1 //===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Define several functions to decode x86 specific shuffle semantics into a
11 // generic vector mask.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86ShuffleDecode.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/CodeGen/MachineValueType.h"
18 
19 //===----------------------------------------------------------------------===//
20 //  Vector Mask Decoding
21 //===----------------------------------------------------------------------===//
22 
23 namespace llvm {
24 
DecodeINSERTPSMask(unsigned Imm,SmallVectorImpl<int> & ShuffleMask)25 void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
26   // Defaults the copying the dest value.
27   ShuffleMask.push_back(0);
28   ShuffleMask.push_back(1);
29   ShuffleMask.push_back(2);
30   ShuffleMask.push_back(3);
31 
32   // Decode the immediate.
33   unsigned ZMask = Imm & 15;
34   unsigned CountD = (Imm >> 4) & 3;
35   unsigned CountS = (Imm >> 6) & 3;
36 
37   // CountS selects which input element to use.
38   unsigned InVal = 4 + CountS;
39   // CountD specifies which element of destination to update.
40   ShuffleMask[CountD] = InVal;
41   // ZMask zaps values, potentially overriding the CountD elt.
42   if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero;
43   if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero;
44   if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero;
45   if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero;
46 }
47 
48 // <3,1> or <6,7,2,3>
DecodeMOVHLPSMask(unsigned NElts,SmallVectorImpl<int> & ShuffleMask)49 void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
50   for (unsigned i = NElts / 2; i != NElts; ++i)
51     ShuffleMask.push_back(NElts + i);
52 
53   for (unsigned i = NElts / 2; i != NElts; ++i)
54     ShuffleMask.push_back(i);
55 }
56 
57 // <0,2> or <0,1,4,5>
DecodeMOVLHPSMask(unsigned NElts,SmallVectorImpl<int> & ShuffleMask)58 void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
59   for (unsigned i = 0; i != NElts / 2; ++i)
60     ShuffleMask.push_back(i);
61 
62   for (unsigned i = 0; i != NElts / 2; ++i)
63     ShuffleMask.push_back(NElts + i);
64 }
65 
DecodeMOVSLDUPMask(MVT VT,SmallVectorImpl<int> & ShuffleMask)66 void DecodeMOVSLDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
67   unsigned NumElts = VT.getVectorNumElements();
68   for (int i = 0, e = NumElts / 2; i < e; ++i) {
69     ShuffleMask.push_back(2 * i);
70     ShuffleMask.push_back(2 * i);
71   }
72 }
73 
DecodeMOVSHDUPMask(MVT VT,SmallVectorImpl<int> & ShuffleMask)74 void DecodeMOVSHDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
75   unsigned NumElts = VT.getVectorNumElements();
76   for (int i = 0, e = NumElts / 2; i < e; ++i) {
77     ShuffleMask.push_back(2 * i + 1);
78     ShuffleMask.push_back(2 * i + 1);
79   }
80 }
81 
DecodeMOVDDUPMask(MVT VT,SmallVectorImpl<int> & ShuffleMask)82 void DecodeMOVDDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
83   unsigned VectorSizeInBits = VT.getSizeInBits();
84   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
85   unsigned NumElts = VT.getVectorNumElements();
86   unsigned NumLanes = VectorSizeInBits / 128;
87   unsigned NumLaneElts = NumElts / NumLanes;
88   unsigned NumLaneSubElts = 64 / ScalarSizeInBits;
89 
90   for (unsigned l = 0; l < NumElts; l += NumLaneElts)
91     for (unsigned i = 0; i < NumLaneElts; i += NumLaneSubElts)
92       for (unsigned s = 0; s != NumLaneSubElts; s++)
93         ShuffleMask.push_back(l + s);
94 }
95 
DecodePSLLDQMask(MVT VT,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)96 void DecodePSLLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
97   unsigned VectorSizeInBits = VT.getSizeInBits();
98   unsigned NumElts = VectorSizeInBits / 8;
99   unsigned NumLanes = VectorSizeInBits / 128;
100   unsigned NumLaneElts = NumElts / NumLanes;
101 
102   for (unsigned l = 0; l < NumElts; l += NumLaneElts)
103     for (unsigned i = 0; i < NumLaneElts; ++i) {
104       int M = SM_SentinelZero;
105       if (i >= Imm) M = i - Imm + l;
106       ShuffleMask.push_back(M);
107     }
108 }
109 
DecodePSRLDQMask(MVT VT,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)110 void DecodePSRLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
111   unsigned VectorSizeInBits = VT.getSizeInBits();
112   unsigned NumElts = VectorSizeInBits / 8;
113   unsigned NumLanes = VectorSizeInBits / 128;
114   unsigned NumLaneElts = NumElts / NumLanes;
115 
116   for (unsigned l = 0; l < NumElts; l += NumLaneElts)
117     for (unsigned i = 0; i < NumLaneElts; ++i) {
118       unsigned Base = i + Imm;
119       int M = Base + l;
120       if (Base >= NumLaneElts) M = SM_SentinelZero;
121       ShuffleMask.push_back(M);
122     }
123 }
124 
DecodePALIGNRMask(MVT VT,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)125 void DecodePALIGNRMask(MVT VT, unsigned Imm,
126                        SmallVectorImpl<int> &ShuffleMask) {
127   unsigned NumElts = VT.getVectorNumElements();
128   unsigned Offset = Imm * (VT.getVectorElementType().getSizeInBits() / 8);
129 
130   unsigned NumLanes = VT.getSizeInBits() / 128;
131   unsigned NumLaneElts = NumElts / NumLanes;
132 
133   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
134     for (unsigned i = 0; i != NumLaneElts; ++i) {
135       unsigned Base = i + Offset;
136       // if i+offset is out of this lane then we actually need the other source
137       if (Base >= NumLaneElts) Base += NumElts - NumLaneElts;
138       ShuffleMask.push_back(Base + l);
139     }
140   }
141 }
142 
143 /// DecodePSHUFMask - This decodes the shuffle masks for pshufw, pshufd, and vpermilp*.
144 /// VT indicates the type of the vector allowing it to handle different
145 /// datatypes and vector widths.
DecodePSHUFMask(MVT VT,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)146 void DecodePSHUFMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
147   unsigned NumElts = VT.getVectorNumElements();
148 
149   unsigned NumLanes = VT.getSizeInBits() / 128;
150   if (NumLanes == 0) NumLanes = 1;  // Handle MMX
151   unsigned NumLaneElts = NumElts / NumLanes;
152 
153   unsigned NewImm = Imm;
154   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
155     for (unsigned i = 0; i != NumLaneElts; ++i) {
156       ShuffleMask.push_back(NewImm % NumLaneElts + l);
157       NewImm /= NumLaneElts;
158     }
159     if (NumLaneElts == 4) NewImm = Imm; // reload imm
160   }
161 }
162 
DecodePSHUFHWMask(MVT VT,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)163 void DecodePSHUFHWMask(MVT VT, unsigned Imm,
164                        SmallVectorImpl<int> &ShuffleMask) {
165   unsigned NumElts = VT.getVectorNumElements();
166 
167   for (unsigned l = 0; l != NumElts; l += 8) {
168     unsigned NewImm = Imm;
169     for (unsigned i = 0, e = 4; i != e; ++i) {
170       ShuffleMask.push_back(l + i);
171     }
172     for (unsigned i = 4, e = 8; i != e; ++i) {
173       ShuffleMask.push_back(l + 4 + (NewImm & 3));
174       NewImm >>= 2;
175     }
176   }
177 }
178 
DecodePSHUFLWMask(MVT VT,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)179 void DecodePSHUFLWMask(MVT VT, unsigned Imm,
180                        SmallVectorImpl<int> &ShuffleMask) {
181   unsigned NumElts = VT.getVectorNumElements();
182 
183   for (unsigned l = 0; l != NumElts; l += 8) {
184     unsigned NewImm = Imm;
185     for (unsigned i = 0, e = 4; i != e; ++i) {
186       ShuffleMask.push_back(l + (NewImm & 3));
187       NewImm >>= 2;
188     }
189     for (unsigned i = 4, e = 8; i != e; ++i) {
190       ShuffleMask.push_back(l + i);
191     }
192   }
193 }
194 
DecodePSWAPMask(MVT VT,SmallVectorImpl<int> & ShuffleMask)195 void DecodePSWAPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
196   unsigned NumElts = VT.getVectorNumElements();
197   unsigned NumHalfElts = NumElts / 2;
198 
199   for (unsigned l = 0; l != NumHalfElts; ++l)
200     ShuffleMask.push_back(l + NumHalfElts);
201   for (unsigned h = 0; h != NumHalfElts; ++h)
202     ShuffleMask.push_back(h);
203 }
204 
205 /// DecodeSHUFPMask - This decodes the shuffle masks for shufp*. VT indicates
206 /// the type of the vector allowing it to handle different datatypes and vector
207 /// widths.
DecodeSHUFPMask(MVT VT,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)208 void DecodeSHUFPMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
209   unsigned NumElts = VT.getVectorNumElements();
210 
211   unsigned NumLanes = VT.getSizeInBits() / 128;
212   unsigned NumLaneElts = NumElts / NumLanes;
213 
214   unsigned NewImm = Imm;
215   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
216     // each half of a lane comes from different source
217     for (unsigned s = 0; s != NumElts * 2; s += NumElts) {
218       for (unsigned i = 0; i != NumLaneElts / 2; ++i) {
219         ShuffleMask.push_back(NewImm % NumLaneElts + s + l);
220         NewImm /= NumLaneElts;
221       }
222     }
223     if (NumLaneElts == 4) NewImm = Imm; // reload imm
224   }
225 }
226 
227 /// DecodeUNPCKHMask - This decodes the shuffle masks for unpckhps/unpckhpd
228 /// and punpckh*. VT indicates the type of the vector allowing it to handle
229 /// different datatypes and vector widths.
DecodeUNPCKHMask(MVT VT,SmallVectorImpl<int> & ShuffleMask)230 void DecodeUNPCKHMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
231   unsigned NumElts = VT.getVectorNumElements();
232 
233   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
234   // independently on 128-bit lanes.
235   unsigned NumLanes = VT.getSizeInBits() / 128;
236   if (NumLanes == 0) NumLanes = 1;  // Handle MMX
237   unsigned NumLaneElts = NumElts / NumLanes;
238 
239   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
240     for (unsigned i = l + NumLaneElts / 2, e = l + NumLaneElts; i != e; ++i) {
241       ShuffleMask.push_back(i);           // Reads from dest/src1
242       ShuffleMask.push_back(i + NumElts); // Reads from src/src2
243     }
244   }
245 }
246 
247 /// DecodeUNPCKLMask - This decodes the shuffle masks for unpcklps/unpcklpd
248 /// and punpckl*. VT indicates the type of the vector allowing it to handle
249 /// different datatypes and vector widths.
DecodeUNPCKLMask(MVT VT,SmallVectorImpl<int> & ShuffleMask)250 void DecodeUNPCKLMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
251   unsigned NumElts = VT.getVectorNumElements();
252 
253   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
254   // independently on 128-bit lanes.
255   unsigned NumLanes = VT.getSizeInBits() / 128;
256   if (NumLanes == 0 ) NumLanes = 1;  // Handle MMX
257   unsigned NumLaneElts = NumElts / NumLanes;
258 
259   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
260     for (unsigned i = l, e = l + NumLaneElts / 2; i != e; ++i) {
261       ShuffleMask.push_back(i);           // Reads from dest/src1
262       ShuffleMask.push_back(i + NumElts); // Reads from src/src2
263     }
264   }
265 }
266 
267 /// \brief Decode a shuffle packed values at 128-bit granularity
268 /// (SHUFF32x4/SHUFF64x2/SHUFI32x4/SHUFI64x2)
269 /// immediate mask into a shuffle mask.
decodeVSHUF64x2FamilyMask(MVT VT,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)270 void decodeVSHUF64x2FamilyMask(MVT VT, unsigned Imm,
271                         SmallVectorImpl<int> &ShuffleMask) {
272   unsigned NumLanes = VT.getSizeInBits() / 128;
273   unsigned NumElementsInLane = 128 / VT.getScalarSizeInBits();
274   unsigned ControlBitsMask = NumLanes - 1;
275   unsigned NumControlBits  = NumLanes / 2;
276 
277   for (unsigned l = 0; l != NumLanes; ++l) {
278     unsigned LaneMask = (Imm >> (l * NumControlBits)) & ControlBitsMask;
279     // We actually need the other source.
280     if (l >= NumLanes / 2)
281       LaneMask += NumLanes;
282     for (unsigned i = 0; i != NumElementsInLane; ++i)
283       ShuffleMask.push_back(LaneMask * NumElementsInLane + i);
284   }
285 }
286 
DecodeVPERM2X128Mask(MVT VT,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)287 void DecodeVPERM2X128Mask(MVT VT, unsigned Imm,
288                           SmallVectorImpl<int> &ShuffleMask) {
289   unsigned HalfSize = VT.getVectorNumElements() / 2;
290 
291   for (unsigned l = 0; l != 2; ++l) {
292     unsigned HalfMask = Imm >> (l * 4);
293     unsigned HalfBegin = (HalfMask & 0x3) * HalfSize;
294     for (unsigned i = HalfBegin, e = HalfBegin + HalfSize; i != e; ++i)
295       ShuffleMask.push_back(HalfMask & 8 ? SM_SentinelZero : (int)i);
296   }
297 }
298 
DecodePSHUFBMask(const Constant * C,SmallVectorImpl<int> & ShuffleMask)299 void DecodePSHUFBMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask) {
300   Type *MaskTy = C->getType();
301   // It is not an error for the PSHUFB mask to not be a vector of i8 because the
302   // constant pool uniques constants by their bit representation.
303   // e.g. the following take up the same space in the constant pool:
304   //   i128 -170141183420855150465331762880109871104
305   //
306   //   <2 x i64> <i64 -9223372034707292160, i64 -9223372034707292160>
307   //
308   //   <4 x i32> <i32 -2147483648, i32 -2147483648,
309   //              i32 -2147483648, i32 -2147483648>
310 
311   unsigned MaskTySize = MaskTy->getPrimitiveSizeInBits();
312 
313   if (MaskTySize != 128 && MaskTySize != 256) // FIXME: Add support for AVX-512.
314     return;
315 
316   // This is a straightforward byte vector.
317   if (MaskTy->isVectorTy() && MaskTy->getVectorElementType()->isIntegerTy(8)) {
318     int NumElements = MaskTy->getVectorNumElements();
319     ShuffleMask.reserve(NumElements);
320 
321     for (int i = 0; i < NumElements; ++i) {
322       // For AVX vectors with 32 bytes the base of the shuffle is the 16-byte
323       // lane of the vector we're inside.
324       int Base = i < 16 ? 0 : 16;
325       Constant *COp = C->getAggregateElement(i);
326       if (!COp) {
327         ShuffleMask.clear();
328         return;
329       } else if (isa<UndefValue>(COp)) {
330         ShuffleMask.push_back(SM_SentinelUndef);
331         continue;
332       }
333       uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
334       // If the high bit (7) of the byte is set, the element is zeroed.
335       if (Element & (1 << 7))
336         ShuffleMask.push_back(SM_SentinelZero);
337       else {
338         // Only the least significant 4 bits of the byte are used.
339         int Index = Base + (Element & 0xf);
340         ShuffleMask.push_back(Index);
341       }
342     }
343   }
344   // TODO: Handle funny-looking vectors too.
345 }
346 
DecodePSHUFBMask(ArrayRef<uint64_t> RawMask,SmallVectorImpl<int> & ShuffleMask)347 void DecodePSHUFBMask(ArrayRef<uint64_t> RawMask,
348                       SmallVectorImpl<int> &ShuffleMask) {
349   for (int i = 0, e = RawMask.size(); i < e; ++i) {
350     uint64_t M = RawMask[i];
351     if (M == (uint64_t)SM_SentinelUndef) {
352       ShuffleMask.push_back(M);
353       continue;
354     }
355     // For AVX vectors with 32 bytes the base of the shuffle is the half of
356     // the vector we're inside.
357     int Base = i < 16 ? 0 : 16;
358     // If the high bit (7) of the byte is set, the element is zeroed.
359     if (M & (1 << 7))
360       ShuffleMask.push_back(SM_SentinelZero);
361     else {
362       // Only the least significant 4 bits of the byte are used.
363       int Index = Base + (M & 0xf);
364       ShuffleMask.push_back(Index);
365     }
366   }
367 }
368 
DecodeBLENDMask(MVT VT,unsigned Imm,SmallVectorImpl<int> & ShuffleMask)369 void DecodeBLENDMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
370   int ElementBits = VT.getScalarSizeInBits();
371   int NumElements = VT.getVectorNumElements();
372   for (int i = 0; i < NumElements; ++i) {
373     // If there are more than 8 elements in the vector, then any immediate blend
374     // mask applies to each 128-bit lane. There can never be more than
375     // 8 elements in a 128-bit lane with an immediate blend.
376     int Bit = NumElements > 8 ? i % (128 / ElementBits) : i;
377     assert(Bit < 8 &&
378            "Immediate blends only operate over 8 elements at a time!");
379     ShuffleMask.push_back(((Imm >> Bit) & 1) ? NumElements + i : i);
380   }
381 }
382 
383 /// DecodeVPERMMask - this decodes the shuffle masks for VPERMQ/VPERMPD.
384 /// No VT provided since it only works on 256-bit, 4 element vectors.
DecodeVPERMMask(unsigned Imm,SmallVectorImpl<int> & ShuffleMask)385 void DecodeVPERMMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
386   for (unsigned i = 0; i != 4; ++i) {
387     ShuffleMask.push_back((Imm >> (2 * i)) & 3);
388   }
389 }
390 
DecodeVPERMILPMask(const Constant * C,SmallVectorImpl<int> & ShuffleMask)391 void DecodeVPERMILPMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask) {
392   Type *MaskTy = C->getType();
393   assert(MaskTy->isVectorTy() && "Expected a vector constant mask!");
394   assert(MaskTy->getVectorElementType()->isIntegerTy() &&
395          "Expected integer constant mask elements!");
396   int ElementBits = MaskTy->getScalarSizeInBits();
397   int NumElements = MaskTy->getVectorNumElements();
398   assert((NumElements == 2 || NumElements == 4 || NumElements == 8) &&
399          "Unexpected number of vector elements.");
400   ShuffleMask.reserve(NumElements);
401   if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
402     assert((unsigned)NumElements == CDS->getNumElements() &&
403            "Constant mask has a different number of elements!");
404 
405     for (int i = 0; i < NumElements; ++i) {
406       int Base = (i * ElementBits / 128) * (128 / ElementBits);
407       uint64_t Element = CDS->getElementAsInteger(i);
408       // Only the least significant 2 bits of the integer are used.
409       int Index = Base + (Element & 0x3);
410       ShuffleMask.push_back(Index);
411     }
412   } else if (auto *CV = dyn_cast<ConstantVector>(C)) {
413     assert((unsigned)NumElements == C->getNumOperands() &&
414            "Constant mask has a different number of elements!");
415 
416     for (int i = 0; i < NumElements; ++i) {
417       int Base = (i * ElementBits / 128) * (128 / ElementBits);
418       Constant *COp = CV->getOperand(i);
419       if (isa<UndefValue>(COp)) {
420         ShuffleMask.push_back(SM_SentinelUndef);
421         continue;
422       }
423       uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
424       // Only the least significant 2 bits of the integer are used.
425       int Index = Base + (Element & 0x3);
426       ShuffleMask.push_back(Index);
427     }
428   }
429 }
430 
DecodeZeroExtendMask(MVT SrcVT,MVT DstVT,SmallVectorImpl<int> & Mask)431 void DecodeZeroExtendMask(MVT SrcVT, MVT DstVT, SmallVectorImpl<int> &Mask) {
432   unsigned NumDstElts = DstVT.getVectorNumElements();
433   unsigned SrcScalarBits = SrcVT.getScalarSizeInBits();
434   unsigned DstScalarBits = DstVT.getScalarSizeInBits();
435   unsigned Scale = DstScalarBits / SrcScalarBits;
436   assert(SrcScalarBits < DstScalarBits &&
437          "Expected zero extension mask to increase scalar size");
438   assert(SrcVT.getVectorNumElements() >= NumDstElts &&
439          "Too many zero extension lanes");
440 
441   for (unsigned i = 0; i != NumDstElts; i++) {
442     Mask.push_back(i);
443     for (unsigned j = 1; j != Scale; j++)
444       Mask.push_back(SM_SentinelZero);
445   }
446 }
447 
DecodeZeroMoveLowMask(MVT VT,SmallVectorImpl<int> & ShuffleMask)448 void DecodeZeroMoveLowMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
449   unsigned NumElts = VT.getVectorNumElements();
450   ShuffleMask.push_back(0);
451   for (unsigned i = 1; i < NumElts; i++)
452     ShuffleMask.push_back(SM_SentinelZero);
453 }
454 
DecodeScalarMoveMask(MVT VT,bool IsLoad,SmallVectorImpl<int> & Mask)455 void DecodeScalarMoveMask(MVT VT, bool IsLoad, SmallVectorImpl<int> &Mask) {
456   // First element comes from the first element of second source.
457   // Remaining elements: Load zero extends / Move copies from first source.
458   unsigned NumElts = VT.getVectorNumElements();
459   Mask.push_back(NumElts);
460   for (unsigned i = 1; i < NumElts; i++)
461     Mask.push_back(IsLoad ? static_cast<int>(SM_SentinelZero) : i);
462 }
463 
DecodeEXTRQIMask(int Len,int Idx,SmallVectorImpl<int> & ShuffleMask)464 void DecodeEXTRQIMask(int Len, int Idx,
465                       SmallVectorImpl<int> &ShuffleMask) {
466   // Only the bottom 6 bits are valid for each immediate.
467   Len &= 0x3F;
468   Idx &= 0x3F;
469 
470   // We can only decode this bit extraction instruction as a shuffle if both the
471   // length and index work with whole bytes.
472   if (0 != (Len % 8) || 0 != (Idx % 8))
473     return;
474 
475   // A length of zero is equivalent to a bit length of 64.
476   if (Len == 0)
477     Len = 64;
478 
479   // If the length + index exceeds the bottom 64 bits the result is undefined.
480   if ((Len + Idx) > 64) {
481     ShuffleMask.append(16, SM_SentinelUndef);
482     return;
483   }
484 
485   // Convert index and index to work with bytes.
486   Len /= 8;
487   Idx /= 8;
488 
489   // EXTRQ: Extract Len bytes starting from Idx. Zero pad the remaining bytes
490   // of the lower 64-bits. The upper 64-bits are undefined.
491   for (int i = 0; i != Len; ++i)
492     ShuffleMask.push_back(i + Idx);
493   for (int i = Len; i != 8; ++i)
494     ShuffleMask.push_back(SM_SentinelZero);
495   for (int i = 8; i != 16; ++i)
496     ShuffleMask.push_back(SM_SentinelUndef);
497 }
498 
DecodeINSERTQIMask(int Len,int Idx,SmallVectorImpl<int> & ShuffleMask)499 void DecodeINSERTQIMask(int Len, int Idx,
500                         SmallVectorImpl<int> &ShuffleMask) {
501   // Only the bottom 6 bits are valid for each immediate.
502   Len &= 0x3F;
503   Idx &= 0x3F;
504 
505   // We can only decode this bit insertion instruction as a shuffle if both the
506   // length and index work with whole bytes.
507   if (0 != (Len % 8) || 0 != (Idx % 8))
508     return;
509 
510   // A length of zero is equivalent to a bit length of 64.
511   if (Len == 0)
512     Len = 64;
513 
514   // If the length + index exceeds the bottom 64 bits the result is undefined.
515   if ((Len + Idx) > 64) {
516     ShuffleMask.append(16, SM_SentinelUndef);
517     return;
518   }
519 
520   // Convert index and index to work with bytes.
521   Len /= 8;
522   Idx /= 8;
523 
524   // INSERTQ: Extract lowest Len bytes from lower half of second source and
525   // insert over first source starting at Idx byte. The upper 64-bits are
526   // undefined.
527   for (int i = 0; i != Idx; ++i)
528     ShuffleMask.push_back(i);
529   for (int i = 0; i != Len; ++i)
530     ShuffleMask.push_back(i + 16);
531   for (int i = Idx + Len; i != 8; ++i)
532     ShuffleMask.push_back(i);
533   for (int i = 8; i != 16; ++i)
534     ShuffleMask.push_back(SM_SentinelUndef);
535 }
536 
DecodeVPERMVMask(ArrayRef<uint64_t> RawMask,SmallVectorImpl<int> & ShuffleMask)537 void DecodeVPERMVMask(ArrayRef<uint64_t> RawMask,
538                       SmallVectorImpl<int> &ShuffleMask) {
539   for (int i = 0, e = RawMask.size(); i < e; ++i) {
540     uint64_t M = RawMask[i];
541     ShuffleMask.push_back((int)M);
542   }
543 }
544 
DecodeVPERMV3Mask(ArrayRef<uint64_t> RawMask,SmallVectorImpl<int> & ShuffleMask)545 void DecodeVPERMV3Mask(ArrayRef<uint64_t> RawMask,
546                       SmallVectorImpl<int> &ShuffleMask) {
547   for (int i = 0, e = RawMask.size(); i < e; ++i) {
548     uint64_t M = RawMask[i];
549     ShuffleMask.push_back((int)M);
550   }
551 }
552 
DecodeVPERMVMask(const Constant * C,MVT VT,SmallVectorImpl<int> & ShuffleMask)553 void DecodeVPERMVMask(const Constant *C, MVT VT,
554                       SmallVectorImpl<int> &ShuffleMask) {
555   Type *MaskTy = C->getType();
556   if (MaskTy->isVectorTy()) {
557     unsigned NumElements = MaskTy->getVectorNumElements();
558     if (NumElements == VT.getVectorNumElements()) {
559       for (unsigned i = 0; i < NumElements; ++i) {
560         Constant *COp = C->getAggregateElement(i);
561         if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) {
562           ShuffleMask.clear();
563           return;
564         }
565         if (isa<UndefValue>(COp))
566           ShuffleMask.push_back(SM_SentinelUndef);
567         else {
568           uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
569           Element &= (1 << NumElements) - 1;
570           ShuffleMask.push_back(Element);
571         }
572       }
573     }
574     return;
575   }
576   // Scalar value; just broadcast it
577   if (!isa<ConstantInt>(C))
578     return;
579   uint64_t Element = cast<ConstantInt>(C)->getZExtValue();
580   int NumElements = VT.getVectorNumElements();
581   Element &= (1 << NumElements) - 1;
582   for (int i = 0; i < NumElements; ++i)
583     ShuffleMask.push_back(Element);
584 }
585 
DecodeVPERMV3Mask(const Constant * C,MVT VT,SmallVectorImpl<int> & ShuffleMask)586 void DecodeVPERMV3Mask(const Constant *C, MVT VT,
587                        SmallVectorImpl<int> &ShuffleMask) {
588   Type *MaskTy = C->getType();
589   unsigned NumElements = MaskTy->getVectorNumElements();
590   if (NumElements == VT.getVectorNumElements()) {
591     for (unsigned i = 0; i < NumElements; ++i) {
592       Constant *COp = C->getAggregateElement(i);
593       if (!COp) {
594         ShuffleMask.clear();
595         return;
596       }
597       if (isa<UndefValue>(COp))
598         ShuffleMask.push_back(SM_SentinelUndef);
599       else {
600         uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
601         Element &= (1 << NumElements*2) - 1;
602         ShuffleMask.push_back(Element);
603       }
604     }
605   }
606 }
607 } // llvm namespace
608