1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright (C) 2008-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // A region of memory.
47 class Memory_region
48 {
49 public:
Memory_region(const char * name,size_t namelen,unsigned int attributes,Expression * start,Expression * length)50 Memory_region(const char* name, size_t namelen, unsigned int attributes,
51 Expression* start, Expression* length)
52 : name_(name, namelen),
53 attributes_(attributes),
54 start_(start),
55 length_(length),
56 current_offset_(0),
57 vma_sections_(),
58 lma_sections_(),
59 last_section_(NULL)
60 { }
61
62 // Return the name of this region.
63 const std::string&
name() const64 name() const
65 { return this->name_; }
66
67 // Return the start address of this region.
68 Expression*
start_address() const69 start_address() const
70 { return this->start_; }
71
72 // Return the length of this region.
73 Expression*
length() const74 length() const
75 { return this->length_; }
76
77 // Print the region (when debugging).
78 void
79 print(FILE*) const;
80
81 // Return true if <name,namelen> matches this region.
82 bool
name_match(const char * name,size_t namelen)83 name_match(const char* name, size_t namelen)
84 {
85 return (this->name_.length() == namelen
86 && strncmp(this->name_.c_str(), name, namelen) == 0);
87 }
88
89 Expression*
get_current_address() const90 get_current_address() const
91 {
92 return
93 script_exp_binary_add(this->start_,
94 script_exp_integer(this->current_offset_));
95 }
96
97 void
increment_offset(std::string section_name,uint64_t amount,const Symbol_table * symtab,const Layout * layout)98 increment_offset(std::string section_name, uint64_t amount,
99 const Symbol_table* symtab, const Layout* layout)
100 {
101 this->current_offset_ += amount;
102
103 if (this->current_offset_
104 > this->length_->eval(symtab, layout, false))
105 gold_error(_("section %s overflows end of region %s"),
106 section_name.c_str(), this->name_.c_str());
107 }
108
109 // Returns true iff there is room left in this region
110 // for AMOUNT more bytes of data.
111 bool
has_room_for(const Symbol_table * symtab,const Layout * layout,uint64_t amount) const112 has_room_for(const Symbol_table* symtab, const Layout* layout,
113 uint64_t amount) const
114 {
115 return (this->current_offset_ + amount
116 < this->length_->eval(symtab, layout, false));
117 }
118
119 // Return true if the provided section flags
120 // are compatible with this region's attributes.
121 bool
122 attributes_compatible(elfcpp::Elf_Xword flags, elfcpp::Elf_Xword type) const;
123
124 void
add_section(Output_section_definition * sec,bool vma)125 add_section(Output_section_definition* sec, bool vma)
126 {
127 if (vma)
128 this->vma_sections_.push_back(sec);
129 else
130 this->lma_sections_.push_back(sec);
131 }
132
133 typedef std::vector<Output_section_definition*> Section_list;
134
135 // Return the start of the list of sections
136 // whose VMAs are taken from this region.
137 Section_list::const_iterator
get_vma_section_list_start() const138 get_vma_section_list_start() const
139 { return this->vma_sections_.begin(); }
140
141 // Return the start of the list of sections
142 // whose LMAs are taken from this region.
143 Section_list::const_iterator
get_lma_section_list_start() const144 get_lma_section_list_start() const
145 { return this->lma_sections_.begin(); }
146
147 // Return the end of the list of sections
148 // whose VMAs are taken from this region.
149 Section_list::const_iterator
get_vma_section_list_end() const150 get_vma_section_list_end() const
151 { return this->vma_sections_.end(); }
152
153 // Return the end of the list of sections
154 // whose LMAs are taken from this region.
155 Section_list::const_iterator
get_lma_section_list_end() const156 get_lma_section_list_end() const
157 { return this->lma_sections_.end(); }
158
159 Output_section_definition*
get_last_section() const160 get_last_section() const
161 { return this->last_section_; }
162
163 void
set_last_section(Output_section_definition * sec)164 set_last_section(Output_section_definition* sec)
165 { this->last_section_ = sec; }
166
167 private:
168
169 std::string name_;
170 unsigned int attributes_;
171 Expression* start_;
172 Expression* length_;
173 // The offset to the next free byte in the region.
174 // Note - for compatibility with GNU LD we only maintain one offset
175 // regardless of whether the region is being used for VMA values,
176 // LMA values, or both.
177 uint64_t current_offset_;
178 // A list of sections whose VMAs are set inside this region.
179 Section_list vma_sections_;
180 // A list of sections whose LMAs are set inside this region.
181 Section_list lma_sections_;
182 // The latest section to make use of this region.
183 Output_section_definition* last_section_;
184 };
185
186 // Return true if the provided section flags
187 // are compatible with this region's attributes.
188
189 bool
attributes_compatible(elfcpp::Elf_Xword flags,elfcpp::Elf_Xword type) const190 Memory_region::attributes_compatible(elfcpp::Elf_Xword flags,
191 elfcpp::Elf_Xword type) const
192 {
193 unsigned int attrs = this->attributes_;
194
195 // No attributes means that this region is not compatible with anything.
196 if (attrs == 0)
197 return false;
198
199 bool match = true;
200 do
201 {
202 switch (attrs & - attrs)
203 {
204 case MEM_EXECUTABLE:
205 if ((flags & elfcpp::SHF_EXECINSTR) == 0)
206 match = false;
207 break;
208
209 case MEM_WRITEABLE:
210 if ((flags & elfcpp::SHF_WRITE) == 0)
211 match = false;
212 break;
213
214 case MEM_READABLE:
215 // All sections are presumed readable.
216 break;
217
218 case MEM_ALLOCATABLE:
219 if ((flags & elfcpp::SHF_ALLOC) == 0)
220 match = false;
221 break;
222
223 case MEM_INITIALIZED:
224 if ((type & elfcpp::SHT_NOBITS) != 0)
225 match = false;
226 break;
227 }
228 attrs &= ~ (attrs & - attrs);
229 }
230 while (attrs != 0);
231
232 return match;
233 }
234
235 // Print a memory region.
236
237 void
print(FILE * f) const238 Memory_region::print(FILE* f) const
239 {
240 fprintf(f, " %s", this->name_.c_str());
241
242 unsigned int attrs = this->attributes_;
243 if (attrs != 0)
244 {
245 fprintf(f, " (");
246 do
247 {
248 switch (attrs & - attrs)
249 {
250 case MEM_EXECUTABLE: fputc('x', f); break;
251 case MEM_WRITEABLE: fputc('w', f); break;
252 case MEM_READABLE: fputc('r', f); break;
253 case MEM_ALLOCATABLE: fputc('a', f); break;
254 case MEM_INITIALIZED: fputc('i', f); break;
255 default:
256 gold_unreachable();
257 }
258 attrs &= ~ (attrs & - attrs);
259 }
260 while (attrs != 0);
261 fputc(')', f);
262 }
263
264 fprintf(f, " : origin = ");
265 this->start_->print(f);
266 fprintf(f, ", length = ");
267 this->length_->print(f);
268 fprintf(f, "\n");
269 }
270
271 // Manage orphan sections. This is intended to be largely compatible
272 // with the GNU linker. The Linux kernel implicitly relies on
273 // something similar to the GNU linker's orphan placement. We
274 // originally used a simpler scheme here, but it caused the kernel
275 // build to fail, and was also rather inefficient.
276
277 class Orphan_section_placement
278 {
279 private:
280 typedef Script_sections::Elements_iterator Elements_iterator;
281
282 public:
283 Orphan_section_placement();
284
285 // Handle an output section during initialization of this mapping.
286 void
287 output_section_init(const std::string& name, Output_section*,
288 Elements_iterator location);
289
290 // Initialize the last location.
291 void
292 last_init(Elements_iterator location);
293
294 // Set *PWHERE to the address of an iterator pointing to the
295 // location to use for an orphan section. Return true if the
296 // iterator has a value, false otherwise.
297 bool
298 find_place(Output_section*, Elements_iterator** pwhere);
299
300 // Return the iterator being used for sections at the very end of
301 // the linker script.
302 Elements_iterator
303 last_place() const;
304
305 private:
306 // The places that we specifically recognize. This list is copied
307 // from the GNU linker.
308 enum Place_index
309 {
310 PLACE_TEXT,
311 PLACE_RODATA,
312 PLACE_DATA,
313 PLACE_TLS,
314 PLACE_TLS_BSS,
315 PLACE_BSS,
316 PLACE_REL,
317 PLACE_INTERP,
318 PLACE_NONALLOC,
319 PLACE_LAST,
320 PLACE_MAX
321 };
322
323 // The information we keep for a specific place.
324 struct Place
325 {
326 // The name of sections for this place.
327 const char* name;
328 // Whether we have a location for this place.
329 bool have_location;
330 // The iterator for this place.
331 Elements_iterator location;
332 };
333
334 // Initialize one place element.
335 void
336 initialize_place(Place_index, const char*);
337
338 // The places.
339 Place places_[PLACE_MAX];
340 // True if this is the first call to output_section_init.
341 bool first_init_;
342 };
343
344 // Initialize Orphan_section_placement.
345
Orphan_section_placement()346 Orphan_section_placement::Orphan_section_placement()
347 : first_init_(true)
348 {
349 this->initialize_place(PLACE_TEXT, ".text");
350 this->initialize_place(PLACE_RODATA, ".rodata");
351 this->initialize_place(PLACE_DATA, ".data");
352 this->initialize_place(PLACE_TLS, NULL);
353 this->initialize_place(PLACE_TLS_BSS, NULL);
354 this->initialize_place(PLACE_BSS, ".bss");
355 this->initialize_place(PLACE_REL, NULL);
356 this->initialize_place(PLACE_INTERP, ".interp");
357 this->initialize_place(PLACE_NONALLOC, NULL);
358 this->initialize_place(PLACE_LAST, NULL);
359 }
360
361 // Initialize one place element.
362
363 void
initialize_place(Place_index index,const char * name)364 Orphan_section_placement::initialize_place(Place_index index, const char* name)
365 {
366 this->places_[index].name = name;
367 this->places_[index].have_location = false;
368 }
369
370 // While initializing the Orphan_section_placement information, this
371 // is called once for each output section named in the linker script.
372 // If we found an output section during the link, it will be passed in
373 // OS.
374
375 void
output_section_init(const std::string & name,Output_section * os,Elements_iterator location)376 Orphan_section_placement::output_section_init(const std::string& name,
377 Output_section* os,
378 Elements_iterator location)
379 {
380 bool first_init = this->first_init_;
381 this->first_init_ = false;
382
383 for (int i = 0; i < PLACE_MAX; ++i)
384 {
385 if (this->places_[i].name != NULL && this->places_[i].name == name)
386 {
387 if (this->places_[i].have_location)
388 {
389 // We have already seen a section with this name.
390 return;
391 }
392
393 this->places_[i].location = location;
394 this->places_[i].have_location = true;
395
396 // If we just found the .bss section, restart the search for
397 // an unallocated section. This follows the GNU linker's
398 // behaviour.
399 if (i == PLACE_BSS)
400 this->places_[PLACE_NONALLOC].have_location = false;
401
402 return;
403 }
404 }
405
406 // Relocation sections.
407 if (!this->places_[PLACE_REL].have_location
408 && os != NULL
409 && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
410 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
411 {
412 this->places_[PLACE_REL].location = location;
413 this->places_[PLACE_REL].have_location = true;
414 }
415
416 // We find the location for unallocated sections by finding the
417 // first debugging or comment section after the BSS section (if
418 // there is one).
419 if (!this->places_[PLACE_NONALLOC].have_location
420 && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
421 {
422 // We add orphan sections after the location in PLACES_. We
423 // want to store unallocated sections before LOCATION. If this
424 // is the very first section, we can't use it.
425 if (!first_init)
426 {
427 --location;
428 this->places_[PLACE_NONALLOC].location = location;
429 this->places_[PLACE_NONALLOC].have_location = true;
430 }
431 }
432 }
433
434 // Initialize the last location.
435
436 void
last_init(Elements_iterator location)437 Orphan_section_placement::last_init(Elements_iterator location)
438 {
439 this->places_[PLACE_LAST].location = location;
440 this->places_[PLACE_LAST].have_location = true;
441 }
442
443 // Set *PWHERE to the address of an iterator pointing to the location
444 // to use for an orphan section. Return true if the iterator has a
445 // value, false otherwise.
446
447 bool
find_place(Output_section * os,Elements_iterator ** pwhere)448 Orphan_section_placement::find_place(Output_section* os,
449 Elements_iterator** pwhere)
450 {
451 // Figure out where OS should go. This is based on the GNU linker
452 // code. FIXME: The GNU linker handles small data sections
453 // specially, but we don't.
454 elfcpp::Elf_Word type = os->type();
455 elfcpp::Elf_Xword flags = os->flags();
456 Place_index index;
457 if ((flags & elfcpp::SHF_ALLOC) == 0
458 && !Layout::is_debug_info_section(os->name()))
459 index = PLACE_NONALLOC;
460 else if ((flags & elfcpp::SHF_ALLOC) == 0)
461 index = PLACE_LAST;
462 else if (type == elfcpp::SHT_NOTE)
463 index = PLACE_INTERP;
464 else if ((flags & elfcpp::SHF_TLS) != 0)
465 {
466 if (type == elfcpp::SHT_NOBITS)
467 index = PLACE_TLS_BSS;
468 else
469 index = PLACE_TLS;
470 }
471 else if (type == elfcpp::SHT_NOBITS)
472 index = PLACE_BSS;
473 else if ((flags & elfcpp::SHF_WRITE) != 0)
474 index = PLACE_DATA;
475 else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
476 index = PLACE_REL;
477 else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
478 index = PLACE_RODATA;
479 else
480 index = PLACE_TEXT;
481
482 // If we don't have a location yet, try to find one based on a
483 // plausible ordering of sections.
484 if (!this->places_[index].have_location)
485 {
486 Place_index follow;
487 switch (index)
488 {
489 default:
490 follow = PLACE_MAX;
491 break;
492 case PLACE_RODATA:
493 follow = PLACE_TEXT;
494 break;
495 case PLACE_BSS:
496 follow = PLACE_DATA;
497 break;
498 case PLACE_REL:
499 follow = PLACE_TEXT;
500 break;
501 case PLACE_INTERP:
502 follow = PLACE_TEXT;
503 break;
504 case PLACE_TLS:
505 follow = PLACE_DATA;
506 break;
507 case PLACE_TLS_BSS:
508 follow = PLACE_TLS;
509 if (!this->places_[PLACE_TLS].have_location)
510 follow = PLACE_DATA;
511 break;
512 }
513 if (follow != PLACE_MAX && this->places_[follow].have_location)
514 {
515 // Set the location of INDEX to the location of FOLLOW. The
516 // location of INDEX will then be incremented by the caller,
517 // so anything in INDEX will continue to be after anything
518 // in FOLLOW.
519 this->places_[index].location = this->places_[follow].location;
520 this->places_[index].have_location = true;
521 }
522 }
523
524 *pwhere = &this->places_[index].location;
525 bool ret = this->places_[index].have_location;
526
527 // The caller will set the location.
528 this->places_[index].have_location = true;
529
530 return ret;
531 }
532
533 // Return the iterator being used for sections at the very end of the
534 // linker script.
535
536 Orphan_section_placement::Elements_iterator
last_place() const537 Orphan_section_placement::last_place() const
538 {
539 gold_assert(this->places_[PLACE_LAST].have_location);
540 return this->places_[PLACE_LAST].location;
541 }
542
543 // An element in a SECTIONS clause.
544
545 class Sections_element
546 {
547 public:
Sections_element()548 Sections_element()
549 { }
550
~Sections_element()551 virtual ~Sections_element()
552 { }
553
554 // Return whether an output section is relro.
555 virtual bool
is_relro() const556 is_relro() const
557 { return false; }
558
559 // Record that an output section is relro.
560 virtual void
set_is_relro()561 set_is_relro()
562 { }
563
564 // Create any required output sections. The only real
565 // implementation is in Output_section_definition.
566 virtual void
create_sections(Layout *)567 create_sections(Layout*)
568 { }
569
570 // Add any symbol being defined to the symbol table.
571 virtual void
add_symbols_to_table(Symbol_table *)572 add_symbols_to_table(Symbol_table*)
573 { }
574
575 // Finalize symbols and check assertions.
576 virtual void
finalize_symbols(Symbol_table *,const Layout *,uint64_t *)577 finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
578 { }
579
580 // Return the output section name to use for an input file name and
581 // section name. This only real implementation is in
582 // Output_section_definition.
583 virtual const char*
output_section_name(const char *,const char *,Output_section ***,Script_sections::Section_type *,bool *)584 output_section_name(const char*, const char*, Output_section***,
585 Script_sections::Section_type*, bool*)
586 { return NULL; }
587
588 // Initialize OSP with an output section.
589 virtual void
orphan_section_init(Orphan_section_placement *,Script_sections::Elements_iterator)590 orphan_section_init(Orphan_section_placement*,
591 Script_sections::Elements_iterator)
592 { }
593
594 // Set section addresses. This includes applying assignments if the
595 // expression is an absolute value.
596 virtual void
set_section_addresses(Symbol_table *,Layout *,uint64_t *,uint64_t *,uint64_t *)597 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
598 uint64_t*)
599 { }
600
601 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
602 // this section is constrained, and the input sections do not match,
603 // return the constraint, and set *POSD.
604 virtual Section_constraint
check_constraint(Output_section_definition **)605 check_constraint(Output_section_definition**)
606 { return CONSTRAINT_NONE; }
607
608 // See if this is the alternate output section for a constrained
609 // output section. If it is, transfer the Output_section and return
610 // true. Otherwise return false.
611 virtual bool
alternate_constraint(Output_section_definition *,Section_constraint)612 alternate_constraint(Output_section_definition*, Section_constraint)
613 { return false; }
614
615 // Get the list of segments to use for an allocated section when
616 // using a PHDRS clause. If this is an allocated section, return
617 // the Output_section, and set *PHDRS_LIST (the first parameter) to
618 // the list of PHDRS to which it should be attached. If the PHDRS
619 // were not specified, don't change *PHDRS_LIST. When not returning
620 // NULL, set *ORPHAN (the second parameter) according to whether
621 // this is an orphan section--one that is not mentioned in the
622 // linker script.
623 virtual Output_section*
allocate_to_segment(String_list **,bool *)624 allocate_to_segment(String_list**, bool*)
625 { return NULL; }
626
627 // Look for an output section by name and return the address, the
628 // load address, the alignment, and the size. This is used when an
629 // expression refers to an output section which was not actually
630 // created. This returns true if the section was found, false
631 // otherwise. The only real definition is for
632 // Output_section_definition.
633 virtual bool
get_output_section_info(const char *,uint64_t *,uint64_t *,uint64_t *,uint64_t *) const634 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
635 uint64_t*) const
636 { return false; }
637
638 // Return the associated Output_section if there is one.
639 virtual Output_section*
get_output_section() const640 get_output_section() const
641 { return NULL; }
642
643 // Set the section's memory regions.
644 virtual void
set_memory_region(Memory_region *,bool)645 set_memory_region(Memory_region*, bool)
646 { gold_error(_("Attempt to set a memory region for a non-output section")); }
647
648 // Print the element for debugging purposes.
649 virtual void
650 print(FILE* f) const = 0;
651 };
652
653 // An assignment in a SECTIONS clause outside of an output section.
654
655 class Sections_element_assignment : public Sections_element
656 {
657 public:
Sections_element_assignment(const char * name,size_t namelen,Expression * val,bool provide,bool hidden)658 Sections_element_assignment(const char* name, size_t namelen,
659 Expression* val, bool provide, bool hidden)
660 : assignment_(name, namelen, false, val, provide, hidden)
661 { }
662
663 // Add the symbol to the symbol table.
664 void
add_symbols_to_table(Symbol_table * symtab)665 add_symbols_to_table(Symbol_table* symtab)
666 { this->assignment_.add_to_table(symtab); }
667
668 // Finalize the symbol.
669 void
finalize_symbols(Symbol_table * symtab,const Layout * layout,uint64_t * dot_value)670 finalize_symbols(Symbol_table* symtab, const Layout* layout,
671 uint64_t* dot_value)
672 {
673 this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
674 }
675
676 // Set the section address. There is no section here, but if the
677 // value is absolute, we set the symbol. This permits us to use
678 // absolute symbols when setting dot.
679 void
set_section_addresses(Symbol_table * symtab,Layout * layout,uint64_t * dot_value,uint64_t *,uint64_t *)680 set_section_addresses(Symbol_table* symtab, Layout* layout,
681 uint64_t* dot_value, uint64_t*, uint64_t*)
682 {
683 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value, NULL);
684 }
685
686 // Print for debugging.
687 void
print(FILE * f) const688 print(FILE* f) const
689 {
690 fprintf(f, " ");
691 this->assignment_.print(f);
692 }
693
694 private:
695 Symbol_assignment assignment_;
696 };
697
698 // An assignment to the dot symbol in a SECTIONS clause outside of an
699 // output section.
700
701 class Sections_element_dot_assignment : public Sections_element
702 {
703 public:
Sections_element_dot_assignment(Expression * val)704 Sections_element_dot_assignment(Expression* val)
705 : val_(val)
706 { }
707
708 // Finalize the symbol.
709 void
finalize_symbols(Symbol_table * symtab,const Layout * layout,uint64_t * dot_value)710 finalize_symbols(Symbol_table* symtab, const Layout* layout,
711 uint64_t* dot_value)
712 {
713 // We ignore the section of the result because outside of an
714 // output section definition the dot symbol is always considered
715 // to be absolute.
716 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
717 NULL, NULL, NULL, false);
718 }
719
720 // Update the dot symbol while setting section addresses.
721 void
set_section_addresses(Symbol_table * symtab,Layout * layout,uint64_t * dot_value,uint64_t * dot_alignment,uint64_t * load_address)722 set_section_addresses(Symbol_table* symtab, Layout* layout,
723 uint64_t* dot_value, uint64_t* dot_alignment,
724 uint64_t* load_address)
725 {
726 *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
727 NULL, NULL, dot_alignment, false);
728 *load_address = *dot_value;
729 }
730
731 // Print for debugging.
732 void
print(FILE * f) const733 print(FILE* f) const
734 {
735 fprintf(f, " . = ");
736 this->val_->print(f);
737 fprintf(f, "\n");
738 }
739
740 private:
741 Expression* val_;
742 };
743
744 // An assertion in a SECTIONS clause outside of an output section.
745
746 class Sections_element_assertion : public Sections_element
747 {
748 public:
Sections_element_assertion(Expression * check,const char * message,size_t messagelen)749 Sections_element_assertion(Expression* check, const char* message,
750 size_t messagelen)
751 : assertion_(check, message, messagelen)
752 { }
753
754 // Check the assertion.
755 void
finalize_symbols(Symbol_table * symtab,const Layout * layout,uint64_t *)756 finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
757 { this->assertion_.check(symtab, layout); }
758
759 // Print for debugging.
760 void
print(FILE * f) const761 print(FILE* f) const
762 {
763 fprintf(f, " ");
764 this->assertion_.print(f);
765 }
766
767 private:
768 Script_assertion assertion_;
769 };
770
771 // An element in an output section in a SECTIONS clause.
772
773 class Output_section_element
774 {
775 public:
776 // A list of input sections.
777 typedef std::list<Output_section::Input_section> Input_section_list;
778
Output_section_element()779 Output_section_element()
780 { }
781
~Output_section_element()782 virtual ~Output_section_element()
783 { }
784
785 // Return whether this element requires an output section to exist.
786 virtual bool
needs_output_section() const787 needs_output_section() const
788 { return false; }
789
790 // Add any symbol being defined to the symbol table.
791 virtual void
add_symbols_to_table(Symbol_table *)792 add_symbols_to_table(Symbol_table*)
793 { }
794
795 // Finalize symbols and check assertions.
796 virtual void
finalize_symbols(Symbol_table *,const Layout *,uint64_t *,Output_section **)797 finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
798 { }
799
800 // Return whether this element matches FILE_NAME and SECTION_NAME.
801 // The only real implementation is in Output_section_element_input.
802 virtual bool
match_name(const char *,const char *,bool *) const803 match_name(const char*, const char*, bool *) const
804 { return false; }
805
806 // Set section addresses. This includes applying assignments if the
807 // expression is an absolute value.
808 virtual void
set_section_addresses(Symbol_table *,Layout *,Output_section *,uint64_t,uint64_t *,uint64_t *,Output_section **,std::string *,Input_section_list *)809 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
810 uint64_t*, uint64_t*, Output_section**, std::string*,
811 Input_section_list*)
812 { }
813
814 // Print the element for debugging purposes.
815 virtual void
816 print(FILE* f) const = 0;
817
818 protected:
819 // Return a fill string that is LENGTH bytes long, filling it with
820 // FILL.
821 std::string
822 get_fill_string(const std::string* fill, section_size_type length) const;
823 };
824
825 std::string
get_fill_string(const std::string * fill,section_size_type length) const826 Output_section_element::get_fill_string(const std::string* fill,
827 section_size_type length) const
828 {
829 std::string this_fill;
830 this_fill.reserve(length);
831 while (this_fill.length() + fill->length() <= length)
832 this_fill += *fill;
833 if (this_fill.length() < length)
834 this_fill.append(*fill, 0, length - this_fill.length());
835 return this_fill;
836 }
837
838 // A symbol assignment in an output section.
839
840 class Output_section_element_assignment : public Output_section_element
841 {
842 public:
Output_section_element_assignment(const char * name,size_t namelen,Expression * val,bool provide,bool hidden)843 Output_section_element_assignment(const char* name, size_t namelen,
844 Expression* val, bool provide,
845 bool hidden)
846 : assignment_(name, namelen, false, val, provide, hidden)
847 { }
848
849 // Add the symbol to the symbol table.
850 void
add_symbols_to_table(Symbol_table * symtab)851 add_symbols_to_table(Symbol_table* symtab)
852 { this->assignment_.add_to_table(symtab); }
853
854 // Finalize the symbol.
855 void
finalize_symbols(Symbol_table * symtab,const Layout * layout,uint64_t * dot_value,Output_section ** dot_section)856 finalize_symbols(Symbol_table* symtab, const Layout* layout,
857 uint64_t* dot_value, Output_section** dot_section)
858 {
859 this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
860 *dot_section);
861 }
862
863 // Set the section address. There is no section here, but if the
864 // value is absolute, we set the symbol. This permits us to use
865 // absolute symbols when setting dot.
866 void
set_section_addresses(Symbol_table * symtab,Layout * layout,Output_section *,uint64_t,uint64_t * dot_value,uint64_t *,Output_section ** dot_section,std::string *,Input_section_list *)867 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
868 uint64_t, uint64_t* dot_value, uint64_t*,
869 Output_section** dot_section, std::string*,
870 Input_section_list*)
871 {
872 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value,
873 *dot_section);
874 }
875
876 // Print for debugging.
877 void
print(FILE * f) const878 print(FILE* f) const
879 {
880 fprintf(f, " ");
881 this->assignment_.print(f);
882 }
883
884 private:
885 Symbol_assignment assignment_;
886 };
887
888 // An assignment to the dot symbol in an output section.
889
890 class Output_section_element_dot_assignment : public Output_section_element
891 {
892 public:
Output_section_element_dot_assignment(Expression * val)893 Output_section_element_dot_assignment(Expression* val)
894 : val_(val)
895 { }
896
897 // An assignment to dot within an output section is enough to force
898 // the output section to exist.
899 bool
needs_output_section() const900 needs_output_section() const
901 { return true; }
902
903 // Finalize the symbol.
904 void
finalize_symbols(Symbol_table * symtab,const Layout * layout,uint64_t * dot_value,Output_section ** dot_section)905 finalize_symbols(Symbol_table* symtab, const Layout* layout,
906 uint64_t* dot_value, Output_section** dot_section)
907 {
908 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
909 *dot_section, dot_section, NULL,
910 true);
911 }
912
913 // Update the dot symbol while setting section addresses.
914 void
915 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
916 uint64_t, uint64_t* dot_value, uint64_t*,
917 Output_section** dot_section, std::string*,
918 Input_section_list*);
919
920 // Print for debugging.
921 void
print(FILE * f) const922 print(FILE* f) const
923 {
924 fprintf(f, " . = ");
925 this->val_->print(f);
926 fprintf(f, "\n");
927 }
928
929 private:
930 Expression* val_;
931 };
932
933 // Update the dot symbol while setting section addresses.
934
935 void
set_section_addresses(Symbol_table * symtab,Layout * layout,Output_section * output_section,uint64_t,uint64_t * dot_value,uint64_t * dot_alignment,Output_section ** dot_section,std::string * fill,Input_section_list *)936 Output_section_element_dot_assignment::set_section_addresses(
937 Symbol_table* symtab,
938 Layout* layout,
939 Output_section* output_section,
940 uint64_t,
941 uint64_t* dot_value,
942 uint64_t* dot_alignment,
943 Output_section** dot_section,
944 std::string* fill,
945 Input_section_list*)
946 {
947 uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
948 *dot_value, *dot_section,
949 dot_section, dot_alignment,
950 true);
951 if (next_dot < *dot_value)
952 gold_error(_("dot may not move backward"));
953 if (next_dot > *dot_value && output_section != NULL)
954 {
955 section_size_type length = convert_to_section_size_type(next_dot
956 - *dot_value);
957 Output_section_data* posd;
958 if (fill->empty())
959 posd = new Output_data_zero_fill(length, 0);
960 else
961 {
962 std::string this_fill = this->get_fill_string(fill, length);
963 posd = new Output_data_const(this_fill, 0);
964 }
965 output_section->add_output_section_data(posd);
966 layout->new_output_section_data_from_script(posd);
967 }
968 *dot_value = next_dot;
969 }
970
971 // An assertion in an output section.
972
973 class Output_section_element_assertion : public Output_section_element
974 {
975 public:
Output_section_element_assertion(Expression * check,const char * message,size_t messagelen)976 Output_section_element_assertion(Expression* check, const char* message,
977 size_t messagelen)
978 : assertion_(check, message, messagelen)
979 { }
980
981 void
print(FILE * f) const982 print(FILE* f) const
983 {
984 fprintf(f, " ");
985 this->assertion_.print(f);
986 }
987
988 private:
989 Script_assertion assertion_;
990 };
991
992 // We use a special instance of Output_section_data to handle BYTE,
993 // SHORT, etc. This permits forward references to symbols in the
994 // expressions.
995
996 class Output_data_expression : public Output_section_data
997 {
998 public:
Output_data_expression(int size,bool is_signed,Expression * val,const Symbol_table * symtab,const Layout * layout,uint64_t dot_value,Output_section * dot_section)999 Output_data_expression(int size, bool is_signed, Expression* val,
1000 const Symbol_table* symtab, const Layout* layout,
1001 uint64_t dot_value, Output_section* dot_section)
1002 : Output_section_data(size, 0, true),
1003 is_signed_(is_signed), val_(val), symtab_(symtab),
1004 layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
1005 { }
1006
1007 protected:
1008 // Write the data to the output file.
1009 void
1010 do_write(Output_file*);
1011
1012 // Write the data to a buffer.
1013 void
1014 do_write_to_buffer(unsigned char*);
1015
1016 // Write to a map file.
1017 void
do_print_to_mapfile(Mapfile * mapfile) const1018 do_print_to_mapfile(Mapfile* mapfile) const
1019 { mapfile->print_output_data(this, _("** expression")); }
1020
1021 private:
1022 template<bool big_endian>
1023 void
1024 endian_write_to_buffer(uint64_t, unsigned char*);
1025
1026 bool is_signed_;
1027 Expression* val_;
1028 const Symbol_table* symtab_;
1029 const Layout* layout_;
1030 uint64_t dot_value_;
1031 Output_section* dot_section_;
1032 };
1033
1034 // Write the data element to the output file.
1035
1036 void
do_write(Output_file * of)1037 Output_data_expression::do_write(Output_file* of)
1038 {
1039 unsigned char* view = of->get_output_view(this->offset(), this->data_size());
1040 this->write_to_buffer(view);
1041 of->write_output_view(this->offset(), this->data_size(), view);
1042 }
1043
1044 // Write the data element to a buffer.
1045
1046 void
do_write_to_buffer(unsigned char * buf)1047 Output_data_expression::do_write_to_buffer(unsigned char* buf)
1048 {
1049 uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
1050 true, this->dot_value_,
1051 this->dot_section_, NULL, NULL,
1052 false);
1053
1054 if (parameters->target().is_big_endian())
1055 this->endian_write_to_buffer<true>(val, buf);
1056 else
1057 this->endian_write_to_buffer<false>(val, buf);
1058 }
1059
1060 template<bool big_endian>
1061 void
endian_write_to_buffer(uint64_t val,unsigned char * buf)1062 Output_data_expression::endian_write_to_buffer(uint64_t val,
1063 unsigned char* buf)
1064 {
1065 switch (this->data_size())
1066 {
1067 case 1:
1068 elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
1069 break;
1070 case 2:
1071 elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
1072 break;
1073 case 4:
1074 elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
1075 break;
1076 case 8:
1077 if (parameters->target().get_size() == 32)
1078 {
1079 val &= 0xffffffff;
1080 if (this->is_signed_ && (val & 0x80000000) != 0)
1081 val |= 0xffffffff00000000LL;
1082 }
1083 elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
1084 break;
1085 default:
1086 gold_unreachable();
1087 }
1088 }
1089
1090 // A data item in an output section.
1091
1092 class Output_section_element_data : public Output_section_element
1093 {
1094 public:
Output_section_element_data(int size,bool is_signed,Expression * val)1095 Output_section_element_data(int size, bool is_signed, Expression* val)
1096 : size_(size), is_signed_(is_signed), val_(val)
1097 { }
1098
1099 // If there is a data item, then we must create an output section.
1100 bool
needs_output_section() const1101 needs_output_section() const
1102 { return true; }
1103
1104 // Finalize symbols--we just need to update dot.
1105 void
finalize_symbols(Symbol_table *,const Layout *,uint64_t * dot_value,Output_section **)1106 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1107 Output_section**)
1108 { *dot_value += this->size_; }
1109
1110 // Store the value in the section.
1111 void
1112 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
1113 uint64_t* dot_value, uint64_t*, Output_section**,
1114 std::string*, Input_section_list*);
1115
1116 // Print for debugging.
1117 void
1118 print(FILE*) const;
1119
1120 private:
1121 // The size in bytes.
1122 int size_;
1123 // Whether the value is signed.
1124 bool is_signed_;
1125 // The value.
1126 Expression* val_;
1127 };
1128
1129 // Store the value in the section.
1130
1131 void
set_section_addresses(Symbol_table * symtab,Layout * layout,Output_section * os,uint64_t,uint64_t * dot_value,uint64_t *,Output_section ** dot_section,std::string *,Input_section_list *)1132 Output_section_element_data::set_section_addresses(
1133 Symbol_table* symtab,
1134 Layout* layout,
1135 Output_section* os,
1136 uint64_t,
1137 uint64_t* dot_value,
1138 uint64_t*,
1139 Output_section** dot_section,
1140 std::string*,
1141 Input_section_list*)
1142 {
1143 gold_assert(os != NULL);
1144 Output_data_expression* expression =
1145 new Output_data_expression(this->size_, this->is_signed_, this->val_,
1146 symtab, layout, *dot_value, *dot_section);
1147 os->add_output_section_data(expression);
1148 layout->new_output_section_data_from_script(expression);
1149 *dot_value += this->size_;
1150 }
1151
1152 // Print for debugging.
1153
1154 void
print(FILE * f) const1155 Output_section_element_data::print(FILE* f) const
1156 {
1157 const char* s;
1158 switch (this->size_)
1159 {
1160 case 1:
1161 s = "BYTE";
1162 break;
1163 case 2:
1164 s = "SHORT";
1165 break;
1166 case 4:
1167 s = "LONG";
1168 break;
1169 case 8:
1170 if (this->is_signed_)
1171 s = "SQUAD";
1172 else
1173 s = "QUAD";
1174 break;
1175 default:
1176 gold_unreachable();
1177 }
1178 fprintf(f, " %s(", s);
1179 this->val_->print(f);
1180 fprintf(f, ")\n");
1181 }
1182
1183 // A fill value setting in an output section.
1184
1185 class Output_section_element_fill : public Output_section_element
1186 {
1187 public:
Output_section_element_fill(Expression * val)1188 Output_section_element_fill(Expression* val)
1189 : val_(val)
1190 { }
1191
1192 // Update the fill value while setting section addresses.
1193 void
set_section_addresses(Symbol_table * symtab,Layout * layout,Output_section *,uint64_t,uint64_t * dot_value,uint64_t *,Output_section ** dot_section,std::string * fill,Input_section_list *)1194 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1195 uint64_t, uint64_t* dot_value, uint64_t*,
1196 Output_section** dot_section,
1197 std::string* fill, Input_section_list*)
1198 {
1199 Output_section* fill_section;
1200 uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
1201 *dot_value, *dot_section,
1202 &fill_section, NULL, false);
1203 if (fill_section != NULL)
1204 gold_warning(_("fill value is not absolute"));
1205 // FIXME: The GNU linker supports fill values of arbitrary length.
1206 unsigned char fill_buff[4];
1207 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1208 fill->assign(reinterpret_cast<char*>(fill_buff), 4);
1209 }
1210
1211 // Print for debugging.
1212 void
print(FILE * f) const1213 print(FILE* f) const
1214 {
1215 fprintf(f, " FILL(");
1216 this->val_->print(f);
1217 fprintf(f, ")\n");
1218 }
1219
1220 private:
1221 // The new fill value.
1222 Expression* val_;
1223 };
1224
1225 // An input section specification in an output section
1226
1227 class Output_section_element_input : public Output_section_element
1228 {
1229 public:
1230 Output_section_element_input(const Input_section_spec* spec, bool keep);
1231
1232 // Finalize symbols--just update the value of the dot symbol.
1233 void
finalize_symbols(Symbol_table *,const Layout *,uint64_t * dot_value,Output_section ** dot_section)1234 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1235 Output_section** dot_section)
1236 {
1237 *dot_value = this->final_dot_value_;
1238 *dot_section = this->final_dot_section_;
1239 }
1240
1241 // See whether we match FILE_NAME and SECTION_NAME as an input section.
1242 // If we do then also indicate whether the section should be KEPT.
1243 bool
1244 match_name(const char* file_name, const char* section_name, bool* keep) const;
1245
1246 // Set the section address.
1247 void
1248 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1249 uint64_t subalign, uint64_t* dot_value, uint64_t*,
1250 Output_section**, std::string* fill,
1251 Input_section_list*);
1252
1253 // Print for debugging.
1254 void
1255 print(FILE* f) const;
1256
1257 private:
1258 // An input section pattern.
1259 struct Input_section_pattern
1260 {
1261 std::string pattern;
1262 bool pattern_is_wildcard;
1263 Sort_wildcard sort;
1264
Input_section_patterngold::Output_section_element_input::Input_section_pattern1265 Input_section_pattern(const char* patterna, size_t patternlena,
1266 Sort_wildcard sorta)
1267 : pattern(patterna, patternlena),
1268 pattern_is_wildcard(is_wildcard_string(this->pattern.c_str())),
1269 sort(sorta)
1270 { }
1271 };
1272
1273 typedef std::vector<Input_section_pattern> Input_section_patterns;
1274
1275 // Filename_exclusions is a pair of filename pattern and a bool
1276 // indicating whether the filename is a wildcard.
1277 typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1278
1279 // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1280 // indicates whether this is a wildcard pattern.
1281 static inline bool
match(const char * string,const char * pattern,bool is_wildcard_pattern)1282 match(const char* string, const char* pattern, bool is_wildcard_pattern)
1283 {
1284 return (is_wildcard_pattern
1285 ? fnmatch(pattern, string, 0) == 0
1286 : strcmp(string, pattern) == 0);
1287 }
1288
1289 // See if we match a file name.
1290 bool
1291 match_file_name(const char* file_name) const;
1292
1293 // The file name pattern. If this is the empty string, we match all
1294 // files.
1295 std::string filename_pattern_;
1296 // Whether the file name pattern is a wildcard.
1297 bool filename_is_wildcard_;
1298 // How the file names should be sorted. This may only be
1299 // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1300 Sort_wildcard filename_sort_;
1301 // The list of file names to exclude.
1302 Filename_exclusions filename_exclusions_;
1303 // The list of input section patterns.
1304 Input_section_patterns input_section_patterns_;
1305 // Whether to keep this section when garbage collecting.
1306 bool keep_;
1307 // The value of dot after including all matching sections.
1308 uint64_t final_dot_value_;
1309 // The section where dot is defined after including all matching
1310 // sections.
1311 Output_section* final_dot_section_;
1312 };
1313
1314 // Construct Output_section_element_input. The parser records strings
1315 // as pointers into a copy of the script file, which will go away when
1316 // parsing is complete. We make sure they are in std::string objects.
1317
Output_section_element_input(const Input_section_spec * spec,bool keep)1318 Output_section_element_input::Output_section_element_input(
1319 const Input_section_spec* spec,
1320 bool keep)
1321 : filename_pattern_(),
1322 filename_is_wildcard_(false),
1323 filename_sort_(spec->file.sort),
1324 filename_exclusions_(),
1325 input_section_patterns_(),
1326 keep_(keep),
1327 final_dot_value_(0),
1328 final_dot_section_(NULL)
1329 {
1330 // The filename pattern "*" is common, and matches all files. Turn
1331 // it into the empty string.
1332 if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1333 this->filename_pattern_.assign(spec->file.name.value,
1334 spec->file.name.length);
1335 this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_.c_str());
1336
1337 if (spec->input_sections.exclude != NULL)
1338 {
1339 for (String_list::const_iterator p =
1340 spec->input_sections.exclude->begin();
1341 p != spec->input_sections.exclude->end();
1342 ++p)
1343 {
1344 bool is_wildcard = is_wildcard_string((*p).c_str());
1345 this->filename_exclusions_.push_back(std::make_pair(*p,
1346 is_wildcard));
1347 }
1348 }
1349
1350 if (spec->input_sections.sections != NULL)
1351 {
1352 Input_section_patterns& isp(this->input_section_patterns_);
1353 for (String_sort_list::const_iterator p =
1354 spec->input_sections.sections->begin();
1355 p != spec->input_sections.sections->end();
1356 ++p)
1357 isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1358 p->sort));
1359 }
1360 }
1361
1362 // See whether we match FILE_NAME.
1363
1364 bool
match_file_name(const char * file_name) const1365 Output_section_element_input::match_file_name(const char* file_name) const
1366 {
1367 if (!this->filename_pattern_.empty())
1368 {
1369 // If we were called with no filename, we refuse to match a
1370 // pattern which requires a file name.
1371 if (file_name == NULL)
1372 return false;
1373
1374 if (!match(file_name, this->filename_pattern_.c_str(),
1375 this->filename_is_wildcard_))
1376 return false;
1377 }
1378
1379 if (file_name != NULL)
1380 {
1381 // Now we have to see whether FILE_NAME matches one of the
1382 // exclusion patterns, if any.
1383 for (Filename_exclusions::const_iterator p =
1384 this->filename_exclusions_.begin();
1385 p != this->filename_exclusions_.end();
1386 ++p)
1387 {
1388 if (match(file_name, p->first.c_str(), p->second))
1389 return false;
1390 }
1391 }
1392
1393 return true;
1394 }
1395
1396 // See whether we match FILE_NAME and SECTION_NAME. If we do then
1397 // KEEP indicates whether the section should survive garbage collection.
1398
1399 bool
match_name(const char * file_name,const char * section_name,bool * keep) const1400 Output_section_element_input::match_name(const char* file_name,
1401 const char* section_name,
1402 bool *keep) const
1403 {
1404 if (!this->match_file_name(file_name))
1405 return false;
1406
1407 *keep = this->keep_;
1408
1409 // If there are no section name patterns, then we match.
1410 if (this->input_section_patterns_.empty())
1411 return true;
1412
1413 // See whether we match the section name patterns.
1414 for (Input_section_patterns::const_iterator p =
1415 this->input_section_patterns_.begin();
1416 p != this->input_section_patterns_.end();
1417 ++p)
1418 {
1419 if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1420 return true;
1421 }
1422
1423 // We didn't match any section names, so we didn't match.
1424 return false;
1425 }
1426
1427 // Information we use to sort the input sections.
1428
1429 class Input_section_info
1430 {
1431 public:
Input_section_info(const Output_section::Input_section & input_section)1432 Input_section_info(const Output_section::Input_section& input_section)
1433 : input_section_(input_section), section_name_(),
1434 size_(0), addralign_(1)
1435 { }
1436
1437 // Return the simple input section.
1438 const Output_section::Input_section&
input_section() const1439 input_section() const
1440 { return this->input_section_; }
1441
1442 // Return the object.
1443 Relobj*
relobj() const1444 relobj() const
1445 { return this->input_section_.relobj(); }
1446
1447 // Return the section index.
1448 unsigned int
shndx()1449 shndx()
1450 { return this->input_section_.shndx(); }
1451
1452 // Return the section name.
1453 const std::string&
section_name() const1454 section_name() const
1455 { return this->section_name_; }
1456
1457 // Set the section name.
1458 void
set_section_name(const std::string name)1459 set_section_name(const std::string name)
1460 { this->section_name_ = name; }
1461
1462 // Return the section size.
1463 uint64_t
size() const1464 size() const
1465 { return this->size_; }
1466
1467 // Set the section size.
1468 void
set_size(uint64_t size)1469 set_size(uint64_t size)
1470 { this->size_ = size; }
1471
1472 // Return the address alignment.
1473 uint64_t
addralign() const1474 addralign() const
1475 { return this->addralign_; }
1476
1477 // Set the address alignment.
1478 void
set_addralign(uint64_t addralign)1479 set_addralign(uint64_t addralign)
1480 { this->addralign_ = addralign; }
1481
1482 private:
1483 // Input section, can be a relaxed section.
1484 Output_section::Input_section input_section_;
1485 // Name of the section.
1486 std::string section_name_;
1487 // Section size.
1488 uint64_t size_;
1489 // Address alignment.
1490 uint64_t addralign_;
1491 };
1492
1493 // A class to sort the input sections.
1494
1495 class Input_section_sorter
1496 {
1497 public:
Input_section_sorter(Sort_wildcard filename_sort,Sort_wildcard section_sort)1498 Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1499 : filename_sort_(filename_sort), section_sort_(section_sort)
1500 { }
1501
1502 bool
1503 operator()(const Input_section_info&, const Input_section_info&) const;
1504
1505 private:
1506 Sort_wildcard filename_sort_;
1507 Sort_wildcard section_sort_;
1508 };
1509
1510 bool
operator ()(const Input_section_info & isi1,const Input_section_info & isi2) const1511 Input_section_sorter::operator()(const Input_section_info& isi1,
1512 const Input_section_info& isi2) const
1513 {
1514 if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1515 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1516 || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1517 && isi1.addralign() == isi2.addralign()))
1518 {
1519 if (isi1.section_name() != isi2.section_name())
1520 return isi1.section_name() < isi2.section_name();
1521 }
1522 if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1523 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1524 || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1525 {
1526 if (isi1.addralign() != isi2.addralign())
1527 return isi1.addralign() < isi2.addralign();
1528 }
1529 if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1530 {
1531 if (isi1.relobj()->name() != isi2.relobj()->name())
1532 return (isi1.relobj()->name() < isi2.relobj()->name());
1533 }
1534
1535 // Otherwise we leave them in the same order.
1536 return false;
1537 }
1538
1539 // Set the section address. Look in INPUT_SECTIONS for sections which
1540 // match this spec, sort them as specified, and add them to the output
1541 // section.
1542
1543 void
set_section_addresses(Symbol_table *,Layout * layout,Output_section * output_section,uint64_t subalign,uint64_t * dot_value,uint64_t *,Output_section ** dot_section,std::string * fill,Input_section_list * input_sections)1544 Output_section_element_input::set_section_addresses(
1545 Symbol_table*,
1546 Layout* layout,
1547 Output_section* output_section,
1548 uint64_t subalign,
1549 uint64_t* dot_value,
1550 uint64_t*,
1551 Output_section** dot_section,
1552 std::string* fill,
1553 Input_section_list* input_sections)
1554 {
1555 // We build a list of sections which match each
1556 // Input_section_pattern.
1557
1558 typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1559 size_t input_pattern_count = this->input_section_patterns_.size();
1560 if (input_pattern_count == 0)
1561 input_pattern_count = 1;
1562 Matching_sections matching_sections(input_pattern_count);
1563
1564 // Look through the list of sections for this output section. Add
1565 // each one which matches to one of the elements of
1566 // MATCHING_SECTIONS.
1567
1568 Input_section_list::iterator p = input_sections->begin();
1569 while (p != input_sections->end())
1570 {
1571 Relobj* relobj = p->relobj();
1572 unsigned int shndx = p->shndx();
1573 Input_section_info isi(*p);
1574
1575 // Calling section_name and section_addralign is not very
1576 // efficient.
1577
1578 // Lock the object so that we can get information about the
1579 // section. This is OK since we know we are single-threaded
1580 // here.
1581 {
1582 const Task* task = reinterpret_cast<const Task*>(-1);
1583 Task_lock_obj<Object> tl(task, relobj);
1584
1585 isi.set_section_name(relobj->section_name(shndx));
1586 if (p->is_relaxed_input_section())
1587 {
1588 // We use current data size because relaxed section sizes may not
1589 // have finalized yet.
1590 isi.set_size(p->relaxed_input_section()->current_data_size());
1591 isi.set_addralign(p->relaxed_input_section()->addralign());
1592 }
1593 else
1594 {
1595 isi.set_size(relobj->section_size(shndx));
1596 isi.set_addralign(relobj->section_addralign(shndx));
1597 }
1598 }
1599
1600 if (!this->match_file_name(relobj->name().c_str()))
1601 ++p;
1602 else if (this->input_section_patterns_.empty())
1603 {
1604 matching_sections[0].push_back(isi);
1605 p = input_sections->erase(p);
1606 }
1607 else
1608 {
1609 size_t i;
1610 for (i = 0; i < input_pattern_count; ++i)
1611 {
1612 const Input_section_pattern&
1613 isp(this->input_section_patterns_[i]);
1614 if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1615 isp.pattern_is_wildcard))
1616 break;
1617 }
1618
1619 if (i >= this->input_section_patterns_.size())
1620 ++p;
1621 else
1622 {
1623 matching_sections[i].push_back(isi);
1624 p = input_sections->erase(p);
1625 }
1626 }
1627 }
1628
1629 // Look through MATCHING_SECTIONS. Sort each one as specified,
1630 // using a stable sort so that we get the default order when
1631 // sections are otherwise equal. Add each input section to the
1632 // output section.
1633
1634 uint64_t dot = *dot_value;
1635 for (size_t i = 0; i < input_pattern_count; ++i)
1636 {
1637 if (matching_sections[i].empty())
1638 continue;
1639
1640 gold_assert(output_section != NULL);
1641
1642 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1643 if (isp.sort != SORT_WILDCARD_NONE
1644 || this->filename_sort_ != SORT_WILDCARD_NONE)
1645 std::stable_sort(matching_sections[i].begin(),
1646 matching_sections[i].end(),
1647 Input_section_sorter(this->filename_sort_,
1648 isp.sort));
1649
1650 for (std::vector<Input_section_info>::const_iterator p =
1651 matching_sections[i].begin();
1652 p != matching_sections[i].end();
1653 ++p)
1654 {
1655 // Override the original address alignment if SUBALIGN is specified
1656 // and is greater than the original alignment. We need to make a
1657 // copy of the input section to modify the alignment.
1658 Output_section::Input_section sis(p->input_section());
1659
1660 uint64_t this_subalign = sis.addralign();
1661 if (!sis.is_input_section())
1662 sis.output_section_data()->finalize_data_size();
1663 uint64_t data_size = sis.data_size();
1664 if (this_subalign < subalign)
1665 {
1666 this_subalign = subalign;
1667 sis.set_addralign(subalign);
1668 }
1669
1670 uint64_t address = align_address(dot, this_subalign);
1671
1672 if (address > dot && !fill->empty())
1673 {
1674 section_size_type length =
1675 convert_to_section_size_type(address - dot);
1676 std::string this_fill = this->get_fill_string(fill, length);
1677 Output_section_data* posd = new Output_data_const(this_fill, 0);
1678 output_section->add_output_section_data(posd);
1679 layout->new_output_section_data_from_script(posd);
1680 }
1681
1682 output_section->add_script_input_section(sis);
1683 dot = address + data_size;
1684 }
1685 }
1686
1687 // An SHF_TLS/SHT_NOBITS section does not take up any
1688 // address space.
1689 if (output_section == NULL
1690 || (output_section->flags() & elfcpp::SHF_TLS) == 0
1691 || output_section->type() != elfcpp::SHT_NOBITS)
1692 *dot_value = dot;
1693
1694 this->final_dot_value_ = *dot_value;
1695 this->final_dot_section_ = *dot_section;
1696 }
1697
1698 // Print for debugging.
1699
1700 void
print(FILE * f) const1701 Output_section_element_input::print(FILE* f) const
1702 {
1703 fprintf(f, " ");
1704
1705 if (this->keep_)
1706 fprintf(f, "KEEP(");
1707
1708 if (!this->filename_pattern_.empty())
1709 {
1710 bool need_close_paren = false;
1711 switch (this->filename_sort_)
1712 {
1713 case SORT_WILDCARD_NONE:
1714 break;
1715 case SORT_WILDCARD_BY_NAME:
1716 fprintf(f, "SORT_BY_NAME(");
1717 need_close_paren = true;
1718 break;
1719 default:
1720 gold_unreachable();
1721 }
1722
1723 fprintf(f, "%s", this->filename_pattern_.c_str());
1724
1725 if (need_close_paren)
1726 fprintf(f, ")");
1727 }
1728
1729 if (!this->input_section_patterns_.empty()
1730 || !this->filename_exclusions_.empty())
1731 {
1732 fprintf(f, "(");
1733
1734 bool need_space = false;
1735 if (!this->filename_exclusions_.empty())
1736 {
1737 fprintf(f, "EXCLUDE_FILE(");
1738 bool need_comma = false;
1739 for (Filename_exclusions::const_iterator p =
1740 this->filename_exclusions_.begin();
1741 p != this->filename_exclusions_.end();
1742 ++p)
1743 {
1744 if (need_comma)
1745 fprintf(f, ", ");
1746 fprintf(f, "%s", p->first.c_str());
1747 need_comma = true;
1748 }
1749 fprintf(f, ")");
1750 need_space = true;
1751 }
1752
1753 for (Input_section_patterns::const_iterator p =
1754 this->input_section_patterns_.begin();
1755 p != this->input_section_patterns_.end();
1756 ++p)
1757 {
1758 if (need_space)
1759 fprintf(f, " ");
1760
1761 int close_parens = 0;
1762 switch (p->sort)
1763 {
1764 case SORT_WILDCARD_NONE:
1765 break;
1766 case SORT_WILDCARD_BY_NAME:
1767 fprintf(f, "SORT_BY_NAME(");
1768 close_parens = 1;
1769 break;
1770 case SORT_WILDCARD_BY_ALIGNMENT:
1771 fprintf(f, "SORT_BY_ALIGNMENT(");
1772 close_parens = 1;
1773 break;
1774 case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1775 fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1776 close_parens = 2;
1777 break;
1778 case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1779 fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1780 close_parens = 2;
1781 break;
1782 default:
1783 gold_unreachable();
1784 }
1785
1786 fprintf(f, "%s", p->pattern.c_str());
1787
1788 for (int i = 0; i < close_parens; ++i)
1789 fprintf(f, ")");
1790
1791 need_space = true;
1792 }
1793
1794 fprintf(f, ")");
1795 }
1796
1797 if (this->keep_)
1798 fprintf(f, ")");
1799
1800 fprintf(f, "\n");
1801 }
1802
1803 // An output section.
1804
1805 class Output_section_definition : public Sections_element
1806 {
1807 public:
1808 typedef Output_section_element::Input_section_list Input_section_list;
1809
1810 Output_section_definition(const char* name, size_t namelen,
1811 const Parser_output_section_header* header);
1812
1813 // Finish the output section with the information in the trailer.
1814 void
1815 finish(const Parser_output_section_trailer* trailer);
1816
1817 // Add a symbol to be defined.
1818 void
1819 add_symbol_assignment(const char* name, size_t length, Expression* value,
1820 bool provide, bool hidden);
1821
1822 // Add an assignment to the special dot symbol.
1823 void
1824 add_dot_assignment(Expression* value);
1825
1826 // Add an assertion.
1827 void
1828 add_assertion(Expression* check, const char* message, size_t messagelen);
1829
1830 // Add a data item to the current output section.
1831 void
1832 add_data(int size, bool is_signed, Expression* val);
1833
1834 // Add a setting for the fill value.
1835 void
1836 add_fill(Expression* val);
1837
1838 // Add an input section specification.
1839 void
1840 add_input_section(const Input_section_spec* spec, bool keep);
1841
1842 // Return whether the output section is relro.
1843 bool
is_relro() const1844 is_relro() const
1845 { return this->is_relro_; }
1846
1847 // Record that the output section is relro.
1848 void
set_is_relro()1849 set_is_relro()
1850 { this->is_relro_ = true; }
1851
1852 // Create any required output sections.
1853 void
1854 create_sections(Layout*);
1855
1856 // Add any symbols being defined to the symbol table.
1857 void
1858 add_symbols_to_table(Symbol_table* symtab);
1859
1860 // Finalize symbols and check assertions.
1861 void
1862 finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1863
1864 // Return the output section name to use for an input file name and
1865 // section name.
1866 const char*
1867 output_section_name(const char* file_name, const char* section_name,
1868 Output_section***, Script_sections::Section_type*,
1869 bool*);
1870
1871 // Initialize OSP with an output section.
1872 void
orphan_section_init(Orphan_section_placement * osp,Script_sections::Elements_iterator p)1873 orphan_section_init(Orphan_section_placement* osp,
1874 Script_sections::Elements_iterator p)
1875 { osp->output_section_init(this->name_, this->output_section_, p); }
1876
1877 // Set the section address.
1878 void
1879 set_section_addresses(Symbol_table* symtab, Layout* layout,
1880 uint64_t* dot_value, uint64_t*,
1881 uint64_t* load_address);
1882
1883 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
1884 // this section is constrained, and the input sections do not match,
1885 // return the constraint, and set *POSD.
1886 Section_constraint
1887 check_constraint(Output_section_definition** posd);
1888
1889 // See if this is the alternate output section for a constrained
1890 // output section. If it is, transfer the Output_section and return
1891 // true. Otherwise return false.
1892 bool
1893 alternate_constraint(Output_section_definition*, Section_constraint);
1894
1895 // Get the list of segments to use for an allocated section when
1896 // using a PHDRS clause.
1897 Output_section*
1898 allocate_to_segment(String_list** phdrs_list, bool* orphan);
1899
1900 // Look for an output section by name and return the address, the
1901 // load address, the alignment, and the size. This is used when an
1902 // expression refers to an output section which was not actually
1903 // created. This returns true if the section was found, false
1904 // otherwise.
1905 bool
1906 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1907 uint64_t*) const;
1908
1909 // Return the associated Output_section if there is one.
1910 Output_section*
get_output_section() const1911 get_output_section() const
1912 { return this->output_section_; }
1913
1914 // Print the contents to the FILE. This is for debugging.
1915 void
1916 print(FILE*) const;
1917
1918 // Return the output section type if specified or Script_sections::ST_NONE.
1919 Script_sections::Section_type
1920 section_type() const;
1921
1922 // Store the memory region to use.
1923 void
1924 set_memory_region(Memory_region*, bool set_vma);
1925
1926 void
set_section_vma(Expression * address)1927 set_section_vma(Expression* address)
1928 { this->address_ = address; }
1929
1930 void
set_section_lma(Expression * address)1931 set_section_lma(Expression* address)
1932 { this->load_address_ = address; }
1933
1934 const std::string&
get_section_name() const1935 get_section_name() const
1936 { return this->name_; }
1937
1938 private:
1939 static const char*
1940 script_section_type_name(Script_section_type);
1941
1942 typedef std::vector<Output_section_element*> Output_section_elements;
1943
1944 // The output section name.
1945 std::string name_;
1946 // The address. This may be NULL.
1947 Expression* address_;
1948 // The load address. This may be NULL.
1949 Expression* load_address_;
1950 // The alignment. This may be NULL.
1951 Expression* align_;
1952 // The input section alignment. This may be NULL.
1953 Expression* subalign_;
1954 // The constraint, if any.
1955 Section_constraint constraint_;
1956 // The fill value. This may be NULL.
1957 Expression* fill_;
1958 // The list of segments this section should go into. This may be
1959 // NULL.
1960 String_list* phdrs_;
1961 // The list of elements defining the section.
1962 Output_section_elements elements_;
1963 // The Output_section created for this definition. This will be
1964 // NULL if none was created.
1965 Output_section* output_section_;
1966 // The address after it has been evaluated.
1967 uint64_t evaluated_address_;
1968 // The load address after it has been evaluated.
1969 uint64_t evaluated_load_address_;
1970 // The alignment after it has been evaluated.
1971 uint64_t evaluated_addralign_;
1972 // The output section is relro.
1973 bool is_relro_;
1974 // The output section type if specified.
1975 enum Script_section_type script_section_type_;
1976 };
1977
1978 // Constructor.
1979
Output_section_definition(const char * name,size_t namelen,const Parser_output_section_header * header)1980 Output_section_definition::Output_section_definition(
1981 const char* name,
1982 size_t namelen,
1983 const Parser_output_section_header* header)
1984 : name_(name, namelen),
1985 address_(header->address),
1986 load_address_(header->load_address),
1987 align_(header->align),
1988 subalign_(header->subalign),
1989 constraint_(header->constraint),
1990 fill_(NULL),
1991 phdrs_(NULL),
1992 elements_(),
1993 output_section_(NULL),
1994 evaluated_address_(0),
1995 evaluated_load_address_(0),
1996 evaluated_addralign_(0),
1997 is_relro_(false),
1998 script_section_type_(header->section_type)
1999 {
2000 }
2001
2002 // Finish an output section.
2003
2004 void
finish(const Parser_output_section_trailer * trailer)2005 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
2006 {
2007 this->fill_ = trailer->fill;
2008 this->phdrs_ = trailer->phdrs;
2009 }
2010
2011 // Add a symbol to be defined.
2012
2013 void
add_symbol_assignment(const char * name,size_t length,Expression * value,bool provide,bool hidden)2014 Output_section_definition::add_symbol_assignment(const char* name,
2015 size_t length,
2016 Expression* value,
2017 bool provide,
2018 bool hidden)
2019 {
2020 Output_section_element* p = new Output_section_element_assignment(name,
2021 length,
2022 value,
2023 provide,
2024 hidden);
2025 this->elements_.push_back(p);
2026 }
2027
2028 // Add an assignment to the special dot symbol.
2029
2030 void
add_dot_assignment(Expression * value)2031 Output_section_definition::add_dot_assignment(Expression* value)
2032 {
2033 Output_section_element* p = new Output_section_element_dot_assignment(value);
2034 this->elements_.push_back(p);
2035 }
2036
2037 // Add an assertion.
2038
2039 void
add_assertion(Expression * check,const char * message,size_t messagelen)2040 Output_section_definition::add_assertion(Expression* check,
2041 const char* message,
2042 size_t messagelen)
2043 {
2044 Output_section_element* p = new Output_section_element_assertion(check,
2045 message,
2046 messagelen);
2047 this->elements_.push_back(p);
2048 }
2049
2050 // Add a data item to the current output section.
2051
2052 void
add_data(int size,bool is_signed,Expression * val)2053 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
2054 {
2055 Output_section_element* p = new Output_section_element_data(size, is_signed,
2056 val);
2057 this->elements_.push_back(p);
2058 }
2059
2060 // Add a setting for the fill value.
2061
2062 void
add_fill(Expression * val)2063 Output_section_definition::add_fill(Expression* val)
2064 {
2065 Output_section_element* p = new Output_section_element_fill(val);
2066 this->elements_.push_back(p);
2067 }
2068
2069 // Add an input section specification.
2070
2071 void
add_input_section(const Input_section_spec * spec,bool keep)2072 Output_section_definition::add_input_section(const Input_section_spec* spec,
2073 bool keep)
2074 {
2075 Output_section_element* p = new Output_section_element_input(spec, keep);
2076 this->elements_.push_back(p);
2077 }
2078
2079 // Create any required output sections. We need an output section if
2080 // there is a data statement here.
2081
2082 void
create_sections(Layout * layout)2083 Output_section_definition::create_sections(Layout* layout)
2084 {
2085 if (this->output_section_ != NULL)
2086 return;
2087 for (Output_section_elements::const_iterator p = this->elements_.begin();
2088 p != this->elements_.end();
2089 ++p)
2090 {
2091 if ((*p)->needs_output_section())
2092 {
2093 const char* name = this->name_.c_str();
2094 this->output_section_ =
2095 layout->make_output_section_for_script(name, this->section_type());
2096 return;
2097 }
2098 }
2099 }
2100
2101 // Add any symbols being defined to the symbol table.
2102
2103 void
add_symbols_to_table(Symbol_table * symtab)2104 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
2105 {
2106 for (Output_section_elements::iterator p = this->elements_.begin();
2107 p != this->elements_.end();
2108 ++p)
2109 (*p)->add_symbols_to_table(symtab);
2110 }
2111
2112 // Finalize symbols and check assertions.
2113
2114 void
finalize_symbols(Symbol_table * symtab,const Layout * layout,uint64_t * dot_value)2115 Output_section_definition::finalize_symbols(Symbol_table* symtab,
2116 const Layout* layout,
2117 uint64_t* dot_value)
2118 {
2119 if (this->output_section_ != NULL)
2120 *dot_value = this->output_section_->address();
2121 else
2122 {
2123 uint64_t address = *dot_value;
2124 if (this->address_ != NULL)
2125 {
2126 address = this->address_->eval_with_dot(symtab, layout, true,
2127 *dot_value, NULL,
2128 NULL, NULL, false);
2129 }
2130 if (this->align_ != NULL)
2131 {
2132 uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
2133 *dot_value, NULL,
2134 NULL, NULL, false);
2135 address = align_address(address, align);
2136 }
2137 *dot_value = address;
2138 }
2139
2140 Output_section* dot_section = this->output_section_;
2141 for (Output_section_elements::iterator p = this->elements_.begin();
2142 p != this->elements_.end();
2143 ++p)
2144 (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
2145 }
2146
2147 // Return the output section name to use for an input section name.
2148
2149 const char*
output_section_name(const char * file_name,const char * section_name,Output_section *** slot,Script_sections::Section_type * psection_type,bool * keep)2150 Output_section_definition::output_section_name(
2151 const char* file_name,
2152 const char* section_name,
2153 Output_section*** slot,
2154 Script_sections::Section_type* psection_type,
2155 bool* keep)
2156 {
2157 // Ask each element whether it matches NAME.
2158 for (Output_section_elements::const_iterator p = this->elements_.begin();
2159 p != this->elements_.end();
2160 ++p)
2161 {
2162 if ((*p)->match_name(file_name, section_name, keep))
2163 {
2164 // We found a match for NAME, which means that it should go
2165 // into this output section.
2166 *slot = &this->output_section_;
2167 *psection_type = this->section_type();
2168 return this->name_.c_str();
2169 }
2170 }
2171
2172 // We don't know about this section name.
2173 return NULL;
2174 }
2175
2176 // Return true if memory from START to START + LENGTH is contained
2177 // within a memory region.
2178
2179 bool
block_in_region(Symbol_table * symtab,Layout * layout,uint64_t start,uint64_t length) const2180 Script_sections::block_in_region(Symbol_table* symtab, Layout* layout,
2181 uint64_t start, uint64_t length) const
2182 {
2183 if (this->memory_regions_ == NULL)
2184 return false;
2185
2186 for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2187 mr != this->memory_regions_->end();
2188 ++mr)
2189 {
2190 uint64_t s = (*mr)->start_address()->eval(symtab, layout, false);
2191 uint64_t l = (*mr)->length()->eval(symtab, layout, false);
2192
2193 if (s <= start
2194 && (s + l) >= (start + length))
2195 return true;
2196 }
2197
2198 return false;
2199 }
2200
2201 // Find a memory region that should be used by a given output SECTION.
2202 // If provided set PREVIOUS_SECTION_RETURN to point to the last section
2203 // that used the return memory region.
2204
2205 Memory_region*
find_memory_region(Output_section_definition * section,bool find_vma_region,Output_section_definition ** previous_section_return)2206 Script_sections::find_memory_region(
2207 Output_section_definition* section,
2208 bool find_vma_region,
2209 Output_section_definition** previous_section_return)
2210 {
2211 if (previous_section_return != NULL)
2212 * previous_section_return = NULL;
2213
2214 // Walk the memory regions specified in this script, if any.
2215 if (this->memory_regions_ == NULL)
2216 return NULL;
2217
2218 // The /DISCARD/ section never gets assigned to any region.
2219 if (section->get_section_name() == "/DISCARD/")
2220 return NULL;
2221
2222 Memory_region* first_match = NULL;
2223
2224 // First check to see if a region has been assigned to this section.
2225 for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2226 mr != this->memory_regions_->end();
2227 ++mr)
2228 {
2229 if (find_vma_region)
2230 {
2231 for (Memory_region::Section_list::const_iterator s =
2232 (*mr)->get_vma_section_list_start();
2233 s != (*mr)->get_vma_section_list_end();
2234 ++s)
2235 if ((*s) == section)
2236 {
2237 (*mr)->set_last_section(section);
2238 return *mr;
2239 }
2240 }
2241 else
2242 {
2243 for (Memory_region::Section_list::const_iterator s =
2244 (*mr)->get_lma_section_list_start();
2245 s != (*mr)->get_lma_section_list_end();
2246 ++s)
2247 if ((*s) == section)
2248 {
2249 (*mr)->set_last_section(section);
2250 return *mr;
2251 }
2252 }
2253
2254 // Make a note of the first memory region whose attributes
2255 // are compatible with the section. If we do not find an
2256 // explicit region assignment, then we will return this region.
2257 Output_section* out_sec = section->get_output_section();
2258 if (first_match == NULL
2259 && out_sec != NULL
2260 && (*mr)->attributes_compatible(out_sec->flags(),
2261 out_sec->type()))
2262 first_match = *mr;
2263 }
2264
2265 // With LMA computations, if an explicit region has not been specified then
2266 // we will want to set the difference between the VMA and the LMA of the
2267 // section were searching for to be the same as the difference between the
2268 // VMA and LMA of the last section to be added to first matched region.
2269 // Hence, if it was asked for, we return a pointer to the last section
2270 // known to be used by the first matched region.
2271 if (first_match != NULL
2272 && previous_section_return != NULL)
2273 *previous_section_return = first_match->get_last_section();
2274
2275 return first_match;
2276 }
2277
2278 // Set the section address. Note that the OUTPUT_SECTION_ field will
2279 // be NULL if no input sections were mapped to this output section.
2280 // We still have to adjust dot and process symbol assignments.
2281
2282 void
set_section_addresses(Symbol_table * symtab,Layout * layout,uint64_t * dot_value,uint64_t * dot_alignment,uint64_t * load_address)2283 Output_section_definition::set_section_addresses(Symbol_table* symtab,
2284 Layout* layout,
2285 uint64_t* dot_value,
2286 uint64_t* dot_alignment,
2287 uint64_t* load_address)
2288 {
2289 Memory_region* vma_region = NULL;
2290 Memory_region* lma_region = NULL;
2291 Script_sections* script_sections =
2292 layout->script_options()->script_sections();
2293 uint64_t address;
2294 uint64_t old_dot_value = *dot_value;
2295 uint64_t old_load_address = *load_address;
2296
2297 // If input section sorting is requested via --section-ordering-file or
2298 // linker plugins, then do it here. This is important because we want
2299 // any sorting specified in the linker scripts, which will be done after
2300 // this, to take precedence. The final order of input sections is then
2301 // guaranteed to be according to the linker script specification.
2302 if (this->output_section_ != NULL
2303 && this->output_section_->input_section_order_specified())
2304 this->output_section_->sort_attached_input_sections();
2305
2306 // Decide the start address for the section. The algorithm is:
2307 // 1) If an address has been specified in a linker script, use that.
2308 // 2) Otherwise if a memory region has been specified for the section,
2309 // use the next free address in the region.
2310 // 3) Otherwise if memory regions have been specified find the first
2311 // region whose attributes are compatible with this section and
2312 // install it into that region.
2313 // 4) Otherwise use the current location counter.
2314
2315 if (this->output_section_ != NULL
2316 // Check for --section-start.
2317 && parameters->options().section_start(this->output_section_->name(),
2318 &address))
2319 ;
2320 else if (this->address_ == NULL)
2321 {
2322 vma_region = script_sections->find_memory_region(this, true, NULL);
2323
2324 if (vma_region != NULL)
2325 address = vma_region->get_current_address()->eval(symtab, layout,
2326 false);
2327 else
2328 address = *dot_value;
2329 }
2330 else
2331 address = this->address_->eval_with_dot(symtab, layout, true,
2332 *dot_value, NULL, NULL,
2333 dot_alignment, false);
2334 uint64_t align;
2335 if (this->align_ == NULL)
2336 {
2337 if (this->output_section_ == NULL)
2338 align = 0;
2339 else
2340 align = this->output_section_->addralign();
2341 }
2342 else
2343 {
2344 Output_section* align_section;
2345 align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
2346 NULL, &align_section, NULL, false);
2347 if (align_section != NULL)
2348 gold_warning(_("alignment of section %s is not absolute"),
2349 this->name_.c_str());
2350 if (this->output_section_ != NULL)
2351 this->output_section_->set_addralign(align);
2352 }
2353
2354 address = align_address(address, align);
2355
2356 uint64_t start_address = address;
2357
2358 *dot_value = address;
2359
2360 // Except for NOLOAD sections, the address of non-SHF_ALLOC sections is
2361 // forced to zero, regardless of what the linker script wants.
2362 if (this->output_section_ != NULL
2363 && ((this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0
2364 || this->output_section_->is_noload()))
2365 this->output_section_->set_address(address);
2366
2367 this->evaluated_address_ = address;
2368 this->evaluated_addralign_ = align;
2369
2370 uint64_t laddr;
2371
2372 if (this->load_address_ == NULL)
2373 {
2374 Output_section_definition* previous_section;
2375
2376 // Determine if an LMA region has been set for this section.
2377 lma_region = script_sections->find_memory_region(this, false,
2378 &previous_section);
2379
2380 if (lma_region != NULL)
2381 {
2382 if (previous_section == NULL)
2383 // The LMA address was explicitly set to the given region.
2384 laddr = lma_region->get_current_address()->eval(symtab, layout,
2385 false);
2386 else
2387 {
2388 // We are not going to use the discovered lma_region, so
2389 // make sure that we do not update it in the code below.
2390 lma_region = NULL;
2391
2392 if (this->address_ != NULL || previous_section == this)
2393 {
2394 // Either an explicit VMA address has been set, or an
2395 // explicit VMA region has been set, so set the LMA equal to
2396 // the VMA.
2397 laddr = address;
2398 }
2399 else
2400 {
2401 // The LMA address was not explicitly or implicitly set.
2402 //
2403 // We have been given the first memory region that is
2404 // compatible with the current section and a pointer to the
2405 // last section to use this region. Set the LMA of this
2406 // section so that the difference between its' VMA and LMA
2407 // is the same as the difference between the VMA and LMA of
2408 // the last section in the given region.
2409 laddr = address + (previous_section->evaluated_load_address_
2410 - previous_section->evaluated_address_);
2411 }
2412 }
2413
2414 if (this->output_section_ != NULL)
2415 this->output_section_->set_load_address(laddr);
2416 }
2417 else
2418 {
2419 // Do not set the load address of the output section, if one exists.
2420 // This allows future sections to determine what the load address
2421 // should be. If none is ever set, it will default to being the
2422 // same as the vma address.
2423 laddr = address;
2424 }
2425 }
2426 else
2427 {
2428 laddr = this->load_address_->eval_with_dot(symtab, layout, true,
2429 *dot_value,
2430 this->output_section_,
2431 NULL, NULL, false);
2432 if (this->output_section_ != NULL)
2433 this->output_section_->set_load_address(laddr);
2434 }
2435
2436 this->evaluated_load_address_ = laddr;
2437
2438 uint64_t subalign;
2439 if (this->subalign_ == NULL)
2440 subalign = 0;
2441 else
2442 {
2443 Output_section* subalign_section;
2444 subalign = this->subalign_->eval_with_dot(symtab, layout, true,
2445 *dot_value, NULL,
2446 &subalign_section, NULL,
2447 false);
2448 if (subalign_section != NULL)
2449 gold_warning(_("subalign of section %s is not absolute"),
2450 this->name_.c_str());
2451 }
2452
2453 std::string fill;
2454 if (this->fill_ != NULL)
2455 {
2456 // FIXME: The GNU linker supports fill values of arbitrary
2457 // length.
2458 Output_section* fill_section;
2459 uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
2460 *dot_value,
2461 NULL, &fill_section,
2462 NULL, false);
2463 if (fill_section != NULL)
2464 gold_warning(_("fill of section %s is not absolute"),
2465 this->name_.c_str());
2466 unsigned char fill_buff[4];
2467 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
2468 fill.assign(reinterpret_cast<char*>(fill_buff), 4);
2469 }
2470
2471 Input_section_list input_sections;
2472 if (this->output_section_ != NULL)
2473 {
2474 // Get the list of input sections attached to this output
2475 // section. This will leave the output section with only
2476 // Output_section_data entries.
2477 address += this->output_section_->get_input_sections(address,
2478 fill,
2479 &input_sections);
2480 *dot_value = address;
2481 }
2482
2483 Output_section* dot_section = this->output_section_;
2484 for (Output_section_elements::iterator p = this->elements_.begin();
2485 p != this->elements_.end();
2486 ++p)
2487 (*p)->set_section_addresses(symtab, layout, this->output_section_,
2488 subalign, dot_value, dot_alignment,
2489 &dot_section, &fill, &input_sections);
2490
2491 gold_assert(input_sections.empty());
2492
2493 if (vma_region != NULL)
2494 {
2495 // Update the VMA region being used by the section now that we know how
2496 // big it is. Use the current address in the region, rather than
2497 // start_address because that might have been aligned upwards and we
2498 // need to allow for the padding.
2499 Expression* addr = vma_region->get_current_address();
2500 uint64_t size = *dot_value - addr->eval(symtab, layout, false);
2501
2502 vma_region->increment_offset(this->get_section_name(), size,
2503 symtab, layout);
2504 }
2505
2506 // If the LMA region is different from the VMA region, then increment the
2507 // offset there as well. Note that we use the same "dot_value -
2508 // start_address" formula that is used in the load_address assignment below.
2509 if (lma_region != NULL && lma_region != vma_region)
2510 lma_region->increment_offset(this->get_section_name(),
2511 *dot_value - start_address,
2512 symtab, layout);
2513
2514 // Compute the load address for the following section.
2515 if (this->output_section_ == NULL)
2516 *load_address = *dot_value;
2517 else if (this->load_address_ == NULL)
2518 {
2519 if (lma_region == NULL)
2520 *load_address = *dot_value;
2521 else
2522 *load_address =
2523 lma_region->get_current_address()->eval(symtab, layout, false);
2524 }
2525 else
2526 *load_address = (this->output_section_->load_address()
2527 + (*dot_value - start_address));
2528
2529 if (this->output_section_ != NULL)
2530 {
2531 if (this->is_relro_)
2532 this->output_section_->set_is_relro();
2533 else
2534 this->output_section_->clear_is_relro();
2535
2536 // If this is a NOLOAD section, keep dot and load address unchanged.
2537 if (this->output_section_->is_noload())
2538 {
2539 *dot_value = old_dot_value;
2540 *load_address = old_load_address;
2541 }
2542 }
2543 }
2544
2545 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
2546 // this section is constrained, and the input sections do not match,
2547 // return the constraint, and set *POSD.
2548
2549 Section_constraint
check_constraint(Output_section_definition ** posd)2550 Output_section_definition::check_constraint(Output_section_definition** posd)
2551 {
2552 switch (this->constraint_)
2553 {
2554 case CONSTRAINT_NONE:
2555 return CONSTRAINT_NONE;
2556
2557 case CONSTRAINT_ONLY_IF_RO:
2558 if (this->output_section_ != NULL
2559 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2560 {
2561 *posd = this;
2562 return CONSTRAINT_ONLY_IF_RO;
2563 }
2564 return CONSTRAINT_NONE;
2565
2566 case CONSTRAINT_ONLY_IF_RW:
2567 if (this->output_section_ != NULL
2568 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2569 {
2570 *posd = this;
2571 return CONSTRAINT_ONLY_IF_RW;
2572 }
2573 return CONSTRAINT_NONE;
2574
2575 case CONSTRAINT_SPECIAL:
2576 if (this->output_section_ != NULL)
2577 gold_error(_("SPECIAL constraints are not implemented"));
2578 return CONSTRAINT_NONE;
2579
2580 default:
2581 gold_unreachable();
2582 }
2583 }
2584
2585 // See if this is the alternate output section for a constrained
2586 // output section. If it is, transfer the Output_section and return
2587 // true. Otherwise return false.
2588
2589 bool
alternate_constraint(Output_section_definition * posd,Section_constraint constraint)2590 Output_section_definition::alternate_constraint(
2591 Output_section_definition* posd,
2592 Section_constraint constraint)
2593 {
2594 if (this->name_ != posd->name_)
2595 return false;
2596
2597 switch (constraint)
2598 {
2599 case CONSTRAINT_ONLY_IF_RO:
2600 if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2601 return false;
2602 break;
2603
2604 case CONSTRAINT_ONLY_IF_RW:
2605 if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2606 return false;
2607 break;
2608
2609 default:
2610 gold_unreachable();
2611 }
2612
2613 // We have found the alternate constraint. We just need to move
2614 // over the Output_section. When constraints are used properly,
2615 // THIS should not have an output_section pointer, as all the input
2616 // sections should have matched the other definition.
2617
2618 if (this->output_section_ != NULL)
2619 gold_error(_("mismatched definition for constrained sections"));
2620
2621 this->output_section_ = posd->output_section_;
2622 posd->output_section_ = NULL;
2623
2624 if (this->is_relro_)
2625 this->output_section_->set_is_relro();
2626 else
2627 this->output_section_->clear_is_relro();
2628
2629 return true;
2630 }
2631
2632 // Get the list of segments to use for an allocated section when using
2633 // a PHDRS clause.
2634
2635 Output_section*
allocate_to_segment(String_list ** phdrs_list,bool * orphan)2636 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2637 bool* orphan)
2638 {
2639 // Update phdrs_list even if we don't have an output section. It
2640 // might be used by the following sections.
2641 if (this->phdrs_ != NULL)
2642 *phdrs_list = this->phdrs_;
2643
2644 if (this->output_section_ == NULL)
2645 return NULL;
2646 if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2647 return NULL;
2648 *orphan = false;
2649 return this->output_section_;
2650 }
2651
2652 // Look for an output section by name and return the address, the load
2653 // address, the alignment, and the size. This is used when an
2654 // expression refers to an output section which was not actually
2655 // created. This returns true if the section was found, false
2656 // otherwise.
2657
2658 bool
get_output_section_info(const char * name,uint64_t * address,uint64_t * load_address,uint64_t * addralign,uint64_t * size) const2659 Output_section_definition::get_output_section_info(const char* name,
2660 uint64_t* address,
2661 uint64_t* load_address,
2662 uint64_t* addralign,
2663 uint64_t* size) const
2664 {
2665 if (this->name_ != name)
2666 return false;
2667
2668 if (this->output_section_ != NULL)
2669 {
2670 *address = this->output_section_->address();
2671 if (this->output_section_->has_load_address())
2672 *load_address = this->output_section_->load_address();
2673 else
2674 *load_address = *address;
2675 *addralign = this->output_section_->addralign();
2676 *size = this->output_section_->current_data_size();
2677 }
2678 else
2679 {
2680 *address = this->evaluated_address_;
2681 *load_address = this->evaluated_load_address_;
2682 *addralign = this->evaluated_addralign_;
2683 *size = 0;
2684 }
2685
2686 return true;
2687 }
2688
2689 // Print for debugging.
2690
2691 void
print(FILE * f) const2692 Output_section_definition::print(FILE* f) const
2693 {
2694 fprintf(f, " %s ", this->name_.c_str());
2695
2696 if (this->address_ != NULL)
2697 {
2698 this->address_->print(f);
2699 fprintf(f, " ");
2700 }
2701
2702 if (this->script_section_type_ != SCRIPT_SECTION_TYPE_NONE)
2703 fprintf(f, "(%s) ",
2704 this->script_section_type_name(this->script_section_type_));
2705
2706 fprintf(f, ": ");
2707
2708 if (this->load_address_ != NULL)
2709 {
2710 fprintf(f, "AT(");
2711 this->load_address_->print(f);
2712 fprintf(f, ") ");
2713 }
2714
2715 if (this->align_ != NULL)
2716 {
2717 fprintf(f, "ALIGN(");
2718 this->align_->print(f);
2719 fprintf(f, ") ");
2720 }
2721
2722 if (this->subalign_ != NULL)
2723 {
2724 fprintf(f, "SUBALIGN(");
2725 this->subalign_->print(f);
2726 fprintf(f, ") ");
2727 }
2728
2729 fprintf(f, "{\n");
2730
2731 for (Output_section_elements::const_iterator p = this->elements_.begin();
2732 p != this->elements_.end();
2733 ++p)
2734 (*p)->print(f);
2735
2736 fprintf(f, " }");
2737
2738 if (this->fill_ != NULL)
2739 {
2740 fprintf(f, " = ");
2741 this->fill_->print(f);
2742 }
2743
2744 if (this->phdrs_ != NULL)
2745 {
2746 for (String_list::const_iterator p = this->phdrs_->begin();
2747 p != this->phdrs_->end();
2748 ++p)
2749 fprintf(f, " :%s", p->c_str());
2750 }
2751
2752 fprintf(f, "\n");
2753 }
2754
2755 Script_sections::Section_type
section_type() const2756 Output_section_definition::section_type() const
2757 {
2758 switch (this->script_section_type_)
2759 {
2760 case SCRIPT_SECTION_TYPE_NONE:
2761 return Script_sections::ST_NONE;
2762 case SCRIPT_SECTION_TYPE_NOLOAD:
2763 return Script_sections::ST_NOLOAD;
2764 case SCRIPT_SECTION_TYPE_COPY:
2765 case SCRIPT_SECTION_TYPE_DSECT:
2766 case SCRIPT_SECTION_TYPE_INFO:
2767 case SCRIPT_SECTION_TYPE_OVERLAY:
2768 // There are not really support so we treat them as ST_NONE. The
2769 // parse should have issued errors for them already.
2770 return Script_sections::ST_NONE;
2771 default:
2772 gold_unreachable();
2773 }
2774 }
2775
2776 // Return the name of a script section type.
2777
2778 const char*
script_section_type_name(Script_section_type script_section_type)2779 Output_section_definition::script_section_type_name(
2780 Script_section_type script_section_type)
2781 {
2782 switch (script_section_type)
2783 {
2784 case SCRIPT_SECTION_TYPE_NONE:
2785 return "NONE";
2786 case SCRIPT_SECTION_TYPE_NOLOAD:
2787 return "NOLOAD";
2788 case SCRIPT_SECTION_TYPE_DSECT:
2789 return "DSECT";
2790 case SCRIPT_SECTION_TYPE_COPY:
2791 return "COPY";
2792 case SCRIPT_SECTION_TYPE_INFO:
2793 return "INFO";
2794 case SCRIPT_SECTION_TYPE_OVERLAY:
2795 return "OVERLAY";
2796 default:
2797 gold_unreachable();
2798 }
2799 }
2800
2801 void
set_memory_region(Memory_region * mr,bool set_vma)2802 Output_section_definition::set_memory_region(Memory_region* mr, bool set_vma)
2803 {
2804 gold_assert(mr != NULL);
2805 // Add the current section to the specified region's list.
2806 mr->add_section(this, set_vma);
2807 }
2808
2809 // An output section created to hold orphaned input sections. These
2810 // do not actually appear in linker scripts. However, for convenience
2811 // when setting the output section addresses, we put a marker to these
2812 // sections in the appropriate place in the list of SECTIONS elements.
2813
2814 class Orphan_output_section : public Sections_element
2815 {
2816 public:
Orphan_output_section(Output_section * os)2817 Orphan_output_section(Output_section* os)
2818 : os_(os)
2819 { }
2820
2821 // Return whether the orphan output section is relro. We can just
2822 // check the output section because we always set the flag, if
2823 // needed, just after we create the Orphan_output_section.
2824 bool
is_relro() const2825 is_relro() const
2826 { return this->os_->is_relro(); }
2827
2828 // Initialize OSP with an output section. This should have been
2829 // done already.
2830 void
orphan_section_init(Orphan_section_placement *,Script_sections::Elements_iterator)2831 orphan_section_init(Orphan_section_placement*,
2832 Script_sections::Elements_iterator)
2833 { gold_unreachable(); }
2834
2835 // Set section addresses.
2836 void
2837 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
2838 uint64_t*);
2839
2840 // Get the list of segments to use for an allocated section when
2841 // using a PHDRS clause.
2842 Output_section*
2843 allocate_to_segment(String_list**, bool*);
2844
2845 // Return the associated Output_section.
2846 Output_section*
get_output_section() const2847 get_output_section() const
2848 { return this->os_; }
2849
2850 // Print for debugging.
2851 void
print(FILE * f) const2852 print(FILE* f) const
2853 {
2854 fprintf(f, " marker for orphaned output section %s\n",
2855 this->os_->name());
2856 }
2857
2858 private:
2859 Output_section* os_;
2860 };
2861
2862 // Set section addresses.
2863
2864 void
set_section_addresses(Symbol_table *,Layout *,uint64_t * dot_value,uint64_t *,uint64_t * load_address)2865 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2866 uint64_t* dot_value,
2867 uint64_t*,
2868 uint64_t* load_address)
2869 {
2870 typedef std::list<Output_section::Input_section> Input_section_list;
2871
2872 bool have_load_address = *load_address != *dot_value;
2873
2874 uint64_t address = *dot_value;
2875 address = align_address(address, this->os_->addralign());
2876
2877 // If input section sorting is requested via --section-ordering-file or
2878 // linker plugins, then do it here. This is important because we want
2879 // any sorting specified in the linker scripts, which will be done after
2880 // this, to take precedence. The final order of input sections is then
2881 // guaranteed to be according to the linker script specification.
2882 if (this->os_ != NULL
2883 && this->os_->input_section_order_specified())
2884 this->os_->sort_attached_input_sections();
2885
2886 // For a relocatable link, all orphan sections are put at
2887 // address 0. In general we expect all sections to be at
2888 // address 0 for a relocatable link, but we permit the linker
2889 // script to override that for specific output sections.
2890 if (parameters->options().relocatable())
2891 {
2892 address = 0;
2893 *load_address = 0;
2894 have_load_address = false;
2895 }
2896
2897 if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
2898 {
2899 this->os_->set_address(address);
2900 if (have_load_address)
2901 this->os_->set_load_address(align_address(*load_address,
2902 this->os_->addralign()));
2903 }
2904
2905 Input_section_list input_sections;
2906 address += this->os_->get_input_sections(address, "", &input_sections);
2907
2908 for (Input_section_list::iterator p = input_sections.begin();
2909 p != input_sections.end();
2910 ++p)
2911 {
2912 uint64_t addralign = p->addralign();
2913 if (!p->is_input_section())
2914 p->output_section_data()->finalize_data_size();
2915 uint64_t size = p->data_size();
2916 address = align_address(address, addralign);
2917 this->os_->add_script_input_section(*p);
2918 address += size;
2919 }
2920
2921 if (parameters->options().relocatable())
2922 {
2923 // For a relocatable link, reset DOT_VALUE to 0.
2924 *dot_value = 0;
2925 *load_address = 0;
2926 }
2927 else if (this->os_ == NULL
2928 || (this->os_->flags() & elfcpp::SHF_TLS) == 0
2929 || this->os_->type() != elfcpp::SHT_NOBITS)
2930 {
2931 // An SHF_TLS/SHT_NOBITS section does not take up any address space.
2932 if (!have_load_address)
2933 *load_address = address;
2934 else
2935 *load_address += address - *dot_value;
2936
2937 *dot_value = address;
2938 }
2939 }
2940
2941 // Get the list of segments to use for an allocated section when using
2942 // a PHDRS clause. If this is an allocated section, return the
2943 // Output_section. We don't change the list of segments.
2944
2945 Output_section*
allocate_to_segment(String_list **,bool * orphan)2946 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
2947 {
2948 if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
2949 return NULL;
2950 *orphan = true;
2951 return this->os_;
2952 }
2953
2954 // Class Phdrs_element. A program header from a PHDRS clause.
2955
2956 class Phdrs_element
2957 {
2958 public:
Phdrs_element(const char * name,size_t namelen,unsigned int type,bool includes_filehdr,bool includes_phdrs,bool is_flags_valid,unsigned int flags,Expression * load_address)2959 Phdrs_element(const char* name, size_t namelen, unsigned int type,
2960 bool includes_filehdr, bool includes_phdrs,
2961 bool is_flags_valid, unsigned int flags,
2962 Expression* load_address)
2963 : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
2964 includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
2965 flags_(flags), load_address_(load_address), load_address_value_(0),
2966 segment_(NULL)
2967 { }
2968
2969 // Return the name of this segment.
2970 const std::string&
name() const2971 name() const
2972 { return this->name_; }
2973
2974 // Return the type of the segment.
2975 unsigned int
type() const2976 type() const
2977 { return this->type_; }
2978
2979 // Whether to include the file header.
2980 bool
includes_filehdr() const2981 includes_filehdr() const
2982 { return this->includes_filehdr_; }
2983
2984 // Whether to include the program headers.
2985 bool
includes_phdrs() const2986 includes_phdrs() const
2987 { return this->includes_phdrs_; }
2988
2989 // Return whether there is a load address.
2990 bool
has_load_address() const2991 has_load_address() const
2992 { return this->load_address_ != NULL; }
2993
2994 // Evaluate the load address expression if there is one.
2995 void
eval_load_address(Symbol_table * symtab,Layout * layout)2996 eval_load_address(Symbol_table* symtab, Layout* layout)
2997 {
2998 if (this->load_address_ != NULL)
2999 this->load_address_value_ = this->load_address_->eval(symtab, layout,
3000 true);
3001 }
3002
3003 // Return the load address.
3004 uint64_t
load_address() const3005 load_address() const
3006 {
3007 gold_assert(this->load_address_ != NULL);
3008 return this->load_address_value_;
3009 }
3010
3011 // Create the segment.
3012 Output_segment*
create_segment(Layout * layout)3013 create_segment(Layout* layout)
3014 {
3015 this->segment_ = layout->make_output_segment(this->type_, this->flags_);
3016 return this->segment_;
3017 }
3018
3019 // Return the segment.
3020 Output_segment*
segment()3021 segment()
3022 { return this->segment_; }
3023
3024 // Release the segment.
3025 void
release_segment()3026 release_segment()
3027 { this->segment_ = NULL; }
3028
3029 // Set the segment flags if appropriate.
3030 void
set_flags_if_valid()3031 set_flags_if_valid()
3032 {
3033 if (this->is_flags_valid_)
3034 this->segment_->set_flags(this->flags_);
3035 }
3036
3037 // Print for debugging.
3038 void
3039 print(FILE*) const;
3040
3041 private:
3042 // The name used in the script.
3043 std::string name_;
3044 // The type of the segment (PT_LOAD, etc.).
3045 unsigned int type_;
3046 // Whether this segment includes the file header.
3047 bool includes_filehdr_;
3048 // Whether this segment includes the section headers.
3049 bool includes_phdrs_;
3050 // Whether the flags were explicitly specified.
3051 bool is_flags_valid_;
3052 // The flags for this segment (PF_R, etc.) if specified.
3053 unsigned int flags_;
3054 // The expression for the load address for this segment. This may
3055 // be NULL.
3056 Expression* load_address_;
3057 // The actual load address from evaluating the expression.
3058 uint64_t load_address_value_;
3059 // The segment itself.
3060 Output_segment* segment_;
3061 };
3062
3063 // Print for debugging.
3064
3065 void
print(FILE * f) const3066 Phdrs_element::print(FILE* f) const
3067 {
3068 fprintf(f, " %s 0x%x", this->name_.c_str(), this->type_);
3069 if (this->includes_filehdr_)
3070 fprintf(f, " FILEHDR");
3071 if (this->includes_phdrs_)
3072 fprintf(f, " PHDRS");
3073 if (this->is_flags_valid_)
3074 fprintf(f, " FLAGS(%u)", this->flags_);
3075 if (this->load_address_ != NULL)
3076 {
3077 fprintf(f, " AT(");
3078 this->load_address_->print(f);
3079 fprintf(f, ")");
3080 }
3081 fprintf(f, ";\n");
3082 }
3083
3084 // Add a memory region.
3085
3086 void
add_memory_region(const char * name,size_t namelen,unsigned int attributes,Expression * start,Expression * length)3087 Script_sections::add_memory_region(const char* name, size_t namelen,
3088 unsigned int attributes,
3089 Expression* start, Expression* length)
3090 {
3091 if (this->memory_regions_ == NULL)
3092 this->memory_regions_ = new Memory_regions();
3093 else if (this->find_memory_region(name, namelen))
3094 {
3095 gold_error(_("region '%.*s' already defined"), static_cast<int>(namelen),
3096 name);
3097 // FIXME: Add a GOLD extension to allow multiple regions with the same
3098 // name. This would amount to a single region covering disjoint blocks
3099 // of memory, which is useful for embedded devices.
3100 }
3101
3102 // FIXME: Check the length and start values. Currently we allow
3103 // non-constant expressions for these values, whereas LD does not.
3104
3105 // FIXME: Add a GOLD extension to allow NEGATIVE LENGTHS. This would
3106 // describe a region that packs from the end address going down, rather
3107 // than the start address going up. This would be useful for embedded
3108 // devices.
3109
3110 this->memory_regions_->push_back(new Memory_region(name, namelen, attributes,
3111 start, length));
3112 }
3113
3114 // Find a memory region.
3115
3116 Memory_region*
find_memory_region(const char * name,size_t namelen)3117 Script_sections::find_memory_region(const char* name, size_t namelen)
3118 {
3119 if (this->memory_regions_ == NULL)
3120 return NULL;
3121
3122 for (Memory_regions::const_iterator m = this->memory_regions_->begin();
3123 m != this->memory_regions_->end();
3124 ++m)
3125 if ((*m)->name_match(name, namelen))
3126 return *m;
3127
3128 return NULL;
3129 }
3130
3131 // Find a memory region's origin.
3132
3133 Expression*
find_memory_region_origin(const char * name,size_t namelen)3134 Script_sections::find_memory_region_origin(const char* name, size_t namelen)
3135 {
3136 Memory_region* mr = find_memory_region(name, namelen);
3137 if (mr == NULL)
3138 return NULL;
3139
3140 return mr->start_address();
3141 }
3142
3143 // Find a memory region's length.
3144
3145 Expression*
find_memory_region_length(const char * name,size_t namelen)3146 Script_sections::find_memory_region_length(const char* name, size_t namelen)
3147 {
3148 Memory_region* mr = find_memory_region(name, namelen);
3149 if (mr == NULL)
3150 return NULL;
3151
3152 return mr->length();
3153 }
3154
3155 // Set the memory region to use for the current section.
3156
3157 void
set_memory_region(Memory_region * mr,bool set_vma)3158 Script_sections::set_memory_region(Memory_region* mr, bool set_vma)
3159 {
3160 gold_assert(!this->sections_elements_->empty());
3161 this->sections_elements_->back()->set_memory_region(mr, set_vma);
3162 }
3163
3164 // Class Script_sections.
3165
Script_sections()3166 Script_sections::Script_sections()
3167 : saw_sections_clause_(false),
3168 in_sections_clause_(false),
3169 sections_elements_(NULL),
3170 output_section_(NULL),
3171 memory_regions_(NULL),
3172 phdrs_elements_(NULL),
3173 orphan_section_placement_(NULL),
3174 data_segment_align_start_(),
3175 saw_data_segment_align_(false),
3176 saw_relro_end_(false),
3177 saw_segment_start_expression_(false)
3178 {
3179 }
3180
3181 // Start a SECTIONS clause.
3182
3183 void
start_sections()3184 Script_sections::start_sections()
3185 {
3186 gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
3187 this->saw_sections_clause_ = true;
3188 this->in_sections_clause_ = true;
3189 if (this->sections_elements_ == NULL)
3190 this->sections_elements_ = new Sections_elements;
3191 }
3192
3193 // Finish a SECTIONS clause.
3194
3195 void
finish_sections()3196 Script_sections::finish_sections()
3197 {
3198 gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
3199 this->in_sections_clause_ = false;
3200 }
3201
3202 // Add a symbol to be defined.
3203
3204 void
add_symbol_assignment(const char * name,size_t length,Expression * val,bool provide,bool hidden)3205 Script_sections::add_symbol_assignment(const char* name, size_t length,
3206 Expression* val, bool provide,
3207 bool hidden)
3208 {
3209 if (this->output_section_ != NULL)
3210 this->output_section_->add_symbol_assignment(name, length, val,
3211 provide, hidden);
3212 else
3213 {
3214 Sections_element* p = new Sections_element_assignment(name, length,
3215 val, provide,
3216 hidden);
3217 this->sections_elements_->push_back(p);
3218 }
3219 }
3220
3221 // Add an assignment to the special dot symbol.
3222
3223 void
add_dot_assignment(Expression * val)3224 Script_sections::add_dot_assignment(Expression* val)
3225 {
3226 if (this->output_section_ != NULL)
3227 this->output_section_->add_dot_assignment(val);
3228 else
3229 {
3230 // The GNU linker permits assignments to . to appears outside of
3231 // a SECTIONS clause, and treats it as appearing inside, so
3232 // sections_elements_ may be NULL here.
3233 if (this->sections_elements_ == NULL)
3234 {
3235 this->sections_elements_ = new Sections_elements;
3236 this->saw_sections_clause_ = true;
3237 }
3238
3239 Sections_element* p = new Sections_element_dot_assignment(val);
3240 this->sections_elements_->push_back(p);
3241 }
3242 }
3243
3244 // Add an assertion.
3245
3246 void
add_assertion(Expression * check,const char * message,size_t messagelen)3247 Script_sections::add_assertion(Expression* check, const char* message,
3248 size_t messagelen)
3249 {
3250 if (this->output_section_ != NULL)
3251 this->output_section_->add_assertion(check, message, messagelen);
3252 else
3253 {
3254 Sections_element* p = new Sections_element_assertion(check, message,
3255 messagelen);
3256 this->sections_elements_->push_back(p);
3257 }
3258 }
3259
3260 // Start processing entries for an output section.
3261
3262 void
start_output_section(const char * name,size_t namelen,const Parser_output_section_header * header)3263 Script_sections::start_output_section(
3264 const char* name,
3265 size_t namelen,
3266 const Parser_output_section_header* header)
3267 {
3268 Output_section_definition* posd = new Output_section_definition(name,
3269 namelen,
3270 header);
3271 this->sections_elements_->push_back(posd);
3272 gold_assert(this->output_section_ == NULL);
3273 this->output_section_ = posd;
3274 }
3275
3276 // Stop processing entries for an output section.
3277
3278 void
finish_output_section(const Parser_output_section_trailer * trailer)3279 Script_sections::finish_output_section(
3280 const Parser_output_section_trailer* trailer)
3281 {
3282 gold_assert(this->output_section_ != NULL);
3283 this->output_section_->finish(trailer);
3284 this->output_section_ = NULL;
3285 }
3286
3287 // Add a data item to the current output section.
3288
3289 void
add_data(int size,bool is_signed,Expression * val)3290 Script_sections::add_data(int size, bool is_signed, Expression* val)
3291 {
3292 gold_assert(this->output_section_ != NULL);
3293 this->output_section_->add_data(size, is_signed, val);
3294 }
3295
3296 // Add a fill value setting to the current output section.
3297
3298 void
add_fill(Expression * val)3299 Script_sections::add_fill(Expression* val)
3300 {
3301 gold_assert(this->output_section_ != NULL);
3302 this->output_section_->add_fill(val);
3303 }
3304
3305 // Add an input section specification to the current output section.
3306
3307 void
add_input_section(const Input_section_spec * spec,bool keep)3308 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
3309 {
3310 gold_assert(this->output_section_ != NULL);
3311 this->output_section_->add_input_section(spec, keep);
3312 }
3313
3314 // This is called when we see DATA_SEGMENT_ALIGN. It means that any
3315 // subsequent output sections may be relro.
3316
3317 void
data_segment_align()3318 Script_sections::data_segment_align()
3319 {
3320 if (this->saw_data_segment_align_)
3321 gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
3322 gold_assert(!this->sections_elements_->empty());
3323 Sections_elements::iterator p = this->sections_elements_->end();
3324 --p;
3325 this->data_segment_align_start_ = p;
3326 this->saw_data_segment_align_ = true;
3327 }
3328
3329 // This is called when we see DATA_SEGMENT_RELRO_END. It means that
3330 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
3331
3332 void
data_segment_relro_end()3333 Script_sections::data_segment_relro_end()
3334 {
3335 if (this->saw_relro_end_)
3336 gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
3337 "in a linker script"));
3338 this->saw_relro_end_ = true;
3339
3340 if (!this->saw_data_segment_align_)
3341 gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
3342 else
3343 {
3344 Sections_elements::iterator p = this->data_segment_align_start_;
3345 for (++p; p != this->sections_elements_->end(); ++p)
3346 (*p)->set_is_relro();
3347 }
3348 }
3349
3350 // Create any required sections.
3351
3352 void
create_sections(Layout * layout)3353 Script_sections::create_sections(Layout* layout)
3354 {
3355 if (!this->saw_sections_clause_)
3356 return;
3357 for (Sections_elements::iterator p = this->sections_elements_->begin();
3358 p != this->sections_elements_->end();
3359 ++p)
3360 (*p)->create_sections(layout);
3361 }
3362
3363 // Add any symbols we are defining to the symbol table.
3364
3365 void
add_symbols_to_table(Symbol_table * symtab)3366 Script_sections::add_symbols_to_table(Symbol_table* symtab)
3367 {
3368 if (!this->saw_sections_clause_)
3369 return;
3370 for (Sections_elements::iterator p = this->sections_elements_->begin();
3371 p != this->sections_elements_->end();
3372 ++p)
3373 (*p)->add_symbols_to_table(symtab);
3374 }
3375
3376 // Finalize symbols and check assertions.
3377
3378 void
finalize_symbols(Symbol_table * symtab,const Layout * layout)3379 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
3380 {
3381 if (!this->saw_sections_clause_)
3382 return;
3383 uint64_t dot_value = 0;
3384 for (Sections_elements::iterator p = this->sections_elements_->begin();
3385 p != this->sections_elements_->end();
3386 ++p)
3387 (*p)->finalize_symbols(symtab, layout, &dot_value);
3388 }
3389
3390 // Return the name of the output section to use for an input file name
3391 // and section name.
3392
3393 const char*
output_section_name(const char * file_name,const char * section_name,Output_section *** output_section_slot,Script_sections::Section_type * psection_type,bool * keep)3394 Script_sections::output_section_name(
3395 const char* file_name,
3396 const char* section_name,
3397 Output_section*** output_section_slot,
3398 Script_sections::Section_type* psection_type,
3399 bool* keep)
3400 {
3401 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3402 p != this->sections_elements_->end();
3403 ++p)
3404 {
3405 const char* ret = (*p)->output_section_name(file_name, section_name,
3406 output_section_slot,
3407 psection_type, keep);
3408
3409 if (ret != NULL)
3410 {
3411 // The special name /DISCARD/ means that the input section
3412 // should be discarded.
3413 if (strcmp(ret, "/DISCARD/") == 0)
3414 {
3415 *output_section_slot = NULL;
3416 *psection_type = Script_sections::ST_NONE;
3417 return NULL;
3418 }
3419 return ret;
3420 }
3421 }
3422
3423 // If we couldn't find a mapping for the name, the output section
3424 // gets the name of the input section.
3425
3426 *output_section_slot = NULL;
3427 *psection_type = Script_sections::ST_NONE;
3428
3429 return section_name;
3430 }
3431
3432 // Place a marker for an orphan output section into the SECTIONS
3433 // clause.
3434
3435 void
place_orphan(Output_section * os)3436 Script_sections::place_orphan(Output_section* os)
3437 {
3438 Orphan_section_placement* osp = this->orphan_section_placement_;
3439 if (osp == NULL)
3440 {
3441 // Initialize the Orphan_section_placement structure.
3442 osp = new Orphan_section_placement();
3443 for (Sections_elements::iterator p = this->sections_elements_->begin();
3444 p != this->sections_elements_->end();
3445 ++p)
3446 (*p)->orphan_section_init(osp, p);
3447 gold_assert(!this->sections_elements_->empty());
3448 Sections_elements::iterator last = this->sections_elements_->end();
3449 --last;
3450 osp->last_init(last);
3451 this->orphan_section_placement_ = osp;
3452 }
3453
3454 Orphan_output_section* orphan = new Orphan_output_section(os);
3455
3456 // Look for where to put ORPHAN.
3457 Sections_elements::iterator* where;
3458 if (osp->find_place(os, &where))
3459 {
3460 if ((**where)->is_relro())
3461 os->set_is_relro();
3462 else
3463 os->clear_is_relro();
3464
3465 // We want to insert ORPHAN after *WHERE, and then update *WHERE
3466 // so that the next one goes after this one.
3467 Sections_elements::iterator p = *where;
3468 gold_assert(p != this->sections_elements_->end());
3469 ++p;
3470 *where = this->sections_elements_->insert(p, orphan);
3471 }
3472 else
3473 {
3474 os->clear_is_relro();
3475 // We don't have a place to put this orphan section. Put it,
3476 // and all other sections like it, at the end, but before the
3477 // sections which always come at the end.
3478 Sections_elements::iterator last = osp->last_place();
3479 *where = this->sections_elements_->insert(last, orphan);
3480 }
3481 }
3482
3483 // Set the addresses of all the output sections. Walk through all the
3484 // elements, tracking the dot symbol. Apply assignments which set
3485 // absolute symbol values, in case they are used when setting dot.
3486 // Fill in data statement values. As we find output sections, set the
3487 // address, set the address of all associated input sections, and
3488 // update dot. Return the segment which should hold the file header
3489 // and segment headers, if any.
3490
3491 Output_segment*
set_section_addresses(Symbol_table * symtab,Layout * layout)3492 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
3493 {
3494 gold_assert(this->saw_sections_clause_);
3495
3496 // Implement ONLY_IF_RO/ONLY_IF_RW constraints. These are a pain
3497 // for our representation.
3498 for (Sections_elements::iterator p = this->sections_elements_->begin();
3499 p != this->sections_elements_->end();
3500 ++p)
3501 {
3502 Output_section_definition* posd;
3503 Section_constraint failed_constraint = (*p)->check_constraint(&posd);
3504 if (failed_constraint != CONSTRAINT_NONE)
3505 {
3506 Sections_elements::iterator q;
3507 for (q = this->sections_elements_->begin();
3508 q != this->sections_elements_->end();
3509 ++q)
3510 {
3511 if (q != p)
3512 {
3513 if ((*q)->alternate_constraint(posd, failed_constraint))
3514 break;
3515 }
3516 }
3517
3518 if (q == this->sections_elements_->end())
3519 gold_error(_("no matching section constraint"));
3520 }
3521 }
3522
3523 // Force the alignment of the first TLS section to be the maximum
3524 // alignment of all TLS sections.
3525 Output_section* first_tls = NULL;
3526 uint64_t tls_align = 0;
3527 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3528 p != this->sections_elements_->end();
3529 ++p)
3530 {
3531 Output_section* os = (*p)->get_output_section();
3532 if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
3533 {
3534 if (first_tls == NULL)
3535 first_tls = os;
3536 if (os->addralign() > tls_align)
3537 tls_align = os->addralign();
3538 }
3539 }
3540 if (first_tls != NULL)
3541 first_tls->set_addralign(tls_align);
3542
3543 // For a relocatable link, we implicitly set dot to zero.
3544 uint64_t dot_value = 0;
3545 uint64_t dot_alignment = 0;
3546 uint64_t load_address = 0;
3547
3548 // Check to see if we want to use any of -Ttext, -Tdata and -Tbss options
3549 // to set section addresses. If the script has any SEGMENT_START
3550 // expression, we do not set the section addresses.
3551 bool use_tsection_options =
3552 (!this->saw_segment_start_expression_
3553 && (parameters->options().user_set_Ttext()
3554 || parameters->options().user_set_Tdata()
3555 || parameters->options().user_set_Tbss()));
3556
3557 for (Sections_elements::iterator p = this->sections_elements_->begin();
3558 p != this->sections_elements_->end();
3559 ++p)
3560 {
3561 Output_section* os = (*p)->get_output_section();
3562
3563 // Handle -Ttext, -Tdata and -Tbss options. We do this by looking for
3564 // the special sections by names and doing dot assignments.
3565 if (use_tsection_options
3566 && os != NULL
3567 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
3568 {
3569 uint64_t new_dot_value = dot_value;
3570
3571 if (parameters->options().user_set_Ttext()
3572 && strcmp(os->name(), ".text") == 0)
3573 new_dot_value = parameters->options().Ttext();
3574 else if (parameters->options().user_set_Tdata()
3575 && strcmp(os->name(), ".data") == 0)
3576 new_dot_value = parameters->options().Tdata();
3577 else if (parameters->options().user_set_Tbss()
3578 && strcmp(os->name(), ".bss") == 0)
3579 new_dot_value = parameters->options().Tbss();
3580
3581 // Update dot and load address if necessary.
3582 if (new_dot_value < dot_value)
3583 gold_error(_("dot may not move backward"));
3584 else if (new_dot_value != dot_value)
3585 {
3586 dot_value = new_dot_value;
3587 load_address = new_dot_value;
3588 }
3589 }
3590
3591 (*p)->set_section_addresses(symtab, layout, &dot_value, &dot_alignment,
3592 &load_address);
3593 }
3594
3595 if (this->phdrs_elements_ != NULL)
3596 {
3597 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3598 p != this->phdrs_elements_->end();
3599 ++p)
3600 (*p)->eval_load_address(symtab, layout);
3601 }
3602
3603 return this->create_segments(layout, dot_alignment);
3604 }
3605
3606 // Sort the sections in order to put them into segments.
3607
3608 class Sort_output_sections
3609 {
3610 public:
Sort_output_sections(const Script_sections::Sections_elements * elements)3611 Sort_output_sections(const Script_sections::Sections_elements* elements)
3612 : elements_(elements)
3613 { }
3614
3615 bool
3616 operator()(const Output_section* os1, const Output_section* os2) const;
3617
3618 private:
3619 int
3620 script_compare(const Output_section* os1, const Output_section* os2) const;
3621
3622 private:
3623 const Script_sections::Sections_elements* elements_;
3624 };
3625
3626 bool
operator ()(const Output_section * os1,const Output_section * os2) const3627 Sort_output_sections::operator()(const Output_section* os1,
3628 const Output_section* os2) const
3629 {
3630 // Sort first by the load address.
3631 uint64_t lma1 = (os1->has_load_address()
3632 ? os1->load_address()
3633 : os1->address());
3634 uint64_t lma2 = (os2->has_load_address()
3635 ? os2->load_address()
3636 : os2->address());
3637 if (lma1 != lma2)
3638 return lma1 < lma2;
3639
3640 // Then sort by the virtual address.
3641 if (os1->address() != os2->address())
3642 return os1->address() < os2->address();
3643
3644 // If the linker script says which of these sections is first, go
3645 // with what it says.
3646 int i = this->script_compare(os1, os2);
3647 if (i != 0)
3648 return i < 0;
3649
3650 // Sort PROGBITS before NOBITS.
3651 bool nobits1 = os1->type() == elfcpp::SHT_NOBITS;
3652 bool nobits2 = os2->type() == elfcpp::SHT_NOBITS;
3653 if (nobits1 != nobits2)
3654 return nobits2;
3655
3656 // Sort PROGBITS TLS sections to the end, NOBITS TLS sections to the
3657 // beginning.
3658 bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
3659 bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
3660 if (tls1 != tls2)
3661 return nobits1 ? tls1 : tls2;
3662
3663 // Sort non-NOLOAD before NOLOAD.
3664 if (os1->is_noload() && !os2->is_noload())
3665 return true;
3666 if (!os1->is_noload() && os2->is_noload())
3667 return true;
3668
3669 // The sections seem practically identical. Sort by name to get a
3670 // stable sort.
3671 return os1->name() < os2->name();
3672 }
3673
3674 // Return -1 if OS1 comes before OS2 in ELEMENTS_, 1 if comes after, 0
3675 // if either OS1 or OS2 is not mentioned. This ensures that we keep
3676 // empty sections in the order in which they appear in a linker
3677 // script.
3678
3679 int
script_compare(const Output_section * os1,const Output_section * os2) const3680 Sort_output_sections::script_compare(const Output_section* os1,
3681 const Output_section* os2) const
3682 {
3683 if (this->elements_ == NULL)
3684 return 0;
3685
3686 bool found_os1 = false;
3687 bool found_os2 = false;
3688 for (Script_sections::Sections_elements::const_iterator
3689 p = this->elements_->begin();
3690 p != this->elements_->end();
3691 ++p)
3692 {
3693 if (os2 == (*p)->get_output_section())
3694 {
3695 if (found_os1)
3696 return -1;
3697 found_os2 = true;
3698 }
3699 else if (os1 == (*p)->get_output_section())
3700 {
3701 if (found_os2)
3702 return 1;
3703 found_os1 = true;
3704 }
3705 }
3706
3707 return 0;
3708 }
3709
3710 // Return whether OS is a BSS section. This is a SHT_NOBITS section.
3711 // We treat a section with the SHF_TLS flag set as taking up space
3712 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
3713 // space for them in the file.
3714
3715 bool
is_bss_section(const Output_section * os)3716 Script_sections::is_bss_section(const Output_section* os)
3717 {
3718 return (os->type() == elfcpp::SHT_NOBITS
3719 && (os->flags() & elfcpp::SHF_TLS) == 0);
3720 }
3721
3722 // Return the size taken by the file header and the program headers.
3723
3724 size_t
total_header_size(Layout * layout) const3725 Script_sections::total_header_size(Layout* layout) const
3726 {
3727 size_t segment_count = layout->segment_count();
3728 size_t file_header_size;
3729 size_t segment_headers_size;
3730 if (parameters->target().get_size() == 32)
3731 {
3732 file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
3733 segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
3734 }
3735 else if (parameters->target().get_size() == 64)
3736 {
3737 file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
3738 segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
3739 }
3740 else
3741 gold_unreachable();
3742
3743 return file_header_size + segment_headers_size;
3744 }
3745
3746 // Return the amount we have to subtract from the LMA to accommodate
3747 // headers of the given size. The complication is that the file
3748 // header have to be at the start of a page, as otherwise it will not
3749 // be at the start of the file.
3750
3751 uint64_t
header_size_adjustment(uint64_t lma,size_t sizeof_headers) const3752 Script_sections::header_size_adjustment(uint64_t lma,
3753 size_t sizeof_headers) const
3754 {
3755 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3756 uint64_t hdr_lma = lma - sizeof_headers;
3757 hdr_lma &= ~(abi_pagesize - 1);
3758 return lma - hdr_lma;
3759 }
3760
3761 // Create the PT_LOAD segments when using a SECTIONS clause. Returns
3762 // the segment which should hold the file header and segment headers,
3763 // if any.
3764
3765 Output_segment*
create_segments(Layout * layout,uint64_t dot_alignment)3766 Script_sections::create_segments(Layout* layout, uint64_t dot_alignment)
3767 {
3768 gold_assert(this->saw_sections_clause_);
3769
3770 if (parameters->options().relocatable())
3771 return NULL;
3772
3773 if (this->saw_phdrs_clause())
3774 return create_segments_from_phdrs_clause(layout, dot_alignment);
3775
3776 Layout::Section_list sections;
3777 layout->get_allocated_sections(§ions);
3778
3779 // Sort the sections by address.
3780 std::stable_sort(sections.begin(), sections.end(),
3781 Sort_output_sections(this->sections_elements_));
3782
3783 this->create_note_and_tls_segments(layout, §ions);
3784
3785 // Walk through the sections adding them to PT_LOAD segments.
3786 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3787 Output_segment* first_seg = NULL;
3788 Output_segment* current_seg = NULL;
3789 bool is_current_seg_readonly = true;
3790 Layout::Section_list::iterator plast = sections.end();
3791 uint64_t last_vma = 0;
3792 uint64_t last_lma = 0;
3793 uint64_t last_size = 0;
3794 for (Layout::Section_list::iterator p = sections.begin();
3795 p != sections.end();
3796 ++p)
3797 {
3798 const uint64_t vma = (*p)->address();
3799 const uint64_t lma = ((*p)->has_load_address()
3800 ? (*p)->load_address()
3801 : vma);
3802 const uint64_t size = (*p)->current_data_size();
3803
3804 bool need_new_segment;
3805 if (current_seg == NULL)
3806 need_new_segment = true;
3807 else if (lma - vma != last_lma - last_vma)
3808 {
3809 // This section has a different LMA relationship than the
3810 // last one; we need a new segment.
3811 need_new_segment = true;
3812 }
3813 else if (align_address(last_lma + last_size, abi_pagesize)
3814 < align_address(lma, abi_pagesize))
3815 {
3816 // Putting this section in the segment would require
3817 // skipping a page.
3818 need_new_segment = true;
3819 }
3820 else if (is_bss_section(*plast) && !is_bss_section(*p))
3821 {
3822 // A non-BSS section can not follow a BSS section in the
3823 // same segment.
3824 need_new_segment = true;
3825 }
3826 else if (is_current_seg_readonly
3827 && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
3828 && !parameters->options().omagic())
3829 {
3830 // Don't put a writable section in the same segment as a
3831 // non-writable section.
3832 need_new_segment = true;
3833 }
3834 else
3835 {
3836 // Otherwise, reuse the existing segment.
3837 need_new_segment = false;
3838 }
3839
3840 elfcpp::Elf_Word seg_flags =
3841 Layout::section_flags_to_segment((*p)->flags());
3842
3843 if (need_new_segment)
3844 {
3845 current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3846 seg_flags);
3847 current_seg->set_addresses(vma, lma);
3848 current_seg->set_minimum_p_align(dot_alignment);
3849 if (first_seg == NULL)
3850 first_seg = current_seg;
3851 is_current_seg_readonly = true;
3852 }
3853
3854 current_seg->add_output_section_to_load(layout, *p, seg_flags);
3855
3856 if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
3857 is_current_seg_readonly = false;
3858
3859 plast = p;
3860 last_vma = vma;
3861 last_lma = lma;
3862 last_size = size;
3863 }
3864
3865 // An ELF program should work even if the program headers are not in
3866 // a PT_LOAD segment. However, it appears that the Linux kernel
3867 // does not set the AT_PHDR auxiliary entry in that case. It sets
3868 // the load address to p_vaddr - p_offset of the first PT_LOAD
3869 // segment. It then sets AT_PHDR to the load address plus the
3870 // offset to the program headers, e_phoff in the file header. This
3871 // fails when the program headers appear in the file before the
3872 // first PT_LOAD segment. Therefore, we always create a PT_LOAD
3873 // segment to hold the file header and the program headers. This is
3874 // effectively what the GNU linker does, and it is slightly more
3875 // efficient in any case. We try to use the first PT_LOAD segment
3876 // if we can, otherwise we make a new one.
3877
3878 if (first_seg == NULL)
3879 return NULL;
3880
3881 // -n or -N mean that the program is not demand paged and there is
3882 // no need to put the program headers in a PT_LOAD segment.
3883 if (parameters->options().nmagic() || parameters->options().omagic())
3884 return NULL;
3885
3886 size_t sizeof_headers = this->total_header_size(layout);
3887
3888 uint64_t vma = first_seg->vaddr();
3889 uint64_t lma = first_seg->paddr();
3890
3891 uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
3892
3893 if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
3894 {
3895 first_seg->set_addresses(vma - subtract, lma - subtract);
3896 return first_seg;
3897 }
3898
3899 // If there is no room to squeeze in the headers, then punt. The
3900 // resulting executable probably won't run on GNU/Linux, but we
3901 // trust that the user knows what they are doing.
3902 if (lma < subtract || vma < subtract)
3903 return NULL;
3904
3905 // If memory regions have been specified and the address range
3906 // we are about to use is not contained within any region then
3907 // issue a warning message about the segment we are going to
3908 // create. It will be outside of any region and so possibly
3909 // using non-existent or protected memory. We test LMA rather
3910 // than VMA since we assume that the headers will never be
3911 // relocated.
3912 if (this->memory_regions_ != NULL
3913 && !this->block_in_region (NULL, layout, lma - subtract, subtract))
3914 gold_warning(_("creating a segment to contain the file and program"
3915 " headers outside of any MEMORY region"));
3916
3917 Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3918 elfcpp::PF_R);
3919 load_seg->set_addresses(vma - subtract, lma - subtract);
3920
3921 return load_seg;
3922 }
3923
3924 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
3925 // segment if there are any SHT_TLS sections.
3926
3927 void
create_note_and_tls_segments(Layout * layout,const Layout::Section_list * sections)3928 Script_sections::create_note_and_tls_segments(
3929 Layout* layout,
3930 const Layout::Section_list* sections)
3931 {
3932 gold_assert(!this->saw_phdrs_clause());
3933
3934 bool saw_tls = false;
3935 for (Layout::Section_list::const_iterator p = sections->begin();
3936 p != sections->end();
3937 ++p)
3938 {
3939 if ((*p)->type() == elfcpp::SHT_NOTE)
3940 {
3941 elfcpp::Elf_Word seg_flags =
3942 Layout::section_flags_to_segment((*p)->flags());
3943 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
3944 seg_flags);
3945 oseg->add_output_section_to_nonload(*p, seg_flags);
3946
3947 // Incorporate any subsequent SHT_NOTE sections, in the
3948 // hopes that the script is sensible.
3949 Layout::Section_list::const_iterator pnext = p + 1;
3950 while (pnext != sections->end()
3951 && (*pnext)->type() == elfcpp::SHT_NOTE)
3952 {
3953 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3954 oseg->add_output_section_to_nonload(*pnext, seg_flags);
3955 p = pnext;
3956 ++pnext;
3957 }
3958 }
3959
3960 if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3961 {
3962 if (saw_tls)
3963 gold_error(_("TLS sections are not adjacent"));
3964
3965 elfcpp::Elf_Word seg_flags =
3966 Layout::section_flags_to_segment((*p)->flags());
3967 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
3968 seg_flags);
3969 oseg->add_output_section_to_nonload(*p, seg_flags);
3970
3971 Layout::Section_list::const_iterator pnext = p + 1;
3972 while (pnext != sections->end()
3973 && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
3974 {
3975 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3976 oseg->add_output_section_to_nonload(*pnext, seg_flags);
3977 p = pnext;
3978 ++pnext;
3979 }
3980
3981 saw_tls = true;
3982 }
3983
3984 // If we are making a shared library, and we see a section named
3985 // .interp then put the .interp section in a PT_INTERP segment.
3986 // This is for GNU ld compatibility.
3987 if (strcmp((*p)->name(), ".interp") == 0)
3988 {
3989 elfcpp::Elf_Word seg_flags =
3990 Layout::section_flags_to_segment((*p)->flags());
3991 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_INTERP,
3992 seg_flags);
3993 oseg->add_output_section_to_nonload(*p, seg_flags);
3994 }
3995 }
3996 }
3997
3998 // Add a program header. The PHDRS clause is syntactically distinct
3999 // from the SECTIONS clause, but we implement it with the SECTIONS
4000 // support because PHDRS is useless if there is no SECTIONS clause.
4001
4002 void
add_phdr(const char * name,size_t namelen,unsigned int type,bool includes_filehdr,bool includes_phdrs,bool is_flags_valid,unsigned int flags,Expression * load_address)4003 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
4004 bool includes_filehdr, bool includes_phdrs,
4005 bool is_flags_valid, unsigned int flags,
4006 Expression* load_address)
4007 {
4008 if (this->phdrs_elements_ == NULL)
4009 this->phdrs_elements_ = new Phdrs_elements();
4010 this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
4011 includes_filehdr,
4012 includes_phdrs,
4013 is_flags_valid, flags,
4014 load_address));
4015 }
4016
4017 // Return the number of segments we expect to create based on the
4018 // SECTIONS clause. This is used to implement SIZEOF_HEADERS.
4019
4020 size_t
expected_segment_count(const Layout * layout) const4021 Script_sections::expected_segment_count(const Layout* layout) const
4022 {
4023 if (this->saw_phdrs_clause())
4024 return this->phdrs_elements_->size();
4025
4026 Layout::Section_list sections;
4027 layout->get_allocated_sections(§ions);
4028
4029 // We assume that we will need two PT_LOAD segments.
4030 size_t ret = 2;
4031
4032 bool saw_note = false;
4033 bool saw_tls = false;
4034 for (Layout::Section_list::const_iterator p = sections.begin();
4035 p != sections.end();
4036 ++p)
4037 {
4038 if ((*p)->type() == elfcpp::SHT_NOTE)
4039 {
4040 // Assume that all note sections will fit into a single
4041 // PT_NOTE segment.
4042 if (!saw_note)
4043 {
4044 ++ret;
4045 saw_note = true;
4046 }
4047 }
4048 else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
4049 {
4050 // There can only be one PT_TLS segment.
4051 if (!saw_tls)
4052 {
4053 ++ret;
4054 saw_tls = true;
4055 }
4056 }
4057 }
4058
4059 return ret;
4060 }
4061
4062 // Create the segments from a PHDRS clause. Return the segment which
4063 // should hold the file header and program headers, if any.
4064
4065 Output_segment*
create_segments_from_phdrs_clause(Layout * layout,uint64_t dot_alignment)4066 Script_sections::create_segments_from_phdrs_clause(Layout* layout,
4067 uint64_t dot_alignment)
4068 {
4069 this->attach_sections_using_phdrs_clause(layout);
4070 return this->set_phdrs_clause_addresses(layout, dot_alignment);
4071 }
4072
4073 // Create the segments from the PHDRS clause, and put the output
4074 // sections in them.
4075
4076 void
attach_sections_using_phdrs_clause(Layout * layout)4077 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
4078 {
4079 typedef std::map<std::string, Output_segment*> Name_to_segment;
4080 Name_to_segment name_to_segment;
4081 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4082 p != this->phdrs_elements_->end();
4083 ++p)
4084 name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
4085
4086 // Walk through the output sections and attach them to segments.
4087 // Output sections in the script which do not list segments are
4088 // attached to the same set of segments as the immediately preceding
4089 // output section.
4090
4091 String_list* phdr_names = NULL;
4092 bool load_segments_only = false;
4093 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4094 p != this->sections_elements_->end();
4095 ++p)
4096 {
4097 bool is_orphan;
4098 String_list* old_phdr_names = phdr_names;
4099 Output_section* os = (*p)->allocate_to_segment(&phdr_names, &is_orphan);
4100 if (os == NULL)
4101 continue;
4102
4103 elfcpp::Elf_Word seg_flags =
4104 Layout::section_flags_to_segment(os->flags());
4105
4106 if (phdr_names == NULL)
4107 {
4108 // Don't worry about empty orphan sections.
4109 if (is_orphan && os->current_data_size() > 0)
4110 gold_error(_("allocated section %s not in any segment"),
4111 os->name());
4112
4113 // To avoid later crashes drop this section into the first
4114 // PT_LOAD segment.
4115 for (Phdrs_elements::const_iterator ppe =
4116 this->phdrs_elements_->begin();
4117 ppe != this->phdrs_elements_->end();
4118 ++ppe)
4119 {
4120 Output_segment* oseg = (*ppe)->segment();
4121 if (oseg->type() == elfcpp::PT_LOAD)
4122 {
4123 oseg->add_output_section_to_load(layout, os, seg_flags);
4124 break;
4125 }
4126 }
4127
4128 continue;
4129 }
4130
4131 // We see a list of segments names. Disable PT_LOAD segment only
4132 // filtering.
4133 if (old_phdr_names != phdr_names)
4134 load_segments_only = false;
4135
4136 // If this is an orphan section--one that was not explicitly
4137 // mentioned in the linker script--then it should not inherit
4138 // any segment type other than PT_LOAD. Otherwise, e.g., the
4139 // PT_INTERP segment will pick up following orphan sections,
4140 // which does not make sense. If this is not an orphan section,
4141 // we trust the linker script.
4142 if (is_orphan)
4143 {
4144 // Enable PT_LOAD segments only filtering until we see another
4145 // list of segment names.
4146 load_segments_only = true;
4147 }
4148
4149 bool in_load_segment = false;
4150 for (String_list::const_iterator q = phdr_names->begin();
4151 q != phdr_names->end();
4152 ++q)
4153 {
4154 Name_to_segment::const_iterator r = name_to_segment.find(*q);
4155 if (r == name_to_segment.end())
4156 gold_error(_("no segment %s"), q->c_str());
4157 else
4158 {
4159 if (load_segments_only
4160 && r->second->type() != elfcpp::PT_LOAD)
4161 continue;
4162
4163 if (r->second->type() != elfcpp::PT_LOAD)
4164 r->second->add_output_section_to_nonload(os, seg_flags);
4165 else
4166 {
4167 r->second->add_output_section_to_load(layout, os, seg_flags);
4168 if (in_load_segment)
4169 gold_error(_("section in two PT_LOAD segments"));
4170 in_load_segment = true;
4171 }
4172 }
4173 }
4174
4175 if (!in_load_segment)
4176 gold_error(_("allocated section not in any PT_LOAD segment"));
4177 }
4178 }
4179
4180 // Set the addresses for segments created from a PHDRS clause. Return
4181 // the segment which should hold the file header and program headers,
4182 // if any.
4183
4184 Output_segment*
set_phdrs_clause_addresses(Layout * layout,uint64_t dot_alignment)4185 Script_sections::set_phdrs_clause_addresses(Layout* layout,
4186 uint64_t dot_alignment)
4187 {
4188 Output_segment* load_seg = NULL;
4189 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4190 p != this->phdrs_elements_->end();
4191 ++p)
4192 {
4193 // Note that we have to set the flags after adding the output
4194 // sections to the segment, as adding an output segment can
4195 // change the flags.
4196 (*p)->set_flags_if_valid();
4197
4198 Output_segment* oseg = (*p)->segment();
4199
4200 if (oseg->type() != elfcpp::PT_LOAD)
4201 {
4202 // The addresses of non-PT_LOAD segments are set from the
4203 // PT_LOAD segments.
4204 if ((*p)->has_load_address())
4205 gold_error(_("may only specify load address for PT_LOAD segment"));
4206 continue;
4207 }
4208
4209 oseg->set_minimum_p_align(dot_alignment);
4210
4211 // The output sections should have addresses from the SECTIONS
4212 // clause. The addresses don't have to be in order, so find the
4213 // one with the lowest load address. Use that to set the
4214 // address of the segment.
4215
4216 Output_section* osec = oseg->section_with_lowest_load_address();
4217 if (osec == NULL)
4218 {
4219 oseg->set_addresses(0, 0);
4220 continue;
4221 }
4222
4223 uint64_t vma = osec->address();
4224 uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
4225
4226 // Override the load address of the section with the load
4227 // address specified for the segment.
4228 if ((*p)->has_load_address())
4229 {
4230 if (osec->has_load_address())
4231 gold_warning(_("PHDRS load address overrides "
4232 "section %s load address"),
4233 osec->name());
4234
4235 lma = (*p)->load_address();
4236 }
4237
4238 bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
4239 if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
4240 {
4241 // We could support this if we wanted to.
4242 gold_error(_("using only one of FILEHDR and PHDRS is "
4243 "not currently supported"));
4244 }
4245 if (headers)
4246 {
4247 size_t sizeof_headers = this->total_header_size(layout);
4248 uint64_t subtract = this->header_size_adjustment(lma,
4249 sizeof_headers);
4250 if (lma >= subtract && vma >= subtract)
4251 {
4252 lma -= subtract;
4253 vma -= subtract;
4254 }
4255 else
4256 {
4257 gold_error(_("sections loaded on first page without room "
4258 "for file and program headers "
4259 "are not supported"));
4260 }
4261
4262 if (load_seg != NULL)
4263 gold_error(_("using FILEHDR and PHDRS on more than one "
4264 "PT_LOAD segment is not currently supported"));
4265 load_seg = oseg;
4266 }
4267
4268 oseg->set_addresses(vma, lma);
4269 }
4270
4271 return load_seg;
4272 }
4273
4274 // Add the file header and segment headers to non-load segments
4275 // specified in the PHDRS clause.
4276
4277 void
put_headers_in_phdrs(Output_data * file_header,Output_data * segment_headers)4278 Script_sections::put_headers_in_phdrs(Output_data* file_header,
4279 Output_data* segment_headers)
4280 {
4281 gold_assert(this->saw_phdrs_clause());
4282 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
4283 p != this->phdrs_elements_->end();
4284 ++p)
4285 {
4286 if ((*p)->type() != elfcpp::PT_LOAD)
4287 {
4288 if ((*p)->includes_phdrs())
4289 (*p)->segment()->add_initial_output_data(segment_headers);
4290 if ((*p)->includes_filehdr())
4291 (*p)->segment()->add_initial_output_data(file_header);
4292 }
4293 }
4294 }
4295
4296 // Look for an output section by name and return the address, the load
4297 // address, the alignment, and the size. This is used when an
4298 // expression refers to an output section which was not actually
4299 // created. This returns true if the section was found, false
4300 // otherwise.
4301
4302 bool
get_output_section_info(const char * name,uint64_t * address,uint64_t * load_address,uint64_t * addralign,uint64_t * size) const4303 Script_sections::get_output_section_info(const char* name, uint64_t* address,
4304 uint64_t* load_address,
4305 uint64_t* addralign,
4306 uint64_t* size) const
4307 {
4308 if (!this->saw_sections_clause_)
4309 return false;
4310 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4311 p != this->sections_elements_->end();
4312 ++p)
4313 if ((*p)->get_output_section_info(name, address, load_address, addralign,
4314 size))
4315 return true;
4316 return false;
4317 }
4318
4319 // Release all Output_segments. This remove all pointers to all
4320 // Output_segments.
4321
4322 void
release_segments()4323 Script_sections::release_segments()
4324 {
4325 if (this->saw_phdrs_clause())
4326 {
4327 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4328 p != this->phdrs_elements_->end();
4329 ++p)
4330 (*p)->release_segment();
4331 }
4332 }
4333
4334 // Print the SECTIONS clause to F for debugging.
4335
4336 void
print(FILE * f) const4337 Script_sections::print(FILE* f) const
4338 {
4339 if (this->phdrs_elements_ != NULL)
4340 {
4341 fprintf(f, "PHDRS {\n");
4342 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4343 p != this->phdrs_elements_->end();
4344 ++p)
4345 (*p)->print(f);
4346 fprintf(f, "}\n");
4347 }
4348
4349 if (this->memory_regions_ != NULL)
4350 {
4351 fprintf(f, "MEMORY {\n");
4352 for (Memory_regions::const_iterator m = this->memory_regions_->begin();
4353 m != this->memory_regions_->end();
4354 ++m)
4355 (*m)->print(f);
4356 fprintf(f, "}\n");
4357 }
4358
4359 if (!this->saw_sections_clause_)
4360 return;
4361
4362 fprintf(f, "SECTIONS {\n");
4363
4364 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4365 p != this->sections_elements_->end();
4366 ++p)
4367 (*p)->print(f);
4368
4369 fprintf(f, "}\n");
4370 }
4371
4372 } // End namespace gold.
4373