1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/handles.h"
6 
7 #include "src/address-map.h"
8 #include "src/base/logging.h"
9 #include "src/identity-map.h"
10 #include "src/objects-inl.h"
11 
12 namespace v8 {
13 namespace internal {
14 
15 #ifdef DEBUG
IsDereferenceAllowed(DereferenceCheckMode mode) const16 bool HandleBase::IsDereferenceAllowed(DereferenceCheckMode mode) const {
17   DCHECK_NOT_NULL(location_);
18   Object* object = *location_;
19   if (object->IsSmi()) return true;
20   HeapObject* heap_object = HeapObject::cast(object);
21   Heap* heap = heap_object->GetHeap();
22   Object** roots_array_start = heap->roots_array_start();
23   if (roots_array_start <= location_ &&
24       location_ < roots_array_start + Heap::kStrongRootListLength &&
25       heap->RootCanBeTreatedAsConstant(
26           static_cast<Heap::RootListIndex>(location_ - roots_array_start))) {
27     return true;
28   }
29   if (!AllowHandleDereference::IsAllowed()) return false;
30   if (mode == INCLUDE_DEFERRED_CHECK &&
31       !AllowDeferredHandleDereference::IsAllowed()) {
32     // Accessing cells, maps and internalized strings is safe.
33     if (heap_object->IsCell()) return true;
34     if (heap_object->IsMap()) return true;
35     if (heap_object->IsInternalizedString()) return true;
36     return !heap->isolate()->IsDeferredHandle(location_);
37   }
38   return true;
39 }
40 #endif
41 
42 
NumberOfHandles(Isolate * isolate)43 int HandleScope::NumberOfHandles(Isolate* isolate) {
44   HandleScopeImplementer* impl = isolate->handle_scope_implementer();
45   int n = impl->blocks()->length();
46   if (n == 0) return 0;
47   return ((n - 1) * kHandleBlockSize) + static_cast<int>(
48       (isolate->handle_scope_data()->next - impl->blocks()->last()));
49 }
50 
51 
Extend(Isolate * isolate)52 Object** HandleScope::Extend(Isolate* isolate) {
53   HandleScopeData* current = isolate->handle_scope_data();
54 
55   Object** result = current->next;
56 
57   DCHECK(result == current->limit);
58   // Make sure there's at least one scope on the stack and that the
59   // top of the scope stack isn't a barrier.
60   if (!Utils::ApiCheck(current->level != current->sealed_level,
61                        "v8::HandleScope::CreateHandle()",
62                        "Cannot create a handle without a HandleScope")) {
63     return NULL;
64   }
65   HandleScopeImplementer* impl = isolate->handle_scope_implementer();
66   // If there's more room in the last block, we use that. This is used
67   // for fast creation of scopes after scope barriers.
68   if (!impl->blocks()->is_empty()) {
69     Object** limit = &impl->blocks()->last()[kHandleBlockSize];
70     if (current->limit != limit) {
71       current->limit = limit;
72       DCHECK(limit - current->next < kHandleBlockSize);
73     }
74   }
75 
76   // If we still haven't found a slot for the handle, we extend the
77   // current handle scope by allocating a new handle block.
78   if (result == current->limit) {
79     // If there's a spare block, use it for growing the current scope.
80     result = impl->GetSpareOrNewBlock();
81     // Add the extension to the global list of blocks, but count the
82     // extension as part of the current scope.
83     impl->blocks()->Add(result);
84     current->limit = &result[kHandleBlockSize];
85   }
86 
87   return result;
88 }
89 
90 
DeleteExtensions(Isolate * isolate)91 void HandleScope::DeleteExtensions(Isolate* isolate) {
92   HandleScopeData* current = isolate->handle_scope_data();
93   isolate->handle_scope_implementer()->DeleteExtensions(current->limit);
94 }
95 
96 
97 #ifdef ENABLE_HANDLE_ZAPPING
ZapRange(Object ** start,Object ** end)98 void HandleScope::ZapRange(Object** start, Object** end) {
99   DCHECK(end - start <= kHandleBlockSize);
100   for (Object** p = start; p != end; p++) {
101     *reinterpret_cast<Address*>(p) = kHandleZapValue;
102   }
103 }
104 #endif
105 
106 
current_level_address(Isolate * isolate)107 Address HandleScope::current_level_address(Isolate* isolate) {
108   return reinterpret_cast<Address>(&isolate->handle_scope_data()->level);
109 }
110 
111 
current_next_address(Isolate * isolate)112 Address HandleScope::current_next_address(Isolate* isolate) {
113   return reinterpret_cast<Address>(&isolate->handle_scope_data()->next);
114 }
115 
116 
current_limit_address(Isolate * isolate)117 Address HandleScope::current_limit_address(Isolate* isolate) {
118   return reinterpret_cast<Address>(&isolate->handle_scope_data()->limit);
119 }
120 
121 
CanonicalHandleScope(Isolate * isolate)122 CanonicalHandleScope::CanonicalHandleScope(Isolate* isolate)
123     : isolate_(isolate) {
124   HandleScopeData* handle_scope_data = isolate_->handle_scope_data();
125   prev_canonical_scope_ = handle_scope_data->canonical_scope;
126   handle_scope_data->canonical_scope = this;
127   root_index_map_ = new RootIndexMap(isolate);
128   identity_map_ = new IdentityMap<Object**>(isolate->heap(), &zone_);
129   canonical_level_ = handle_scope_data->level;
130 }
131 
132 
~CanonicalHandleScope()133 CanonicalHandleScope::~CanonicalHandleScope() {
134   delete root_index_map_;
135   delete identity_map_;
136   isolate_->handle_scope_data()->canonical_scope = prev_canonical_scope_;
137 }
138 
139 
Lookup(Object * object)140 Object** CanonicalHandleScope::Lookup(Object* object) {
141   DCHECK_LE(canonical_level_, isolate_->handle_scope_data()->level);
142   if (isolate_->handle_scope_data()->level != canonical_level_) {
143     // We are in an inner handle scope. Do not canonicalize since we will leave
144     // this handle scope while still being in the canonical scope.
145     return HandleScope::CreateHandle(isolate_, object);
146   }
147   if (object->IsHeapObject()) {
148     int index = root_index_map_->Lookup(HeapObject::cast(object));
149     if (index != RootIndexMap::kInvalidRootIndex) {
150       return isolate_->heap()
151           ->root_handle(static_cast<Heap::RootListIndex>(index))
152           .location();
153     }
154   }
155   Object*** entry = identity_map_->Get(object);
156   if (*entry == nullptr) {
157     // Allocate new handle location.
158     *entry = HandleScope::CreateHandle(isolate_, object);
159   }
160   return reinterpret_cast<Object**>(*entry);
161 }
162 
163 
DeferredHandleScope(Isolate * isolate)164 DeferredHandleScope::DeferredHandleScope(Isolate* isolate)
165     : impl_(isolate->handle_scope_implementer()) {
166   impl_->BeginDeferredScope();
167   HandleScopeData* data = impl_->isolate()->handle_scope_data();
168   Object** new_next = impl_->GetSpareOrNewBlock();
169   Object** new_limit = &new_next[kHandleBlockSize];
170   DCHECK(data->limit == &impl_->blocks()->last()[kHandleBlockSize]);
171   impl_->blocks()->Add(new_next);
172 
173 #ifdef DEBUG
174   prev_level_ = data->level;
175 #endif
176   data->level++;
177   prev_limit_ = data->limit;
178   prev_next_ = data->next;
179   data->next = new_next;
180   data->limit = new_limit;
181 }
182 
183 
~DeferredHandleScope()184 DeferredHandleScope::~DeferredHandleScope() {
185   impl_->isolate()->handle_scope_data()->level--;
186   DCHECK(handles_detached_);
187   DCHECK(impl_->isolate()->handle_scope_data()->level == prev_level_);
188 }
189 
190 
Detach()191 DeferredHandles* DeferredHandleScope::Detach() {
192   DeferredHandles* deferred = impl_->Detach(prev_limit_);
193   HandleScopeData* data = impl_->isolate()->handle_scope_data();
194   data->next = prev_next_;
195   data->limit = prev_limit_;
196 #ifdef DEBUG
197   handles_detached_ = true;
198 #endif
199   return deferred;
200 }
201 
202 }  // namespace internal
203 }  // namespace v8
204