1 /*M///////////////////////////////////////////////////////////////////////////////////////
2  //
3  //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4  //
5  //  By downloading, copying, installing or using the software you agree to this license.
6  //  If you do not agree to this license, do not download, install,
7  //  copy or use the software.
8  //
9  //
10  //                        Intel License Agreement
11  //                For Open Source Computer Vision Library
12  //
13  // Copyright (C) 2000, Intel Corporation, all rights reserved.
14  // Third party copyrights are property of their respective owners.
15  //
16  // Redistribution and use in source and binary forms, with or without modification,
17  // are permitted provided that the following conditions are met:
18  //
19  //   * Redistribution's of source code must retain the above copyright notice,
20  //     this list of conditions and the following disclaimer.
21  //
22  //   * Redistribution's in binary form must reproduce the above copyright notice,
23  //     this list of conditions and the following disclaimer in the documentation
24  //     and/or other materials provided with the distribution.
25  //
26  //   * The name of Intel Corporation may not be used to endorse or promote products
27  //     derived from this software without specific prior written permission.
28  //
29  // This software is provided by the copyright holders and contributors "as is" and
30  // any express or implied warranties, including, but not limited to, the implied
31  // warranties of merchantability and fitness for a particular purpose are disclaimed.
32  // In no event shall the Intel Corporation or contributors be liable for any direct,
33  // indirect, incidental, special, exemplary, or consequential damages
34  // (including, but not limited to, procurement of substitute goods or services;
35  // loss of use, data, or profits; or business interruption) however caused
36  // and on any theory of liability, whether in contract, strict liability,
37  // or tort (including negligence or otherwise) arising in any way out of
38  // the use of this software, even if advised of the possibility of such damage.
39  //
40  //M*/
41 
42 #include "precomp.hpp"
43 #include "opencv2/imgproc/imgproc_c.h"
44 #include "opencv2/calib3d/calib3d_c.h"
45 
46 #include <vector>
47 #include <algorithm>
48 
49 //#define DEBUG_WINDOWS
50 
51 #if defined(DEBUG_WINDOWS)
52 #  include "opencv2/opencv_modules.hpp"
53 #  ifdef HAVE_OPENCV_HIGHGUI
54 #    include "opencv2/highgui.hpp"
55 #  else
56 #    undef DEBUG_WINDOWS
57 #  endif
58 #endif
59 
icvGetQuadrangleHypotheses(CvSeq * contours,std::vector<std::pair<float,int>> & quads,int class_id)60 static void icvGetQuadrangleHypotheses(CvSeq* contours, std::vector<std::pair<float, int> >& quads, int class_id)
61 {
62     const float min_aspect_ratio = 0.3f;
63     const float max_aspect_ratio = 3.0f;
64     const float min_box_size = 10.0f;
65 
66     for(CvSeq* seq = contours; seq != NULL; seq = seq->h_next)
67     {
68         CvBox2D box = cvMinAreaRect2(seq);
69         float box_size = MAX(box.size.width, box.size.height);
70         if(box_size < min_box_size)
71         {
72             continue;
73         }
74 
75         float aspect_ratio = box.size.width/MAX(box.size.height, 1);
76         if(aspect_ratio < min_aspect_ratio || aspect_ratio > max_aspect_ratio)
77         {
78             continue;
79         }
80 
81         quads.push_back(std::pair<float, int>(box_size, class_id));
82     }
83 }
84 
countClasses(const std::vector<std::pair<float,int>> & pairs,size_t idx1,size_t idx2,std::vector<int> & counts)85 static void countClasses(const std::vector<std::pair<float, int> >& pairs, size_t idx1, size_t idx2, std::vector<int>& counts)
86 {
87     counts.assign(2, 0);
88     for(size_t i = idx1; i != idx2; i++)
89     {
90         counts[pairs[i].second]++;
91     }
92 }
93 
less_pred(const std::pair<float,int> & p1,const std::pair<float,int> & p2)94 inline bool less_pred(const std::pair<float, int>& p1, const std::pair<float, int>& p2)
95 {
96     return p1.first < p2.first;
97 }
98 
99 // does a fast check if a chessboard is in the input image. This is a workaround to
100 // a problem of cvFindChessboardCorners being slow on images with no chessboard
101 // - src: input image
102 // - size: chessboard size
103 // Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
104 // 0 if there is no chessboard, -1 in case of error
cvCheckChessboard(IplImage * src,CvSize size)105 int cvCheckChessboard(IplImage* src, CvSize size)
106 {
107     if(src->nChannels > 1)
108     {
109         cvError(CV_BadNumChannels, "cvCheckChessboard", "supports single-channel images only",
110                 __FILE__, __LINE__);
111     }
112 
113     if(src->depth != 8)
114     {
115         cvError(CV_BadDepth, "cvCheckChessboard", "supports depth=8 images only",
116                 __FILE__, __LINE__);
117     }
118 
119     const int erosion_count = 1;
120     const float black_level = 20.f;
121     const float white_level = 130.f;
122     const float black_white_gap = 70.f;
123 
124 #if defined(DEBUG_WINDOWS)
125     cvNamedWindow("1", 1);
126     cvShowImage("1", src);
127     cvWaitKey(0);
128 #endif //DEBUG_WINDOWS
129 
130     CvMemStorage* storage = cvCreateMemStorage();
131 
132     IplImage* white = cvCloneImage(src);
133     IplImage* black = cvCloneImage(src);
134 
135     cvErode(white, white, NULL, erosion_count);
136     cvDilate(black, black, NULL, erosion_count);
137     IplImage* thresh = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
138 
139     int result = 0;
140     for(float thresh_level = black_level; thresh_level < white_level && !result; thresh_level += 20.0f)
141     {
142         cvThreshold(white, thresh, thresh_level + black_white_gap, 255, CV_THRESH_BINARY);
143 
144 #if defined(DEBUG_WINDOWS)
145         cvShowImage("1", thresh);
146         cvWaitKey(0);
147 #endif //DEBUG_WINDOWS
148 
149         CvSeq* first = 0;
150         std::vector<std::pair<float, int> > quads;
151         cvFindContours(thresh, storage, &first, sizeof(CvContour), CV_RETR_CCOMP);
152         icvGetQuadrangleHypotheses(first, quads, 1);
153 
154         cvThreshold(black, thresh, thresh_level, 255, CV_THRESH_BINARY_INV);
155 
156 #if defined(DEBUG_WINDOWS)
157         cvShowImage("1", thresh);
158         cvWaitKey(0);
159 #endif //DEBUG_WINDOWS
160 
161         cvFindContours(thresh, storage, &first, sizeof(CvContour), CV_RETR_CCOMP);
162         icvGetQuadrangleHypotheses(first, quads, 0);
163 
164         const size_t min_quads_count = size.width*size.height/2;
165         std::sort(quads.begin(), quads.end(), less_pred);
166 
167         // now check if there are many hypotheses with similar sizes
168         // do this by floodfill-style algorithm
169         const float size_rel_dev = 0.4f;
170 
171         for(size_t i = 0; i < quads.size(); i++)
172         {
173             size_t j = i + 1;
174             for(; j < quads.size(); j++)
175             {
176                 if(quads[j].first/quads[i].first > 1.0f + size_rel_dev)
177                 {
178                     break;
179                 }
180             }
181 
182             if(j + 1 > min_quads_count + i)
183             {
184                 // check the number of black and white squares
185                 std::vector<int> counts;
186                 countClasses(quads, i, j, counts);
187                 const int black_count = cvRound(ceil(size.width/2.0)*ceil(size.height/2.0));
188                 const int white_count = cvRound(floor(size.width/2.0)*floor(size.height/2.0));
189                 if(counts[0] < black_count*0.75 ||
190                    counts[1] < white_count*0.75)
191                 {
192                     continue;
193                 }
194                 result = 1;
195                 break;
196             }
197         }
198     }
199 
200 
201     cvReleaseImage(&thresh);
202     cvReleaseImage(&white);
203     cvReleaseImage(&black);
204     cvReleaseMemStorage(&storage);
205 
206     return result;
207 }
208