if (best == NULL || this->segment_precedes(*p, best))
2275 	    best = *p;
2276 	}
2277     }
2278   if (best != NULL)
2279     return best;
2280 
2281   gold_assert(!this->script_options_->saw_phdrs_clause());
2282 
2283   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2284 						       elfcpp::PF_R);
2285   return load_seg;
2286 }
2287 
2288 // Save states of all current output segments.  Store saved states
2289 // in SEGMENT_STATES.
2290 
2291 void
save_segments(Segment_states * segment_states)2292 Layout::save_segments(Segment_states* segment_states)
2293 {
2294   for (Segment_list::const_iterator p = this->segment_list_.begin();
2295        p != this->segment_list_.end();
2296        ++p)
2297     {
2298       Output_segment* segment = *p;
2299       // Shallow copy.
2300       Output_segment* copy = new Output_segment(*segment);
2301       (*segment_states)[segment] = copy;
2302     }
2303 }
2304 
2305 // Restore states of output segments and delete any segment not found in
2306 // SEGMENT_STATES.
2307 
2308 void
restore_segments(const Segment_states * segment_states)2309 Layout::restore_segments(const Segment_states* segment_states)
2310 {
2311   // Go through the segment list and remove any segment added in the
2312   // relaxation loop.
2313   this->tls_segment_ = NULL;
2314   this->relro_segment_ = NULL;
2315   Segment_list::iterator list_iter = this->segment_list_.begin();
2316   while (list_iter != this->segment_list_.end())
2317     {
2318       Output_segment* segment = *list_iter;
2319       Segment_states::const_iterator states_iter =
2320 	  segment_states->find(segment);
2321       if (states_iter != segment_states->end())
2322 	{
2323 	  const Output_segment* copy = states_iter->second;
2324 	  // Shallow copy to restore states.
2325 	  *segment = *copy;
2326 
2327 	  // Also fix up TLS and RELRO segment pointers as appropriate.
2328 	  if (segment->type() == elfcpp::PT_TLS)
2329 	    this->tls_segment_ = segment;
2330 	  else if (segment->type() == elfcpp::PT_GNU_RELRO)
2331 	    this->relro_segment_ = segment;
2332 
2333 	  ++list_iter;
2334 	}
2335       else
2336 	{
2337 	  list_iter = this->segment_list_.erase(list_iter);
2338 	  // This is a segment created during section layout.  It should be
2339 	  // safe to remove it since we should have removed all pointers to it.
2340 	  delete segment;
2341 	}
2342     }
2343 }
2344 
2345 // Clean up after relaxation so that sections can be laid out again.
2346 
2347 void
clean_up_after_relaxation()2348 Layout::clean_up_after_relaxation()
2349 {
2350   // Restore the segments to point state just prior to the relaxation loop.
2351   Script_sections* script_section = this->script_options_->script_sections();
2352   script_section->release_segments();
2353   this->restore_segments(this->segment_states_);
2354 
2355   // Reset section addresses and file offsets
2356   for (Section_list::iterator p = this->section_list_.begin();
2357        p != this->section_list_.end();
2358        ++p)
2359     {
2360       (*p)->restore_states();
2361 
2362       // If an input section changes size because of relaxation,
2363       // we need to adjust the section offsets of all input sections.
2364       // after such a section.
2365       if ((*p)->section_offsets_need_adjustment())
2366 	(*p)->adjust_section_offsets();
2367 
2368       (*p)->reset_address_and_file_offset();
2369     }
2370 
2371   // Reset special output object address and file offsets.
2372   for (Data_list::iterator p = this->special_output_list_.begin();
2373        p != this->special_output_list_.end();
2374        ++p)
2375     (*p)->reset_address_and_file_offset();
2376 
2377   // A linker script may have created some output section data objects.
2378   // They are useless now.
2379   for (Output_section_data_list::const_iterator p =
2380 	 this->script_output_section_data_list_.begin();
2381        p != this->script_output_section_data_list_.end();
2382        ++p)
2383     delete *p;
2384   this->script_output_section_data_list_.clear();
2385 
2386   // Special-case fill output objects are recreated each time through
2387   // the relaxation loop.
2388   this->reset_relax_output();
2389 }
2390 
2391 void
reset_relax_output()2392 Layout::reset_relax_output()
2393 {
2394   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2395        p != this->relax_output_list_.end();
2396        ++p)
2397     delete *p;
2398   this->relax_output_list_.clear();
2399 }
2400 
2401 // Prepare for relaxation.
2402 
2403 void
prepare_for_relaxation()2404 Layout::prepare_for_relaxation()
2405 {
2406   // Create an relaxation debug check if in debugging mode.
2407   if (is_debugging_enabled(DEBUG_RELAXATION))
2408     this->relaxation_debug_check_ = new Relaxation_debug_check();
2409 
2410   // Save segment states.
2411   this->segment_states_ = new Segment_states();
2412   this->save_segments(this->segment_states_);
2413 
2414   for(Section_list::const_iterator p = this->section_list_.begin();
2415       p != this->section_list_.end();
2416       ++p)
2417     (*p)->save_states();
2418 
2419   if (is_debugging_enabled(DEBUG_RELAXATION))
2420     this->relaxation_debug_check_->check_output_data_for_reset_values(
2421 	this->section_list_, this->special_output_list_,
2422 	this->relax_output_list_);
2423 
2424   // Also enable recording of output section data from scripts.
2425   this->record_output_section_data_from_script_ = true;
2426 }
2427 
2428 // If the user set the address of the text segment, that may not be
2429 // compatible with putting the segment headers and file headers into
2430 // that segment.  For isolate_execinstr() targets, it's the rodata
2431 // segment rather than text where we might put the headers.
2432 static inline bool
load_seg_unusable_for_headers(const Target * target)2433 load_seg_unusable_for_headers(const Target* target)
2434 {
2435   const General_options& options = parameters->options();
2436   if (target->isolate_execinstr())
2437     return (options.user_set_Trodata_segment()
2438 	    && options.Trodata_segment() % target->abi_pagesize() != 0);
2439   else
2440     return (options.user_set_Ttext()
2441 	    && options.Ttext() % target->abi_pagesize() != 0);
2442 }
2443 
2444 // Relaxation loop body:  If target has no relaxation, this runs only once
2445 // Otherwise, the target relaxation hook is called at the end of
2446 // each iteration.  If the hook returns true, it means re-layout of
2447 // section is required.
2448 //
2449 // The number of segments created by a linking script without a PHDRS
2450 // clause may be affected by section sizes and alignments.  There is
2451 // a remote chance that relaxation causes different number of PT_LOAD
2452 // segments are created and sections are attached to different segments.
2453 // Therefore, we always throw away all segments created during section
2454 // layout.  In order to be able to restart the section layout, we keep
2455 // a copy of the segment list right before the relaxation loop and use
2456 // that to restore the segments.
2457 //
2458 // PASS is the current relaxation pass number.
2459 // SYMTAB is a symbol table.
2460 // PLOAD_SEG is the address of a pointer for the load segment.
2461 // PHDR_SEG is a pointer to the PHDR segment.
2462 // SEGMENT_HEADERS points to the output segment header.
2463 // FILE_HEADER points to the output file header.
2464 // PSHNDX is the address to store the output section index.
2465 
2466 off_t inline
relaxation_loop_body(int pass,Target * target,Symbol_table * symtab,Output_segment ** pload_seg,Output_segment * phdr_seg,Output_segment_headers * segment_headers,Output_file_header * file_header,unsigned int * pshndx)2467 Layout::relaxation_loop_body(
2468     int pass,
2469     Target* target,
2470     Symbol_table* symtab,
2471     Output_segment** pload_seg,
2472     Output_segment* phdr_seg,
2473     Output_segment_headers* segment_headers,
2474     Output_file_header* file_header,
2475     unsigned int* pshndx)
2476 {
2477   // If this is not the first iteration, we need to clean up after
2478   // relaxation so that we can lay out the sections again.
2479   if (pass != 0)
2480     this->clean_up_after_relaxation();
2481 
2482   // If there is a SECTIONS clause, put all the input sections into
2483   // the required order.
2484   Output_segment* load_seg;
2485   if (this->script_options_->saw_sections_clause())
2486     load_seg = this->set_section_addresses_from_script(symtab);
2487   else if (parameters->options().relocatable())
2488     load_seg = NULL;
2489   else
2490     load_seg = this->find_first_load_seg(target);
2491 
2492   if (parameters->options().oformat_enum()
2493       != General_options::OBJECT_FORMAT_ELF)
2494     load_seg = NULL;
2495 
2496   if (load_seg_unusable_for_headers(target))
2497     {
2498       load_seg = NULL;
2499       phdr_seg = NULL;
2500     }
2501 
2502   gold_assert(phdr_seg == NULL
2503 	      || load_seg != NULL
2504 	      || this->script_options_->saw_sections_clause());
2505 
2506   // If the address of the load segment we found has been set by
2507   // --section-start rather than by a script, then adjust the VMA and
2508   // LMA downward if possible to include the file and section headers.
2509   uint64_t header_gap = 0;
2510   if (load_seg != NULL
2511       && load_seg->are_addresses_set()
2512       && !this->script_options_->saw_sections_clause()
2513       && !parameters->options().relocatable())
2514     {
2515       file_header->finalize_data_size();
2516       segment_headers->finalize_data_size();
2517       size_t sizeof_headers = (file_header->data_size()
2518 			       + segment_headers->data_size());
2519       const uint64_t abi_pagesize = target->abi_pagesize();
2520       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2521       hdr_paddr &= ~(abi_pagesize - 1);
2522       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2523       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2524 	load_seg = NULL;
2525       else
2526 	{
2527 	  load_seg->set_addresses(load_seg->vaddr() - subtract,
2528 				  load_seg->paddr() - subtract);
2529 	  header_gap = subtract - sizeof_headers;
2530 	}
2531     }
2532 
2533   // Lay out the segment headers.
2534   if (!parameters->options().relocatable())
2535     {
2536       gold_assert(segment_headers != NULL);
2537       if (header_gap != 0 && load_seg != NULL)
2538 	{
2539 	  Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2540 	  load_seg->add_initial_output_data(z);
2541 	}
2542       if (load_seg != NULL)
2543 	load_seg->add_initial_output_data(segment_headers);
2544       if (phdr_seg != NULL)
2545 	phdr_seg->add_initial_output_data(segment_headers);
2546     }
2547 
2548   // Lay out the file header.
2549   if (load_seg != NULL)
2550     load_seg->add_initial_output_data(file_header);
2551 
2552   if (this->script_options_->saw_phdrs_clause()
2553       && !parameters->options().relocatable())
2554     {
2555       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2556       // clause in a linker script.
2557       Script_sections* ss = this->script_options_->script_sections();
2558       ss->put_headers_in_phdrs(file_header, segment_headers);
2559     }
2560 
2561   // We set the output section indexes in set_segment_offsets and
2562   // set_section_indexes.
2563   *pshndx = 1;
2564 
2565   // Set the file offsets of all the segments, and all the sections
2566   // they contain.
2567   off_t off;
2568   if (!parameters->options().relocatable())
2569     off = this->set_segment_offsets(target, load_seg, pshndx);
2570   else
2571     off = this->set_relocatable_section_offsets(file_header, pshndx);
2572 
2573    // Verify that the dummy relaxation does not change anything.
2574   if (is_debugging_enabled(DEBUG_RELAXATION))
2575     {
2576       if (pass == 0)
2577 	this->relaxation_debug_check_->read_sections(this->section_list_);
2578       else
2579 	this->relaxation_debug_check_->verify_sections(this->section_list_);
2580     }
2581 
2582   *pload_seg = load_seg;
2583   return off;
2584 }
2585 
2586 // Search the list of patterns and find the postion of the given section
2587 // name in the output section.  If the section name matches a glob
2588 // pattern and a non-glob name, then the non-glob position takes
2589 // precedence.  Return 0 if no match is found.
2590 
2591 unsigned int
find_section_order_index(const std::string & section_name)2592 Layout::find_section_order_index(const std::string& section_name)
2593 {
2594   Unordered_map<std::string, unsigned int>::iterator map_it;
2595   map_it = this->input_section_position_.find(section_name);
2596   if (map_it != this->input_section_position_.end())
2597     return map_it->second;
2598 
2599   // Absolute match failed.  Linear search the glob patterns.
2600   std::vector<std::string>::iterator it;
2601   for (it = this->input_section_glob_.begin();
2602        it != this->input_section_glob_.end();
2603        ++it)
2604     {
2605        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2606 	 {
2607 	   map_it = this->input_section_position_.find(*it);
2608 	   gold_assert(map_it != this->input_section_position_.end());
2609 	   return map_it->second;
2610 	 }
2611     }
2612   return 0;
2613 }
2614 
2615 // Read the sequence of input sections from the file specified with
2616 // option --section-ordering-file.
2617 
2618 void
read_layout_from_file()2619 Layout::read_layout_from_file()
2620 {
2621   const char* filename = parameters->options().section_ordering_file();
2622   std::ifstream in;
2623   std::string line;
2624 
2625   in.open(filename);
2626   if (!in)
2627     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2628 	       filename, strerror(errno));
2629 
2630   std::getline(in, line);   // this chops off the trailing \n, if any
2631   unsigned int position = 1;
2632   this->set_section_ordering_specified();
2633 
2634   while (in)
2635     {
2636       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2637 	line.resize(line.length() - 1);
2638       // Ignore comments, beginning with '#'
2639       if (line[0] == '#')
2640 	{
2641 	  std::getline(in, line);
2642 	  continue;
2643 	}
2644       this->input_section_position_[line] = position;
2645       // Store all glob patterns in a vector.
2646       if (is_wildcard_string(line.c_str()))
2647 	this->input_section_glob_.push_back(line);
2648       position++;
2649       std::getline(in, line);
2650     }
2651 }
2652 
2653 // Finalize the layout.  When this is called, we have created all the
2654 // output sections and all the output segments which are based on
2655 // input sections.  We have several things to do, and we have to do
2656 // them in the right order, so that we get the right results correctly
2657 // and efficiently.
2658 
2659 // 1) Finalize the list of output segments and create the segment
2660 // table header.
2661 
2662 // 2) Finalize the dynamic symbol table and associated sections.
2663 
2664 // 3) Determine the final file offset of all the output segments.
2665 
2666 // 4) Determine the final file offset of all the SHF_ALLOC output
2667 // sections.
2668 
2669 // 5) Create the symbol table sections and the section name table
2670 // section.
2671 
2672 // 6) Finalize the symbol table: set symbol values to their final
2673 // value and make a final determination of which symbols are going
2674 // into the output symbol table.
2675 
2676 // 7) Create the section table header.
2677 
2678 // 8) Determine the final file offset of all the output sections which
2679 // are not SHF_ALLOC, including the section table header.
2680 
2681 // 9) Finalize the ELF file header.
2682 
2683 // This function returns the size of the output file.
2684 
2685 off_t
finalize(const Input_objects * input_objects,Symbol_table * symtab,Target * target,const Task * task)2686 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2687 		 Target* target, const Task* task)
2688 {
2689   target->finalize_sections(this, input_objects, symtab);
2690 
2691   this->count_local_symbols(task, input_objects);
2692 
2693   this->link_stabs_sections();
2694 
2695   Output_segment* phdr_seg = NULL;
2696   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2697     {
2698       // There was a dynamic object in the link.  We need to create
2699       // some information for the dynamic linker.
2700 
2701       // Create the PT_PHDR segment which will hold the program
2702       // headers.
2703       if (!this->script_options_->saw_phdrs_clause())
2704 	phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2705 
2706       // Create the dynamic symbol table, including the hash table.
2707       Output_section* dynstr;
2708       std::vector<Symbol*> dynamic_symbols;
2709       unsigned int local_dynamic_count;
2710       Versions versions(*this->script_options()->version_script_info(),
2711 			&this->dynpool_);
2712       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2713 				  &local_dynamic_count, &dynamic_symbols,
2714 				  &versions);
2715 
2716       // Create the .interp section to hold the name of the
2717       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2718       // if we saw a .interp section in an input file.
2719       if ((!parameters->options().shared()
2720 	   || parameters->options().dynamic_linker() != NULL)
2721 	  && this->interp_segment_ == NULL)
2722 	this->create_interp(target);
2723 
2724       // Finish the .dynamic section to hold the dynamic data, and put
2725       // it in a PT_DYNAMIC segment.
2726       this->finish_dynamic_section(input_objects, symtab);
2727 
2728       // We should have added everything we need to the dynamic string
2729       // table.
2730       this->dynpool_.set_string_offsets();
2731 
2732       // Create the version sections.  We can't do this until the
2733       // dynamic string table is complete.
2734       this->create_version_sections(&versions, symtab, local_dynamic_count,
2735 				    dynamic_symbols, dynstr);
2736 
2737       // Set the size of the _DYNAMIC symbol.  We can't do this until
2738       // after we call create_version_sections.
2739       this->set_dynamic_symbol_size(symtab);
2740     }
2741 
2742   // Create segment headers.
2743   Output_segment_headers* segment_headers =
2744     (parameters->options().relocatable()
2745      ? NULL
2746      : new Output_segment_headers(this->segment_list_));
2747 
2748   // Lay out the file header.
2749   Output_file_header* file_header = new Output_file_header(target, symtab,
2750 							   segment_headers);
2751 
2752   this->special_output_list_.push_back(file_header);
2753   if (segment_headers != NULL)
2754     this->special_output_list_.push_back(segment_headers);
2755 
2756   // Find approriate places for orphan output sections if we are using
2757   // a linker script.
2758   if (this->script_options_->saw_sections_clause())
2759     this->place_orphan_sections_in_script();
2760 
2761   Output_segment* load_seg;
2762   off_t off;
2763   unsigned int shndx;
2764   int pass = 0;
2765 
2766   // Take a snapshot of the section layout as needed.
2767   if (target->may_relax())
2768     this->prepare_for_relaxation();
2769 
2770   // Run the relaxation loop to lay out sections.
2771   do
2772     {
2773       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2774 				       phdr_seg, segment_headers, file_header,
2775 				       &shndx);
2776       pass++;
2777     }
2778   while (target->may_relax()
2779 	 && target->relax(pass, input_objects, symtab, this, task));
2780 
2781   // Check if data segment size is less than the safe value with PIE links.
2782   // Warn about bug http://b/20165734 for unsafe sizes.
2783   if (parameters->options().pie() && target->max_pie_data_segment_size())
2784     {
2785       Segment_list::const_iterator p;
2786       uint64_t re_vaddr = 0, re_memsz = 0, rw_vaddr = 0, rw_memsz = 0;
2787       uint64_t data_seg_size = 0;
2788       for (p = this->segment_list_.begin();
2789 	   p != this->segment_list_.end();
2790 	   ++p)
2791 	{
2792 	  // With -Wl,--rosegment, note the end addr of "R E" segment.
2793 	  if (parameters->options().rosegment()
2794 	      && (*p)->type() == elfcpp::PT_LOAD
2795 	      && ((*p)->flags() & elfcpp::PF_X) != 0
2796 	      && ((*p)->flags() & elfcpp::PF_R) != 0)
2797 	    {
2798 	      re_vaddr = (*p)->vaddr();
2799 	      re_memsz = (*p)->memsz();
2800 	      continue;
2801 	    }
2802 	  if ((*p)->type() == elfcpp::PT_LOAD
2803 	      && ((*p)->flags() & elfcpp::PF_W) != 0
2804 	      && ((*p)->flags() & elfcpp::PF_R) != 0)
2805 	    {
2806 	      rw_vaddr = (*p)->vaddr();
2807 	      rw_memsz = (*p)->memsz();
2808 	      break;
2809 	    }
2810 	}
2811 
2812       // With -Wl,--rosegment, report data segment size as delta of end of
2813       // "RW" segment and end of "R E" segment.  Otherwise, data segment
2814       // size is just the memsz of "RW" segment.
2815       if (parameters->options().rosegment())
2816         data_seg_size = (rw_vaddr + rw_memsz) - (re_vaddr + re_memsz);
2817       else
2818         data_seg_size = rw_memsz;
2819 
2820       if (data_seg_size >= target->max_pie_data_segment_size())
2821 	gold_warning(
2822 	  _("Unsafe PIE data segment size (%" PRIu64 " > %" PRIu64 "). "
2823 	    "For kernels with CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE enabled, "
2824 	    "load_elf_binary() attempts to map a PIE binary into an address "
2825 	    "range immediately below mm->mmap_base. The first PT_LOAD segment "
2826 	    "is mapped below mm->mmap_base, the subsequent PT_LOAD segment(s) "
2827 	    "end up being mapped above mm->mmap_base into the area that is "
2828 	    "supposed to be the \"gap\" between the stack and the binary. Since"
2829 	    " the size of the \"gap\" on x86_64 is only guaranteed to be 128MB "
2830 	    "this means that binaries with large data segments > 128MB can end "
2831 	    "up mapping part of their data segment over their stack resulting "
2832 	    "in corruption of the stack. Any PIE binary with a data segment > "
2833 	    "128MB is vulnerable to this. It is suggested to turn off PIE."),
2834 	  data_seg_size,
2835 	  target->max_pie_data_segment_size());
2836     }
2837 
2838   // If there is a load segment that contains the file and program headers,
2839   // provide a symbol __ehdr_start pointing there.
2840   // A program can use this to examine itself robustly.
2841   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2842   if (ehdr_start != NULL && ehdr_start->is_predefined())
2843     {
2844       if (load_seg != NULL)
2845 	ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2846       else
2847         ehdr_start->set_undefined();
2848     }
2849 
2850   // Set the file offsets of all the non-data sections we've seen so
2851   // far which don't have to wait for the input sections.  We need
2852   // this in order to finalize local symbols in non-allocated
2853   // sections.
2854   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2855 
2856   // Set the section indexes of all unallocated sections seen so far,
2857   // in case any of them are somehow referenced by a symbol.
2858   shndx = this->set_section_indexes(shndx);
2859 
2860   // Create the symbol table sections.
2861   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2862   if (!parameters->doing_static_link())
2863     this->assign_local_dynsym_offsets(input_objects);
2864 
2865   // Process any symbol assignments from a linker script.  This must
2866   // be called after the symbol table has been finalized.
2867   this->script_options_->finalize_symbols(symtab, this);
2868 
2869   // Create the incremental inputs sections.
2870   if (this->incremental_inputs_)
2871     {
2872       this->incremental_inputs_->finalize();
2873       this->create_incremental_info_sections(symtab);
2874     }
2875 
2876   // Create the .shstrtab section.
2877   Output_section* shstrtab_section = this->create_shstrtab();
2878 
2879   // Set the file offsets of the rest of the non-data sections which
2880   // don't have to wait for the input sections.
2881   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2882 
2883   // Now that all sections have been created, set the section indexes
2884   // for any sections which haven't been done yet.
2885   shndx = this->set_section_indexes(shndx);
2886 
2887   // Create the section table header.
2888   this->create_shdrs(shstrtab_section, &off);
2889 
2890   // If there are no sections which require postprocessing, we can
2891   // handle the section names now, and avoid a resize later.
2892   if (!this->any_postprocessing_sections_)
2893     {
2894       off = this->set_section_offsets(off,
2895 				      POSTPROCESSING_SECTIONS_PASS);
2896       off =
2897 	  this->set_section_offsets(off,
2898 				    STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2899     }
2900 
2901   file_header->set_section_info(this->section_headers_, shstrtab_section);
2902 
2903   // Now we know exactly where everything goes in the output file
2904   // (except for non-allocated sections which require postprocessing).
2905   Output_data::layout_complete();
2906 
2907   this->output_file_size_ = off;
2908 
2909   return off;
2910 }
2911 
2912 // Create a note header following the format defined in the ELF ABI.
2913 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2914 // of the section to create, DESCSZ is the size of the descriptor.
2915 // ALLOCATE is true if the section should be allocated in memory.
2916 // This returns the new note section.  It sets *TRAILING_PADDING to
2917 // the number of trailing zero bytes required.
2918 
2919 Output_section*
create_note(const char * name,int note_type,const char * section_name,size_t descsz,bool allocate,size_t * trailing_padding)2920 Layout::create_note(const char* name, int note_type,
2921 		    const char* section_name, size_t descsz,
2922 		    bool allocate, size_t* trailing_padding)
2923 {
2924   // Authorities all agree that the values in a .note field should
2925   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2926   // they differ on what the alignment is for 64-bit binaries.
2927   // The GABI says unambiguously they take 8-byte alignment:
2928   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2929   // Other documentation says alignment should always be 4 bytes:
2930   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2931   // GNU ld and GNU readelf both support the latter (at least as of
2932   // version 2.16.91), and glibc always generates the latter for
2933   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2934   // here.
2935 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2936   const int size = parameters->target().get_size();
2937 #else
2938   const int size = 32;
2939 #endif
2940 
2941   // The contents of the .note section.
2942   size_t namesz = strlen(name) + 1;
2943   size_t aligned_namesz = align_address(namesz, size / 8);
2944   size_t aligned_descsz = align_address(descsz, size / 8);
2945 
2946   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2947 
2948   unsigned char* buffer = new unsigned char[notehdrsz];
2949   memset(buffer, 0, notehdrsz);
2950 
2951   bool is_big_endian = parameters->target().is_big_endian();
2952 
2953   if (size == 32)
2954     {
2955       if (!is_big_endian)
2956 	{
2957 	  elfcpp::Swap<32, false>::writeval(buffer, namesz);
2958 	  elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2959 	  elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2960 	}
2961       else
2962 	{
2963 	  elfcpp::Swap<32, true>::writeval(buffer, namesz);
2964 	  elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2965 	  elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2966 	}
2967     }
2968   else if (size == 64)
2969     {
2970       if (!is_big_endian)
2971 	{
2972 	  elfcpp::Swap<64, false>::writeval(buffer, namesz);
2973 	  elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2974 	  elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2975 	}
2976       else
2977 	{
2978 	  elfcpp::Swap<64, true>::writeval(buffer, namesz);
2979 	  elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2980 	  elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2981 	}
2982     }
2983   else
2984     gold_unreachable();
2985 
2986   memcpy(buffer + 3 * (size / 8), name, namesz);
2987 
2988   elfcpp::Elf_Xword flags = 0;
2989   Output_section_order order = ORDER_INVALID;
2990   if (allocate)
2991     {
2992       flags = elfcpp::SHF_ALLOC;
2993       order = ORDER_RO_NOTE;
2994     }
2995   Output_section* os = this->choose_output_section(NULL, section_name,
2996 						   elfcpp::SHT_NOTE,
2997 						   flags, false, order, false);
2998   if (os == NULL)
2999     return NULL;
3000 
3001   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
3002 							   size / 8,
3003 							   "** note header");
3004   os->add_output_section_data(posd);
3005 
3006   *trailing_padding = aligned_descsz - descsz;
3007 
3008   return os;
3009 }
3010 
3011 // For an executable or shared library, create a note to record the
3012 // version of gold used to create the binary.
3013 
3014 void
create_gold_note()3015 Layout::create_gold_note()
3016 {
3017   if (parameters->options().relocatable()
3018       || parameters->incremental_update())
3019     return;
3020 
3021   std::string desc = std::string("gold ") + gold::get_version_string();
3022 
3023   size_t trailing_padding;
3024   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3025 					 ".note.gnu.gold-version", desc.size(),
3026 					 false, &trailing_padding);
3027   if (os == NULL)
3028     return;
3029 
3030   Output_section_data* posd = new Output_data_const(desc, 4);
3031   os->add_output_section_data(posd);
3032 
3033   if (trailing_padding > 0)
3034     {
3035       posd = new Output_data_zero_fill(trailing_padding, 0);
3036       os->add_output_section_data(posd);
3037     }
3038 }
3039 
3040 // Record whether the stack should be executable.  This can be set
3041 // from the command line using the -z execstack or -z noexecstack
3042 // options.  Otherwise, if any input file has a .note.GNU-stack
3043 // section with the SHF_EXECINSTR flag set, the stack should be
3044 // executable.  Otherwise, if at least one input file a
3045 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3046 // section, we use the target default for whether the stack should be
3047 // executable.  Otherwise, we don't generate a stack note.  When
3048 // generating a object file, we create a .note.GNU-stack section with
3049 // the appropriate marking.  When generating an executable or shared
3050 // library, we create a PT_GNU_STACK segment.
3051 
3052 void
create_executable_stack_info()3053 Layout::create_executable_stack_info()
3054 {
3055   bool is_stack_executable;
3056   if (parameters->options().is_execstack_set())
3057     {
3058       is_stack_executable = parameters->options().is_stack_executable();
3059       if (!is_stack_executable
3060           && this->input_requires_executable_stack_
3061           && parameters->options().warn_execstack())
3062 	gold_warning(_("one or more inputs require executable stack, "
3063 	               "but -z noexecstack was given"));
3064     }
3065   else if (!this->input_with_gnu_stack_note_)
3066     return;
3067   else
3068     {
3069       if (this->input_requires_executable_stack_)
3070 	is_stack_executable = true;
3071       else if (this->input_without_gnu_stack_note_)
3072 	is_stack_executable =
3073 	  parameters->target().is_default_stack_executable();
3074       else
3075 	is_stack_executable = false;
3076     }
3077 
3078   if (parameters->options().relocatable())
3079     {
3080       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3081       elfcpp::Elf_Xword flags = 0;
3082       if (is_stack_executable)
3083 	flags |= elfcpp::SHF_EXECINSTR;
3084       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3085 				ORDER_INVALID, false);
3086     }
3087   else
3088     {
3089       if (this->script_options_->saw_phdrs_clause())
3090 	return;
3091       int flags = elfcpp::PF_R | elfcpp::PF_W;
3092       if (is_stack_executable)
3093 	flags |= elfcpp::PF_X;
3094       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3095     }
3096 }
3097 
3098 // If --build-id was used, set up the build ID note.
3099 
3100 void
create_build_id()3101 Layout::create_build_id()
3102 {
3103   if (!parameters->options().user_set_build_id())
3104     return;
3105 
3106   const char* style = parameters->options().build_id();
3107   if (strcmp(style, "none") == 0)
3108     return;
3109 
3110   // Set DESCSZ to the size of the note descriptor.  When possible,
3111   // set DESC to the note descriptor contents.
3112   size_t descsz;
3113   std::string desc;
3114   if (strcmp(style, "md5") == 0)
3115     descsz = 128 / 8;
3116   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3117     descsz = 160 / 8;
3118   else if (strcmp(style, "uuid") == 0)
3119     {
3120       const size_t uuidsz = 128 / 8;
3121 
3122       char buffer[uuidsz];
3123       memset(buffer, 0, uuidsz);
3124 
3125       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3126       if (descriptor < 0)
3127 	gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3128 		   strerror(errno));
3129       else
3130 	{
3131 	  ssize_t got = ::read(descriptor, buffer, uuidsz);
3132 	  release_descriptor(descriptor, true);
3133 	  if (got < 0)
3134 	    gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3135 	  else if (static_cast<size_t>(got) != uuidsz)
3136 	    gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3137 		       uuidsz, got);
3138 	}
3139 
3140       desc.assign(buffer, uuidsz);
3141       descsz = uuidsz;
3142     }
3143   else if (strncmp(style, "0x", 2) == 0)
3144     {
3145       hex_init();
3146       const char* p = style + 2;
3147       while (*p != '\0')
3148 	{
3149 	  if (hex_p(p[0]) && hex_p(p[1]))
3150 	    {
3151 	      char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3152 	      desc += c;
3153 	      p += 2;
3154 	    }
3155 	  else if (*p == '-' || *p == ':')
3156 	    ++p;
3157 	  else
3158 	    gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3159 		       style);
3160 	}
3161       descsz = desc.size();
3162     }
3163   else
3164     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3165 
3166   // Create the note.
3167   size_t trailing_padding;
3168   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3169 					 ".note.gnu.build-id", descsz, true,
3170 					 &trailing_padding);
3171   if (os == NULL)
3172     return;
3173 
3174   if (!desc.empty())
3175     {
3176       // We know the value already, so we fill it in now.
3177       gold_assert(desc.size() == descsz);
3178 
3179       Output_section_data* posd = new Output_data_const(desc, 4);
3180       os->add_output_section_data(posd);
3181 
3182       if (trailing_padding != 0)
3183 	{
3184 	  posd = new Output_data_zero_fill(trailing_padding, 0);
3185 	  os->add_output_section_data(posd);
3186 	}
3187     }
3188   else
3189     {
3190       // We need to compute a checksum after we have completed the
3191       // link.
3192       gold_assert(trailing_padding == 0);
3193       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3194       os->add_output_section_data(this->build_id_note_);
3195     }
3196 }
3197 
3198 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3199 // field of the former should point to the latter.  I'm not sure who
3200 // started this, but the GNU linker does it, and some tools depend
3201 // upon it.
3202 
3203 void
link_stabs_sections()3204 Layout::link_stabs_sections()
3205 {
3206   if (!this->have_stabstr_section_)
3207     return;
3208 
3209   for (Section_list::iterator p = this->section_list_.begin();
3210        p != this->section_list_.end();
3211        ++p)
3212     {
3213       if ((*p)->type() != elfcpp::SHT_STRTAB)
3214 	continue;
3215 
3216       const char* name = (*p)->name();
3217       if (strncmp(name, ".stab", 5) != 0)
3218 	continue;
3219 
3220       size_t len = strlen(name);
3221       if (strcmp(name + len - 3, "str") != 0)
3222 	continue;
3223 
3224       std::string stab_name(name, len - 3);
3225       Output_section* stab_sec;
3226       stab_sec = this->find_output_section(stab_name.c_str());
3227       if (stab_sec != NULL)
3228 	stab_sec->set_link_section(*p);
3229     }
3230 }
3231 
3232 // Create .gnu_incremental_inputs and related sections needed
3233 // for the next run of incremental linking to check what has changed.
3234 
3235 void
create_incremental_info_sections(Symbol_table * symtab)3236 Layout::create_incremental_info_sections(Symbol_table* symtab)
3237 {
3238   Incremental_inputs* incr = this->incremental_inputs_;
3239 
3240   gold_assert(incr != NULL);
3241 
3242   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3243   incr->create_data_sections(symtab);
3244 
3245   // Add the .gnu_incremental_inputs section.
3246   const char* incremental_inputs_name =
3247     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3248   Output_section* incremental_inputs_os =
3249     this->make_output_section(incremental_inputs_name,
3250 			      elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3251 			      ORDER_INVALID, false);
3252   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3253 
3254   // Add the .gnu_incremental_symtab section.
3255   const char* incremental_symtab_name =
3256     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3257   Output_section* incremental_symtab_os =
3258     this->make_output_section(incremental_symtab_name,
3259 			      elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3260 			      ORDER_INVALID, false);
3261   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3262   incremental_symtab_os->set_entsize(4);
3263 
3264   // Add the .gnu_incremental_relocs section.
3265   const char* incremental_relocs_name =
3266     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3267   Output_section* incremental_relocs_os =
3268     this->make_output_section(incremental_relocs_name,
3269 			      elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3270 			      ORDER_INVALID, false);
3271   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3272   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3273 
3274   // Add the .gnu_incremental_got_plt section.
3275   const char* incremental_got_plt_name =
3276     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3277   Output_section* incremental_got_plt_os =
3278     this->make_output_section(incremental_got_plt_name,
3279 			      elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3280 			      ORDER_INVALID, false);
3281   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3282 
3283   // Add the .gnu_incremental_strtab section.
3284   const char* incremental_strtab_name =
3285     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3286   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3287 							elfcpp::SHT_STRTAB, 0,
3288 							ORDER_INVALID, false);
3289   Output_data_strtab* strtab_data =
3290       new Output_data_strtab(incr->get_stringpool());
3291   incremental_strtab_os->add_output_section_data(strtab_data);
3292 
3293   incremental_inputs_os->set_after_input_sections();
3294   incremental_symtab_os->set_after_input_sections();
3295   incremental_relocs_os->set_after_input_sections();
3296   incremental_got_plt_os->set_after_input_sections();
3297 
3298   incremental_inputs_os->set_link_section(incremental_strtab_os);
3299   incremental_symtab_os->set_link_section(incremental_inputs_os);
3300   incremental_relocs_os->set_link_section(incremental_inputs_os);
3301   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3302 }
3303 
3304 // Return whether SEG1 should be before SEG2 in the output file.  This
3305 // is based entirely on the segment type and flags.  When this is
3306 // called the segment addresses have normally not yet been set.
3307 
3308 bool
segment_precedes(const Output_segment * seg1,const Output_segment * seg2)3309 Layout::segment_precedes(const Output_segment* seg1,
3310 			 const Output_segment* seg2)
3311 {
3312   elfcpp::Elf_Word type1 = seg1->type();
3313   elfcpp::Elf_Word type2 = seg2->type();
3314 
3315   // The single PT_PHDR segment is required to precede any loadable
3316   // segment.  We simply make it always first.
3317   if (type1 == elfcpp::PT_PHDR)
3318     {
3319       gold_assert(type2 != elfcpp::PT_PHDR);
3320       return true;
3321     }
3322   if (type2 == elfcpp::PT_PHDR)
3323     return false;
3324 
3325   // The single PT_INTERP segment is required to precede any loadable
3326   // segment.  We simply make it always second.
3327   if (type1 == elfcpp::PT_INTERP)
3328     {
3329       gold_assert(type2 != elfcpp::PT_INTERP);
3330       return true;
3331     }
3332   if (type2 == elfcpp::PT_INTERP)
3333     return false;
3334 
3335   // We then put PT_LOAD segments before any other segments.
3336   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3337     return true;
3338   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3339     return false;
3340 
3341   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3342   // segment, because that is where the dynamic linker expects to find
3343   // it (this is just for efficiency; other positions would also work
3344   // correctly).
3345   if (type1 == elfcpp::PT_TLS
3346       && type2 != elfcpp::PT_TLS
3347       && type2 != elfcpp::PT_GNU_RELRO)
3348     return false;
3349   if (type2 == elfcpp::PT_TLS
3350       && type1 != elfcpp::PT_TLS
3351       && type1 != elfcpp::PT_GNU_RELRO)
3352     return true;
3353 
3354   // We put the PT_GNU_RELRO segment last, because that is where the
3355   // dynamic linker expects to find it (as with PT_TLS, this is just
3356   // for efficiency).
3357   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3358     return false;
3359   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3360     return true;
3361 
3362   const elfcpp::Elf_Word flags1 = seg1->flags();
3363   const elfcpp::Elf_Word flags2 = seg2->flags();
3364 
3365   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3366   // by the numeric segment type and flags values.  There should not
3367   // be more than one segment with the same type and flags, except
3368   // when a linker script specifies such.
3369   if (type1 != elfcpp::PT_LOAD)
3370     {
3371       if (type1 != type2)
3372 	return type1 < type2;
3373       gold_assert(flags1 != flags2
3374 		  || this->script_options_->saw_phdrs_clause());
3375       return flags1 < flags2;
3376     }
3377 
3378   // If the addresses are set already, sort by load address.
3379   if (seg1->are_addresses_set())
3380     {
3381       if (!seg2->are_addresses_set())
3382 	return true;
3383 
3384       unsigned int section_count1 = seg1->output_section_count();
3385       unsigned int section_count2 = seg2->output_section_count();
3386       if (section_count1 == 0 && section_count2 > 0)
3387 	return true;
3388       if (section_count1 > 0 && section_count2 == 0)
3389 	return false;
3390 
3391       uint64_t paddr1 =	(seg1->are_addresses_set()
3392 			 ? seg1->paddr()
3393 			 : seg1->first_section_load_address());
3394       uint64_t paddr2 =	(seg2->are_addresses_set()
3395 			 ? seg2->paddr()
3396 			 : seg2->first_section_load_address());
3397 
3398       if (paddr1 != paddr2)
3399 	return paddr1 < paddr2;
3400     }
3401   else if (seg2->are_addresses_set())
3402     return false;
3403 
3404   // A segment which holds large data comes after a segment which does
3405   // not hold large data.
3406   if (seg1->is_large_data_segment())
3407     {
3408       if (!seg2->is_large_data_segment())
3409 	return false;
3410     }
3411   else if (seg2->is_large_data_segment())
3412     return true;
3413 
3414   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3415   // segments come before writable segments.  Then writable segments
3416   // with data come before writable segments without data.  Then
3417   // executable segments come before non-executable segments.  Then
3418   // the unlikely case of a non-readable segment comes before the
3419   // normal case of a readable segment.  If there are multiple
3420   // segments with the same type and flags, we require that the
3421   // address be set, and we sort by virtual address and then physical
3422   // address.
3423   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3424     return (flags1 & elfcpp::PF_W) == 0;
3425   if ((flags1 & elfcpp::PF_W) != 0
3426       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3427     return seg1->has_any_data_sections();
3428   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3429     return (flags1 & elfcpp::PF_X) != 0;
3430   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3431     return (flags1 & elfcpp::PF_R) == 0;
3432 
3433   // We shouldn't get here--we shouldn't create segments which we
3434   // can't distinguish.  Unless of course we are using a weird linker
3435   // script or overlapping --section-start options.  We could also get
3436   // here if plugins want unique segments for subsets of sections.
3437   gold_assert(this->script_options_->saw_phdrs_clause()
3438 	      || parameters->options().any_section_start()
3439 	      || this->is_unique_segment_for_sections_specified());
3440   return false;
3441 }
3442 
3443 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3444 
3445 static off_t
align_file_offset(off_t off,uint64_t addr,uint64_t abi_pagesize)3446 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3447 {
3448   uint64_t unsigned_off = off;
3449   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3450 			  | (addr & (abi_pagesize - 1)));
3451   if (aligned_off < unsigned_off)
3452     aligned_off += abi_pagesize;
3453   return aligned_off;
3454 }
3455 
3456 // On targets where the text segment contains only executable code,
3457 // a non-executable segment is never the text segment.
3458 
3459 static inline bool
is_text_segment(const Target * target,const Output_segment * seg)3460 is_text_segment(const Target* target, const Output_segment* seg)
3461 {
3462   elfcpp::Elf_Xword flags = seg->flags();
3463   if ((flags & elfcpp::PF_W) != 0)
3464     return false;
3465   if ((flags & elfcpp::PF_X) == 0)
3466     return !target->isolate_execinstr();
3467   return true;
3468 }
3469 
3470 // Set the file offsets of all the segments, and all the sections they
3471 // contain.  They have all been created.  LOAD_SEG must be be laid out
3472 // first.  Return the offset of the data to follow.
3473 
3474 off_t
set_segment_offsets(const Target * target,Output_segment * load_seg,unsigned int * pshndx)3475 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3476 			    unsigned int* pshndx)
3477 {
3478   // Sort them into the final order.  We use a stable sort so that we
3479   // don't randomize the order of indistinguishable segments created
3480   // by linker scripts.
3481   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3482 		   Layout::Compare_segments(this));
3483 
3484   // Find the PT_LOAD segments, and set their addresses and offsets
3485   // and their section's addresses and offsets.
3486   uint64_t start_addr;
3487   if (parameters->options().user_set_Ttext())
3488     start_addr = parameters->options().Ttext();
3489   else if (parameters->options().output_is_position_independent())
3490     start_addr = 0;
3491   else
3492     start_addr = target->default_text_segment_address();
3493 
3494   uint64_t addr = start_addr;
3495   off_t off = 0;
3496 
3497   // If LOAD_SEG is NULL, then the file header and segment headers
3498   // will not be loadable.  But they still need to be at offset 0 in
3499   // the file.  Set their offsets now.
3500   if (load_seg == NULL)
3501     {
3502       for (Data_list::iterator p = this->special_output_list_.begin();
3503 	   p != this->special_output_list_.end();
3504 	   ++p)
3505 	{
3506 	  off = align_address(off, (*p)->addralign());
3507 	  (*p)->set_address_and_file_offset(0, off);
3508 	  off += (*p)->data_size();
3509 	}
3510     }
3511 
3512   unsigned int increase_relro = this->increase_relro_;
3513   if (this->script_options_->saw_sections_clause())
3514     increase_relro = 0;
3515 
3516   const bool check_sections = parameters->options().check_sections();
3517   Output_segment* last_load_segment = NULL;
3518 
3519   unsigned int shndx_begin = *pshndx;
3520   unsigned int shndx_load_seg = *pshndx;
3521 
3522   for (Segment_list::iterator p = this->segment_list_.begin();
3523        p != this->segment_list_.end();
3524        ++p)
3525     {
3526       if ((*p)->type() == elfcpp::PT_LOAD)
3527 	{
3528 	  if (target->isolate_execinstr())
3529 	    {
3530 	      // When we hit the segment that should contain the
3531 	      // file headers, reset the file offset so we place
3532 	      // it and subsequent segments appropriately.
3533 	      // We'll fix up the preceding segments below.
3534 	      if (load_seg == *p)
3535 		{
3536 		  if (off == 0)
3537 		    load_seg = NULL;
3538 		  else
3539 		    {
3540 		      off = 0;
3541 		      shndx_load_seg = *pshndx;
3542 		    }
3543 		}
3544 	    }
3545 	  else
3546 	    {
3547 	      // Verify that the file headers fall into the first segment.
3548 	      if (load_seg != NULL && load_seg != *p)
3549 		gold_unreachable();
3550 	      load_seg = NULL;
3551 	    }
3552 
3553 	  bool are_addresses_set = (*p)->are_addresses_set();
3554 	  if (are_addresses_set)
3555 	    {
3556 	      // When it comes to setting file offsets, we care about
3557 	      // the physical address.
3558 	      addr = (*p)->paddr();
3559 	    }
3560 	  else if (parameters->options().user_set_Ttext()
3561 		   && (parameters->options().omagic()
3562 		       || is_text_segment(target, *p)))
3563 	    {
3564 	      are_addresses_set = true;
3565 	    }
3566 	  else if (parameters->options().user_set_Trodata_segment()
3567 		   && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3568 	    {
3569 	      addr = parameters->options().Trodata_segment();
3570 	      are_addresses_set = true;
3571 	    }
3572 	  else if (parameters->options().user_set_Tdata()
3573 		   && ((*p)->flags() & elfcpp::PF_W) != 0
3574 		   && (!parameters->options().user_set_Tbss()
3575 		       || (*p)->has_any_data_sections()))
3576 	    {
3577 	      addr = parameters->options().Tdata();
3578 	      are_addresses_set = true;
3579 	    }
3580 	  else if (parameters->options().user_set_Tbss()
3581 		   && ((*p)->flags() & elfcpp::PF_W) != 0
3582 		   && !(*p)->has_any_data_sections())
3583 	    {
3584 	      addr = parameters->options().Tbss();
3585 	      are_addresses_set = true;
3586 	    }
3587 
3588 	  uint64_t orig_addr = addr;
3589 	  uint64_t orig_off = off;
3590 
3591 	  uint64_t aligned_addr = 0;
3592 	  uint64_t abi_pagesize = target->abi_pagesize();
3593 	  uint64_t common_pagesize = target->common_pagesize();
3594 
3595 	  if (!parameters->options().nmagic()
3596 	      && !parameters->options().omagic())
3597 	    (*p)->set_minimum_p_align(abi_pagesize);
3598 
3599 	  if (!are_addresses_set)
3600 	    {
3601 	      // Skip the address forward one page, maintaining the same
3602 	      // position within the page.  This lets us store both segments
3603 	      // overlapping on a single page in the file, but the loader will
3604 	      // put them on different pages in memory. We will revisit this
3605 	      // decision once we know the size of the segment.
3606 
3607 	      uint64_t max_align = (*p)->maximum_alignment();
3608 	      if (max_align > abi_pagesize)
3609 		addr = align_address(addr, max_align);
3610 	      aligned_addr = addr;
3611 
3612 	      if (load_seg == *p)
3613 		{
3614 		  // This is the segment that will contain the file
3615 		  // headers, so its offset will have to be exactly zero.
3616 		  gold_assert(orig_off == 0);
3617 
3618 		  // If the target wants a fixed minimum distance from the
3619 		  // text segment to the read-only segment, move up now.
3620 		  uint64_t min_addr =
3621 		    start_addr + (parameters->options().user_set_rosegment_gap()
3622 				  ? parameters->options().rosegment_gap()
3623 				  : target->rosegment_gap());
3624 		  if (addr < min_addr)
3625 		    addr = min_addr;
3626 
3627 		  // But this is not the first segment!  To make its
3628 		  // address congruent with its offset, that address better
3629 		  // be aligned to the ABI-mandated page size.
3630 		  addr = align_address(addr, abi_pagesize);
3631 		  aligned_addr = addr;
3632 		}
3633 	      else
3634 		{
3635 		  if ((addr & (abi_pagesize - 1)) != 0)
3636 		    addr = addr + abi_pagesize;
3637 
3638 		  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3639 		}
3640 	    }
3641 
3642 	  if (!parameters->options().nmagic()
3643 	      && !parameters->options().omagic())
3644 	    {
3645 	      // Here we are also taking care of the case when
3646 	      // the maximum segment alignment is larger than the page size.
3647 	      off = align_file_offset(off, addr,
3648 				      std::max(abi_pagesize,
3649 					       (*p)->maximum_alignment()));
3650 	    }
3651 	  else
3652 	    {
3653 	      // This is -N or -n with a section script which prevents
3654 	      // us from using a load segment.  We need to ensure that
3655 	      // the file offset is aligned to the alignment of the
3656 	      // segment.  This is because the linker script
3657 	      // implicitly assumed a zero offset.  If we don't align
3658 	      // here, then the alignment of the sections in the
3659 	      // linker script may not match the alignment of the
3660 	      // sections in the set_section_addresses call below,
3661 	      // causing an error about dot moving backward.
3662 	      off = align_address(off, (*p)->maximum_alignment());
3663 	    }
3664 
3665 	  unsigned int shndx_hold = *pshndx;
3666 	  bool has_relro = false;
3667 	  uint64_t new_addr = (*p)->set_section_addresses(target, this,
3668 							  false, addr,
3669 							  &increase_relro,
3670 							  &has_relro,
3671 							  &off, pshndx);
3672 
3673 	  // Now that we know the size of this segment, we may be able
3674 	  // to save a page in memory, at the cost of wasting some
3675 	  // file space, by instead aligning to the start of a new
3676 	  // page.  Here we use the real machine page size rather than
3677 	  // the ABI mandated page size.  If the segment has been
3678 	  // aligned so that the relro data ends at a page boundary,
3679 	  // we do not try to realign it.
3680 
3681 	  if (!are_addresses_set
3682 	      && !has_relro
3683 	      && aligned_addr != addr
3684 	      && !parameters->incremental())
3685 	    {
3686 	      uint64_t first_off = (common_pagesize
3687 				    - (aligned_addr
3688 				       & (common_pagesize - 1)));
3689 	      uint64_t last_off = new_addr & (common_pagesize - 1);
3690 	      if (first_off > 0
3691 		  && last_off > 0
3692 		  && ((aligned_addr & ~ (common_pagesize - 1))
3693 		      != (new_addr & ~ (common_pagesize - 1)))
3694 		  && first_off + last_off <= common_pagesize)
3695 		{
3696 		  *pshndx = shndx_hold;
3697 		  addr = align_address(aligned_addr, common_pagesize);
3698 		  addr = align_address(addr, (*p)->maximum_alignment());
3699 		  if ((addr & (abi_pagesize - 1)) != 0)
3700 		    addr = addr + abi_pagesize;
3701 		  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3702 		  off = align_file_offset(off, addr, abi_pagesize);
3703 
3704 		  increase_relro = this->increase_relro_;
3705 		  if (this->script_options_->saw_sections_clause())
3706 		    increase_relro = 0;
3707 		  has_relro = false;
3708 
3709 		  new_addr = (*p)->set_section_addresses(target, this,
3710 							 true, addr,
3711 							 &increase_relro,
3712 							 &has_relro,
3713 							 &off, pshndx);
3714 		}
3715 	    }
3716 
3717 	  addr = new_addr;
3718 
3719 	  // Implement --check-sections.  We know that the segments
3720 	  // are sorted by LMA.
3721 	  if (check_sections && last_load_segment != NULL)
3722 	    {
3723 	      gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3724 	      if (last_load_segment->paddr() + last_load_segment->memsz()
3725 		  > (*p)->paddr())
3726 		{
3727 		  unsigned long long lb1 = last_load_segment->paddr();
3728 		  unsigned long long le1 = lb1 + last_load_segment->memsz();
3729 		  unsigned long long lb2 = (*p)->paddr();
3730 		  unsigned long long le2 = lb2 + (*p)->memsz();
3731 		  gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3732 			       "[0x%llx -> 0x%llx]"),
3733 			     lb1, le1, lb2, le2);
3734 		}
3735 	    }
3736 	  last_load_segment = *p;
3737 	}
3738     }
3739 
3740   if (load_seg != NULL && target->isolate_execinstr())
3741     {
3742       // Process the early segments again, setting their file offsets
3743       // so they land after the segments starting at LOAD_SEG.
3744       off = align_file_offset(off, 0, target->abi_pagesize());
3745 
3746       this->reset_relax_output();
3747 
3748       for (Segment_list::iterator p = this->segment_list_.begin();
3749 	   *p != load_seg;
3750 	   ++p)
3751 	{
3752 	  if ((*p)->type() == elfcpp::PT_LOAD)
3753 	    {
3754 	      // We repeat the whole job of assigning addresses and
3755 	      // offsets, but we really only want to change the offsets and
3756 	      // must ensure that the addresses all come out the same as
3757 	      // they did the first time through.
3758 	      bool has_relro = false;
3759 	      const uint64_t old_addr = (*p)->vaddr();
3760 	      const uint64_t old_end = old_addr + (*p)->memsz();
3761 	      uint64_t new_addr = (*p)->set_section_addresses(target, this,
3762 							      true, old_addr,
3763 							      &increase_relro,
3764 							      &has_relro,
3765 							      &off,
3766 							      &shndx_begin);
3767 	      gold_assert(new_addr == old_end);
3768 	    }
3769 	}
3770 
3771       gold_assert(shndx_begin == shndx_load_seg);
3772     }
3773 
3774   // Handle the non-PT_LOAD segments, setting their offsets from their
3775   // section's offsets.
3776   for (Segment_list::iterator p = this->segment_list_.begin();
3777        p != this->segment_list_.end();
3778        ++p)
3779     {
3780       if ((*p)->type() != elfcpp::PT_LOAD)
3781 	(*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3782 			 ? increase_relro
3783 			 : 0);
3784     }
3785 
3786   // Set the TLS offsets for each section in the PT_TLS segment.
3787   if (this->tls_segment_ != NULL)
3788     this->tls_segment_->set_tls_offsets();
3789 
3790   return off;
3791 }
3792 
3793 // Set the offsets of all the allocated sections when doing a
3794 // relocatable link.  This does the same jobs as set_segment_offsets,
3795 // only for a relocatable link.
3796 
3797 off_t
set_relocatable_section_offsets(Output_data * file_header,unsigned int * pshndx)3798 Layout::set_relocatable_section_offsets(Output_data* file_header,
3799 					unsigned int* pshndx)
3800 {
3801   off_t off = 0;
3802 
3803   file_header->set_address_and_file_offset(0, 0);
3804   off += file_header->data_size();
3805 
3806   for (Section_list::iterator p = this->section_list_.begin();
3807        p != this->section_list_.end();
3808        ++p)
3809     {
3810       // We skip unallocated sections here, except that group sections
3811       // have to come first.
3812       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3813 	  && (*p)->type() != elfcpp::SHT_GROUP)
3814 	continue;
3815 
3816       off = align_address(off, (*p)->addralign());
3817 
3818       // The linker script might have set the address.
3819       if (!(*p)->is_address_valid())
3820 	(*p)->set_address(0);
3821       (*p)->set_file_offset(off);
3822       (*p)->finalize_data_size();
3823       if ((*p)->type() != elfcpp::SHT_NOBITS)
3824 	off += (*p)->data_size();
3825 
3826       (*p)->set_out_shndx(*pshndx);
3827       ++*pshndx;
3828     }
3829 
3830   return off;
3831 }
3832 
3833 // Set the file offset of all the sections not associated with a
3834 // segment.
3835 
3836 off_t
set_section_offsets(off_t off,Layout::Section_offset_pass pass)3837 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3838 {
3839   off_t startoff = off;
3840   off_t maxoff = off;
3841 
3842   for (Section_list::iterator p = this->unattached_section_list_.begin();
3843        p != this->unattached_section_list_.end();
3844        ++p)
3845     {
3846       // The symtab section is handled in create_symtab_sections.
3847       if (*p == this->symtab_section_)
3848 	continue;
3849 
3850       // If we've already set the data size, don't set it again.
3851       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3852 	continue;
3853 
3854       if (pass == BEFORE_INPUT_SECTIONS_PASS
3855 	  && (*p)->requires_postprocessing())
3856 	{
3857 	  (*p)->create_postprocessing_buffer();
3858 	  this->any_postprocessing_sections_ = true;
3859 	}
3860 
3861       if (pass == BEFORE_INPUT_SECTIONS_PASS
3862 	  && (*p)->after_input_sections())
3863 	continue;
3864       else if (pass == POSTPROCESSING_SECTIONS_PASS
3865 	       && (!(*p)->after_input_sections()
3866 		   || (*p)->type() == elfcpp::SHT_STRTAB))
3867 	continue;
3868       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3869 	       && (!(*p)->after_input_sections()
3870 		   || (*p)->type() != elfcpp::SHT_STRTAB))
3871 	continue;
3872 
3873       if (!parameters->incremental_update())
3874 	{
3875 	  off = align_address(off, (*p)->addralign());
3876 	  (*p)->set_file_offset(off);
3877 	  (*p)->finalize_data_size();
3878 	}
3879       else
3880 	{
3881 	  // Incremental update: allocate file space from free list.
3882 	  (*p)->pre_finalize_data_size();
3883 	  off_t current_size = (*p)->current_data_size();
3884 	  off = this->allocate(current_size, (*p)->addralign(), startoff);
3885 	  if (off == -1)
3886 	    {
3887 	      if (is_debugging_enabled(DEBUG_INCREMENTAL))
3888 		this->free_list_.dump();
3889 	      gold_assert((*p)->output_section() != NULL);
3890 	      gold_fallback(_("out of patch space for section %s; "
3891 			      "relink with --incremental-full"),
3892 			    (*p)->output_section()->name());
3893 	    }
3894 	  (*p)->set_file_offset(off);
3895 	  (*p)->finalize_data_size();
3896 	  if ((*p)->data_size() > current_size)
3897 	    {
3898 	      gold_assert((*p)->output_section() != NULL);
3899 	      gold_fallback(_("%s: section changed size; "
3900 			      "relink with --incremental-full"),
3901 			    (*p)->output_section()->name());
3902 	    }
3903 	  gold_debug(DEBUG_INCREMENTAL,
3904 		     "set_section_offsets: %08lx %08lx %s",
3905 		     static_cast<long>(off),
3906 		     static_cast<long>((*p)->data_size()),
3907 		     ((*p)->output_section() != NULL
3908 		      ? (*p)->output_section()->name() : "(special)"));
3909 	}
3910 
3911       off += (*p)->data_size();
3912       if (off > maxoff)
3913 	maxoff = off;
3914 
3915       // At this point the name must be set.
3916       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3917 	this->namepool_.add((*p)->name(), false, NULL);
3918     }
3919   return maxoff;
3920 }
3921 
3922 // Set the section indexes of all the sections not associated with a
3923 // segment.
3924 
3925 unsigned int
set_section_indexes(unsigned int shndx)3926 Layout::set_section_indexes(unsigned int shndx)
3927 {
3928   for (Section_list::iterator p = this->unattached_section_list_.begin();
3929        p != this->unattached_section_list_.end();
3930        ++p)
3931     {
3932       if (!(*p)->has_out_shndx())
3933 	{
3934 	  (*p)->set_out_shndx(shndx);
3935 	  ++shndx;
3936 	}
3937     }
3938   return shndx;
3939 }
3940 
3941 // Set the section addresses according to the linker script.  This is
3942 // only called when we see a SECTIONS clause.  This returns the
3943 // program segment which should hold the file header and segment
3944 // headers, if any.  It will return NULL if they should not be in a
3945 // segment.
3946 
3947 Output_segment*
set_section_addresses_from_script(Symbol_table * symtab)3948 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3949 {
3950   Script_sections* ss = this->script_options_->script_sections();
3951   gold_assert(ss->saw_sections_clause());
3952   return this->script_options_->set_section_addresses(symtab, this);
3953 }
3954 
3955 // Place the orphan sections in the linker script.
3956 
3957 void
place_orphan_sections_in_script()3958 Layout::place_orphan_sections_in_script()
3959 {
3960   Script_sections* ss = this->script_options_->script_sections();
3961   gold_assert(ss->saw_sections_clause());
3962 
3963   // Place each orphaned output section in the script.
3964   for (Section_list::iterator p = this->section_list_.begin();
3965        p != this->section_list_.end();
3966        ++p)
3967     {
3968       if (!(*p)->found_in_sections_clause())
3969 	ss->place_orphan(*p);
3970     }
3971 }
3972 
3973 // Count the local symbols in the regular symbol table and the dynamic
3974 // symbol table, and build the respective string pools.
3975 
3976 void
count_local_symbols(const Task * task,const Input_objects * input_objects)3977 Layout::count_local_symbols(const Task* task,
3978 			    const Input_objects* input_objects)
3979 {
3980   // First, figure out an upper bound on the number of symbols we'll
3981   // be inserting into each pool.  This helps us create the pools with
3982   // the right size, to avoid unnecessary hashtable resizing.
3983   unsigned int symbol_count = 0;
3984   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3985        p != input_objects->relobj_end();
3986        ++p)
3987     symbol_count += (*p)->local_symbol_count();
3988 
3989   // Go from "upper bound" to "estimate."  We overcount for two
3990   // reasons: we double-count symbols that occur in more than one
3991   // object file, and we count symbols that are dropped from the
3992   // output.  Add it all together and assume we overcount by 100%.
3993   symbol_count /= 2;
3994 
3995   // We assume all symbols will go into both the sympool and dynpool.
3996   this->sympool_.reserve(symbol_count);
3997   this->dynpool_.reserve(symbol_count);
3998 
3999   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4000        p != input_objects->relobj_end();
4001        ++p)
4002     {
4003       Task_lock_obj<Object> tlo(task, *p);
4004       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4005     }
4006 }
4007 
4008 // Create the symbol table sections.  Here we also set the final
4009 // values of the symbols.  At this point all the loadable sections are
4010 // fully laid out.  SHNUM is the number of sections so far.
4011 
4012 void
create_symtab_sections(const Input_objects * input_objects,Symbol_table * symtab,unsigned int shnum,off_t * poff)4013 Layout::create_symtab_sections(const Input_objects* input_objects,
4014 			       Symbol_table* symtab,
4015 			       unsigned int shnum,
4016 			       off_t* poff)
4017 {
4018   int symsize;
4019   unsigned int align;
4020   if (parameters->target().get_size() == 32)
4021     {
4022       symsize = elfcpp::Elf_sizes<32>::sym_size;
4023       align = 4;
4024     }
4025   else if (parameters->target().get_size() == 64)
4026     {
4027       symsize = elfcpp::Elf_sizes<64>::sym_size;
4028       align = 8;
4029     }
4030   else
4031     gold_unreachable();
4032 
4033   // Compute file offsets relative to the start of the symtab section.
4034   off_t off = 0;
4035 
4036   // Save space for the dummy symbol at the start of the section.  We
4037   // never bother to write this out--it will just be left as zero.
4038   off += symsize;
4039   unsigned int local_symbol_index = 1;
4040 
4041   // Add STT_SECTION symbols for each Output section which needs one.
4042   for (Section_list::iterator p = this->section_list_.begin();
4043        p != this->section_list_.end();
4044        ++p)
4045     {
4046       if (!(*p)->needs_symtab_index())
4047 	(*p)->set_symtab_index(-1U);
4048       else
4049 	{
4050 	  (*p)->set_symtab_index(local_symbol_index);
4051 	  ++local_symbol_index;
4052 	  off += symsize;
4053 	}
4054     }
4055 
4056   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4057        p != input_objects->relobj_end();
4058        ++p)
4059     {
4060       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4061 							off, symtab);
4062       off += (index - local_symbol_index) * symsize;
4063       local_symbol_index = index;
4064     }
4065 
4066   unsigned int local_symcount = local_symbol_index;
4067   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4068 
4069   off_t dynoff;
4070   size_t dyn_global_index;
4071   size_t dyncount;
4072   if (this->dynsym_section_ == NULL)
4073     {
4074       dynoff = 0;
4075       dyn_global_index = 0;
4076       dyncount = 0;
4077     }
4078   else
4079     {
4080       dyn_global_index = this->dynsym_section_->info();
4081       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
4082       dynoff = this->dynsym_section_->offset() + locsize;
4083       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4084       gold_assert(static_cast<off_t>(dyncount * symsize)
4085 		  == this->dynsym_section_->data_size() - locsize);
4086     }
4087 
4088   off_t global_off = off;
4089   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
4090 			 &this->sympool_, &local_symcount);
4091 
4092   if (!parameters->options().strip_all())
4093     {
4094       this->sympool_.set_string_offsets();
4095 
4096       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4097       Output_section* osymtab = this->make_output_section(symtab_name,
4098 							  elfcpp::SHT_SYMTAB,
4099 							  0, ORDER_INVALID,
4100 							  false);
4101       this->symtab_section_ = osymtab;
4102 
4103       Output_section_data* pos = new Output_data_fixed_space(off, align,
4104 							     "** symtab");
4105       osymtab->add_output_section_data(pos);
4106 
4107       // We generate a .symtab_shndx section if we have more than
4108       // SHN_LORESERVE sections.  Technically it is possible that we
4109       // don't need one, because it is possible that there are no
4110       // symbols in any of sections with indexes larger than
4111       // SHN_LORESERVE.  That is probably unusual, though, and it is
4112       // easier to always create one than to compute section indexes
4113       // twice (once here, once when writing out the symbols).
4114       if (shnum >= elfcpp::SHN_LORESERVE)
4115 	{
4116 	  const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4117 							       false, NULL);
4118 	  Output_section* osymtab_xindex =
4119 	    this->make_output_section(symtab_xindex_name,
4120 				      elfcpp::SHT_SYMTAB_SHNDX, 0,
4121 				      ORDER_INVALID, false);
4122 
4123 	  size_t symcount = off / symsize;
4124 	  this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4125 
4126 	  osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4127 
4128 	  osymtab_xindex->set_link_section(osymtab);
4129 	  osymtab_xindex->set_addralign(4);
4130 	  osymtab_xindex->set_entsize(4);
4131 
4132 	  osymtab_xindex->set_after_input_sections();
4133 
4134 	  // This tells the driver code to wait until the symbol table
4135 	  // has written out before writing out the postprocessing
4136 	  // sections, including the .symtab_shndx section.
4137 	  this->any_postprocessing_sections_ = true;
4138 	}
4139 
4140       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4141       Output_section* ostrtab = this->make_output_section(strtab_name,
4142 							  elfcpp::SHT_STRTAB,
4143 							  0, ORDER_INVALID,
4144 							  false);
4145 
4146       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4147       ostrtab->add_output_section_data(pstr);
4148 
4149       off_t symtab_off;
4150       if (!parameters->incremental_update())
4151 	symtab_off = align_address(*poff, align);
4152       else
4153 	{
4154 	  symtab_off = this->allocate(off, align, *poff);
4155 	  if (off == -1)
4156 	    gold_fallback(_("out of patch space for symbol table; "
4157 			    "relink with --incremental-full"));
4158 	  gold_debug(DEBUG_INCREMENTAL,
4159 		     "create_symtab_sections: %08lx %08lx .symtab",
4160 		     static_cast<long>(symtab_off),
4161 		     static_cast<long>(off));
4162 	}
4163 
4164       symtab->set_file_offset(symtab_off + global_off);
4165       osymtab->set_file_offset(symtab_off);
4166       osymtab->finalize_data_size();
4167       osymtab->set_link_section(ostrtab);
4168       osymtab->set_info(local_symcount);
4169       osymtab->set_entsize(symsize);
4170 
4171       if (symtab_off + off > *poff)
4172 	*poff = symtab_off + off;
4173     }
4174 }
4175 
4176 // Create the .shstrtab section, which holds the names of the
4177 // sections.  At the time this is called, we have created all the
4178 // output sections except .shstrtab itself.
4179 
4180 Output_section*
create_shstrtab()4181 Layout::create_shstrtab()
4182 {
4183   // FIXME: We don't need to create a .shstrtab section if we are
4184   // stripping everything.
4185 
4186   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4187 
4188   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4189 						 ORDER_INVALID, false);
4190 
4191   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4192     {
4193       // We can't write out this section until we've set all the
4194       // section names, and we don't set the names of compressed
4195       // output sections until relocations are complete.  FIXME: With
4196       // the current names we use, this is unnecessary.
4197       os->set_after_input_sections();
4198     }
4199 
4200   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4201   os->add_output_section_data(posd);
4202 
4203   return os;
4204 }
4205 
4206 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4207 // offset.
4208 
4209 void
create_shdrs(const Output_section * shstrtab_section,off_t * poff)4210 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4211 {
4212   Output_section_headers* oshdrs;
4213   oshdrs = new Output_section_headers(this,
4214 				      &this->segment_list_,
4215 				      &this->section_list_,
4216 				      &this->unattached_section_list_,
4217 				      &this->namepool_,
4218 				      shstrtab_section);
4219   off_t off;
4220   if (!parameters->incremental_update())
4221     off = align_address(*poff, oshdrs->addralign());
4222   else
4223     {
4224       oshdrs->pre_finalize_data_size();
4225       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4226       if (off == -1)
4227 	  gold_fallback(_("out of patch space for section header table; "
4228 			  "relink with --incremental-full"));
4229       gold_debug(DEBUG_INCREMENTAL,
4230 		 "create_shdrs: %08lx %08lx (section header table)",
4231 		 static_cast<long>(off),
4232 		 static_cast<long>(off + oshdrs->data_size()));
4233     }
4234   oshdrs->set_address_and_file_offset(0, off);
4235   off += oshdrs->data_size();
4236   if (off > *poff)
4237     *poff = off;
4238   this->section_headers_ = oshdrs;
4239 }
4240 
4241 // Count the allocated sections.
4242 
4243 size_t
allocated_output_section_count() const4244 Layout::allocated_output_section_count() const
4245 {
4246   size_t section_count = 0;
4247   for (Segment_list::const_iterator p = this->segment_list_.begin();
4248        p != this->segment_list_.end();
4249        ++p)
4250     section_count += (*p)->output_section_count();
4251   return section_count;
4252 }
4253 
4254 // Create the dynamic symbol table.
4255 
4256 void
create_dynamic_symtab(const Input_objects * input_objects,Symbol_table * symtab,Output_section ** pdynstr,unsigned int * plocal_dynamic_count,std::vector<Symbol * > * pdynamic_symbols,Versions * pversions)4257 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4258 			      Symbol_table* symtab,
4259 			      Output_section** pdynstr,
4260 			      unsigned int* plocal_dynamic_count,
4261 			      std::vector<Symbol*>* pdynamic_symbols,
4262 			      Versions* pversions)
4263 {
4264   // Count all the symbols in the dynamic symbol table, and set the
4265   // dynamic symbol indexes.
4266 
4267   // Skip symbol 0, which is always all zeroes.
4268   unsigned int index = 1;
4269 
4270   // Add STT_SECTION symbols for each Output section which needs one.
4271   for (Section_list::iterator p = this->section_list_.begin();
4272        p != this->section_list_.end();
4273        ++p)
4274     {
4275       if (!(*p)->needs_dynsym_index())
4276 	(*p)->set_dynsym_index(-1U);
4277       else
4278 	{
4279 	  (*p)->set_dynsym_index(index);
4280 	  ++index;
4281 	}
4282     }
4283 
4284   // Count the local symbols that need to go in the dynamic symbol table,
4285   // and set the dynamic symbol indexes.
4286   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4287        p != input_objects->relobj_end();
4288        ++p)
4289     {
4290       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4291       index = new_index;
4292     }
4293 
4294   unsigned int local_symcount = index;
4295   *plocal_dynamic_count = local_symcount;
4296 
4297   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4298 				     &this->dynpool_, pversions);
4299 
4300   int symsize;
4301   unsigned int align;
4302   const int size = parameters->target().get_size();
4303   if (size == 32)
4304     {
4305       symsize = elfcpp::Elf_sizes<32>::sym_size;
4306       align = 4;
4307     }
4308   else if (size == 64)
4309     {
4310       symsize = elfcpp::Elf_sizes<64>::sym_size;
4311       align = 8;
4312     }
4313   else
4314     gold_unreachable();
4315 
4316   // Create the dynamic symbol table section.
4317 
4318   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4319 						       elfcpp::SHT_DYNSYM,
4320 						       elfcpp::SHF_ALLOC,
4321 						       false,
4322 						       ORDER_DYNAMIC_LINKER,
4323 						       false);
4324 
4325   // Check for NULL as a linker script may discard .dynsym.
4326   if (dynsym != NULL)
4327     {
4328       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4329 							       align,
4330 							       "** dynsym");
4331       dynsym->add_output_section_data(odata);
4332 
4333       dynsym->set_info(local_symcount);
4334       dynsym->set_entsize(symsize);
4335       dynsym->set_addralign(align);
4336 
4337       this->dynsym_section_ = dynsym;
4338     }
4339 
4340   Output_data_dynamic* const odyn = this->dynamic_data_;
4341   if (odyn != NULL)
4342     {
4343       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4344       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4345     }
4346 
4347   // If there are more than SHN_LORESERVE allocated sections, we
4348   // create a .dynsym_shndx section.  It is possible that we don't
4349   // need one, because it is possible that there are no dynamic
4350   // symbols in any of the sections with indexes larger than
4351   // SHN_LORESERVE.  This is probably unusual, though, and at this
4352   // time we don't know the actual section indexes so it is
4353   // inconvenient to check.
4354   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4355     {
4356       Output_section* dynsym_xindex =
4357 	this->choose_output_section(NULL, ".dynsym_shndx",
4358 				    elfcpp::SHT_SYMTAB_SHNDX,
4359 				    elfcpp::SHF_ALLOC,
4360 				    false, ORDER_DYNAMIC_LINKER, false);
4361 
4362       if (dynsym_xindex != NULL)
4363 	{
4364 	  this->dynsym_xindex_ = new Output_symtab_xindex(index);
4365 
4366 	  dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4367 
4368 	  dynsym_xindex->set_link_section(dynsym);
4369 	  dynsym_xindex->set_addralign(4);
4370 	  dynsym_xindex->set_entsize(4);
4371 
4372 	  dynsym_xindex->set_after_input_sections();
4373 
4374 	  // This tells the driver code to wait until the symbol table
4375 	  // has written out before writing out the postprocessing
4376 	  // sections, including the .dynsym_shndx section.
4377 	  this->any_postprocessing_sections_ = true;
4378 	}
4379     }
4380 
4381   // Create the dynamic string table section.
4382 
4383   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4384 						       elfcpp::SHT_STRTAB,
4385 						       elfcpp::SHF_ALLOC,
4386 						       false,
4387 						       ORDER_DYNAMIC_LINKER,
4388 						       false);
4389   *pdynstr = dynstr;
4390   if (dynstr != NULL)
4391     {
4392       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4393       dynstr->add_output_section_data(strdata);
4394 
4395       if (dynsym != NULL)
4396 	dynsym->set_link_section(dynstr);
4397       if (this->dynamic_section_ != NULL)
4398 	this->dynamic_section_->set_link_section(dynstr);
4399 
4400       if (odyn != NULL)
4401 	{
4402 	  odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4403 	  odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4404 	}
4405     }
4406 
4407   // Create the hash tables.  The Gnu-style hash table must be
4408   // built first, because it changes the order of the symbols
4409   // in the dynamic symbol table.
4410 
4411   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4412       || strcmp(parameters->options().hash_style(), "both") == 0)
4413     {
4414       unsigned char* phash;
4415       unsigned int hashlen;
4416       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4417 				    &phash, &hashlen);
4418 
4419       Output_section* hashsec =
4420 	this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4421 				    elfcpp::SHF_ALLOC, false,
4422 				    ORDER_DYNAMIC_LINKER, false);
4423 
4424       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4425 								   hashlen,
4426 								   align,
4427 								   "** hash");
4428       if (hashsec != NULL && hashdata != NULL)
4429 	hashsec->add_output_section_data(hashdata);
4430 
4431       if (hashsec != NULL)
4432 	{
4433 	  if (dynsym != NULL)
4434 	    hashsec->set_link_section(dynsym);
4435 
4436 	  // For a 64-bit target, the entries in .gnu.hash do not have
4437 	  // a uniform size, so we only set the entry size for a
4438 	  // 32-bit target.
4439 	  if (parameters->target().get_size() == 32)
4440 	    hashsec->set_entsize(4);
4441 
4442 	  if (odyn != NULL)
4443 	    odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4444 	}
4445     }
4446 
4447   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4448       || strcmp(parameters->options().hash_style(), "both") == 0)
4449     {
4450       unsigned char* phash;
4451       unsigned int hashlen;
4452       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4453 				    &phash, &hashlen);
4454 
4455       Output_section* hashsec =
4456 	this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4457 				    elfcpp::SHF_ALLOC, false,
4458 				    ORDER_DYNAMIC_LINKER, false);
4459 
4460       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4461 								   hashlen,
4462 								   align,
4463 								   "** hash");
4464       if (hashsec != NULL && hashdata != NULL)
4465 	hashsec->add_output_section_data(hashdata);
4466 
4467       if (hashsec != NULL)
4468 	{
4469 	  if (dynsym != NULL)
4470 	    hashsec->set_link_section(dynsym);
4471 	  hashsec->set_entsize(4);
4472 	}
4473 
4474       if (odyn != NULL)
4475 	odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4476     }
4477 }
4478 
4479 // Assign offsets to each local portion of the dynamic symbol table.
4480 
4481 void
assign_local_dynsym_offsets(const Input_objects * input_objects)4482 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4483 {
4484   Output_section* dynsym = this->dynsym_section_;
4485   if (dynsym == NULL)
4486     return;
4487 
4488   off_t off = dynsym->offset();
4489 
4490   // Skip the dummy symbol at the start of the section.
4491   off += dynsym->entsize();
4492 
4493   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4494        p != input_objects->relobj_end();
4495        ++p)
4496     {
4497       unsigned int count = (*p)->set_local_dynsym_offset(off);
4498       off += count * dynsym->entsize();
4499     }
4500 }
4501 
4502 // Create the version sections.
4503 
4504 void
create_version_sections(const Versions * versions,const Symbol_table * symtab,unsigned int local_symcount,const std::vector<Symbol * > & dynamic_symbols,const Output_section * dynstr)4505 Layout::create_version_sections(const Versions* versions,
4506 				const Symbol_table* symtab,
4507 				unsigned int local_symcount,
4508 				const std::vector<Symbol*>& dynamic_symbols,
4509 				const Output_section* dynstr)
4510 {
4511   if (!versions->any_defs() && !versions->any_needs())
4512     return;
4513 
4514   switch (parameters->size_and_endianness())
4515     {
4516 #ifdef HAVE_TARGET_32_LITTLE
4517     case Parameters::TARGET_32_LITTLE:
4518       this->sized_create_version_sections<32, false>(versions, symtab,
4519 						     local_symcount,
4520 						     dynamic_symbols, dynstr);
4521       break;
4522 #endif
4523 #ifdef HAVE_TARGET_32_BIG
4524     case Parameters::TARGET_32_BIG:
4525       this->sized_create_version_sections<32, true>(versions, symtab,
4526 						    local_symcount,
4527 						    dynamic_symbols, dynstr);
4528       break;
4529 #endif
4530 #ifdef HAVE_TARGET_64_LITTLE
4531     case Parameters::TARGET_64_LITTLE:
4532       this->sized_create_version_sections<64, false>(versions, symtab,
4533 						     local_symcount,
4534 						     dynamic_symbols, dynstr);
4535       break;
4536 #endif
4537 #ifdef HAVE_TARGET_64_BIG
4538     case Parameters::TARGET_64_BIG:
4539       this->sized_create_version_sections<64, true>(versions, symtab,
4540 						    local_symcount,
4541 						    dynamic_symbols, dynstr);
4542       break;
4543 #endif
4544     default:
4545       gold_unreachable();
4546     }
4547 }
4548 
4549 // Create the version sections, sized version.
4550 
4551 template<int size, bool big_endian>
4552 void
sized_create_version_sections(const Versions * versions,const Symbol_table * symtab,unsigned int local_symcount,const std::vector<Symbol * > & dynamic_symbols,const Output_section * dynstr)4553 Layout::sized_create_version_sections(
4554     const Versions* versions,
4555     const Symbol_table* symtab,
4556     unsigned int local_symcount,
4557     const std::vector<Symbol*>& dynamic_symbols,
4558     const Output_section* dynstr)
4559 {
4560   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4561 						     elfcpp::SHT_GNU_versym,
4562 						     elfcpp::SHF_ALLOC,
4563 						     false,
4564 						     ORDER_DYNAMIC_LINKER,
4565 						     false);
4566 
4567   // Check for NULL since a linker script may discard this section.
4568   if (vsec != NULL)
4569     {
4570       unsigned char* vbuf;
4571       unsigned int vsize;
4572       versions->symbol_section_contents<size, big_endian>(symtab,
4573 							  &this->dynpool_,
4574 							  local_symcount,
4575 							  dynamic_symbols,
4576 							  &vbuf, &vsize);
4577 
4578       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4579 								"** versions");
4580 
4581       vsec->add_output_section_data(vdata);
4582       vsec->set_entsize(2);
4583       vsec->set_link_section(this->dynsym_section_);
4584     }
4585 
4586   Output_data_dynamic* const odyn = this->dynamic_data_;
4587   if (odyn != NULL && vsec != NULL)
4588     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4589 
4590   if (versions->any_defs())
4591     {
4592       Output_section* vdsec;
4593       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4594 					  elfcpp::SHT_GNU_verdef,
4595 					  elfcpp::SHF_ALLOC,
4596 					  false, ORDER_DYNAMIC_LINKER, false);
4597 
4598       if (vdsec != NULL)
4599 	{
4600 	  unsigned char* vdbuf;
4601 	  unsigned int vdsize;
4602 	  unsigned int vdentries;
4603 	  versions->def_section_contents<size, big_endian>(&this->dynpool_,
4604 							   &vdbuf, &vdsize,
4605 							   &vdentries);
4606 
4607 	  Output_section_data* vddata =
4608 	    new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4609 
4610 	  vdsec->add_output_section_data(vddata);
4611 	  vdsec->set_link_section(dynstr);
4612 	  vdsec->set_info(vdentries);
4613 
4614 	  if (odyn != NULL)
4615 	    {
4616 	      odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4617 	      odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4618 	    }
4619 	}
4620     }
4621 
4622   if (versions->any_needs())
4623     {
4624       Output_section* vnsec;
4625       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4626 					  elfcpp::SHT_GNU_verneed,
4627 					  elfcpp::SHF_ALLOC,
4628 					  false, ORDER_DYNAMIC_LINKER, false);
4629 
4630       if (vnsec != NULL)
4631 	{
4632 	  unsigned char* vnbuf;
4633 	  unsigned int vnsize;
4634 	  unsigned int vnentries;
4635 	  versions->need_section_contents<size, big_endian>(&this->dynpool_,
4636 							    &vnbuf, &vnsize,
4637 							    &vnentries);
4638 
4639 	  Output_section_data* vndata =
4640 	    new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4641 
4642 	  vnsec->add_output_section_data(vndata);
4643 	  vnsec->set_link_section(dynstr);
4644 	  vnsec->set_info(vnentries);
4645 
4646 	  if (odyn != NULL)
4647 	    {
4648 	      odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4649 	      odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4650 	    }
4651 	}
4652     }
4653 }
4654 
4655 // Create the .interp section and PT_INTERP segment.
4656 
4657 void
create_interp(const Target * target)4658 Layout::create_interp(const Target* target)
4659 {
4660   gold_assert(this->interp_segment_ == NULL);
4661 
4662   const char* interp = parameters->options().dynamic_linker();
4663   if (interp == NULL)
4664     {
4665       interp = target->dynamic_linker();
4666       gold_assert(interp != NULL);
4667     }
4668 
4669   size_t len = strlen(interp) + 1;
4670 
4671   Output_section_data* odata = new Output_data_const(interp, len, 1);
4672 
4673   Output_section* osec = this->choose_output_section(NULL, ".interp",
4674 						     elfcpp::SHT_PROGBITS,
4675 						     elfcpp::SHF_ALLOC,
4676 						     false, ORDER_INTERP,
4677 						     false);
4678   if (osec != NULL)
4679     osec->add_output_section_data(odata);
4680 }
4681 
4682 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4683 // called by the target-specific code.  This does nothing if not doing
4684 // a dynamic link.
4685 
4686 // USE_REL is true for REL relocs rather than RELA relocs.
4687 
4688 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4689 
4690 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4691 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4692 // some targets have multiple reloc sections in PLT_REL.
4693 
4694 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4695 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4696 // section.
4697 
4698 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4699 // executable.
4700 
4701 void
add_target_dynamic_tags(bool use_rel,const Output_data * plt_got,const Output_data * plt_rel,const Output_data_reloc_generic * dyn_rel,bool add_debug,bool dynrel_includes_plt)4702 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4703 				const Output_data* plt_rel,
4704 				const Output_data_reloc_generic* dyn_rel,
4705 				bool add_debug, bool dynrel_includes_plt)
4706 {
4707   Output_data_dynamic* odyn = this->dynamic_data_;
4708   if (odyn == NULL)
4709     return;
4710 
4711   if (plt_got != NULL && plt_got->output_section() != NULL)
4712     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4713 
4714   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4715     {
4716       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4717       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4718       odyn->add_constant(elfcpp::DT_PLTREL,
4719 			 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4720     }
4721 
4722   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4723       || (dynrel_includes_plt
4724 	  && plt_rel != NULL
4725 	  && plt_rel->output_section() != NULL))
4726     {
4727       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4728       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4729       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4730 				(have_dyn_rel
4731 				 ? dyn_rel->output_section()
4732 				 : plt_rel->output_section()));
4733       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4734       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4735 	odyn->add_section_size(size_tag,
4736 			       dyn_rel->output_section(),
4737 			       plt_rel->output_section());
4738       else if (have_dyn_rel)
4739 	odyn->add_section_size(size_tag, dyn_rel->output_section());
4740       else
4741 	odyn->add_section_size(size_tag, plt_rel->output_section());
4742       const int size = parameters->target().get_size();
4743       elfcpp::DT rel_tag;
4744       int rel_size;
4745       if (use_rel)
4746 	{
4747 	  rel_tag = elfcpp::DT_RELENT;
4748 	  if (size == 32)
4749 	    rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4750 	  else if (size == 64)
4751 	    rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4752 	  else
4753 	    gold_unreachable();
4754 	}
4755       else
4756 	{
4757 	  rel_tag = elfcpp::DT_RELAENT;
4758 	  if (size == 32)
4759 	    rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4760 	  else if (size == 64)
4761 	    rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4762 	  else
4763 	    gold_unreachable();
4764 	}
4765       odyn->add_constant(rel_tag, rel_size);
4766 
4767       if (parameters->options().combreloc() && have_dyn_rel)
4768 	{
4769 	  size_t c = dyn_rel->relative_reloc_count();
4770 	  if (c > 0)
4771 	    odyn->add_constant((use_rel
4772 				? elfcpp::DT_RELCOUNT
4773 				: elfcpp::DT_RELACOUNT),
4774 			       c);
4775 	}
4776     }
4777 
4778   if (add_debug && !parameters->options().shared())
4779     {
4780       // The value of the DT_DEBUG tag is filled in by the dynamic
4781       // linker at run time, and used by the debugger.
4782       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4783     }
4784 }
4785 
4786 // Finish the .dynamic section and PT_DYNAMIC segment.
4787 
4788 void
finish_dynamic_section(const Input_objects * input_objects,const Symbol_table * symtab)4789 Layout::finish_dynamic_section(const Input_objects* input_objects,
4790 			       const Symbol_table* symtab)
4791 {
4792   if (!this->script_options_->saw_phdrs_clause()
4793       && this->dynamic_section_ != NULL)
4794     {
4795       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4796 						       (elfcpp::PF_R
4797 							| elfcpp::PF_W));
4798       oseg->add_output_section_to_nonload(this->dynamic_section_,
4799 					  elfcpp::PF_R | elfcpp::PF_W);
4800     }
4801 
4802   Output_data_dynamic* const odyn = this->dynamic_data_;
4803   if (odyn == NULL)
4804     return;
4805 
4806   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4807        p != input_objects->dynobj_end();
4808        ++p)
4809     {
4810       if (!(*p)->is_needed() && (*p)->as_needed())
4811 	{
4812 	  // This dynamic object was linked with --as-needed, but it
4813 	  // is not needed.
4814 	  continue;
4815 	}
4816 
4817       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4818     }
4819 
4820   if (parameters->options().shared())
4821     {
4822       const char* soname = parameters->options().soname();
4823       if (soname != NULL)
4824 	odyn->add_string(elfcpp::DT_SONAME, soname);
4825     }
4826 
4827   Symbol* sym = symtab->lookup(parameters->options().init());
4828   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4829     odyn->add_symbol(elfcpp::DT_INIT, sym);
4830 
4831   sym = symtab->lookup(parameters->options().fini());
4832   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4833     odyn->add_symbol(elfcpp::DT_FINI, sym);
4834 
4835   // Look for .init_array, .preinit_array and .fini_array by checking
4836   // section types.
4837   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4838       p != this->section_list_.end();
4839       ++p)
4840     switch((*p)->type())
4841       {
4842       case elfcpp::SHT_FINI_ARRAY:
4843 	odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4844 	odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4845 	break;
4846       case elfcpp::SHT_INIT_ARRAY:
4847 	odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4848 	odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4849 	break;
4850       case elfcpp::SHT_PREINIT_ARRAY:
4851 	odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4852 	odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4853 	break;
4854       default:
4855 	break;
4856       }
4857 
4858   // Add a DT_RPATH entry if needed.
4859   const General_options::Dir_list& rpath(parameters->options().rpath());
4860   if (!rpath.empty())
4861     {
4862       std::string rpath_val;
4863       for (General_options::Dir_list::const_iterator p = rpath.begin();
4864 	   p != rpath.end();
4865 	   ++p)
4866 	{
4867 	  if (rpath_val.empty())
4868 	    rpath_val = p->name();
4869 	  else
4870 	    {
4871 	      // Eliminate duplicates.
4872 	      General_options::Dir_list::const_iterator q;
4873 	      for (q = rpath.begin(); q != p; ++q)
4874 		if (q->name() == p->name())
4875 		  break;
4876 	      if (q == p)
4877 		{
4878 		  rpath_val += ':';
4879 		  rpath_val += p->name();
4880 		}
4881 	    }
4882 	}
4883 
4884       if (!parameters->options().enable_new_dtags())
4885 	odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4886       else
4887 	odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4888     }
4889 
4890   // Look for text segments that have dynamic relocations.
4891   bool have_textrel = false;
4892   if (!this->script_options_->saw_sections_clause())
4893     {
4894       for (Segment_list::const_iterator p = this->segment_list_.begin();
4895 	   p != this->segment_list_.end();
4896 	   ++p)
4897 	{
4898 	  if ((*p)->type() == elfcpp::PT_LOAD
4899 	      && ((*p)->flags() & elfcpp::PF_W) == 0
4900 	      && (*p)->has_dynamic_reloc())
4901 	    {
4902 	      have_textrel = true;
4903 	      break;
4904 	    }
4905 	}
4906     }
4907   else
4908     {
4909       // We don't know the section -> segment mapping, so we are
4910       // conservative and just look for readonly sections with
4911       // relocations.  If those sections wind up in writable segments,
4912       // then we have created an unnecessary DT_TEXTREL entry.
4913       for (Section_list::const_iterator p = this->section_list_.begin();
4914 	   p != this->section_list_.end();
4915 	   ++p)
4916 	{
4917 	  if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4918 	      && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4919 	      && (*p)->has_dynamic_reloc())
4920 	    {
4921 	      have_textrel = true;
4922 	      break;
4923 	    }
4924 	}
4925     }
4926 
4927   if (parameters->options().filter() != NULL)
4928     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4929   if (parameters->options().any_auxiliary())
4930     {
4931       for (options::String_set::const_iterator p =
4932 	     parameters->options().auxiliary_begin();
4933 	   p != parameters->options().auxiliary_end();
4934 	   ++p)
4935 	odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4936     }
4937 
4938   // Add a DT_FLAGS entry if necessary.
4939   unsigned int flags = 0;
4940   if (have_textrel)
4941     {
4942       // Add a DT_TEXTREL for compatibility with older loaders.
4943       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4944       flags |= elfcpp::DF_TEXTREL;
4945 
4946       if (parameters->options().text())
4947 	gold_error(_("read-only segment has dynamic relocations"));
4948       else if (parameters->options().warn_shared_textrel()
4949 	       && parameters->options().shared())
4950 	gold_warning(_("shared library text segment is not shareable"));
4951     }
4952   if (parameters->options().shared() && this->has_static_tls())
4953     flags |= elfcpp::DF_STATIC_TLS;
4954   if (parameters->options().origin())
4955     flags |= elfcpp::DF_ORIGIN;
4956   if (parameters->options().Bsymbolic()
4957       && !parameters->options().have_dynamic_list())
4958     {
4959       flags |= elfcpp::DF_SYMBOLIC;
4960       // Add DT_SYMBOLIC for compatibility with older loaders.
4961       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4962     }
4963   if (parameters->options().now())
4964     flags |= elfcpp::DF_BIND_NOW;
4965   if (flags != 0)
4966     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4967 
4968   flags = 0;
4969   if (parameters->options().global())
4970     flags |= elfcpp::DF_1_GLOBAL;
4971   if (parameters->options().initfirst())
4972     flags |= elfcpp::DF_1_INITFIRST;
4973   if (parameters->options().interpose())
4974     flags |= elfcpp::DF_1_INTERPOSE;
4975   if (parameters->options().loadfltr())
4976     flags |= elfcpp::DF_1_LOADFLTR;
4977   if (parameters->options().nodefaultlib())
4978     flags |= elfcpp::DF_1_NODEFLIB;
4979   if (parameters->options().nodelete())
4980     flags |= elfcpp::DF_1_NODELETE;
4981   if (parameters->options().nodlopen())
4982     flags |= elfcpp::DF_1_NOOPEN;
4983   if (parameters->options().nodump())
4984     flags |= elfcpp::DF_1_NODUMP;
4985   if (!parameters->options().shared())
4986     flags &= ~(elfcpp::DF_1_INITFIRST
4987 	       | elfcpp::DF_1_NODELETE
4988 	       | elfcpp::DF_1_NOOPEN);
4989   if (parameters->options().origin())
4990     flags |= elfcpp::DF_1_ORIGIN;
4991   if (parameters->options().now())
4992     flags |= elfcpp::DF_1_NOW;
4993   if (parameters->options().Bgroup())
4994     flags |= elfcpp::DF_1_GROUP;
4995   if (flags != 0)
4996     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4997 }
4998 
4999 // Set the size of the _DYNAMIC symbol table to be the size of the
5000 // dynamic data.
5001 
5002 void
set_dynamic_symbol_size(const Symbol_table * symtab)5003 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5004 {
5005   Output_data_dynamic* const odyn = this->dynamic_data_;
5006   if (odyn == NULL)
5007     return;
5008   odyn->finalize_data_size();
5009   if (this->dynamic_symbol_ == NULL)
5010     return;
5011   off_t data_size = odyn->data_size();
5012   const int size = parameters->target().get_size();
5013   if (size == 32)
5014     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5015   else if (size == 64)
5016     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5017   else
5018     gold_unreachable();
5019 }
5020 
5021 // The mapping of input section name prefixes to output section names.
5022 // In some cases one prefix is itself a prefix of another prefix; in
5023 // such a case the longer prefix must come first.  These prefixes are
5024 // based on the GNU linker default ELF linker script.
5025 
5026 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5027 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5028 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5029 {
5030   MAPPING_INIT(".text.", ".text"),
5031   MAPPING_INIT(".rodata.", ".rodata"),
5032   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5033   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5034   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5035   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5036   MAPPING_INIT(".data.", ".data"),
5037   MAPPING_INIT(".bss.", ".bss"),
5038   MAPPING_INIT(".tdata.", ".tdata"),
5039   MAPPING_INIT(".tbss.", ".tbss"),
5040   MAPPING_INIT(".init_array.", ".init_array"),
5041   MAPPING_INIT(".fini_array.", ".fini_array"),
5042   MAPPING_INIT(".sdata.", ".sdata"),
5043   MAPPING_INIT(".sbss.", ".sbss"),
5044   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5045   // differently depending on whether it is creating a shared library.
5046   MAPPING_INIT(".sdata2.", ".sdata"),
5047   MAPPING_INIT(".sbss2.", ".sbss"),
5048   MAPPING_INIT(".lrodata.", ".lrodata"),
5049   MAPPING_INIT(".ldata.", ".ldata"),
5050   MAPPING_INIT(".lbss.", ".lbss"),
5051   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5052   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5053   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5054   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5055   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5056   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5057   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5058   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5059   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5060   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5061   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5062   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5063   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5064   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5065   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5066   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5067   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5068   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5069   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5070   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5071   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5072   MAPPING_INIT("_function_patch_prologue.", "_function_patch_prologue"),
5073   MAPPING_INIT("_function_patch_epilogue.", "_function_patch_epilogue"),
5074 };
5075 #undef MAPPING_INIT
5076 #undef MAPPING_INIT_EXACT
5077 
5078 const int Layout::section_name_mapping_count =
5079   (sizeof(Layout::section_name_mapping)
5080    / sizeof(Layout::section_name_mapping[0]));
5081 
5082 // Choose the output section name to use given an input section name.
5083 // Set *PLEN to the length of the name.  *PLEN is initialized to the
5084 // length of NAME.
5085 
5086 const char*
output_section_name(const Relobj * relobj,const char * name,size_t * plen)5087 Layout::output_section_name(const Relobj* relobj, const char* name,
5088 			    size_t* plen)
5089 {
5090   // gcc 4.3 generates the following sorts of section names when it
5091   // needs a section name specific to a function:
5092   //   .text.FN
5093   //   .rodata.FN
5094   //   .sdata2.FN
5095   //   .data.FN
5096   //   .data.rel.FN
5097   //   .data.rel.local.FN
5098   //   .data.rel.ro.FN
5099   //   .data.rel.ro.local.FN
5100   //   .sdata.FN
5101   //   .bss.FN
5102   //   .sbss.FN
5103   //   .tdata.FN
5104   //   .tbss.FN
5105 
5106   // The GNU linker maps all of those to the part before the .FN,
5107   // except that .data.rel.local.FN is mapped to .data, and
5108   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5109   // beginning with .data.rel.ro.local are grouped together.
5110 
5111   // For an anonymous namespace, the string FN can contain a '.'.
5112 
5113   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5114   // GNU linker maps to .rodata.
5115 
5116   // The .data.rel.ro sections are used with -z relro.  The sections
5117   // are recognized by name.  We use the same names that the GNU
5118   // linker does for these sections.
5119 
5120   // It is hard to handle this in a principled way, so we don't even
5121   // try.  We use a table of mappings.  If the input section name is
5122   // not found in the table, we simply use it as the output section
5123   // name.
5124 
5125   const Section_name_mapping* psnm = section_name_mapping;
5126   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5127     {
5128       if (psnm->fromlen > 0)
5129 	{
5130 	  if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5131 	    {
5132 	      *plen = psnm->tolen;
5133 	      return psnm->to;
5134 	    }
5135 	}
5136       else
5137 	{
5138 	  if (strcmp(name, psnm->from) == 0)
5139 	    {
5140 	      *plen = psnm->tolen;
5141 	      return psnm->to;
5142 	    }
5143 	}
5144     }
5145 
5146   // As an additional complication, .ctors sections are output in
5147   // either .ctors or .init_array sections, and .dtors sections are
5148   // output in either .dtors or .fini_array sections.
5149   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5150     {
5151       if (parameters->options().ctors_in_init_array())
5152 	{
5153 	  *plen = 11;
5154 	  return name[1] == 'c' ? ".init_array" : ".fini_array";
5155 	}
5156       else
5157 	{
5158 	  *plen = 6;
5159 	  return name[1] == 'c' ? ".ctors" : ".dtors";
5160 	}
5161     }
5162   if (parameters->options().ctors_in_init_array()
5163       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5164     {
5165       // To make .init_array/.fini_array work with gcc we must exclude
5166       // .ctors and .dtors sections from the crtbegin and crtend
5167       // files.
5168       if (relobj == NULL
5169 	  || (!Layout::match_file_name(relobj, "crtbegin")
5170 	      && !Layout::match_file_name(relobj, "crtend")))
5171 	{
5172 	  *plen = 11;
5173 	  return name[1] == 'c' ? ".init_array" : ".fini_array";
5174 	}
5175     }
5176 
5177   return name;
5178 }
5179 
5180 // Return true if RELOBJ is an input file whose base name matches
5181 // FILE_NAME.  The base name must have an extension of ".o", and must
5182 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5183 // to match crtbegin.o as well as crtbeginS.o without getting confused
5184 // by other possibilities.  Overall matching the file name this way is
5185 // a dreadful hack, but the GNU linker does it in order to better
5186 // support gcc, and we need to be compatible.
5187 
5188 bool
match_file_name(const Relobj * relobj,const char * match)5189 Layout::match_file_name(const Relobj* relobj, const char* match)
5190 {
5191   const std::string& file_name(relobj->name());
5192   const char* base_name = lbasename(file_name.c_str());
5193   size_t match_len = strlen(match);
5194   if (strncmp(base_name, match, match_len) != 0)
5195     return false;
5196   size_t base_len = strlen(base_name);
5197   if (base_len != match_len + 2 && base_len != match_len + 3)
5198     return false;
5199   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5200 }
5201 
5202 // Check if a comdat group or .gnu.linkonce section with the given
5203 // NAME is selected for the link.  If there is already a section,
5204 // *KEPT_SECTION is set to point to the existing section and the
5205 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5206 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5207 // *KEPT_SECTION is set to the internal copy and the function returns
5208 // true.
5209 
5210 bool
find_or_add_kept_section(const std::string & name,Relobj * object,unsigned int shndx,bool is_comdat,bool is_group_name,Kept_section ** kept_section)5211 Layout::find_or_add_kept_section(const std::string& name,
5212 				 Relobj* object,
5213 				 unsigned int shndx,
5214 				 bool is_comdat,
5215 				 bool is_group_name,
5216 				 Kept_section** kept_section)
5217 {
5218   // It's normal to see a couple of entries here, for the x86 thunk
5219   // sections.  If we see more than a few, we're linking a C++
5220   // program, and we resize to get more space to minimize rehashing.
5221   if (this->signatures_.size() > 4
5222       && !this->resized_signatures_)
5223     {
5224       reserve_unordered_map(&this->signatures_,
5225 			    this->number_of_input_files_ * 64);
5226       this->resized_signatures_ = true;
5227     }
5228 
5229   Kept_section candidate;
5230   std::pair<Signatures::iterator, bool> ins =
5231     this->signatures_.insert(std::make_pair(name, candidate));
5232 
5233   if (kept_section != NULL)
5234     *kept_section = &ins.first->second;
5235   if (ins.second)
5236     {
5237       // This is the first time we've seen this signature.
5238       ins.first->second.set_object(object);
5239       ins.first->second.set_shndx(shndx);
5240       if (is_comdat)
5241 	ins.first->second.set_is_comdat();
5242       if (is_group_name)
5243 	ins.first->second.set_is_group_name();
5244       return true;
5245     }
5246 
5247   // We have already seen this signature.
5248 
5249   if (ins.first->second.is_group_name())
5250     {
5251       // We've already seen a real section group with this signature.
5252       // If the kept group is from a plugin object, and we're in the
5253       // replacement phase, accept the new one as a replacement.
5254       if (ins.first->second.object() == NULL
5255 	  && parameters->options().plugins()->in_replacement_phase())
5256 	{
5257 	  ins.first->second.set_object(object);
5258 	  ins.first->second.set_shndx(shndx);
5259 	  return true;
5260 	}
5261       return false;
5262     }
5263   else if (is_group_name)
5264     {
5265       // This is a real section group, and we've already seen a
5266       // linkonce section with this signature.  Record that we've seen
5267       // a section group, and don't include this section group.
5268       ins.first->second.set_is_group_name();
5269       return false;
5270     }
5271   else
5272     {
5273       // We've already seen a linkonce section and this is a linkonce
5274       // section.  These don't block each other--this may be the same
5275       // symbol name with different section types.
5276       return true;
5277     }
5278 }
5279 
5280 // Store the allocated sections into the section list.
5281 
5282 void
get_allocated_sections(Section_list * section_list) const5283 Layout::get_allocated_sections(Section_list* section_list) const
5284 {
5285   for (Section_list::const_iterator p = this->section_list_.begin();
5286        p != this->section_list_.end();
5287        ++p)
5288     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5289       section_list->push_back(*p);
5290 }
5291 
5292 // Store the executable sections into the section list.
5293 
5294 void
get_executable_sections(Section_list * section_list) const5295 Layout::get_executable_sections(Section_list* section_list) const
5296 {
5297   for (Section_list::const_iterator p = this->section_list_.begin();
5298        p != this->section_list_.end();
5299        ++p)
5300     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5301 	== (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5302       section_list->push_back(*p);
5303 }
5304 
5305 // Create an output segment.
5306 
5307 Output_segment*
make_output_segment(elfcpp::Elf_Word type,elfcpp::Elf_Word flags)5308 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5309 {
5310   gold_assert(!parameters->options().relocatable());
5311   Output_segment* oseg = new Output_segment(type, flags);
5312   this->segment_list_.push_back(oseg);
5313 
5314   if (type == elfcpp::PT_TLS)
5315     this->tls_segment_ = oseg;
5316   else if (type == elfcpp::PT_GNU_RELRO)
5317     this->relro_segment_ = oseg;
5318   else if (type == elfcpp::PT_INTERP)
5319     this->interp_segment_ = oseg;
5320 
5321   return oseg;
5322 }
5323 
5324 // Return the file offset of the normal symbol table.
5325 
5326 off_t
symtab_section_offset() const5327 Layout::symtab_section_offset() const
5328 {
5329   if (this->symtab_section_ != NULL)
5330     return this->symtab_section_->offset();
5331   return 0;
5332 }
5333 
5334 // Return the section index of the normal symbol table.  It may have
5335 // been stripped by the -s/--strip-all option.
5336 
5337 unsigned int
symtab_section_shndx() const5338 Layout::symtab_section_shndx() const
5339 {
5340   if (this->symtab_section_ != NULL)
5341     return this->symtab_section_->out_shndx();
5342   return 0;
5343 }
5344 
5345 // Write out the Output_sections.  Most won't have anything to write,
5346 // since most of the data will come from input sections which are
5347 // handled elsewhere.  But some Output_sections do have Output_data.
5348 
5349 void
write_output_sections(Output_file * of) const5350 Layout::write_output_sections(Output_file* of) const
5351 {
5352   for (Section_list::const_iterator p = this->section_list_.begin();
5353        p != this->section_list_.end();
5354        ++p)
5355     {
5356       if (!(*p)->after_input_sections())
5357 	(*p)->write(of);
5358     }
5359 }
5360 
5361 // Write out data not associated with a section or the symbol table.
5362 
5363 void
write_data(const Symbol_table * symtab,Output_file * of) const5364 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5365 {
5366   if (!parameters->options().strip_all())
5367     {
5368       const Output_section* symtab_section = this->symtab_section_;
5369       for (Section_list::const_iterator p = this->section_list_.begin();
5370 	   p != this->section_list_.end();
5371 	   ++p)
5372 	{
5373 	  if ((*p)->needs_symtab_index())
5374 	    {
5375 	      gold_assert(symtab_section != NULL);
5376 	      unsigned int index = (*p)->symtab_index();
5377 	      gold_assert(index > 0 && index != -1U);
5378 	      off_t off = (symtab_section->offset()
5379 			   + index * symtab_section->entsize());
5380 	      symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5381 	    }
5382 	}
5383     }
5384 
5385   const Output_section* dynsym_section = this->dynsym_section_;
5386   for (Section_list::const_iterator p = this->section_list_.begin();
5387        p != this->section_list_.end();
5388        ++p)
5389     {
5390       if ((*p)->needs_dynsym_index())
5391 	{
5392 	  gold_assert(dynsym_section != NULL);
5393 	  unsigned int index = (*p)->dynsym_index();
5394 	  gold_assert(index > 0 && index != -1U);
5395 	  off_t off = (dynsym_section->offset()
5396 		       + index * dynsym_section->entsize());
5397 	  symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5398 	}
5399     }
5400 
5401   // Write out the Output_data which are not in an Output_section.
5402   for (Data_list::const_iterator p = this->special_output_list_.begin();
5403        p != this->special_output_list_.end();
5404        ++p)
5405     (*p)->write(of);
5406 
5407   // Write out the Output_data which are not in an Output_section
5408   // and are regenerated in each iteration of relaxation.
5409   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5410        p != this->relax_output_list_.end();
5411        ++p)
5412     (*p)->write(of);
5413 }
5414 
5415 // Write out the Output_sections which can only be written after the
5416 // input sections are complete.
5417 
5418 void
write_sections_after_input_sections(Output_file * of)5419 Layout::write_sections_after_input_sections(Output_file* of)
5420 {
5421   // Determine the final section offsets, and thus the final output
5422   // file size.  Note we finalize the .shstrab last, to allow the
5423   // after_input_section sections to modify their section-names before
5424   // writing.
5425   if (this->any_postprocessing_sections_)
5426     {
5427       off_t off = this->output_file_size_;
5428       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5429 
5430       // Now that we've finalized the names, we can finalize the shstrab.
5431       off =
5432 	this->set_section_offsets(off,
5433 				  STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5434 
5435       if (off > this->output_file_size_)
5436 	{
5437 	  of->resize(off);
5438 	  this->output_file_size_ = off;
5439 	}
5440     }
5441 
5442   for (Section_list::const_iterator p = this->section_list_.begin();
5443        p != this->section_list_.end();
5444        ++p)
5445     {
5446       if ((*p)->after_input_sections())
5447 	(*p)->write(of);
5448     }
5449 
5450   this->section_headers_->write(of);
5451 }
5452 
5453 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5454 // or as a "tree" where each chunk of the string is hashed and then those
5455 // hashes are put into a (much smaller) string which is hashed with sha1.
5456 // We compute a checksum over the entire file because that is simplest.
5457 
5458 Task_token*
queue_build_id_tasks(Workqueue * workqueue,Task_token * build_id_blocker,Output_file * of)5459 Layout::queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
5460 			     Output_file* of)
5461 {
5462   const size_t filesize = (this->output_file_size() <= 0 ? 0
5463 			   : static_cast<size_t>(this->output_file_size()));
5464   if (this->build_id_note_ != NULL
5465       && strcmp(parameters->options().build_id(), "tree") == 0
5466       && parameters->options().build_id_chunk_size_for_treehash() > 0
5467       && filesize > 0
5468       && (filesize >=
5469 	  parameters->options().build_id_min_file_size_for_treehash()))
5470     {
5471       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5472       const size_t chunk_size =
5473 	  parameters->options().build_id_chunk_size_for_treehash();
5474       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5475       Task_token* post_hash_tasks_blocker = new Task_token(true);
5476       post_hash_tasks_blocker->add_blockers(num_hashes);
5477       this->size_of_array_of_hashes_ = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5478       const unsigned char* src = of->get_input_view(0, filesize);
5479       this->input_view_ = src;
5480       unsigned char *dst = new unsigned char[this->size_of_array_of_hashes_];
5481       this->array_of_hashes_ = dst;
5482       for (size_t i = 0, src_offset = 0; i < num_hashes;
5483 	   i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5484 	{
5485 	  size_t size = std::min(chunk_size, filesize - src_offset);
5486 	  workqueue->queue(new Hash_task(src + src_offset,
5487 					 size,
5488 					 dst,
5489 					 build_id_blocker,
5490 					 post_hash_tasks_blocker));
5491 	}
5492       return post_hash_tasks_blocker;
5493     }
5494   return build_id_blocker;
5495 }
5496 
5497 // If a tree-style build ID was requested, the parallel part of that computation
5498 // is already done, and the final hash-of-hashes is computed here.  For other
5499 // types of build IDs, all the work is done here.
5500 
5501 void
write_build_id(Output_file * of) const5502 Layout::write_build_id(Output_file* of) const
5503 {
5504   if (this->build_id_note_ == NULL)
5505     return;
5506 
5507   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5508 					  this->build_id_note_->data_size());
5509 
5510   if (this->array_of_hashes_ == NULL)
5511     {
5512       const size_t output_file_size = this->output_file_size();
5513       const unsigned char* iv = of->get_input_view(0, output_file_size);
5514       const char* style = parameters->options().build_id();
5515 
5516       // If we get here with style == "tree" then the output must be
5517       // too small for chunking, and we use SHA-1 in that case.
5518       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5519 	sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5520       else if (strcmp(style, "md5") == 0)
5521 	md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5522       else
5523 	gold_unreachable();
5524 
5525       of->free_input_view(0, output_file_size, iv);
5526     }
5527   else
5528     {
5529       // Non-overlapping substrings of the output file have been hashed.
5530       // Compute SHA-1 hash of the hashes.
5531       sha1_buffer(reinterpret_cast<const char*>(this->array_of_hashes_),
5532 		  this->size_of_array_of_hashes_, ov);
5533       delete[] this->array_of_hashes_;
5534       of->free_input_view(0, this->output_file_size(), this->input_view_);
5535     }
5536 
5537   of->write_output_view(this->build_id_note_->offset(),
5538 			this->build_id_note_->data_size(),
5539 			ov);
5540 }
5541 
5542 // Write out a binary file.  This is called after the link is
5543 // complete.  IN is the temporary output file we used to generate the
5544 // ELF code.  We simply walk through the segments, read them from
5545 // their file offset in IN, and write them to their load address in
5546 // the output file.  FIXME: with a bit more work, we could support
5547 // S-records and/or Intel hex format here.
5548 
5549 void
write_binary(Output_file * in) const5550 Layout::write_binary(Output_file* in) const
5551 {
5552   gold_assert(parameters->options().oformat_enum()
5553 	      == General_options::OBJECT_FORMAT_BINARY);
5554 
5555   // Get the size of the binary file.
5556   uint64_t max_load_address = 0;
5557   for (Segment_list::const_iterator p = this->segment_list_.begin();
5558        p != this->segment_list_.end();
5559        ++p)
5560     {
5561       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5562 	{
5563 	  uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5564 	  if (max_paddr > max_load_address)
5565 	    max_load_address = max_paddr;
5566 	}
5567     }
5568 
5569   Output_file out(parameters->options().output_file_name());
5570   out.open(max_load_address);
5571 
5572   for (Segment_list::const_iterator p = this->segment_list_.begin();
5573        p != this->segment_list_.end();
5574        ++p)
5575     {
5576       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5577 	{
5578 	  const unsigned char* vin = in->get_input_view((*p)->offset(),
5579 							(*p)->filesz());
5580 	  unsigned char* vout = out.get_output_view((*p)->paddr(),
5581 						    (*p)->filesz());
5582 	  memcpy(vout, vin, (*p)->filesz());
5583 	  out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5584 	  in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5585 	}
5586     }
5587 
5588   out.close();
5589 }
5590 
5591 // Print the output sections to the map file.
5592 
5593 void
print_to_mapfile(Mapfile * mapfile) const5594 Layout::print_to_mapfile(Mapfile* mapfile) const
5595 {
5596   for (Segment_list::const_iterator p = this->segment_list_.begin();
5597        p != this->segment_list_.end();
5598        ++p)
5599     (*p)->print_sections_to_mapfile(mapfile);
5600   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5601        p != this->unattached_section_list_.end();
5602        ++p)
5603     (*p)->print_to_mapfile(mapfile);
5604 }
5605 
5606 // Print statistical information to stderr.  This is used for --stats.
5607 
5608 void
print_stats() const5609 Layout::print_stats() const
5610 {
5611   this->namepool_.print_stats("section name pool");
5612   this->sympool_.print_stats("output symbol name pool");
5613   this->dynpool_.print_stats("dynamic name pool");
5614 
5615   for (Section_list::const_iterator p = this->section_list_.begin();
5616        p != this->section_list_.end();
5617        ++p)
5618     (*p)->print_merge_stats();
5619 }
5620 
5621 // Write_sections_task methods.
5622 
5623 // We can always run this task.
5624 
5625 Task_token*
is_runnable()5626 Write_sections_task::is_runnable()
5627 {
5628   return NULL;
5629 }
5630 
5631 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5632 // when finished.
5633 
5634 void
locks(Task_locker * tl)5635 Write_sections_task::locks(Task_locker* tl)
5636 {
5637   tl->add(this, this->output_sections_blocker_);
5638   if (this->input_sections_blocker_ != NULL)
5639     tl->add(this, this->input_sections_blocker_);
5640   tl->add(this, this->final_blocker_);
5641 }
5642 
5643 // Run the task--write out the data.
5644 
5645 void
run(Workqueue *)5646 Write_sections_task::run(Workqueue*)
5647 {
5648   this->layout_->write_output_sections(this->of_);
5649 }
5650 
5651 // Write_data_task methods.
5652 
5653 // We can always run this task.
5654 
5655 Task_token*
is_runnable()5656 Write_data_task::is_runnable()
5657 {
5658   return NULL;
5659 }
5660 
5661 // We need to unlock FINAL_BLOCKER when finished.
5662 
5663 void
locks(Task_locker * tl)5664 Write_data_task::locks(Task_locker* tl)
5665 {
5666   tl->add(this, this->final_blocker_);
5667 }
5668 
5669 // Run the task--write out the data.
5670 
5671 void
run(Workqueue *)5672 Write_data_task::run(Workqueue*)
5673 {
5674   this->layout_->write_data(this->symtab_, this->of_);
5675 }
5676 
5677 // Write_symbols_task methods.
5678 
5679 // We can always run this task.
5680 
5681 Task_token*
is_runnable()5682 Write_symbols_task::is_runnable()
5683 {
5684   return NULL;
5685 }
5686 
5687 // We need to unlock FINAL_BLOCKER when finished.
5688 
5689 void
locks(Task_locker * tl)5690 Write_symbols_task::locks(Task_locker* tl)
5691 {
5692   tl->add(this, this->final_blocker_);
5693 }
5694 
5695 // Run the task--write out the symbols.
5696 
5697 void
run(Workqueue *)5698 Write_symbols_task::run(Workqueue*)
5699 {
5700   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5701 			       this->layout_->symtab_xindex(),
5702 			       this->layout_->dynsym_xindex(), this->of_);
5703 }
5704 
5705 // Write_after_input_sections_task methods.
5706 
5707 // We can only run this task after the input sections have completed.
5708 
5709 Task_token*
is_runnable()5710 Write_after_input_sections_task::is_runnable()
5711 {
5712   if (this->input_sections_blocker_->is_blocked())
5713     return this->input_sections_blocker_;
5714   return NULL;
5715 }
5716 
5717 // We need to unlock FINAL_BLOCKER when finished.
5718 
5719 void
locks(Task_locker * tl)5720 Write_after_input_sections_task::locks(Task_locker* tl)
5721 {
5722   tl->add(this, this->final_blocker_);
5723 }
5724 
5725 // Run the task.
5726 
5727 void
run(Workqueue *)5728 Write_after_input_sections_task::run(Workqueue*)
5729 {
5730   this->layout_->write_sections_after_input_sections(this->of_);
5731 }
5732 
5733 // Close_task_runner methods.
5734 
5735 // Finish up the build ID computation, if necessary, and write a binary file,
5736 // if necessary.  Then close the output file.
5737 
5738 void
run(Workqueue *,const Task *)5739 Close_task_runner::run(Workqueue*, const Task*)
5740 {
5741   // At this point the multi-threaded part of the build ID computation,
5742   // if any, is done.  See queue_build_id_tasks().
5743   this->layout_->write_build_id(this->of_);
5744 
5745   // If we've been asked to create a binary file, we do so here.
5746   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5747     this->layout_->write_binary(this->of_);
5748 
5749   this->of_->close();
5750 }
5751 
5752 // Instantiate the templates we need.  We could use the configure
5753 // script to restrict this to only the ones for implemented targets.
5754 
5755 #ifdef HAVE_TARGET_32_LITTLE
5756 template
5757 Output_section*
5758 Layout::init_fixed_output_section<32, false>(
5759     const char* name,
5760     elfcpp::Shdr<32, false>& shdr);
5761 #endif
5762 
5763 #ifdef HAVE_TARGET_32_BIG
5764 template
5765 Output_section*
5766 Layout::init_fixed_output_section<32, true>(
5767     const char* name,
5768     elfcpp::Shdr<32, true>& shdr);
5769 #endif
5770 
5771 #ifdef HAVE_TARGET_64_LITTLE
5772 template
5773 Output_section*
5774 Layout::init_fixed_output_section<64, false>(
5775     const char* name,
5776     elfcpp::Shdr<64, false>& shdr);
5777 #endif
5778 
5779 #ifdef HAVE_TARGET_64_BIG
5780 template
5781 Output_section*
5782 Layout::init_fixed_output_section<64, true>(
5783     const char* name,
5784     elfcpp::Shdr<64, true>& shdr);
5785 #endif
5786 
5787 #ifdef HAVE_TARGET_32_LITTLE
5788 template
5789 Output_section*
5790 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5791 			  unsigned int shndx,
5792 			  const char* name,
5793 			  const elfcpp::Shdr<32, false>& shdr,
5794 			  unsigned int, unsigned int, off_t*);
5795 #endif
5796 
5797 #ifdef HAVE_TARGET_32_BIG
5798 template
5799 Output_section*
5800 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5801 			 unsigned int shndx,
5802 			 const char* name,
5803 			 const elfcpp::Shdr<32, true>& shdr,
5804 			 unsigned int, unsigned int, off_t*);
5805 #endif
5806 
5807 #ifdef HAVE_TARGET_64_LITTLE
5808 template
5809 Output_section*
5810 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5811 			  unsigned int shndx,
5812 			  const char* name,
5813 			  const elfcpp::Shdr<64, false>& shdr,
5814 			  unsigned int, unsigned int, off_t*);
5815 #endif
5816 
5817 #ifdef HAVE_TARGET_64_BIG
5818 template
5819 Output_section*
5820 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5821 			 unsigned int shndx,
5822 			 const char* name,
5823 			 const elfcpp::Shdr<64, true>& shdr,
5824 			 unsigned int, unsigned int, off_t*);
5825 #endif
5826 
5827 #ifdef HAVE_TARGET_32_LITTLE
5828 template
5829 Output_section*
5830 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5831 				unsigned int reloc_shndx,
5832 				const elfcpp::Shdr<32, false>& shdr,
5833 				Output_section* data_section,
5834 				Relocatable_relocs* rr);
5835 #endif
5836 
5837 #ifdef HAVE_TARGET_32_BIG
5838 template
5839 Output_section*
5840 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5841 			       unsigned int reloc_shndx,
5842 			       const elfcpp::Shdr<32, true>& shdr,
5843 			       Output_section* data_section,
5844 			       Relocatable_relocs* rr);
5845 #endif
5846 
5847 #ifdef HAVE_TARGET_64_LITTLE
5848 template
5849 Output_section*
5850 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5851 				unsigned int reloc_shndx,
5852 				const elfcpp::Shdr<64, false>& shdr,
5853 				Output_section* data_section,
5854 				Relocatable_relocs* rr);
5855 #endif
5856 
5857 #ifdef HAVE_TARGET_64_BIG
5858 template
5859 Output_section*
5860 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5861 			       unsigned int reloc_shndx,
5862 			       const elfcpp::Shdr<64, true>& shdr,
5863 			       Output_section* data_section,
5864 			       Relocatable_relocs* rr);
5865 #endif
5866 
5867 #ifdef HAVE_TARGET_32_LITTLE
5868 template
5869 void
5870 Layout::layout_group<32, false>(Symbol_table* symtab,
5871 				Sized_relobj_file<32, false>* object,
5872 				unsigned int,
5873 				const char* group_section_name,
5874 				const char* signature,
5875 				const elfcpp::Shdr<32, false>& shdr,
5876 				elfcpp::Elf_Word flags,
5877 				std::vector<unsigned int>* shndxes);
5878 #endif
5879 
5880 #ifdef HAVE_TARGET_32_BIG
5881 template
5882 void
5883 Layout::layout_group<32, true>(Symbol_table* symtab,
5884 			       Sized_relobj_file<32, true>* object,
5885 			       unsigned int,
5886 			       const char* group_section_name,
5887 			       const char* signature,
5888 			       const elfcpp::Shdr<32, true>& shdr,
5889 			       elfcpp::Elf_Word flags,
5890 			       std::vector<unsigned int>* shndxes);
5891 #endif
5892 
5893 #ifdef HAVE_TARGET_64_LITTLE
5894 template
5895 void
5896 Layout::layout_group<64, false>(Symbol_table* symtab,
5897 				Sized_relobj_file<64, false>* object,
5898 				unsigned int,
5899 				const char* group_section_name,
5900 				const char* signature,
5901 				const elfcpp::Shdr<64, false>& shdr,
5902 				elfcpp::Elf_Word flags,
5903 				std::vector<unsigned int>* shndxes);
5904 #endif
5905 
5906 #ifdef HAVE_TARGET_64_BIG
5907 template
5908 void
5909 Layout::layout_group<64, true>(Symbol_table* symtab,
5910 			       Sized_relobj_file<64, true>* object,
5911 			       unsigned int,
5912 			       const char* group_section_name,
5913 			       const char* signature,
5914 			       const elfcpp::Shdr<64, true>& shdr,
5915 			       elfcpp::Elf_Word flags,
5916 			       std::vector<unsigned int>* shndxes);
5917 #endif
5918 
5919 #ifdef HAVE_TARGET_32_LITTLE
5920 template
5921 Output_section*
5922 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5923 				   const unsigned char* symbols,
5924 				   off_t symbols_size,
5925 				   const unsigned char* symbol_names,
5926 				   off_t symbol_names_size,
5927 				   unsigned int shndx,
5928 				   const elfcpp::Shdr<32, false>& shdr,
5929 				   unsigned int reloc_shndx,
5930 				   unsigned int reloc_type,
5931 				   off_t* off);
5932 #endif
5933 
5934 #ifdef HAVE_TARGET_32_BIG
5935 template
5936 Output_section*
5937 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5938 				  const unsigned char* symbols,
5939 				  off_t symbols_size,
5940 				  const unsigned char* symbol_names,
5941 				  off_t symbol_names_size,
5942 				  unsigned int shndx,
5943 				  const elfcpp::Shdr<32, true>& shdr,
5944 				  unsigned int reloc_shndx,
5945 				  unsigned int reloc_type,
5946 				  off_t* off);
5947 #endif
5948 
5949 #ifdef HAVE_TARGET_64_LITTLE
5950 template
5951 Output_section*
5952 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5953 				   const unsigned char* symbols,
5954 				   off_t symbols_size,
5955 				   const unsigned char* symbol_names,
5956 				   off_t symbol_names_size,
5957 				   unsigned int shndx,
5958 				   const elfcpp::Shdr<64, false>& shdr,
5959 				   unsigned int reloc_shndx,
5960 				   unsigned int reloc_type,
5961 				   off_t* off);
5962 #endif
5963 
5964 #ifdef HAVE_TARGET_64_BIG
5965 template
5966 Output_section*
5967 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5968 				  const unsigned char* symbols,
5969 				  off_t symbols_size,
5970 				  const unsigned char* symbol_names,
5971 				  off_t symbol_names_size,
5972 				  unsigned int shndx,
5973 				  const elfcpp::Shdr<64, true>& shdr,
5974 				  unsigned int reloc_shndx,
5975 				  unsigned int reloc_type,
5976 				  off_t* off);
5977 #endif
5978 
5979 #ifdef HAVE_TARGET_32_LITTLE
5980 template
5981 void
5982 Layout::add_to_gdb_index(bool is_type_unit,
5983 			 Sized_relobj<32, false>* object,
5984 			 const unsigned char* symbols,
5985 			 off_t symbols_size,
5986 			 unsigned int shndx,
5987 			 unsigned int reloc_shndx,
5988 			 unsigned int reloc_type);
5989 #endif
5990 
5991 #ifdef HAVE_TARGET_32_BIG
5992 template
5993 void
5994 Layout::add_to_gdb_index(bool is_type_unit,
5995 			 Sized_relobj<32, true>* object,
5996 			 const unsigned char* symbols,
5997 			 off_t symbols_size,
5998 			 unsigned int shndx,
5999 			 unsigned int reloc_shndx,
6000 			 unsigned int reloc_type);
6001 #endif
6002 
6003 #ifdef HAVE_TARGET_64_LITTLE
6004 template
6005 void
6006 Layout::add_to_gdb_index(bool is_type_unit,
6007 			 Sized_relobj<64, false>* object,
6008 			 const unsigned char* symbols,
6009 			 off_t symbols_size,
6010 			 unsigned int shndx,
6011 			 unsigned int reloc_shndx,
6012 			 unsigned int reloc_type);
6013 #endif
6014 
6015 #ifdef HAVE_TARGET_64_BIG
6016 template
6017 void
6018 Layout::add_to_gdb_index(bool is_type_unit,
6019 			 Sized_relobj<64, true>* object,
6020 			 const unsigned char* symbols,
6021 			 off_t symbols_size,
6022 			 unsigned int shndx,
6023 			 unsigned int reloc_shndx,
6024 			 unsigned int reloc_type);
6025 #endif
6026 
6027 } // End namespace gold.
6028