1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
init_fields(const char * name,const char * version,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis)54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
demangle(const char * name)89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
demangled_name() const106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
init_base_object(const char * name,const char * version,Object * object,const elfcpp::Sym<size,big_endian> & sym,unsigned int st_shndx,bool is_ordinary)115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
init_base_output_data(const char * name,const char * version,Output_data * od,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool offset_is_from_end,bool is_predefined)134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
init_base_output_segment(const char * name,const char * version,Output_segment * os,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,Segment_offset_base offset_base,bool is_predefined)153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
init_base_constant(const char * name,const char * version,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool is_predefined)173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
init_base_undefined(const char * name,const char * version,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis)189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
allocate_base_common(Output_data * od)203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
init_object(const char * name,const char * version,Object * object,const elfcpp::Sym<size,big_endian> & sym,unsigned int st_shndx,bool is_ordinary)216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
init_output_data(const char * name,const char * version,Output_data * od,Value_type value,Size_type symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool offset_is_from_end,bool is_predefined)231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
init_output_segment(const char * name,const char * version,Output_segment * os,Value_type value,Size_type symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,Segment_offset_base offset_base,bool is_predefined)251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
init_constant(const char * name,const char * version,Value_type value,Size_type symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool is_predefined)271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
init_undefined(const char * name,const char * version,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis)287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
versioned_name() const300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
is_common_shndx(unsigned int shndx)314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
allocate_common(Output_data * od,Value_type value)325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 bool
should_add_dynsym_entry(Symbol_table * symtab) const338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced dynamic in a --dynamic-list file
367 // or an --export-dynamic-symbol option, add it.
368 if (!this->is_from_dynobj()
369 && (parameters->options().in_dynamic_list(this->name())
370 || parameters->options().is_export_dynamic_symbol(this->name())))
371 {
372 if (!this->is_forced_local())
373 return true;
374 gold_warning(_("Cannot export local symbol '%s'"),
375 this->demangled_name().c_str());
376 return false;
377 }
378
379 // If the symbol was forced local in a version script, do not add it.
380 if (this->is_forced_local())
381 return false;
382
383 // If dynamic-list-data was specified, add any STT_OBJECT.
384 if (parameters->options().dynamic_list_data()
385 && !this->is_from_dynobj()
386 && this->type() == elfcpp::STT_OBJECT)
387 return true;
388
389 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391 if ((parameters->options().dynamic_list_cpp_new()
392 || parameters->options().dynamic_list_cpp_typeinfo())
393 && !this->is_from_dynobj())
394 {
395 // TODO(csilvers): We could probably figure out if we're an operator
396 // new/delete or typeinfo without the need to demangle.
397 char* demangled_name = cplus_demangle(this->name(),
398 DMGL_ANSI | DMGL_PARAMS);
399 if (demangled_name == NULL)
400 {
401 // Not a C++ symbol, so it can't satisfy these flags
402 }
403 else if (parameters->options().dynamic_list_cpp_new()
404 && (strprefix(demangled_name, "operator new")
405 || strprefix(demangled_name, "operator delete")))
406 {
407 free(demangled_name);
408 return true;
409 }
410 else if (parameters->options().dynamic_list_cpp_typeinfo()
411 && (strprefix(demangled_name, "typeinfo name for")
412 || strprefix(demangled_name, "typeinfo for")))
413 {
414 free(demangled_name);
415 return true;
416 }
417 else
418 free(demangled_name);
419 }
420
421 // If exporting all symbols or building a shared library,
422 // or the symbol should be globally unique (GNU_UNIQUE),
423 // and the symbol is defined in a regular object and is
424 // externally visible, we need to add it.
425 if ((parameters->options().export_dynamic()
426 || parameters->options().shared()
427 || (parameters->options().gnu_unique()
428 && this->binding() == elfcpp::STB_GNU_UNIQUE))
429 && !this->is_from_dynobj()
430 && !this->is_undefined()
431 && this->is_externally_visible())
432 return true;
433
434 return false;
435 }
436
437 // Return true if the final value of this symbol is known at link
438 // time.
439
440 bool
final_value_is_known() const441 Symbol::final_value_is_known() const
442 {
443 // If we are not generating an executable, then no final values are
444 // known, since they will change at runtime, with the exception of
445 // TLS symbols in a position-independent executable.
446 if ((parameters->options().output_is_position_independent()
447 || parameters->options().relocatable())
448 && !(this->type() == elfcpp::STT_TLS
449 && parameters->options().pie()))
450 return false;
451
452 // If the symbol is not from an object file, and is not undefined,
453 // then it is defined, and known.
454 if (this->source_ != FROM_OBJECT)
455 {
456 if (this->source_ != IS_UNDEFINED)
457 return true;
458 }
459 else
460 {
461 // If the symbol is from a dynamic object, then the final value
462 // is not known.
463 if (this->object()->is_dynamic())
464 return false;
465
466 // If the symbol is not undefined (it is defined or common),
467 // then the final value is known.
468 if (!this->is_undefined())
469 return true;
470 }
471
472 // If the symbol is undefined, then whether the final value is known
473 // depends on whether we are doing a static link. If we are doing a
474 // dynamic link, then the final value could be filled in at runtime.
475 // This could reasonably be the case for a weak undefined symbol.
476 return parameters->doing_static_link();
477 }
478
479 // Return the output section where this symbol is defined.
480
481 Output_section*
output_section() const482 Symbol::output_section() const
483 {
484 switch (this->source_)
485 {
486 case FROM_OBJECT:
487 {
488 unsigned int shndx = this->u_.from_object.shndx;
489 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
490 {
491 gold_assert(!this->u_.from_object.object->is_dynamic());
492 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
493 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
494 return relobj->output_section(shndx);
495 }
496 return NULL;
497 }
498
499 case IN_OUTPUT_DATA:
500 return this->u_.in_output_data.output_data->output_section();
501
502 case IN_OUTPUT_SEGMENT:
503 case IS_CONSTANT:
504 case IS_UNDEFINED:
505 return NULL;
506
507 default:
508 gold_unreachable();
509 }
510 }
511
512 // Set the symbol's output section. This is used for symbols defined
513 // in scripts. This should only be called after the symbol table has
514 // been finalized.
515
516 void
set_output_section(Output_section * os)517 Symbol::set_output_section(Output_section* os)
518 {
519 switch (this->source_)
520 {
521 case FROM_OBJECT:
522 case IN_OUTPUT_DATA:
523 gold_assert(this->output_section() == os);
524 break;
525 case IS_CONSTANT:
526 this->source_ = IN_OUTPUT_DATA;
527 this->u_.in_output_data.output_data = os;
528 this->u_.in_output_data.offset_is_from_end = false;
529 break;
530 case IN_OUTPUT_SEGMENT:
531 case IS_UNDEFINED:
532 default:
533 gold_unreachable();
534 }
535 }
536
537 // Set the symbol's output segment. This is used for pre-defined
538 // symbols whose segments aren't known until after layout is done
539 // (e.g., __ehdr_start).
540
541 void
set_output_segment(Output_segment * os,Segment_offset_base base)542 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
543 {
544 gold_assert(this->is_predefined_);
545 this->source_ = IN_OUTPUT_SEGMENT;
546 this->u_.in_output_segment.output_segment = os;
547 this->u_.in_output_segment.offset_base = base;
548 }
549
550 // Set the symbol to undefined. This is used for pre-defined
551 // symbols whose segments aren't known until after layout is done
552 // (e.g., __ehdr_start).
553
554 void
set_undefined()555 Symbol::set_undefined()
556 {
557 this->source_ = IS_UNDEFINED;
558 this->is_predefined_ = false;
559 }
560
561 // Class Symbol_table.
562
Symbol_table(unsigned int count,const Version_script_info & version_script)563 Symbol_table::Symbol_table(unsigned int count,
564 const Version_script_info& version_script)
565 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
566 forwarders_(), commons_(), tls_commons_(), small_commons_(),
567 large_commons_(), forced_locals_(), warnings_(),
568 version_script_(version_script), gc_(NULL), icf_(NULL)
569 {
570 namepool_.reserve(count);
571 }
572
~Symbol_table()573 Symbol_table::~Symbol_table()
574 {
575 }
576
577 // The symbol table key equality function. This is called with
578 // Stringpool keys.
579
580 inline bool
operator ()(const Symbol_table_key & k1,const Symbol_table_key & k2) const581 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
582 const Symbol_table_key& k2) const
583 {
584 return k1.first == k2.first && k1.second == k2.second;
585 }
586
587 bool
is_section_folded(Object * obj,unsigned int shndx) const588 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
589 {
590 return (parameters->options().icf_enabled()
591 && this->icf_->is_section_folded(obj, shndx));
592 }
593
594 // For symbols that have been listed with a -u or --export-dynamic-symbol
595 // option, add them to the work list to avoid gc'ing them.
596
597 void
gc_mark_undef_symbols(Layout * layout)598 Symbol_table::gc_mark_undef_symbols(Layout* layout)
599 {
600 for (options::String_set::const_iterator p =
601 parameters->options().undefined_begin();
602 p != parameters->options().undefined_end();
603 ++p)
604 {
605 const char* name = p->c_str();
606 Symbol* sym = this->lookup(name);
607 gold_assert(sym != NULL);
608 if (sym->source() == Symbol::FROM_OBJECT
609 && !sym->object()->is_dynamic())
610 {
611 this->gc_mark_symbol(sym);
612 }
613 }
614
615 for (options::String_set::const_iterator p =
616 parameters->options().export_dynamic_symbol_begin();
617 p != parameters->options().export_dynamic_symbol_end();
618 ++p)
619 {
620 const char* name = p->c_str();
621 Symbol* sym = this->lookup(name);
622 // It's not an error if a symbol named by --export-dynamic-symbol
623 // is undefined.
624 if (sym != NULL
625 && sym->source() == Symbol::FROM_OBJECT
626 && !sym->object()->is_dynamic())
627 {
628 this->gc_mark_symbol(sym);
629 }
630 }
631
632 for (Script_options::referenced_const_iterator p =
633 layout->script_options()->referenced_begin();
634 p != layout->script_options()->referenced_end();
635 ++p)
636 {
637 Symbol* sym = this->lookup(p->c_str());
638 gold_assert(sym != NULL);
639 if (sym->source() == Symbol::FROM_OBJECT
640 && !sym->object()->is_dynamic())
641 {
642 this->gc_mark_symbol(sym);
643 }
644 }
645 }
646
647 void
gc_mark_symbol(Symbol * sym)648 Symbol_table::gc_mark_symbol(Symbol* sym)
649 {
650 // Add the object and section to the work list.
651 bool is_ordinary;
652 unsigned int shndx = sym->shndx(&is_ordinary);
653 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
654 {
655 gold_assert(this->gc_!= NULL);
656 this->gc_->worklist().push(Section_id(sym->object(), shndx));
657 }
658 parameters->target().gc_mark_symbol(this, sym);
659 }
660
661 // When doing garbage collection, keep symbols that have been seen in
662 // dynamic objects.
663 inline void
gc_mark_dyn_syms(Symbol * sym)664 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
665 {
666 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
667 && !sym->object()->is_dynamic())
668 this->gc_mark_symbol(sym);
669 }
670
671 // Make TO a symbol which forwards to FROM.
672
673 void
make_forwarder(Symbol * from,Symbol * to)674 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
675 {
676 gold_assert(from != to);
677 gold_assert(!from->is_forwarder() && !to->is_forwarder());
678 this->forwarders_[from] = to;
679 from->set_forwarder();
680 }
681
682 // Resolve the forwards from FROM, returning the real symbol.
683
684 Symbol*
resolve_forwards(const Symbol * from) const685 Symbol_table::resolve_forwards(const Symbol* from) const
686 {
687 gold_assert(from->is_forwarder());
688 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
689 this->forwarders_.find(from);
690 gold_assert(p != this->forwarders_.end());
691 return p->second;
692 }
693
694 // Look up a symbol by name.
695
696 Symbol*
lookup(const char * name,const char * version) const697 Symbol_table::lookup(const char* name, const char* version) const
698 {
699 Stringpool::Key name_key;
700 name = this->namepool_.find(name, &name_key);
701 if (name == NULL)
702 return NULL;
703
704 Stringpool::Key version_key = 0;
705 if (version != NULL)
706 {
707 version = this->namepool_.find(version, &version_key);
708 if (version == NULL)
709 return NULL;
710 }
711
712 Symbol_table_key key(name_key, version_key);
713 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
714 if (p == this->table_.end())
715 return NULL;
716 return p->second;
717 }
718
719 // Resolve a Symbol with another Symbol. This is only used in the
720 // unusual case where there are references to both an unversioned
721 // symbol and a symbol with a version, and we then discover that that
722 // version is the default version. Because this is unusual, we do
723 // this the slow way, by converting back to an ELF symbol.
724
725 template<int size, bool big_endian>
726 void
resolve(Sized_symbol<size> * to,const Sized_symbol<size> * from)727 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
728 {
729 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
730 elfcpp::Sym_write<size, big_endian> esym(buf);
731 // We don't bother to set the st_name or the st_shndx field.
732 esym.put_st_value(from->value());
733 esym.put_st_size(from->symsize());
734 esym.put_st_info(from->binding(), from->type());
735 esym.put_st_other(from->visibility(), from->nonvis());
736 bool is_ordinary;
737 unsigned int shndx = from->shndx(&is_ordinary);
738 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
739 from->version());
740 if (from->in_reg())
741 to->set_in_reg();
742 if (from->in_dyn())
743 to->set_in_dyn();
744 if (parameters->options().gc_sections())
745 this->gc_mark_dyn_syms(to);
746 }
747
748 // Record that a symbol is forced to be local by a version script or
749 // by visibility.
750
751 void
force_local(Symbol * sym)752 Symbol_table::force_local(Symbol* sym)
753 {
754 if (!sym->is_defined() && !sym->is_common())
755 return;
756 if (sym->is_forced_local())
757 {
758 // We already got this one.
759 return;
760 }
761 sym->set_is_forced_local();
762 this->forced_locals_.push_back(sym);
763 }
764
765 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
766 // is only called for undefined symbols, when at least one --wrap
767 // option was used.
768
769 const char*
wrap_symbol(const char * name,Stringpool::Key * name_key)770 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
771 {
772 // For some targets, we need to ignore a specific character when
773 // wrapping, and add it back later.
774 char prefix = '\0';
775 if (name[0] == parameters->target().wrap_char())
776 {
777 prefix = name[0];
778 ++name;
779 }
780
781 if (parameters->options().is_wrap(name))
782 {
783 // Turn NAME into __wrap_NAME.
784 std::string s;
785 if (prefix != '\0')
786 s += prefix;
787 s += "__wrap_";
788 s += name;
789
790 // This will give us both the old and new name in NAMEPOOL_, but
791 // that is OK. Only the versions we need will wind up in the
792 // real string table in the output file.
793 return this->namepool_.add(s.c_str(), true, name_key);
794 }
795
796 const char* const real_prefix = "__real_";
797 const size_t real_prefix_length = strlen(real_prefix);
798 if (strncmp(name, real_prefix, real_prefix_length) == 0
799 && parameters->options().is_wrap(name + real_prefix_length))
800 {
801 // Turn __real_NAME into NAME.
802 std::string s;
803 if (prefix != '\0')
804 s += prefix;
805 s += name + real_prefix_length;
806 return this->namepool_.add(s.c_str(), true, name_key);
807 }
808
809 return name;
810 }
811
812 // This is called when we see a symbol NAME/VERSION, and the symbol
813 // already exists in the symbol table, and VERSION is marked as being
814 // the default version. SYM is the NAME/VERSION symbol we just added.
815 // DEFAULT_IS_NEW is true if this is the first time we have seen the
816 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
817
818 template<int size, bool big_endian>
819 void
define_default_version(Sized_symbol<size> * sym,bool default_is_new,Symbol_table_type::iterator pdef)820 Symbol_table::define_default_version(Sized_symbol<size>* sym,
821 bool default_is_new,
822 Symbol_table_type::iterator pdef)
823 {
824 if (default_is_new)
825 {
826 // This is the first time we have seen NAME/NULL. Make
827 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
828 // version.
829 pdef->second = sym;
830 sym->set_is_default();
831 }
832 else if (pdef->second == sym)
833 {
834 // NAME/NULL already points to NAME/VERSION. Don't mark the
835 // symbol as the default if it is not already the default.
836 }
837 else
838 {
839 // This is the unfortunate case where we already have entries
840 // for both NAME/VERSION and NAME/NULL. We now see a symbol
841 // NAME/VERSION where VERSION is the default version. We have
842 // already resolved this new symbol with the existing
843 // NAME/VERSION symbol.
844
845 // It's possible that NAME/NULL and NAME/VERSION are both
846 // defined in regular objects. This can only happen if one
847 // object file defines foo and another defines foo@@ver. This
848 // is somewhat obscure, but we call it a multiple definition
849 // error.
850
851 // It's possible that NAME/NULL actually has a version, in which
852 // case it won't be the same as VERSION. This happens with
853 // ver_test_7.so in the testsuite for the symbol t2_2. We see
854 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
855 // then see an unadorned t2_2 in an object file and give it
856 // version VER1 from the version script. This looks like a
857 // default definition for VER1, so it looks like we should merge
858 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
859 // not obvious that this is an error, either. So we just punt.
860
861 // If one of the symbols has non-default visibility, and the
862 // other is defined in a shared object, then they are different
863 // symbols.
864
865 // Otherwise, we just resolve the symbols as though they were
866 // the same.
867
868 if (pdef->second->version() != NULL)
869 gold_assert(pdef->second->version() != sym->version());
870 else if (sym->visibility() != elfcpp::STV_DEFAULT
871 && pdef->second->is_from_dynobj())
872 ;
873 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
874 && sym->is_from_dynobj())
875 ;
876 else
877 {
878 const Sized_symbol<size>* symdef;
879 symdef = this->get_sized_symbol<size>(pdef->second);
880 Symbol_table::resolve<size, big_endian>(sym, symdef);
881 this->make_forwarder(pdef->second, sym);
882 pdef->second = sym;
883 sym->set_is_default();
884 }
885 }
886 }
887
888 // Add one symbol from OBJECT to the symbol table. NAME is symbol
889 // name and VERSION is the version; both are canonicalized. DEF is
890 // whether this is the default version. ST_SHNDX is the symbol's
891 // section index; IS_ORDINARY is whether this is a normal section
892 // rather than a special code.
893
894 // If IS_DEFAULT_VERSION is true, then this is the definition of a
895 // default version of a symbol. That means that any lookup of
896 // NAME/NULL and any lookup of NAME/VERSION should always return the
897 // same symbol. This is obvious for references, but in particular we
898 // want to do this for definitions: overriding NAME/NULL should also
899 // override NAME/VERSION. If we don't do that, it would be very hard
900 // to override functions in a shared library which uses versioning.
901
902 // We implement this by simply making both entries in the hash table
903 // point to the same Symbol structure. That is easy enough if this is
904 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
905 // that we have seen both already, in which case they will both have
906 // independent entries in the symbol table. We can't simply change
907 // the symbol table entry, because we have pointers to the entries
908 // attached to the object files. So we mark the entry attached to the
909 // object file as a forwarder, and record it in the forwarders_ map.
910 // Note that entries in the hash table will never be marked as
911 // forwarders.
912 //
913 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
914 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
915 // for a special section code. ST_SHNDX may be modified if the symbol
916 // is defined in a section being discarded.
917
918 template<int size, bool big_endian>
919 Sized_symbol<size>*
add_from_object(Object * object,const char * name,Stringpool::Key name_key,const char * version,Stringpool::Key version_key,bool is_default_version,const elfcpp::Sym<size,big_endian> & sym,unsigned int st_shndx,bool is_ordinary,unsigned int orig_st_shndx)920 Symbol_table::add_from_object(Object* object,
921 const char* name,
922 Stringpool::Key name_key,
923 const char* version,
924 Stringpool::Key version_key,
925 bool is_default_version,
926 const elfcpp::Sym<size, big_endian>& sym,
927 unsigned int st_shndx,
928 bool is_ordinary,
929 unsigned int orig_st_shndx)
930 {
931 // Print a message if this symbol is being traced.
932 if (parameters->options().is_trace_symbol(name))
933 {
934 if (orig_st_shndx == elfcpp::SHN_UNDEF)
935 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
936 else
937 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
938 }
939
940 // For an undefined symbol, we may need to adjust the name using
941 // --wrap.
942 if (orig_st_shndx == elfcpp::SHN_UNDEF
943 && parameters->options().any_wrap())
944 {
945 const char* wrap_name = this->wrap_symbol(name, &name_key);
946 if (wrap_name != name)
947 {
948 // If we see a reference to malloc with version GLIBC_2.0,
949 // and we turn it into a reference to __wrap_malloc, then we
950 // discard the version number. Otherwise the user would be
951 // required to specify the correct version for
952 // __wrap_malloc.
953 version = NULL;
954 version_key = 0;
955 name = wrap_name;
956 }
957 }
958
959 Symbol* const snull = NULL;
960 std::pair<typename Symbol_table_type::iterator, bool> ins =
961 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
962 snull));
963
964 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
965 std::make_pair(this->table_.end(), false);
966 if (is_default_version)
967 {
968 const Stringpool::Key vnull_key = 0;
969 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
970 vnull_key),
971 snull));
972 }
973
974 // ins.first: an iterator, which is a pointer to a pair.
975 // ins.first->first: the key (a pair of name and version).
976 // ins.first->second: the value (Symbol*).
977 // ins.second: true if new entry was inserted, false if not.
978
979 Sized_symbol<size>* ret;
980 bool was_undefined;
981 bool was_common;
982 if (!ins.second)
983 {
984 // We already have an entry for NAME/VERSION.
985 ret = this->get_sized_symbol<size>(ins.first->second);
986 gold_assert(ret != NULL);
987
988 was_undefined = ret->is_undefined();
989 // Commons from plugins are just placeholders.
990 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
991
992 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
993 version);
994 if (parameters->options().gc_sections())
995 this->gc_mark_dyn_syms(ret);
996
997 if (is_default_version)
998 this->define_default_version<size, big_endian>(ret, insdefault.second,
999 insdefault.first);
1000 }
1001 else
1002 {
1003 // This is the first time we have seen NAME/VERSION.
1004 gold_assert(ins.first->second == NULL);
1005
1006 if (is_default_version && !insdefault.second)
1007 {
1008 // We already have an entry for NAME/NULL. If we override
1009 // it, then change it to NAME/VERSION.
1010 ret = this->get_sized_symbol<size>(insdefault.first->second);
1011
1012 was_undefined = ret->is_undefined();
1013 // Commons from plugins are just placeholders.
1014 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1015
1016 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1017 version);
1018 if (parameters->options().gc_sections())
1019 this->gc_mark_dyn_syms(ret);
1020 ins.first->second = ret;
1021 }
1022 else
1023 {
1024 was_undefined = false;
1025 was_common = false;
1026
1027 Sized_target<size, big_endian>* target =
1028 parameters->sized_target<size, big_endian>();
1029 if (!target->has_make_symbol())
1030 ret = new Sized_symbol<size>();
1031 else
1032 {
1033 ret = target->make_symbol();
1034 if (ret == NULL)
1035 {
1036 // This means that we don't want a symbol table
1037 // entry after all.
1038 if (!is_default_version)
1039 this->table_.erase(ins.first);
1040 else
1041 {
1042 this->table_.erase(insdefault.first);
1043 // Inserting INSDEFAULT invalidated INS.
1044 this->table_.erase(std::make_pair(name_key,
1045 version_key));
1046 }
1047 return NULL;
1048 }
1049 }
1050
1051 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1052
1053 ins.first->second = ret;
1054 if (is_default_version)
1055 {
1056 // This is the first time we have seen NAME/NULL. Point
1057 // it at the new entry for NAME/VERSION.
1058 gold_assert(insdefault.second);
1059 insdefault.first->second = ret;
1060 }
1061 }
1062
1063 if (is_default_version)
1064 ret->set_is_default();
1065 }
1066
1067 // Record every time we see a new undefined symbol, to speed up
1068 // archive groups.
1069 if (!was_undefined && ret->is_undefined())
1070 {
1071 ++this->saw_undefined_;
1072 if (parameters->options().has_plugins())
1073 parameters->options().plugins()->new_undefined_symbol(ret);
1074 }
1075
1076 // Keep track of common symbols, to speed up common symbol
1077 // allocation. Don't record commons from plugin objects;
1078 // we need to wait until we see the real symbol in the
1079 // replacement file.
1080 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1081 {
1082 if (ret->type() == elfcpp::STT_TLS)
1083 this->tls_commons_.push_back(ret);
1084 else if (!is_ordinary
1085 && st_shndx == parameters->target().small_common_shndx())
1086 this->small_commons_.push_back(ret);
1087 else if (!is_ordinary
1088 && st_shndx == parameters->target().large_common_shndx())
1089 this->large_commons_.push_back(ret);
1090 else
1091 this->commons_.push_back(ret);
1092 }
1093
1094 // If we're not doing a relocatable link, then any symbol with
1095 // hidden or internal visibility is local.
1096 if ((ret->visibility() == elfcpp::STV_HIDDEN
1097 || ret->visibility() == elfcpp::STV_INTERNAL)
1098 && (ret->binding() == elfcpp::STB_GLOBAL
1099 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1100 || ret->binding() == elfcpp::STB_WEAK)
1101 && !parameters->options().relocatable())
1102 this->force_local(ret);
1103
1104 return ret;
1105 }
1106
1107 // Add all the symbols in a relocatable object to the hash table.
1108
1109 template<int size, bool big_endian>
1110 void
add_from_relobj(Sized_relobj_file<size,big_endian> * relobj,const unsigned char * syms,size_t count,size_t symndx_offset,const char * sym_names,size_t sym_name_size,typename Sized_relobj_file<size,big_endian>::Symbols * sympointers,size_t * defined)1111 Symbol_table::add_from_relobj(
1112 Sized_relobj_file<size, big_endian>* relobj,
1113 const unsigned char* syms,
1114 size_t count,
1115 size_t symndx_offset,
1116 const char* sym_names,
1117 size_t sym_name_size,
1118 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1119 size_t* defined)
1120 {
1121 *defined = 0;
1122
1123 gold_assert(size == parameters->target().get_size());
1124
1125 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1126
1127 const bool just_symbols = relobj->just_symbols();
1128
1129 const unsigned char* p = syms;
1130 for (size_t i = 0; i < count; ++i, p += sym_size)
1131 {
1132 (*sympointers)[i] = NULL;
1133
1134 elfcpp::Sym<size, big_endian> sym(p);
1135
1136 unsigned int st_name = sym.get_st_name();
1137 if (st_name >= sym_name_size)
1138 {
1139 relobj->error(_("bad global symbol name offset %u at %zu"),
1140 st_name, i);
1141 continue;
1142 }
1143
1144 const char* name = sym_names + st_name;
1145
1146 if (strcmp (name, "__gnu_lto_slim") == 0)
1147 gold_info(_("%s: plugin needed to handle lto object"),
1148 relobj->name().c_str());
1149
1150 bool is_ordinary;
1151 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1152 sym.get_st_shndx(),
1153 &is_ordinary);
1154 unsigned int orig_st_shndx = st_shndx;
1155 if (!is_ordinary)
1156 orig_st_shndx = elfcpp::SHN_UNDEF;
1157
1158 if (st_shndx != elfcpp::SHN_UNDEF)
1159 ++*defined;
1160
1161 // A symbol defined in a section which we are not including must
1162 // be treated as an undefined symbol.
1163 bool is_defined_in_discarded_section = false;
1164 if (st_shndx != elfcpp::SHN_UNDEF
1165 && is_ordinary
1166 && !relobj->is_section_included(st_shndx)
1167 && !this->is_section_folded(relobj, st_shndx))
1168 {
1169 st_shndx = elfcpp::SHN_UNDEF;
1170 is_defined_in_discarded_section = true;
1171 }
1172
1173 // In an object file, an '@' in the name separates the symbol
1174 // name from the version name. If there are two '@' characters,
1175 // this is the default version.
1176 const char* ver = strchr(name, '@');
1177 Stringpool::Key ver_key = 0;
1178 int namelen = 0;
1179 // IS_DEFAULT_VERSION: is the version default?
1180 // IS_FORCED_LOCAL: is the symbol forced local?
1181 bool is_default_version = false;
1182 bool is_forced_local = false;
1183
1184 // FIXME: For incremental links, we don't store version information,
1185 // so we need to ignore version symbols for now.
1186 if (parameters->incremental_update() && ver != NULL)
1187 {
1188 namelen = ver - name;
1189 ver = NULL;
1190 }
1191
1192 if (ver != NULL)
1193 {
1194 // The symbol name is of the form foo@VERSION or foo@@VERSION
1195 namelen = ver - name;
1196 ++ver;
1197 if (*ver == '@')
1198 {
1199 is_default_version = true;
1200 ++ver;
1201 }
1202 ver = this->namepool_.add(ver, true, &ver_key);
1203 }
1204 // We don't want to assign a version to an undefined symbol,
1205 // even if it is listed in the version script. FIXME: What
1206 // about a common symbol?
1207 else
1208 {
1209 namelen = strlen(name);
1210 if (!this->version_script_.empty()
1211 && st_shndx != elfcpp::SHN_UNDEF)
1212 {
1213 // The symbol name did not have a version, but the
1214 // version script may assign a version anyway.
1215 std::string version;
1216 bool is_global;
1217 if (this->version_script_.get_symbol_version(name, &version,
1218 &is_global))
1219 {
1220 if (!is_global)
1221 is_forced_local = true;
1222 else if (!version.empty())
1223 {
1224 ver = this->namepool_.add_with_length(version.c_str(),
1225 version.length(),
1226 true,
1227 &ver_key);
1228 is_default_version = true;
1229 }
1230 }
1231 }
1232 }
1233
1234 elfcpp::Sym<size, big_endian>* psym = &sym;
1235 unsigned char symbuf[sym_size];
1236 elfcpp::Sym<size, big_endian> sym2(symbuf);
1237 if (just_symbols)
1238 {
1239 memcpy(symbuf, p, sym_size);
1240 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1241 if (orig_st_shndx != elfcpp::SHN_UNDEF
1242 && is_ordinary
1243 && relobj->e_type() == elfcpp::ET_REL)
1244 {
1245 // Symbol values in relocatable object files are section
1246 // relative. This is normally what we want, but since here
1247 // we are converting the symbol to absolute we need to add
1248 // the section address. The section address in an object
1249 // file is normally zero, but people can use a linker
1250 // script to change it.
1251 sw.put_st_value(sym.get_st_value()
1252 + relobj->section_address(orig_st_shndx));
1253 }
1254 st_shndx = elfcpp::SHN_ABS;
1255 is_ordinary = false;
1256 psym = &sym2;
1257 }
1258
1259 // Fix up visibility if object has no-export set.
1260 if (relobj->no_export()
1261 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1262 {
1263 // We may have copied symbol already above.
1264 if (psym != &sym2)
1265 {
1266 memcpy(symbuf, p, sym_size);
1267 psym = &sym2;
1268 }
1269
1270 elfcpp::STV visibility = sym2.get_st_visibility();
1271 if (visibility == elfcpp::STV_DEFAULT
1272 || visibility == elfcpp::STV_PROTECTED)
1273 {
1274 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1275 unsigned char nonvis = sym2.get_st_nonvis();
1276 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1277 }
1278 }
1279
1280 Stringpool::Key name_key;
1281 name = this->namepool_.add_with_length(name, namelen, true,
1282 &name_key);
1283
1284 Sized_symbol<size>* res;
1285 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1286 is_default_version, *psym, st_shndx,
1287 is_ordinary, orig_st_shndx);
1288
1289 if (is_forced_local)
1290 this->force_local(res);
1291
1292 // Do not treat this symbol as garbage if this symbol will be
1293 // exported to the dynamic symbol table. This is true when
1294 // building a shared library or using --export-dynamic and
1295 // the symbol is externally visible.
1296 if (parameters->options().gc_sections()
1297 && res->is_externally_visible()
1298 && !res->is_from_dynobj()
1299 && (parameters->options().shared()
1300 || parameters->options().export_dynamic()
1301 || parameters->options().in_dynamic_list(res->name())))
1302 this->gc_mark_symbol(res);
1303
1304 if (is_defined_in_discarded_section)
1305 res->set_is_defined_in_discarded_section();
1306
1307 (*sympointers)[i] = res;
1308 }
1309 }
1310
1311 // Add a symbol from a plugin-claimed file.
1312
1313 template<int size, bool big_endian>
1314 Symbol*
add_from_pluginobj(Sized_pluginobj<size,big_endian> * obj,const char * name,const char * ver,elfcpp::Sym<size,big_endian> * sym)1315 Symbol_table::add_from_pluginobj(
1316 Sized_pluginobj<size, big_endian>* obj,
1317 const char* name,
1318 const char* ver,
1319 elfcpp::Sym<size, big_endian>* sym)
1320 {
1321 unsigned int st_shndx = sym->get_st_shndx();
1322 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1323
1324 Stringpool::Key ver_key = 0;
1325 bool is_default_version = false;
1326 bool is_forced_local = false;
1327
1328 if (ver != NULL)
1329 {
1330 ver = this->namepool_.add(ver, true, &ver_key);
1331 }
1332 // We don't want to assign a version to an undefined symbol,
1333 // even if it is listed in the version script. FIXME: What
1334 // about a common symbol?
1335 else
1336 {
1337 if (!this->version_script_.empty()
1338 && st_shndx != elfcpp::SHN_UNDEF)
1339 {
1340 // The symbol name did not have a version, but the
1341 // version script may assign a version anyway.
1342 std::string version;
1343 bool is_global;
1344 if (this->version_script_.get_symbol_version(name, &version,
1345 &is_global))
1346 {
1347 if (!is_global)
1348 is_forced_local = true;
1349 else if (!version.empty())
1350 {
1351 ver = this->namepool_.add_with_length(version.c_str(),
1352 version.length(),
1353 true,
1354 &ver_key);
1355 is_default_version = true;
1356 }
1357 }
1358 }
1359 }
1360
1361 Stringpool::Key name_key;
1362 name = this->namepool_.add(name, true, &name_key);
1363
1364 Sized_symbol<size>* res;
1365 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1366 is_default_version, *sym, st_shndx,
1367 is_ordinary, st_shndx);
1368
1369 if (is_forced_local)
1370 this->force_local(res);
1371
1372 return res;
1373 }
1374
1375 // Add all the symbols in a dynamic object to the hash table.
1376
1377 template<int size, bool big_endian>
1378 void
add_from_dynobj(Sized_dynobj<size,big_endian> * dynobj,const unsigned char * syms,size_t count,const char * sym_names,size_t sym_name_size,const unsigned char * versym,size_t versym_size,const std::vector<const char * > * version_map,typename Sized_relobj_file<size,big_endian>::Symbols * sympointers,size_t * defined)1379 Symbol_table::add_from_dynobj(
1380 Sized_dynobj<size, big_endian>* dynobj,
1381 const unsigned char* syms,
1382 size_t count,
1383 const char* sym_names,
1384 size_t sym_name_size,
1385 const unsigned char* versym,
1386 size_t versym_size,
1387 const std::vector<const char*>* version_map,
1388 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1389 size_t* defined)
1390 {
1391 *defined = 0;
1392
1393 gold_assert(size == parameters->target().get_size());
1394
1395 if (dynobj->just_symbols())
1396 {
1397 gold_error(_("--just-symbols does not make sense with a shared object"));
1398 return;
1399 }
1400
1401 // FIXME: For incremental links, we don't store version information,
1402 // so we need to ignore version symbols for now.
1403 if (parameters->incremental_update())
1404 versym = NULL;
1405
1406 if (versym != NULL && versym_size / 2 < count)
1407 {
1408 dynobj->error(_("too few symbol versions"));
1409 return;
1410 }
1411
1412 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1413
1414 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1415 // weak aliases. This is necessary because if the dynamic object
1416 // provides the same variable under two names, one of which is a
1417 // weak definition, and the regular object refers to the weak
1418 // definition, we have to put both the weak definition and the
1419 // strong definition into the dynamic symbol table. Given a weak
1420 // definition, the only way that we can find the corresponding
1421 // strong definition, if any, is to search the symbol table.
1422 std::vector<Sized_symbol<size>*> object_symbols;
1423
1424 const unsigned char* p = syms;
1425 const unsigned char* vs = versym;
1426 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1427 {
1428 elfcpp::Sym<size, big_endian> sym(p);
1429
1430 if (sympointers != NULL)
1431 (*sympointers)[i] = NULL;
1432
1433 // Ignore symbols with local binding or that have
1434 // internal or hidden visibility.
1435 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1436 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1437 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1438 continue;
1439
1440 // A protected symbol in a shared library must be treated as a
1441 // normal symbol when viewed from outside the shared library.
1442 // Implement this by overriding the visibility here.
1443 elfcpp::Sym<size, big_endian>* psym = &sym;
1444 unsigned char symbuf[sym_size];
1445 elfcpp::Sym<size, big_endian> sym2(symbuf);
1446 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1447 {
1448 memcpy(symbuf, p, sym_size);
1449 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1450 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1451 psym = &sym2;
1452 }
1453
1454 unsigned int st_name = psym->get_st_name();
1455 if (st_name >= sym_name_size)
1456 {
1457 dynobj->error(_("bad symbol name offset %u at %zu"),
1458 st_name, i);
1459 continue;
1460 }
1461
1462 const char* name = sym_names + st_name;
1463
1464 bool is_ordinary;
1465 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1466 &is_ordinary);
1467
1468 if (st_shndx != elfcpp::SHN_UNDEF)
1469 ++*defined;
1470
1471 Sized_symbol<size>* res;
1472
1473 if (versym == NULL)
1474 {
1475 Stringpool::Key name_key;
1476 name = this->namepool_.add(name, true, &name_key);
1477 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1478 false, *psym, st_shndx, is_ordinary,
1479 st_shndx);
1480 }
1481 else
1482 {
1483 // Read the version information.
1484
1485 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1486
1487 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1488 v &= elfcpp::VERSYM_VERSION;
1489
1490 // The Sun documentation says that V can be VER_NDX_LOCAL,
1491 // or VER_NDX_GLOBAL, or a version index. The meaning of
1492 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1493 // The old GNU linker will happily generate VER_NDX_LOCAL
1494 // for an undefined symbol. I don't know what the Sun
1495 // linker will generate.
1496
1497 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1498 && st_shndx != elfcpp::SHN_UNDEF)
1499 {
1500 // This symbol should not be visible outside the object.
1501 continue;
1502 }
1503
1504 // At this point we are definitely going to add this symbol.
1505 Stringpool::Key name_key;
1506 name = this->namepool_.add(name, true, &name_key);
1507
1508 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1509 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1510 {
1511 // This symbol does not have a version.
1512 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1513 false, *psym, st_shndx, is_ordinary,
1514 st_shndx);
1515 }
1516 else
1517 {
1518 if (v >= version_map->size())
1519 {
1520 dynobj->error(_("versym for symbol %zu out of range: %u"),
1521 i, v);
1522 continue;
1523 }
1524
1525 const char* version = (*version_map)[v];
1526 if (version == NULL)
1527 {
1528 dynobj->error(_("versym for symbol %zu has no name: %u"),
1529 i, v);
1530 continue;
1531 }
1532
1533 Stringpool::Key version_key;
1534 version = this->namepool_.add(version, true, &version_key);
1535
1536 // If this is an absolute symbol, and the version name
1537 // and symbol name are the same, then this is the
1538 // version definition symbol. These symbols exist to
1539 // support using -u to pull in particular versions. We
1540 // do not want to record a version for them.
1541 if (st_shndx == elfcpp::SHN_ABS
1542 && !is_ordinary
1543 && name_key == version_key)
1544 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1545 false, *psym, st_shndx, is_ordinary,
1546 st_shndx);
1547 else
1548 {
1549 const bool is_default_version =
1550 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1551 res = this->add_from_object(dynobj, name, name_key, version,
1552 version_key, is_default_version,
1553 *psym, st_shndx,
1554 is_ordinary, st_shndx);
1555 }
1556 }
1557 }
1558
1559 // Note that it is possible that RES was overridden by an
1560 // earlier object, in which case it can't be aliased here.
1561 if (st_shndx != elfcpp::SHN_UNDEF
1562 && is_ordinary
1563 && psym->get_st_type() == elfcpp::STT_OBJECT
1564 && res->source() == Symbol::FROM_OBJECT
1565 && res->object() == dynobj)
1566 object_symbols.push_back(res);
1567
1568 if (sympointers != NULL)
1569 (*sympointers)[i] = res;
1570 }
1571
1572 this->record_weak_aliases(&object_symbols);
1573 }
1574
1575 // Add a symbol from a incremental object file.
1576
1577 template<int size, bool big_endian>
1578 Sized_symbol<size>*
add_from_incrobj(Object * obj,const char * name,const char * ver,elfcpp::Sym<size,big_endian> * sym)1579 Symbol_table::add_from_incrobj(
1580 Object* obj,
1581 const char* name,
1582 const char* ver,
1583 elfcpp::Sym<size, big_endian>* sym)
1584 {
1585 unsigned int st_shndx = sym->get_st_shndx();
1586 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1587
1588 Stringpool::Key ver_key = 0;
1589 bool is_default_version = false;
1590 bool is_forced_local = false;
1591
1592 Stringpool::Key name_key;
1593 name = this->namepool_.add(name, true, &name_key);
1594
1595 Sized_symbol<size>* res;
1596 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1597 is_default_version, *sym, st_shndx,
1598 is_ordinary, st_shndx);
1599
1600 if (is_forced_local)
1601 this->force_local(res);
1602
1603 return res;
1604 }
1605
1606 // This is used to sort weak aliases. We sort them first by section
1607 // index, then by offset, then by weak ahead of strong.
1608
1609 template<int size>
1610 class Weak_alias_sorter
1611 {
1612 public:
1613 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1614 };
1615
1616 template<int size>
1617 bool
operator ()(const Sized_symbol<size> * s1,const Sized_symbol<size> * s2) const1618 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1619 const Sized_symbol<size>* s2) const
1620 {
1621 bool is_ordinary;
1622 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1623 gold_assert(is_ordinary);
1624 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1625 gold_assert(is_ordinary);
1626 if (s1_shndx != s2_shndx)
1627 return s1_shndx < s2_shndx;
1628
1629 if (s1->value() != s2->value())
1630 return s1->value() < s2->value();
1631 if (s1->binding() != s2->binding())
1632 {
1633 if (s1->binding() == elfcpp::STB_WEAK)
1634 return true;
1635 if (s2->binding() == elfcpp::STB_WEAK)
1636 return false;
1637 }
1638 return std::string(s1->name()) < std::string(s2->name());
1639 }
1640
1641 // SYMBOLS is a list of object symbols from a dynamic object. Look
1642 // for any weak aliases, and record them so that if we add the weak
1643 // alias to the dynamic symbol table, we also add the corresponding
1644 // strong symbol.
1645
1646 template<int size>
1647 void
record_weak_aliases(std::vector<Sized_symbol<size> * > * symbols)1648 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1649 {
1650 // Sort the vector by section index, then by offset, then by weak
1651 // ahead of strong.
1652 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1653
1654 // Walk through the vector. For each weak definition, record
1655 // aliases.
1656 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1657 symbols->begin();
1658 p != symbols->end();
1659 ++p)
1660 {
1661 if ((*p)->binding() != elfcpp::STB_WEAK)
1662 continue;
1663
1664 // Build a circular list of weak aliases. Each symbol points to
1665 // the next one in the circular list.
1666
1667 Sized_symbol<size>* from_sym = *p;
1668 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1669 for (q = p + 1; q != symbols->end(); ++q)
1670 {
1671 bool dummy;
1672 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1673 || (*q)->value() != from_sym->value())
1674 break;
1675
1676 this->weak_aliases_[from_sym] = *q;
1677 from_sym->set_has_alias();
1678 from_sym = *q;
1679 }
1680
1681 if (from_sym != *p)
1682 {
1683 this->weak_aliases_[from_sym] = *p;
1684 from_sym->set_has_alias();
1685 }
1686
1687 p = q - 1;
1688 }
1689 }
1690
1691 // Create and return a specially defined symbol. If ONLY_IF_REF is
1692 // true, then only create the symbol if there is a reference to it.
1693 // If this does not return NULL, it sets *POLDSYM to the existing
1694 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1695 // resolve the newly created symbol to the old one. This
1696 // canonicalizes *PNAME and *PVERSION.
1697
1698 template<int size, bool big_endian>
1699 Sized_symbol<size>*
define_special_symbol(const char ** pname,const char ** pversion,bool only_if_ref,Sized_symbol<size> ** poldsym,bool * resolve_oldsym)1700 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1701 bool only_if_ref,
1702 Sized_symbol<size>** poldsym,
1703 bool* resolve_oldsym)
1704 {
1705 *resolve_oldsym = false;
1706 *poldsym = NULL;
1707
1708 // If the caller didn't give us a version, see if we get one from
1709 // the version script.
1710 std::string v;
1711 bool is_default_version = false;
1712 if (*pversion == NULL)
1713 {
1714 bool is_global;
1715 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1716 {
1717 if (is_global && !v.empty())
1718 {
1719 *pversion = v.c_str();
1720 // If we get the version from a version script, then we
1721 // are also the default version.
1722 is_default_version = true;
1723 }
1724 }
1725 }
1726
1727 Symbol* oldsym;
1728 Sized_symbol<size>* sym;
1729
1730 bool add_to_table = false;
1731 typename Symbol_table_type::iterator add_loc = this->table_.end();
1732 bool add_def_to_table = false;
1733 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1734
1735 if (only_if_ref)
1736 {
1737 oldsym = this->lookup(*pname, *pversion);
1738 if (oldsym == NULL && is_default_version)
1739 oldsym = this->lookup(*pname, NULL);
1740 if (oldsym == NULL || !oldsym->is_undefined())
1741 return NULL;
1742
1743 *pname = oldsym->name();
1744 if (is_default_version)
1745 *pversion = this->namepool_.add(*pversion, true, NULL);
1746 else
1747 *pversion = oldsym->version();
1748 }
1749 else
1750 {
1751 // Canonicalize NAME and VERSION.
1752 Stringpool::Key name_key;
1753 *pname = this->namepool_.add(*pname, true, &name_key);
1754
1755 Stringpool::Key version_key = 0;
1756 if (*pversion != NULL)
1757 *pversion = this->namepool_.add(*pversion, true, &version_key);
1758
1759 Symbol* const snull = NULL;
1760 std::pair<typename Symbol_table_type::iterator, bool> ins =
1761 this->table_.insert(std::make_pair(std::make_pair(name_key,
1762 version_key),
1763 snull));
1764
1765 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1766 std::make_pair(this->table_.end(), false);
1767 if (is_default_version)
1768 {
1769 const Stringpool::Key vnull = 0;
1770 insdefault =
1771 this->table_.insert(std::make_pair(std::make_pair(name_key,
1772 vnull),
1773 snull));
1774 }
1775
1776 if (!ins.second)
1777 {
1778 // We already have a symbol table entry for NAME/VERSION.
1779 oldsym = ins.first->second;
1780 gold_assert(oldsym != NULL);
1781
1782 if (is_default_version)
1783 {
1784 Sized_symbol<size>* soldsym =
1785 this->get_sized_symbol<size>(oldsym);
1786 this->define_default_version<size, big_endian>(soldsym,
1787 insdefault.second,
1788 insdefault.first);
1789 }
1790 }
1791 else
1792 {
1793 // We haven't seen this symbol before.
1794 gold_assert(ins.first->second == NULL);
1795
1796 add_to_table = true;
1797 add_loc = ins.first;
1798
1799 if (is_default_version && !insdefault.second)
1800 {
1801 // We are adding NAME/VERSION, and it is the default
1802 // version. We already have an entry for NAME/NULL.
1803 oldsym = insdefault.first->second;
1804 *resolve_oldsym = true;
1805 }
1806 else
1807 {
1808 oldsym = NULL;
1809
1810 if (is_default_version)
1811 {
1812 add_def_to_table = true;
1813 add_def_loc = insdefault.first;
1814 }
1815 }
1816 }
1817 }
1818
1819 const Target& target = parameters->target();
1820 if (!target.has_make_symbol())
1821 sym = new Sized_symbol<size>();
1822 else
1823 {
1824 Sized_target<size, big_endian>* sized_target =
1825 parameters->sized_target<size, big_endian>();
1826 sym = sized_target->make_symbol();
1827 if (sym == NULL)
1828 return NULL;
1829 }
1830
1831 if (add_to_table)
1832 add_loc->second = sym;
1833 else
1834 gold_assert(oldsym != NULL);
1835
1836 if (add_def_to_table)
1837 add_def_loc->second = sym;
1838
1839 *poldsym = this->get_sized_symbol<size>(oldsym);
1840
1841 return sym;
1842 }
1843
1844 // Define a symbol based on an Output_data.
1845
1846 Symbol*
define_in_output_data(const char * name,const char * version,Defined defined,Output_data * od,uint64_t value,uint64_t symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool offset_is_from_end,bool only_if_ref)1847 Symbol_table::define_in_output_data(const char* name,
1848 const char* version,
1849 Defined defined,
1850 Output_data* od,
1851 uint64_t value,
1852 uint64_t symsize,
1853 elfcpp::STT type,
1854 elfcpp::STB binding,
1855 elfcpp::STV visibility,
1856 unsigned char nonvis,
1857 bool offset_is_from_end,
1858 bool only_if_ref)
1859 {
1860 if (parameters->target().get_size() == 32)
1861 {
1862 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1863 return this->do_define_in_output_data<32>(name, version, defined, od,
1864 value, symsize, type, binding,
1865 visibility, nonvis,
1866 offset_is_from_end,
1867 only_if_ref);
1868 #else
1869 gold_unreachable();
1870 #endif
1871 }
1872 else if (parameters->target().get_size() == 64)
1873 {
1874 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1875 return this->do_define_in_output_data<64>(name, version, defined, od,
1876 value, symsize, type, binding,
1877 visibility, nonvis,
1878 offset_is_from_end,
1879 only_if_ref);
1880 #else
1881 gold_unreachable();
1882 #endif
1883 }
1884 else
1885 gold_unreachable();
1886 }
1887
1888 // Define a symbol in an Output_data, sized version.
1889
1890 template<int size>
1891 Sized_symbol<size>*
do_define_in_output_data(const char * name,const char * version,Defined defined,Output_data * od,typename elfcpp::Elf_types<size>::Elf_Addr value,typename elfcpp::Elf_types<size>::Elf_WXword symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool offset_is_from_end,bool only_if_ref)1892 Symbol_table::do_define_in_output_data(
1893 const char* name,
1894 const char* version,
1895 Defined defined,
1896 Output_data* od,
1897 typename elfcpp::Elf_types<size>::Elf_Addr value,
1898 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1899 elfcpp::STT type,
1900 elfcpp::STB binding,
1901 elfcpp::STV visibility,
1902 unsigned char nonvis,
1903 bool offset_is_from_end,
1904 bool only_if_ref)
1905 {
1906 Sized_symbol<size>* sym;
1907 Sized_symbol<size>* oldsym;
1908 bool resolve_oldsym;
1909
1910 if (parameters->target().is_big_endian())
1911 {
1912 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1913 sym = this->define_special_symbol<size, true>(&name, &version,
1914 only_if_ref, &oldsym,
1915 &resolve_oldsym);
1916 #else
1917 gold_unreachable();
1918 #endif
1919 }
1920 else
1921 {
1922 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1923 sym = this->define_special_symbol<size, false>(&name, &version,
1924 only_if_ref, &oldsym,
1925 &resolve_oldsym);
1926 #else
1927 gold_unreachable();
1928 #endif
1929 }
1930
1931 if (sym == NULL)
1932 return NULL;
1933
1934 sym->init_output_data(name, version, od, value, symsize, type, binding,
1935 visibility, nonvis, offset_is_from_end,
1936 defined == PREDEFINED);
1937
1938 if (oldsym == NULL)
1939 {
1940 if (binding == elfcpp::STB_LOCAL
1941 || this->version_script_.symbol_is_local(name))
1942 this->force_local(sym);
1943 else if (version != NULL)
1944 sym->set_is_default();
1945 return sym;
1946 }
1947
1948 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1949 this->override_with_special(oldsym, sym);
1950
1951 if (resolve_oldsym)
1952 return sym;
1953 else
1954 {
1955 delete sym;
1956 return oldsym;
1957 }
1958 }
1959
1960 // Define a symbol based on an Output_segment.
1961
1962 Symbol*
define_in_output_segment(const char * name,const char * version,Defined defined,Output_segment * os,uint64_t value,uint64_t symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,Symbol::Segment_offset_base offset_base,bool only_if_ref)1963 Symbol_table::define_in_output_segment(const char* name,
1964 const char* version,
1965 Defined defined,
1966 Output_segment* os,
1967 uint64_t value,
1968 uint64_t symsize,
1969 elfcpp::STT type,
1970 elfcpp::STB binding,
1971 elfcpp::STV visibility,
1972 unsigned char nonvis,
1973 Symbol::Segment_offset_base offset_base,
1974 bool only_if_ref)
1975 {
1976 if (parameters->target().get_size() == 32)
1977 {
1978 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1979 return this->do_define_in_output_segment<32>(name, version, defined, os,
1980 value, symsize, type,
1981 binding, visibility, nonvis,
1982 offset_base, only_if_ref);
1983 #else
1984 gold_unreachable();
1985 #endif
1986 }
1987 else if (parameters->target().get_size() == 64)
1988 {
1989 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1990 return this->do_define_in_output_segment<64>(name, version, defined, os,
1991 value, symsize, type,
1992 binding, visibility, nonvis,
1993 offset_base, only_if_ref);
1994 #else
1995 gold_unreachable();
1996 #endif
1997 }
1998 else
1999 gold_unreachable();
2000 }
2001
2002 // Define a symbol in an Output_segment, sized version.
2003
2004 template<int size>
2005 Sized_symbol<size>*
do_define_in_output_segment(const char * name,const char * version,Defined defined,Output_segment * os,typename elfcpp::Elf_types<size>::Elf_Addr value,typename elfcpp::Elf_types<size>::Elf_WXword symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,Symbol::Segment_offset_base offset_base,bool only_if_ref)2006 Symbol_table::do_define_in_output_segment(
2007 const char* name,
2008 const char* version,
2009 Defined defined,
2010 Output_segment* os,
2011 typename elfcpp::Elf_types<size>::Elf_Addr value,
2012 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2013 elfcpp::STT type,
2014 elfcpp::STB binding,
2015 elfcpp::STV visibility,
2016 unsigned char nonvis,
2017 Symbol::Segment_offset_base offset_base,
2018 bool only_if_ref)
2019 {
2020 Sized_symbol<size>* sym;
2021 Sized_symbol<size>* oldsym;
2022 bool resolve_oldsym;
2023
2024 if (parameters->target().is_big_endian())
2025 {
2026 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2027 sym = this->define_special_symbol<size, true>(&name, &version,
2028 only_if_ref, &oldsym,
2029 &resolve_oldsym);
2030 #else
2031 gold_unreachable();
2032 #endif
2033 }
2034 else
2035 {
2036 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2037 sym = this->define_special_symbol<size, false>(&name, &version,
2038 only_if_ref, &oldsym,
2039 &resolve_oldsym);
2040 #else
2041 gold_unreachable();
2042 #endif
2043 }
2044
2045 if (sym == NULL)
2046 return NULL;
2047
2048 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2049 visibility, nonvis, offset_base,
2050 defined == PREDEFINED);
2051
2052 if (oldsym == NULL)
2053 {
2054 if (binding == elfcpp::STB_LOCAL
2055 || this->version_script_.symbol_is_local(name))
2056 this->force_local(sym);
2057 else if (version != NULL)
2058 sym->set_is_default();
2059 return sym;
2060 }
2061
2062 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2063 this->override_with_special(oldsym, sym);
2064
2065 if (resolve_oldsym)
2066 return sym;
2067 else
2068 {
2069 delete sym;
2070 return oldsym;
2071 }
2072 }
2073
2074 // Define a special symbol with a constant value. It is a multiple
2075 // definition error if this symbol is already defined.
2076
2077 Symbol*
define_as_constant(const char * name,const char * version,Defined defined,uint64_t value,uint64_t symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool only_if_ref,bool force_override)2078 Symbol_table::define_as_constant(const char* name,
2079 const char* version,
2080 Defined defined,
2081 uint64_t value,
2082 uint64_t symsize,
2083 elfcpp::STT type,
2084 elfcpp::STB binding,
2085 elfcpp::STV visibility,
2086 unsigned char nonvis,
2087 bool only_if_ref,
2088 bool force_override)
2089 {
2090 if (parameters->target().get_size() == 32)
2091 {
2092 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2093 return this->do_define_as_constant<32>(name, version, defined, value,
2094 symsize, type, binding,
2095 visibility, nonvis, only_if_ref,
2096 force_override);
2097 #else
2098 gold_unreachable();
2099 #endif
2100 }
2101 else if (parameters->target().get_size() == 64)
2102 {
2103 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2104 return this->do_define_as_constant<64>(name, version, defined, value,
2105 symsize, type, binding,
2106 visibility, nonvis, only_if_ref,
2107 force_override);
2108 #else
2109 gold_unreachable();
2110 #endif
2111 }
2112 else
2113 gold_unreachable();
2114 }
2115
2116 // Define a symbol as a constant, sized version.
2117
2118 template<int size>
2119 Sized_symbol<size>*
do_define_as_constant(const char * name,const char * version,Defined defined,typename elfcpp::Elf_types<size>::Elf_Addr value,typename elfcpp::Elf_types<size>::Elf_WXword symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool only_if_ref,bool force_override)2120 Symbol_table::do_define_as_constant(
2121 const char* name,
2122 const char* version,
2123 Defined defined,
2124 typename elfcpp::Elf_types<size>::Elf_Addr value,
2125 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2126 elfcpp::STT type,
2127 elfcpp::STB binding,
2128 elfcpp::STV visibility,
2129 unsigned char nonvis,
2130 bool only_if_ref,
2131 bool force_override)
2132 {
2133 Sized_symbol<size>* sym;
2134 Sized_symbol<size>* oldsym;
2135 bool resolve_oldsym;
2136
2137 if (parameters->target().is_big_endian())
2138 {
2139 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2140 sym = this->define_special_symbol<size, true>(&name, &version,
2141 only_if_ref, &oldsym,
2142 &resolve_oldsym);
2143 #else
2144 gold_unreachable();
2145 #endif
2146 }
2147 else
2148 {
2149 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2150 sym = this->define_special_symbol<size, false>(&name, &version,
2151 only_if_ref, &oldsym,
2152 &resolve_oldsym);
2153 #else
2154 gold_unreachable();
2155 #endif
2156 }
2157
2158 if (sym == NULL)
2159 return NULL;
2160
2161 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2162 nonvis, defined == PREDEFINED);
2163
2164 if (oldsym == NULL)
2165 {
2166 // Version symbols are absolute symbols with name == version.
2167 // We don't want to force them to be local.
2168 if ((version == NULL
2169 || name != version
2170 || value != 0)
2171 && (binding == elfcpp::STB_LOCAL
2172 || this->version_script_.symbol_is_local(name)))
2173 this->force_local(sym);
2174 else if (version != NULL
2175 && (name != version || value != 0))
2176 sym->set_is_default();
2177 return sym;
2178 }
2179
2180 if (force_override
2181 || Symbol_table::should_override_with_special(oldsym, type, defined))
2182 this->override_with_special(oldsym, sym);
2183
2184 if (resolve_oldsym)
2185 return sym;
2186 else
2187 {
2188 delete sym;
2189 return oldsym;
2190 }
2191 }
2192
2193 // Define a set of symbols in output sections.
2194
2195 void
define_symbols(const Layout * layout,int count,const Define_symbol_in_section * p,bool only_if_ref)2196 Symbol_table::define_symbols(const Layout* layout, int count,
2197 const Define_symbol_in_section* p,
2198 bool only_if_ref)
2199 {
2200 for (int i = 0; i < count; ++i, ++p)
2201 {
2202 Output_section* os = layout->find_output_section(p->output_section);
2203 if (os != NULL)
2204 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2205 p->size, p->type, p->binding,
2206 p->visibility, p->nonvis,
2207 p->offset_is_from_end,
2208 only_if_ref || p->only_if_ref);
2209 else
2210 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2211 p->type, p->binding, p->visibility, p->nonvis,
2212 only_if_ref || p->only_if_ref,
2213 false);
2214 }
2215 }
2216
2217 // Define a set of symbols in output segments.
2218
2219 void
define_symbols(const Layout * layout,int count,const Define_symbol_in_segment * p,bool only_if_ref)2220 Symbol_table::define_symbols(const Layout* layout, int count,
2221 const Define_symbol_in_segment* p,
2222 bool only_if_ref)
2223 {
2224 for (int i = 0; i < count; ++i, ++p)
2225 {
2226 Output_segment* os = layout->find_output_segment(p->segment_type,
2227 p->segment_flags_set,
2228 p->segment_flags_clear);
2229 if (os != NULL)
2230 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2231 p->size, p->type, p->binding,
2232 p->visibility, p->nonvis,
2233 p->offset_base,
2234 only_if_ref || p->only_if_ref);
2235 else
2236 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2237 p->type, p->binding, p->visibility, p->nonvis,
2238 only_if_ref || p->only_if_ref,
2239 false);
2240 }
2241 }
2242
2243 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2244 // symbol should be defined--typically a .dyn.bss section. VALUE is
2245 // the offset within POSD.
2246
2247 template<int size>
2248 void
define_with_copy_reloc(Sized_symbol<size> * csym,Output_data * posd,typename elfcpp::Elf_types<size>::Elf_Addr value)2249 Symbol_table::define_with_copy_reloc(
2250 Sized_symbol<size>* csym,
2251 Output_data* posd,
2252 typename elfcpp::Elf_types<size>::Elf_Addr value)
2253 {
2254 gold_assert(csym->is_from_dynobj());
2255 gold_assert(!csym->is_copied_from_dynobj());
2256 Object* object = csym->object();
2257 gold_assert(object->is_dynamic());
2258 Dynobj* dynobj = static_cast<Dynobj*>(object);
2259
2260 // Our copied variable has to override any variable in a shared
2261 // library.
2262 elfcpp::STB binding = csym->binding();
2263 if (binding == elfcpp::STB_WEAK)
2264 binding = elfcpp::STB_GLOBAL;
2265
2266 this->define_in_output_data(csym->name(), csym->version(), COPY,
2267 posd, value, csym->symsize(),
2268 csym->type(), binding,
2269 csym->visibility(), csym->nonvis(),
2270 false, false);
2271
2272 csym->set_is_copied_from_dynobj();
2273 csym->set_needs_dynsym_entry();
2274
2275 this->copied_symbol_dynobjs_[csym] = dynobj;
2276
2277 // We have now defined all aliases, but we have not entered them all
2278 // in the copied_symbol_dynobjs_ map.
2279 if (csym->has_alias())
2280 {
2281 Symbol* sym = csym;
2282 while (true)
2283 {
2284 sym = this->weak_aliases_[sym];
2285 if (sym == csym)
2286 break;
2287 gold_assert(sym->output_data() == posd);
2288
2289 sym->set_is_copied_from_dynobj();
2290 this->copied_symbol_dynobjs_[sym] = dynobj;
2291 }
2292 }
2293 }
2294
2295 // SYM is defined using a COPY reloc. Return the dynamic object where
2296 // the original definition was found.
2297
2298 Dynobj*
get_copy_source(const Symbol * sym) const2299 Symbol_table::get_copy_source(const Symbol* sym) const
2300 {
2301 gold_assert(sym->is_copied_from_dynobj());
2302 Copied_symbol_dynobjs::const_iterator p =
2303 this->copied_symbol_dynobjs_.find(sym);
2304 gold_assert(p != this->copied_symbol_dynobjs_.end());
2305 return p->second;
2306 }
2307
2308 // Add any undefined symbols named on the command line.
2309
2310 void
add_undefined_symbols_from_command_line(Layout * layout)2311 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2312 {
2313 if (parameters->options().any_undefined()
2314 || layout->script_options()->any_unreferenced())
2315 {
2316 if (parameters->target().get_size() == 32)
2317 {
2318 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2319 this->do_add_undefined_symbols_from_command_line<32>(layout);
2320 #else
2321 gold_unreachable();
2322 #endif
2323 }
2324 else if (parameters->target().get_size() == 64)
2325 {
2326 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2327 this->do_add_undefined_symbols_from_command_line<64>(layout);
2328 #else
2329 gold_unreachable();
2330 #endif
2331 }
2332 else
2333 gold_unreachable();
2334 }
2335 }
2336
2337 template<int size>
2338 void
do_add_undefined_symbols_from_command_line(Layout * layout)2339 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2340 {
2341 for (options::String_set::const_iterator p =
2342 parameters->options().undefined_begin();
2343 p != parameters->options().undefined_end();
2344 ++p)
2345 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2346
2347 for (options::String_set::const_iterator p =
2348 parameters->options().export_dynamic_symbol_begin();
2349 p != parameters->options().export_dynamic_symbol_end();
2350 ++p)
2351 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2352
2353 for (Script_options::referenced_const_iterator p =
2354 layout->script_options()->referenced_begin();
2355 p != layout->script_options()->referenced_end();
2356 ++p)
2357 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2358 }
2359
2360 template<int size>
2361 void
add_undefined_symbol_from_command_line(const char * name)2362 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2363 {
2364 if (this->lookup(name) != NULL)
2365 return;
2366
2367 const char* version = NULL;
2368
2369 Sized_symbol<size>* sym;
2370 Sized_symbol<size>* oldsym;
2371 bool resolve_oldsym;
2372 if (parameters->target().is_big_endian())
2373 {
2374 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2375 sym = this->define_special_symbol<size, true>(&name, &version,
2376 false, &oldsym,
2377 &resolve_oldsym);
2378 #else
2379 gold_unreachable();
2380 #endif
2381 }
2382 else
2383 {
2384 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2385 sym = this->define_special_symbol<size, false>(&name, &version,
2386 false, &oldsym,
2387 &resolve_oldsym);
2388 #else
2389 gold_unreachable();
2390 #endif
2391 }
2392
2393 gold_assert(oldsym == NULL);
2394
2395 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2396 elfcpp::STV_DEFAULT, 0);
2397 ++this->saw_undefined_;
2398 }
2399
2400 // Set the dynamic symbol indexes. INDEX is the index of the first
2401 // global dynamic symbol. Pointers to the symbols are stored into the
2402 // vector SYMS. The names are added to DYNPOOL. This returns an
2403 // updated dynamic symbol index.
2404
2405 unsigned int
set_dynsym_indexes(unsigned int index,std::vector<Symbol * > * syms,Stringpool * dynpool,Versions * versions)2406 Symbol_table::set_dynsym_indexes(unsigned int index,
2407 std::vector<Symbol*>* syms,
2408 Stringpool* dynpool,
2409 Versions* versions)
2410 {
2411 std::vector<Symbol*> as_needed_sym;
2412
2413 // Allow a target to set dynsym indexes.
2414 if (parameters->target().has_custom_set_dynsym_indexes())
2415 {
2416 std::vector<Symbol*> dyn_symbols;
2417 for (Symbol_table_type::iterator p = this->table_.begin();
2418 p != this->table_.end();
2419 ++p)
2420 {
2421 Symbol* sym = p->second;
2422 if (!sym->should_add_dynsym_entry(this))
2423 sym->set_dynsym_index(-1U);
2424 else
2425 dyn_symbols.push_back(sym);
2426 }
2427
2428 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2429 dynpool, versions, this);
2430 }
2431
2432 for (Symbol_table_type::iterator p = this->table_.begin();
2433 p != this->table_.end();
2434 ++p)
2435 {
2436 Symbol* sym = p->second;
2437
2438 // Note that SYM may already have a dynamic symbol index, since
2439 // some symbols appear more than once in the symbol table, with
2440 // and without a version.
2441
2442 if (!sym->should_add_dynsym_entry(this))
2443 sym->set_dynsym_index(-1U);
2444 else if (!sym->has_dynsym_index())
2445 {
2446 sym->set_dynsym_index(index);
2447 ++index;
2448 syms->push_back(sym);
2449 dynpool->add(sym->name(), false, NULL);
2450
2451 // If the symbol is defined in a dynamic object and is
2452 // referenced strongly in a regular object, then mark the
2453 // dynamic object as needed. This is used to implement
2454 // --as-needed.
2455 if (sym->is_from_dynobj()
2456 && sym->in_reg()
2457 && !sym->is_undef_binding_weak())
2458 sym->object()->set_is_needed();
2459
2460 // Record any version information, except those from
2461 // as-needed libraries not seen to be needed. Note that the
2462 // is_needed state for such libraries can change in this loop.
2463 if (sym->version() != NULL)
2464 {
2465 if (!sym->is_from_dynobj()
2466 || !sym->object()->as_needed()
2467 || sym->object()->is_needed())
2468 versions->record_version(this, dynpool, sym);
2469 else
2470 as_needed_sym.push_back(sym);
2471 }
2472 }
2473 }
2474
2475 // Process version information for symbols from as-needed libraries.
2476 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2477 p != as_needed_sym.end();
2478 ++p)
2479 {
2480 Symbol* sym = *p;
2481
2482 if (sym->object()->is_needed())
2483 versions->record_version(this, dynpool, sym);
2484 else
2485 sym->clear_version();
2486 }
2487
2488 // Finish up the versions. In some cases this may add new dynamic
2489 // symbols.
2490 index = versions->finalize(this, index, syms);
2491
2492 return index;
2493 }
2494
2495 // Set the final values for all the symbols. The index of the first
2496 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2497 // file offset OFF. Add their names to POOL. Return the new file
2498 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2499
2500 off_t
finalize(off_t off,off_t dynoff,size_t dyn_global_index,size_t dyncount,Stringpool * pool,unsigned int * plocal_symcount)2501 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2502 size_t dyncount, Stringpool* pool,
2503 unsigned int* plocal_symcount)
2504 {
2505 off_t ret;
2506
2507 gold_assert(*plocal_symcount != 0);
2508 this->first_global_index_ = *plocal_symcount;
2509
2510 this->dynamic_offset_ = dynoff;
2511 this->first_dynamic_global_index_ = dyn_global_index;
2512 this->dynamic_count_ = dyncount;
2513
2514 if (parameters->target().get_size() == 32)
2515 {
2516 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2517 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2518 #else
2519 gold_unreachable();
2520 #endif
2521 }
2522 else if (parameters->target().get_size() == 64)
2523 {
2524 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2525 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2526 #else
2527 gold_unreachable();
2528 #endif
2529 }
2530 else
2531 gold_unreachable();
2532
2533 // Now that we have the final symbol table, we can reliably note
2534 // which symbols should get warnings.
2535 this->warnings_.note_warnings(this);
2536
2537 return ret;
2538 }
2539
2540 // SYM is going into the symbol table at *PINDEX. Add the name to
2541 // POOL, update *PINDEX and *POFF.
2542
2543 template<int size>
2544 void
add_to_final_symtab(Symbol * sym,Stringpool * pool,unsigned int * pindex,off_t * poff)2545 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2546 unsigned int* pindex, off_t* poff)
2547 {
2548 sym->set_symtab_index(*pindex);
2549 if (sym->version() == NULL || !parameters->options().relocatable())
2550 pool->add(sym->name(), false, NULL);
2551 else
2552 pool->add(sym->versioned_name(), true, NULL);
2553 ++*pindex;
2554 *poff += elfcpp::Elf_sizes<size>::sym_size;
2555 }
2556
2557 // Set the final value for all the symbols. This is called after
2558 // Layout::finalize, so all the output sections have their final
2559 // address.
2560
2561 template<int size>
2562 off_t
sized_finalize(off_t off,Stringpool * pool,unsigned int * plocal_symcount)2563 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2564 unsigned int* plocal_symcount)
2565 {
2566 off = align_address(off, size >> 3);
2567 this->offset_ = off;
2568
2569 unsigned int index = *plocal_symcount;
2570 const unsigned int orig_index = index;
2571
2572 // First do all the symbols which have been forced to be local, as
2573 // they must appear before all global symbols.
2574 for (Forced_locals::iterator p = this->forced_locals_.begin();
2575 p != this->forced_locals_.end();
2576 ++p)
2577 {
2578 Symbol* sym = *p;
2579 gold_assert(sym->is_forced_local());
2580 if (this->sized_finalize_symbol<size>(sym))
2581 {
2582 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2583 ++*plocal_symcount;
2584 }
2585 }
2586
2587 // Now do all the remaining symbols.
2588 for (Symbol_table_type::iterator p = this->table_.begin();
2589 p != this->table_.end();
2590 ++p)
2591 {
2592 Symbol* sym = p->second;
2593 if (this->sized_finalize_symbol<size>(sym))
2594 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2595 }
2596
2597 this->output_count_ = index - orig_index;
2598
2599 return off;
2600 }
2601
2602 // Compute the final value of SYM and store status in location PSTATUS.
2603 // During relaxation, this may be called multiple times for a symbol to
2604 // compute its would-be final value in each relaxation pass.
2605
2606 template<int size>
2607 typename Sized_symbol<size>::Value_type
compute_final_value(const Sized_symbol<size> * sym,Compute_final_value_status * pstatus) const2608 Symbol_table::compute_final_value(
2609 const Sized_symbol<size>* sym,
2610 Compute_final_value_status* pstatus) const
2611 {
2612 typedef typename Sized_symbol<size>::Value_type Value_type;
2613 Value_type value;
2614
2615 switch (sym->source())
2616 {
2617 case Symbol::FROM_OBJECT:
2618 {
2619 bool is_ordinary;
2620 unsigned int shndx = sym->shndx(&is_ordinary);
2621
2622 if (!is_ordinary
2623 && shndx != elfcpp::SHN_ABS
2624 && !Symbol::is_common_shndx(shndx))
2625 {
2626 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2627 return 0;
2628 }
2629
2630 Object* symobj = sym->object();
2631 if (symobj->is_dynamic())
2632 {
2633 value = 0;
2634 shndx = elfcpp::SHN_UNDEF;
2635 }
2636 else if (symobj->pluginobj() != NULL)
2637 {
2638 value = 0;
2639 shndx = elfcpp::SHN_UNDEF;
2640 }
2641 else if (shndx == elfcpp::SHN_UNDEF)
2642 value = 0;
2643 else if (!is_ordinary
2644 && (shndx == elfcpp::SHN_ABS
2645 || Symbol::is_common_shndx(shndx)))
2646 value = sym->value();
2647 else
2648 {
2649 Relobj* relobj = static_cast<Relobj*>(symobj);
2650 Output_section* os = relobj->output_section(shndx);
2651
2652 if (this->is_section_folded(relobj, shndx))
2653 {
2654 gold_assert(os == NULL);
2655 // Get the os of the section it is folded onto.
2656 Section_id folded = this->icf_->get_folded_section(relobj,
2657 shndx);
2658 gold_assert(folded.first != NULL);
2659 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2660 unsigned folded_shndx = folded.second;
2661
2662 os = folded_obj->output_section(folded_shndx);
2663 gold_assert(os != NULL);
2664
2665 // Replace (relobj, shndx) with canonical ICF input section.
2666 shndx = folded_shndx;
2667 relobj = folded_obj;
2668 }
2669
2670 uint64_t secoff64 = relobj->output_section_offset(shndx);
2671 if (os == NULL)
2672 {
2673 bool static_or_reloc = (parameters->doing_static_link() ||
2674 parameters->options().relocatable());
2675 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2676
2677 *pstatus = CFVS_NO_OUTPUT_SECTION;
2678 return 0;
2679 }
2680
2681 if (secoff64 == -1ULL)
2682 {
2683 // The section needs special handling (e.g., a merge section).
2684
2685 value = os->output_address(relobj, shndx, sym->value());
2686 }
2687 else
2688 {
2689 Value_type secoff =
2690 convert_types<Value_type, uint64_t>(secoff64);
2691 if (sym->type() == elfcpp::STT_TLS)
2692 value = sym->value() + os->tls_offset() + secoff;
2693 else
2694 value = sym->value() + os->address() + secoff;
2695 }
2696 }
2697 }
2698 break;
2699
2700 case Symbol::IN_OUTPUT_DATA:
2701 {
2702 Output_data* od = sym->output_data();
2703 value = sym->value();
2704 if (sym->type() != elfcpp::STT_TLS)
2705 value += od->address();
2706 else
2707 {
2708 Output_section* os = od->output_section();
2709 gold_assert(os != NULL);
2710 value += os->tls_offset() + (od->address() - os->address());
2711 }
2712 if (sym->offset_is_from_end())
2713 value += od->data_size();
2714 }
2715 break;
2716
2717 case Symbol::IN_OUTPUT_SEGMENT:
2718 {
2719 Output_segment* os = sym->output_segment();
2720 value = sym->value();
2721 if (sym->type() != elfcpp::STT_TLS)
2722 value += os->vaddr();
2723 switch (sym->offset_base())
2724 {
2725 case Symbol::SEGMENT_START:
2726 break;
2727 case Symbol::SEGMENT_END:
2728 value += os->memsz();
2729 break;
2730 case Symbol::SEGMENT_BSS:
2731 value += os->filesz();
2732 break;
2733 default:
2734 gold_unreachable();
2735 }
2736 }
2737 break;
2738
2739 case Symbol::IS_CONSTANT:
2740 value = sym->value();
2741 break;
2742
2743 case Symbol::IS_UNDEFINED:
2744 value = 0;
2745 break;
2746
2747 default:
2748 gold_unreachable();
2749 }
2750
2751 *pstatus = CFVS_OK;
2752 return value;
2753 }
2754
2755 // Finalize the symbol SYM. This returns true if the symbol should be
2756 // added to the symbol table, false otherwise.
2757
2758 template<int size>
2759 bool
sized_finalize_symbol(Symbol * unsized_sym)2760 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2761 {
2762 typedef typename Sized_symbol<size>::Value_type Value_type;
2763
2764 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2765
2766 // The default version of a symbol may appear twice in the symbol
2767 // table. We only need to finalize it once.
2768 if (sym->has_symtab_index())
2769 return false;
2770
2771 if (!sym->in_reg())
2772 {
2773 gold_assert(!sym->has_symtab_index());
2774 sym->set_symtab_index(-1U);
2775 gold_assert(sym->dynsym_index() == -1U);
2776 return false;
2777 }
2778
2779 // If the symbol is only present on plugin files, the plugin decided we
2780 // don't need it.
2781 if (!sym->in_real_elf())
2782 {
2783 gold_assert(!sym->has_symtab_index());
2784 sym->set_symtab_index(-1U);
2785 return false;
2786 }
2787
2788 // Compute final symbol value.
2789 Compute_final_value_status status;
2790 Value_type value = this->compute_final_value(sym, &status);
2791
2792 switch (status)
2793 {
2794 case CFVS_OK:
2795 break;
2796 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2797 {
2798 bool is_ordinary;
2799 unsigned int shndx = sym->shndx(&is_ordinary);
2800 gold_error(_("%s: unsupported symbol section 0x%x"),
2801 sym->demangled_name().c_str(), shndx);
2802 }
2803 break;
2804 case CFVS_NO_OUTPUT_SECTION:
2805 sym->set_symtab_index(-1U);
2806 return false;
2807 default:
2808 gold_unreachable();
2809 }
2810
2811 sym->set_value(value);
2812
2813 if (parameters->options().strip_all()
2814 || !parameters->options().should_retain_symbol(sym->name()))
2815 {
2816 sym->set_symtab_index(-1U);
2817 return false;
2818 }
2819
2820 return true;
2821 }
2822
2823 // Write out the global symbols.
2824
2825 void
write_globals(const Stringpool * sympool,const Stringpool * dynpool,Output_symtab_xindex * symtab_xindex,Output_symtab_xindex * dynsym_xindex,Output_file * of) const2826 Symbol_table::write_globals(const Stringpool* sympool,
2827 const Stringpool* dynpool,
2828 Output_symtab_xindex* symtab_xindex,
2829 Output_symtab_xindex* dynsym_xindex,
2830 Output_file* of) const
2831 {
2832 switch (parameters->size_and_endianness())
2833 {
2834 #ifdef HAVE_TARGET_32_LITTLE
2835 case Parameters::TARGET_32_LITTLE:
2836 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2837 dynsym_xindex, of);
2838 break;
2839 #endif
2840 #ifdef HAVE_TARGET_32_BIG
2841 case Parameters::TARGET_32_BIG:
2842 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2843 dynsym_xindex, of);
2844 break;
2845 #endif
2846 #ifdef HAVE_TARGET_64_LITTLE
2847 case Parameters::TARGET_64_LITTLE:
2848 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2849 dynsym_xindex, of);
2850 break;
2851 #endif
2852 #ifdef HAVE_TARGET_64_BIG
2853 case Parameters::TARGET_64_BIG:
2854 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2855 dynsym_xindex, of);
2856 break;
2857 #endif
2858 default:
2859 gold_unreachable();
2860 }
2861 }
2862
2863 // Write out the global symbols.
2864
2865 template<int size, bool big_endian>
2866 void
sized_write_globals(const Stringpool * sympool,const Stringpool * dynpool,Output_symtab_xindex * symtab_xindex,Output_symtab_xindex * dynsym_xindex,Output_file * of) const2867 Symbol_table::sized_write_globals(const Stringpool* sympool,
2868 const Stringpool* dynpool,
2869 Output_symtab_xindex* symtab_xindex,
2870 Output_symtab_xindex* dynsym_xindex,
2871 Output_file* of) const
2872 {
2873 const Target& target = parameters->target();
2874
2875 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2876
2877 const unsigned int output_count = this->output_count_;
2878 const section_size_type oview_size = output_count * sym_size;
2879 const unsigned int first_global_index = this->first_global_index_;
2880 unsigned char* psyms;
2881 if (this->offset_ == 0 || output_count == 0)
2882 psyms = NULL;
2883 else
2884 psyms = of->get_output_view(this->offset_, oview_size);
2885
2886 const unsigned int dynamic_count = this->dynamic_count_;
2887 const section_size_type dynamic_size = dynamic_count * sym_size;
2888 const unsigned int first_dynamic_global_index =
2889 this->first_dynamic_global_index_;
2890 unsigned char* dynamic_view;
2891 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2892 dynamic_view = NULL;
2893 else
2894 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2895
2896 for (Symbol_table_type::const_iterator p = this->table_.begin();
2897 p != this->table_.end();
2898 ++p)
2899 {
2900 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2901
2902 // Possibly warn about unresolved symbols in shared libraries.
2903 this->warn_about_undefined_dynobj_symbol(sym);
2904
2905 unsigned int sym_index = sym->symtab_index();
2906 unsigned int dynsym_index;
2907 if (dynamic_view == NULL)
2908 dynsym_index = -1U;
2909 else
2910 dynsym_index = sym->dynsym_index();
2911
2912 if (sym_index == -1U && dynsym_index == -1U)
2913 {
2914 // This symbol is not included in the output file.
2915 continue;
2916 }
2917
2918 unsigned int shndx;
2919 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2920 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2921 elfcpp::STB binding = sym->binding();
2922
2923 // If --weak-unresolved-symbols is set, change binding of unresolved
2924 // global symbols to STB_WEAK.
2925 if (parameters->options().weak_unresolved_symbols()
2926 && binding == elfcpp::STB_GLOBAL
2927 && sym->is_undefined())
2928 binding = elfcpp::STB_WEAK;
2929
2930 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2931 if (binding == elfcpp::STB_GNU_UNIQUE
2932 && !parameters->options().gnu_unique())
2933 binding = elfcpp::STB_GLOBAL;
2934
2935 switch (sym->source())
2936 {
2937 case Symbol::FROM_OBJECT:
2938 {
2939 bool is_ordinary;
2940 unsigned int in_shndx = sym->shndx(&is_ordinary);
2941
2942 if (!is_ordinary
2943 && in_shndx != elfcpp::SHN_ABS
2944 && !Symbol::is_common_shndx(in_shndx))
2945 {
2946 gold_error(_("%s: unsupported symbol section 0x%x"),
2947 sym->demangled_name().c_str(), in_shndx);
2948 shndx = in_shndx;
2949 }
2950 else
2951 {
2952 Object* symobj = sym->object();
2953 if (symobj->is_dynamic())
2954 {
2955 if (sym->needs_dynsym_value())
2956 dynsym_value = target.dynsym_value(sym);
2957 shndx = elfcpp::SHN_UNDEF;
2958 if (sym->is_undef_binding_weak())
2959 binding = elfcpp::STB_WEAK;
2960 else
2961 binding = elfcpp::STB_GLOBAL;
2962 }
2963 else if (symobj->pluginobj() != NULL)
2964 shndx = elfcpp::SHN_UNDEF;
2965 else if (in_shndx == elfcpp::SHN_UNDEF
2966 || (!is_ordinary
2967 && (in_shndx == elfcpp::SHN_ABS
2968 || Symbol::is_common_shndx(in_shndx))))
2969 shndx = in_shndx;
2970 else
2971 {
2972 Relobj* relobj = static_cast<Relobj*>(symobj);
2973 Output_section* os = relobj->output_section(in_shndx);
2974 if (this->is_section_folded(relobj, in_shndx))
2975 {
2976 // This global symbol must be written out even though
2977 // it is folded.
2978 // Get the os of the section it is folded onto.
2979 Section_id folded =
2980 this->icf_->get_folded_section(relobj, in_shndx);
2981 gold_assert(folded.first !=NULL);
2982 Relobj* folded_obj =
2983 reinterpret_cast<Relobj*>(folded.first);
2984 os = folded_obj->output_section(folded.second);
2985 gold_assert(os != NULL);
2986 }
2987 gold_assert(os != NULL);
2988 shndx = os->out_shndx();
2989
2990 if (shndx >= elfcpp::SHN_LORESERVE)
2991 {
2992 if (sym_index != -1U)
2993 symtab_xindex->add(sym_index, shndx);
2994 if (dynsym_index != -1U)
2995 dynsym_xindex->add(dynsym_index, shndx);
2996 shndx = elfcpp::SHN_XINDEX;
2997 }
2998
2999 // In object files symbol values are section
3000 // relative.
3001 if (parameters->options().relocatable())
3002 sym_value -= os->address();
3003 }
3004 }
3005 }
3006 break;
3007
3008 case Symbol::IN_OUTPUT_DATA:
3009 {
3010 Output_data* od = sym->output_data();
3011
3012 shndx = od->out_shndx();
3013 if (shndx >= elfcpp::SHN_LORESERVE)
3014 {
3015 if (sym_index != -1U)
3016 symtab_xindex->add(sym_index, shndx);
3017 if (dynsym_index != -1U)
3018 dynsym_xindex->add(dynsym_index, shndx);
3019 shndx = elfcpp::SHN_XINDEX;
3020 }
3021
3022 // In object files symbol values are section
3023 // relative.
3024 if (parameters->options().relocatable())
3025 sym_value -= od->address();
3026 }
3027 break;
3028
3029 case Symbol::IN_OUTPUT_SEGMENT:
3030 shndx = elfcpp::SHN_ABS;
3031 break;
3032
3033 case Symbol::IS_CONSTANT:
3034 shndx = elfcpp::SHN_ABS;
3035 break;
3036
3037 case Symbol::IS_UNDEFINED:
3038 shndx = elfcpp::SHN_UNDEF;
3039 break;
3040
3041 default:
3042 gold_unreachable();
3043 }
3044
3045 if (sym_index != -1U)
3046 {
3047 sym_index -= first_global_index;
3048 gold_assert(sym_index < output_count);
3049 unsigned char* ps = psyms + (sym_index * sym_size);
3050 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3051 binding, sympool, ps);
3052 }
3053
3054 if (dynsym_index != -1U)
3055 {
3056 dynsym_index -= first_dynamic_global_index;
3057 gold_assert(dynsym_index < dynamic_count);
3058 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3059 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3060 binding, dynpool, pd);
3061 // Allow a target to adjust dynamic symbol value.
3062 parameters->target().adjust_dyn_symbol(sym, pd);
3063 }
3064 }
3065
3066 of->write_output_view(this->offset_, oview_size, psyms);
3067 if (dynamic_view != NULL)
3068 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3069 }
3070
3071 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3072 // strtab holding the name.
3073
3074 template<int size, bool big_endian>
3075 void
sized_write_symbol(Sized_symbol<size> * sym,typename elfcpp::Elf_types<size>::Elf_Addr value,unsigned int shndx,elfcpp::STB binding,const Stringpool * pool,unsigned char * p) const3076 Symbol_table::sized_write_symbol(
3077 Sized_symbol<size>* sym,
3078 typename elfcpp::Elf_types<size>::Elf_Addr value,
3079 unsigned int shndx,
3080 elfcpp::STB binding,
3081 const Stringpool* pool,
3082 unsigned char* p) const
3083 {
3084 elfcpp::Sym_write<size, big_endian> osym(p);
3085 if (sym->version() == NULL || !parameters->options().relocatable())
3086 osym.put_st_name(pool->get_offset(sym->name()));
3087 else
3088 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3089 osym.put_st_value(value);
3090 // Use a symbol size of zero for undefined symbols from shared libraries.
3091 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3092 osym.put_st_size(0);
3093 else
3094 osym.put_st_size(sym->symsize());
3095 elfcpp::STT type = sym->type();
3096 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3097 if (type == elfcpp::STT_GNU_IFUNC
3098 && sym->is_from_dynobj())
3099 type = elfcpp::STT_FUNC;
3100 // A version script may have overridden the default binding.
3101 if (sym->is_forced_local())
3102 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3103 else
3104 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3105 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3106 osym.put_st_shndx(shndx);
3107 }
3108
3109 // Check for unresolved symbols in shared libraries. This is
3110 // controlled by the --allow-shlib-undefined option.
3111
3112 // We only warn about libraries for which we have seen all the
3113 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3114 // which were not seen in this link. If we didn't see a DT_NEEDED
3115 // entry, we aren't going to be able to reliably report whether the
3116 // symbol is undefined.
3117
3118 // We also don't warn about libraries found in a system library
3119 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3120 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3121 // can have undefined references satisfied by ld-linux.so.
3122
3123 inline void
warn_about_undefined_dynobj_symbol(Symbol * sym) const3124 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3125 {
3126 bool dummy;
3127 if (sym->source() == Symbol::FROM_OBJECT
3128 && sym->object()->is_dynamic()
3129 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3130 && sym->binding() != elfcpp::STB_WEAK
3131 && !parameters->options().allow_shlib_undefined()
3132 && !parameters->target().is_defined_by_abi(sym)
3133 && !sym->object()->is_in_system_directory())
3134 {
3135 // A very ugly cast.
3136 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3137 if (!dynobj->has_unknown_needed_entries())
3138 gold_undefined_symbol(sym);
3139 }
3140 }
3141
3142 // Write out a section symbol. Return the update offset.
3143
3144 void
write_section_symbol(const Output_section * os,Output_symtab_xindex * symtab_xindex,Output_file * of,off_t offset) const3145 Symbol_table::write_section_symbol(const Output_section* os,
3146 Output_symtab_xindex* symtab_xindex,
3147 Output_file* of,
3148 off_t offset) const
3149 {
3150 switch (parameters->size_and_endianness())
3151 {
3152 #ifdef HAVE_TARGET_32_LITTLE
3153 case Parameters::TARGET_32_LITTLE:
3154 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3155 offset);
3156 break;
3157 #endif
3158 #ifdef HAVE_TARGET_32_BIG
3159 case Parameters::TARGET_32_BIG:
3160 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3161 offset);
3162 break;
3163 #endif
3164 #ifdef HAVE_TARGET_64_LITTLE
3165 case Parameters::TARGET_64_LITTLE:
3166 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3167 offset);
3168 break;
3169 #endif
3170 #ifdef HAVE_TARGET_64_BIG
3171 case Parameters::TARGET_64_BIG:
3172 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3173 offset);
3174 break;
3175 #endif
3176 default:
3177 gold_unreachable();
3178 }
3179 }
3180
3181 // Write out a section symbol, specialized for size and endianness.
3182
3183 template<int size, bool big_endian>
3184 void
sized_write_section_symbol(const Output_section * os,Output_symtab_xindex * symtab_xindex,Output_file * of,off_t offset) const3185 Symbol_table::sized_write_section_symbol(const Output_section* os,
3186 Output_symtab_xindex* symtab_xindex,
3187 Output_file* of,
3188 off_t offset) const
3189 {
3190 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3191
3192 unsigned char* pov = of->get_output_view(offset, sym_size);
3193
3194 elfcpp::Sym_write<size, big_endian> osym(pov);
3195 osym.put_st_name(0);
3196 if (parameters->options().relocatable())
3197 osym.put_st_value(0);
3198 else
3199 osym.put_st_value(os->address());
3200 osym.put_st_size(0);
3201 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3202 elfcpp::STT_SECTION));
3203 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3204
3205 unsigned int shndx = os->out_shndx();
3206 if (shndx >= elfcpp::SHN_LORESERVE)
3207 {
3208 symtab_xindex->add(os->symtab_index(), shndx);
3209 shndx = elfcpp::SHN_XINDEX;
3210 }
3211 osym.put_st_shndx(shndx);
3212
3213 of->write_output_view(offset, sym_size, pov);
3214 }
3215
3216 // Print statistical information to stderr. This is used for --stats.
3217
3218 void
print_stats() const3219 Symbol_table::print_stats() const
3220 {
3221 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3222 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3223 program_name, this->table_.size(), this->table_.bucket_count());
3224 #else
3225 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3226 program_name, this->table_.size());
3227 #endif
3228 this->namepool_.print_stats("symbol table stringpool");
3229 }
3230
3231 // We check for ODR violations by looking for symbols with the same
3232 // name for which the debugging information reports that they were
3233 // defined in disjoint source locations. When comparing the source
3234 // location, we consider instances with the same base filename to be
3235 // the same. This is because different object files/shared libraries
3236 // can include the same header file using different paths, and
3237 // different optimization settings can make the line number appear to
3238 // be a couple lines off, and we don't want to report an ODR violation
3239 // in those cases.
3240
3241 // This struct is used to compare line information, as returned by
3242 // Dwarf_line_info::one_addr2line. It implements a < comparison
3243 // operator used with std::sort.
3244
3245 struct Odr_violation_compare
3246 {
3247 bool
operator ()gold::Odr_violation_compare3248 operator()(const std::string& s1, const std::string& s2) const
3249 {
3250 // Inputs should be of the form "dirname/filename:linenum" where
3251 // "dirname/" is optional. We want to compare just the filename:linenum.
3252
3253 // Find the last '/' in each string.
3254 std::string::size_type s1begin = s1.rfind('/');
3255 std::string::size_type s2begin = s2.rfind('/');
3256 // If there was no '/' in a string, start at the beginning.
3257 if (s1begin == std::string::npos)
3258 s1begin = 0;
3259 if (s2begin == std::string::npos)
3260 s2begin = 0;
3261 return s1.compare(s1begin, std::string::npos,
3262 s2, s2begin, std::string::npos) < 0;
3263 }
3264 };
3265
3266 // Returns all of the lines attached to LOC, not just the one the
3267 // instruction actually came from.
3268 std::vector<std::string>
linenos_from_loc(const Task * task,const Symbol_location & loc)3269 Symbol_table::linenos_from_loc(const Task* task,
3270 const Symbol_location& loc)
3271 {
3272 // We need to lock the object in order to read it. This
3273 // means that we have to run in a singleton Task. If we
3274 // want to run this in a general Task for better
3275 // performance, we will need one Task for object, plus
3276 // appropriate locking to ensure that we don't conflict with
3277 // other uses of the object. Also note, one_addr2line is not
3278 // currently thread-safe.
3279 Task_lock_obj<Object> tl(task, loc.object);
3280
3281 std::vector<std::string> result;
3282 Symbol_location code_loc = loc;
3283 parameters->target().function_location(&code_loc);
3284 // 16 is the size of the object-cache that one_addr2line should use.
3285 std::string canonical_result = Dwarf_line_info::one_addr2line(
3286 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3287 if (!canonical_result.empty())
3288 result.push_back(canonical_result);
3289 return result;
3290 }
3291
3292 // OutputIterator that records if it was ever assigned to. This
3293 // allows it to be used with std::set_intersection() to check for
3294 // intersection rather than computing the intersection.
3295 struct Check_intersection
3296 {
Check_intersectiongold::Check_intersection3297 Check_intersection()
3298 : value_(false)
3299 {}
3300
had_intersectiongold::Check_intersection3301 bool had_intersection() const
3302 { return this->value_; }
3303
operator ++gold::Check_intersection3304 Check_intersection& operator++()
3305 { return *this; }
3306
operator *gold::Check_intersection3307 Check_intersection& operator*()
3308 { return *this; }
3309
3310 template<typename T>
operator =gold::Check_intersection3311 Check_intersection& operator=(const T&)
3312 {
3313 this->value_ = true;
3314 return *this;
3315 }
3316
3317 private:
3318 bool value_;
3319 };
3320
3321 // Check candidate_odr_violations_ to find symbols with the same name
3322 // but apparently different definitions (different source-file/line-no
3323 // for each line assigned to the first instruction).
3324
3325 void
detect_odr_violations(const Task * task,const char * output_file_name) const3326 Symbol_table::detect_odr_violations(const Task* task,
3327 const char* output_file_name) const
3328 {
3329 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3330 it != candidate_odr_violations_.end();
3331 ++it)
3332 {
3333 const char* const symbol_name = it->first;
3334
3335 std::string first_object_name;
3336 std::vector<std::string> first_object_linenos;
3337
3338 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3339 locs = it->second.begin();
3340 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3341 locs_end = it->second.end();
3342 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3343 {
3344 // Save the line numbers from the first definition to
3345 // compare to the other definitions. Ideally, we'd compare
3346 // every definition to every other, but we don't want to
3347 // take O(N^2) time to do this. This shortcut may cause
3348 // false negatives that appear or disappear depending on the
3349 // link order, but it won't cause false positives.
3350 first_object_name = locs->object->name();
3351 first_object_linenos = this->linenos_from_loc(task, *locs);
3352 }
3353 if (first_object_linenos.empty())
3354 continue;
3355
3356 // Sort by Odr_violation_compare to make std::set_intersection work.
3357 std::string first_object_canonical_result = first_object_linenos.back();
3358 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3359 Odr_violation_compare());
3360
3361 for (; locs != locs_end; ++locs)
3362 {
3363 std::vector<std::string> linenos =
3364 this->linenos_from_loc(task, *locs);
3365 // linenos will be empty if we couldn't parse the debug info.
3366 if (linenos.empty())
3367 continue;
3368 // Sort by Odr_violation_compare to make std::set_intersection work.
3369 gold_assert(!linenos.empty());
3370 std::string second_object_canonical_result = linenos.back();
3371 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3372
3373 Check_intersection intersection_result =
3374 std::set_intersection(first_object_linenos.begin(),
3375 first_object_linenos.end(),
3376 linenos.begin(),
3377 linenos.end(),
3378 Check_intersection(),
3379 Odr_violation_compare());
3380 if (!intersection_result.had_intersection())
3381 {
3382 gold_warning(_("while linking %s: symbol '%s' defined in "
3383 "multiple places (possible ODR violation):"),
3384 output_file_name, demangle(symbol_name).c_str());
3385 // This only prints one location from each definition,
3386 // which may not be the location we expect to intersect
3387 // with another definition. We could print the whole
3388 // set of locations, but that seems too verbose.
3389 fprintf(stderr, _(" %s from %s\n"),
3390 first_object_canonical_result.c_str(),
3391 first_object_name.c_str());
3392 fprintf(stderr, _(" %s from %s\n"),
3393 second_object_canonical_result.c_str(),
3394 locs->object->name().c_str());
3395 // Only print one broken pair, to avoid needing to
3396 // compare against a list of the disjoint definition
3397 // locations we've found so far. (If we kept comparing
3398 // against just the first one, we'd get a lot of
3399 // redundant complaints about the second definition
3400 // location.)
3401 break;
3402 }
3403 }
3404 }
3405 // We only call one_addr2line() in this function, so we can clear its cache.
3406 Dwarf_line_info::clear_addr2line_cache();
3407 }
3408
3409 // Warnings functions.
3410
3411 // Add a new warning.
3412
3413 void
add_warning(Symbol_table * symtab,const char * name,Object * obj,const std::string & warning)3414 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3415 const std::string& warning)
3416 {
3417 name = symtab->canonicalize_name(name);
3418 this->warnings_[name].set(obj, warning);
3419 }
3420
3421 // Look through the warnings and mark the symbols for which we should
3422 // warn. This is called during Layout::finalize when we know the
3423 // sources for all the symbols.
3424
3425 void
note_warnings(Symbol_table * symtab)3426 Warnings::note_warnings(Symbol_table* symtab)
3427 {
3428 for (Warning_table::iterator p = this->warnings_.begin();
3429 p != this->warnings_.end();
3430 ++p)
3431 {
3432 Symbol* sym = symtab->lookup(p->first, NULL);
3433 if (sym != NULL
3434 && sym->source() == Symbol::FROM_OBJECT
3435 && sym->object() == p->second.object)
3436 sym->set_has_warning();
3437 }
3438 }
3439
3440 // Issue a warning. This is called when we see a relocation against a
3441 // symbol for which has a warning.
3442
3443 template<int size, bool big_endian>
3444 void
issue_warning(const Symbol * sym,const Relocate_info<size,big_endian> * relinfo,size_t relnum,off_t reloffset) const3445 Warnings::issue_warning(const Symbol* sym,
3446 const Relocate_info<size, big_endian>* relinfo,
3447 size_t relnum, off_t reloffset) const
3448 {
3449 gold_assert(sym->has_warning());
3450
3451 // We don't want to issue a warning for a relocation against the
3452 // symbol in the same object file in which the symbol is defined.
3453 if (sym->object() == relinfo->object)
3454 return;
3455
3456 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3457 gold_assert(p != this->warnings_.end());
3458 gold_warning_at_location(relinfo, relnum, reloffset,
3459 "%s", p->second.text.c_str());
3460 }
3461
3462 // Instantiate the templates we need. We could use the configure
3463 // script to restrict this to only the ones needed for implemented
3464 // targets.
3465
3466 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3467 template
3468 void
3469 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3470 #endif
3471
3472 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3473 template
3474 void
3475 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3476 #endif
3477
3478 #ifdef HAVE_TARGET_32_LITTLE
3479 template
3480 void
3481 Symbol_table::add_from_relobj<32, false>(
3482 Sized_relobj_file<32, false>* relobj,
3483 const unsigned char* syms,
3484 size_t count,
3485 size_t symndx_offset,
3486 const char* sym_names,
3487 size_t sym_name_size,
3488 Sized_relobj_file<32, false>::Symbols* sympointers,
3489 size_t* defined);
3490 #endif
3491
3492 #ifdef HAVE_TARGET_32_BIG
3493 template
3494 void
3495 Symbol_table::add_from_relobj<32, true>(
3496 Sized_relobj_file<32, true>* relobj,
3497 const unsigned char* syms,
3498 size_t count,
3499 size_t symndx_offset,
3500 const char* sym_names,
3501 size_t sym_name_size,
3502 Sized_relobj_file<32, true>::Symbols* sympointers,
3503 size_t* defined);
3504 #endif
3505
3506 #ifdef HAVE_TARGET_64_LITTLE
3507 template
3508 void
3509 Symbol_table::add_from_relobj<64, false>(
3510 Sized_relobj_file<64, false>* relobj,
3511 const unsigned char* syms,
3512 size_t count,
3513 size_t symndx_offset,
3514 const char* sym_names,
3515 size_t sym_name_size,
3516 Sized_relobj_file<64, false>::Symbols* sympointers,
3517 size_t* defined);
3518 #endif
3519
3520 #ifdef HAVE_TARGET_64_BIG
3521 template
3522 void
3523 Symbol_table::add_from_relobj<64, true>(
3524 Sized_relobj_file<64, true>* relobj,
3525 const unsigned char* syms,
3526 size_t count,
3527 size_t symndx_offset,
3528 const char* sym_names,
3529 size_t sym_name_size,
3530 Sized_relobj_file<64, true>::Symbols* sympointers,
3531 size_t* defined);
3532 #endif
3533
3534 #ifdef HAVE_TARGET_32_LITTLE
3535 template
3536 Symbol*
3537 Symbol_table::add_from_pluginobj<32, false>(
3538 Sized_pluginobj<32, false>* obj,
3539 const char* name,
3540 const char* ver,
3541 elfcpp::Sym<32, false>* sym);
3542 #endif
3543
3544 #ifdef HAVE_TARGET_32_BIG
3545 template
3546 Symbol*
3547 Symbol_table::add_from_pluginobj<32, true>(
3548 Sized_pluginobj<32, true>* obj,
3549 const char* name,
3550 const char* ver,
3551 elfcpp::Sym<32, true>* sym);
3552 #endif
3553
3554 #ifdef HAVE_TARGET_64_LITTLE
3555 template
3556 Symbol*
3557 Symbol_table::add_from_pluginobj<64, false>(
3558 Sized_pluginobj<64, false>* obj,
3559 const char* name,
3560 const char* ver,
3561 elfcpp::Sym<64, false>* sym);
3562 #endif
3563
3564 #ifdef HAVE_TARGET_64_BIG
3565 template
3566 Symbol*
3567 Symbol_table::add_from_pluginobj<64, true>(
3568 Sized_pluginobj<64, true>* obj,
3569 const char* name,
3570 const char* ver,
3571 elfcpp::Sym<64, true>* sym);
3572 #endif
3573
3574 #ifdef HAVE_TARGET_32_LITTLE
3575 template
3576 void
3577 Symbol_table::add_from_dynobj<32, false>(
3578 Sized_dynobj<32, false>* dynobj,
3579 const unsigned char* syms,
3580 size_t count,
3581 const char* sym_names,
3582 size_t sym_name_size,
3583 const unsigned char* versym,
3584 size_t versym_size,
3585 const std::vector<const char*>* version_map,
3586 Sized_relobj_file<32, false>::Symbols* sympointers,
3587 size_t* defined);
3588 #endif
3589
3590 #ifdef HAVE_TARGET_32_BIG
3591 template
3592 void
3593 Symbol_table::add_from_dynobj<32, true>(
3594 Sized_dynobj<32, true>* dynobj,
3595 const unsigned char* syms,
3596 size_t count,
3597 const char* sym_names,
3598 size_t sym_name_size,
3599 const unsigned char* versym,
3600 size_t versym_size,
3601 const std::vector<const char*>* version_map,
3602 Sized_relobj_file<32, true>::Symbols* sympointers,
3603 size_t* defined);
3604 #endif
3605
3606 #ifdef HAVE_TARGET_64_LITTLE
3607 template
3608 void
3609 Symbol_table::add_from_dynobj<64, false>(
3610 Sized_dynobj<64, false>* dynobj,
3611 const unsigned char* syms,
3612 size_t count,
3613 const char* sym_names,
3614 size_t sym_name_size,
3615 const unsigned char* versym,
3616 size_t versym_size,
3617 const std::vector<const char*>* version_map,
3618 Sized_relobj_file<64, false>::Symbols* sympointers,
3619 size_t* defined);
3620 #endif
3621
3622 #ifdef HAVE_TARGET_64_BIG
3623 template
3624 void
3625 Symbol_table::add_from_dynobj<64, true>(
3626 Sized_dynobj<64, true>* dynobj,
3627 const unsigned char* syms,
3628 size_t count,
3629 const char* sym_names,
3630 size_t sym_name_size,
3631 const unsigned char* versym,
3632 size_t versym_size,
3633 const std::vector<const char*>* version_map,
3634 Sized_relobj_file<64, true>::Symbols* sympointers,
3635 size_t* defined);
3636 #endif
3637
3638 #ifdef HAVE_TARGET_32_LITTLE
3639 template
3640 Sized_symbol<32>*
3641 Symbol_table::add_from_incrobj(
3642 Object* obj,
3643 const char* name,
3644 const char* ver,
3645 elfcpp::Sym<32, false>* sym);
3646 #endif
3647
3648 #ifdef HAVE_TARGET_32_BIG
3649 template
3650 Sized_symbol<32>*
3651 Symbol_table::add_from_incrobj(
3652 Object* obj,
3653 const char* name,
3654 const char* ver,
3655 elfcpp::Sym<32, true>* sym);
3656 #endif
3657
3658 #ifdef HAVE_TARGET_64_LITTLE
3659 template
3660 Sized_symbol<64>*
3661 Symbol_table::add_from_incrobj(
3662 Object* obj,
3663 const char* name,
3664 const char* ver,
3665 elfcpp::Sym<64, false>* sym);
3666 #endif
3667
3668 #ifdef HAVE_TARGET_64_BIG
3669 template
3670 Sized_symbol<64>*
3671 Symbol_table::add_from_incrobj(
3672 Object* obj,
3673 const char* name,
3674 const char* ver,
3675 elfcpp::Sym<64, true>* sym);
3676 #endif
3677
3678 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3679 template
3680 void
3681 Symbol_table::define_with_copy_reloc<32>(
3682 Sized_symbol<32>* sym,
3683 Output_data* posd,
3684 elfcpp::Elf_types<32>::Elf_Addr value);
3685 #endif
3686
3687 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3688 template
3689 void
3690 Symbol_table::define_with_copy_reloc<64>(
3691 Sized_symbol<64>* sym,
3692 Output_data* posd,
3693 elfcpp::Elf_types<64>::Elf_Addr value);
3694 #endif
3695
3696 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3697 template
3698 void
3699 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3700 Output_data* od, Value_type value,
3701 Size_type symsize, elfcpp::STT type,
3702 elfcpp::STB binding,
3703 elfcpp::STV visibility,
3704 unsigned char nonvis,
3705 bool offset_is_from_end,
3706 bool is_predefined);
3707 #endif
3708
3709 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3710 template
3711 void
3712 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3713 Output_data* od, Value_type value,
3714 Size_type symsize, elfcpp::STT type,
3715 elfcpp::STB binding,
3716 elfcpp::STV visibility,
3717 unsigned char nonvis,
3718 bool offset_is_from_end,
3719 bool is_predefined);
3720 #endif
3721
3722 #ifdef HAVE_TARGET_32_LITTLE
3723 template
3724 void
3725 Warnings::issue_warning<32, false>(const Symbol* sym,
3726 const Relocate_info<32, false>* relinfo,
3727 size_t relnum, off_t reloffset) const;
3728 #endif
3729
3730 #ifdef HAVE_TARGET_32_BIG
3731 template
3732 void
3733 Warnings::issue_warning<32, true>(const Symbol* sym,
3734 const Relocate_info<32, true>* relinfo,
3735 size_t relnum, off_t reloffset) const;
3736 #endif
3737
3738 #ifdef HAVE_TARGET_64_LITTLE
3739 template
3740 void
3741 Warnings::issue_warning<64, false>(const Symbol* sym,
3742 const Relocate_info<64, false>* relinfo,
3743 size_t relnum, off_t reloffset) const;
3744 #endif
3745
3746 #ifdef HAVE_TARGET_64_BIG
3747 template
3748 void
3749 Warnings::issue_warning<64, true>(const Symbol* sym,
3750 const Relocate_info<64, true>* relinfo,
3751 size_t relnum, off_t reloffset) const;
3752 #endif
3753
3754 } // End namespace gold.
3755