1 /* 2 * Copyright (C) 2015 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 package com.android.calculator2; 18 19 20 import java.math.BigInteger; 21 import com.hp.creals.CR; 22 23 /** 24 * Rational numbers that may turn to null if they get too big. 25 * For many operations, if the length of the nuumerator plus the length of the denominator exceeds 26 * a maximum size, we simply return null, and rely on our caller do something else. 27 * We currently never return null for a pure integer or for a BoundedRational that has just been 28 * constructed. 29 * 30 * We also implement a number of irrational functions. These return a non-null result only when 31 * the result is known to be rational. 32 */ 33 public class BoundedRational { 34 // TODO: Consider returning null for integers. With some care, large factorials might become 35 // much faster. 36 // TODO: Maybe eventually make this extend Number? 37 38 private static final int MAX_SIZE = 800; // total, in bits 39 40 private final BigInteger mNum; 41 private final BigInteger mDen; 42 BoundedRational(BigInteger n, BigInteger d)43 public BoundedRational(BigInteger n, BigInteger d) { 44 mNum = n; 45 mDen = d; 46 } 47 BoundedRational(BigInteger n)48 public BoundedRational(BigInteger n) { 49 mNum = n; 50 mDen = BigInteger.ONE; 51 } 52 BoundedRational(long n, long d)53 public BoundedRational(long n, long d) { 54 mNum = BigInteger.valueOf(n); 55 mDen = BigInteger.valueOf(d); 56 } 57 BoundedRational(long n)58 public BoundedRational(long n) { 59 mNum = BigInteger.valueOf(n); 60 mDen = BigInteger.valueOf(1); 61 } 62 63 /** 64 * Convert to String reflecting raw representation. 65 * Debug or log messages only, not pretty. 66 */ toString()67 public String toString() { 68 return mNum.toString() + "/" + mDen.toString(); 69 } 70 71 /** 72 * Convert to readable String. 73 * Intended for output output to user. More expensive, less useful for debugging than 74 * toString(). Not internationalized. 75 */ toNiceString()76 public String toNiceString() { 77 BoundedRational nicer = reduce().positiveDen(); 78 String result = nicer.mNum.toString(); 79 if (!nicer.mDen.equals(BigInteger.ONE)) { 80 result += "/" + nicer.mDen; 81 } 82 return result; 83 } 84 toString(BoundedRational r)85 public static String toString(BoundedRational r) { 86 if (r == null) { 87 return "not a small rational"; 88 } 89 return r.toString(); 90 } 91 92 /** 93 * Return a double approximation. 94 * Primarily for debugging. 95 */ doubleValue()96 public double doubleValue() { 97 return mNum.doubleValue() / mDen.doubleValue(); 98 } 99 CRValue()100 public CR CRValue() { 101 return CR.valueOf(mNum).divide(CR.valueOf(mDen)); 102 } 103 104 // Approximate number of bits to left of binary point. wholeNumberBits()105 public int wholeNumberBits() { 106 return mNum.bitLength() - mDen.bitLength(); 107 } 108 tooBig()109 private boolean tooBig() { 110 if (mDen.equals(BigInteger.ONE)) { 111 return false; 112 } 113 return (mNum.bitLength() + mDen.bitLength() > MAX_SIZE); 114 } 115 116 /** 117 * Return an equivalent fraction with a positive denominator. 118 */ positiveDen()119 private BoundedRational positiveDen() { 120 if (mDen.signum() > 0) { 121 return this; 122 } 123 return new BoundedRational(mNum.negate(), mDen.negate()); 124 } 125 126 /** 127 * Return an equivalent fraction in lowest terms. 128 * Denominator sign may remain negative. 129 */ reduce()130 private BoundedRational reduce() { 131 if (mDen.equals(BigInteger.ONE)) { 132 return this; // Optimization only 133 } 134 final BigInteger divisor = mNum.gcd(mDen); 135 return new BoundedRational(mNum.divide(divisor), mDen.divide(divisor)); 136 } 137 138 /** 139 * Return a possibly reduced version of this that's not tooBig(). 140 * Return null if none exists. 141 */ maybeReduce()142 private BoundedRational maybeReduce() { 143 if (!tooBig()) { 144 return this; 145 } 146 BoundedRational result = positiveDen(); 147 result = result.reduce(); 148 if (!result.tooBig()) { 149 return this; 150 } 151 return null; 152 } 153 compareTo(BoundedRational r)154 public int compareTo(BoundedRational r) { 155 // Compare by multiplying both sides by denominators, invert result if denominator product 156 // was negative. 157 return mNum.multiply(r.mDen).compareTo(r.mNum.multiply(mDen)) * mDen.signum() 158 * r.mDen.signum(); 159 } 160 signum()161 public int signum() { 162 return mNum.signum() * mDen.signum(); 163 } 164 equals(BoundedRational r)165 public boolean equals(BoundedRational r) { 166 return compareTo(r) == 0; 167 } 168 169 // We use static methods for arithmetic, so that we can easily handle the null case. We try 170 // to catch domain errors whenever possible, sometimes even when one of the arguments is null, 171 // but not relevant. 172 173 /** 174 * Returns equivalent BigInteger result if it exists, null if not. 175 */ asBigInteger(BoundedRational r)176 public static BigInteger asBigInteger(BoundedRational r) { 177 if (r == null) { 178 return null; 179 } 180 final BigInteger[] quotAndRem = r.mNum.divideAndRemainder(r.mDen); 181 if (quotAndRem[1].signum() == 0) { 182 return quotAndRem[0]; 183 } else { 184 return null; 185 } 186 } add(BoundedRational r1, BoundedRational r2)187 public static BoundedRational add(BoundedRational r1, BoundedRational r2) { 188 if (r1 == null || r2 == null) { 189 return null; 190 } 191 final BigInteger den = r1.mDen.multiply(r2.mDen); 192 final BigInteger num = r1.mNum.multiply(r2.mDen).add(r2.mNum.multiply(r1.mDen)); 193 return new BoundedRational(num,den).maybeReduce(); 194 } 195 negate(BoundedRational r)196 public static BoundedRational negate(BoundedRational r) { 197 if (r == null) { 198 return null; 199 } 200 return new BoundedRational(r.mNum.negate(), r.mDen); 201 } 202 subtract(BoundedRational r1, BoundedRational r2)203 static BoundedRational subtract(BoundedRational r1, BoundedRational r2) { 204 return add(r1, negate(r2)); 205 } 206 multiply(BoundedRational r1, BoundedRational r2)207 static BoundedRational multiply(BoundedRational r1, BoundedRational r2) { 208 // It's tempting but marginally unsound to reduce 0 * null to 0. The null could represent 209 // an infinite value, for which we failed to throw an exception because it was too big. 210 if (r1 == null || r2 == null) { 211 return null; 212 } 213 final BigInteger num = r1.mNum.multiply(r2.mNum); 214 final BigInteger den = r1.mDen.multiply(r2.mDen); 215 return new BoundedRational(num,den).maybeReduce(); 216 } 217 218 public static class ZeroDivisionException extends ArithmeticException { ZeroDivisionException()219 public ZeroDivisionException() { 220 super("Division by zero"); 221 } 222 } 223 224 /** 225 * Return the reciprocal of r (or null). 226 */ inverse(BoundedRational r)227 static BoundedRational inverse(BoundedRational r) { 228 if (r == null) { 229 return null; 230 } 231 if (r.mNum.signum() == 0) { 232 throw new ZeroDivisionException(); 233 } 234 return new BoundedRational(r.mDen, r.mNum); 235 } 236 divide(BoundedRational r1, BoundedRational r2)237 static BoundedRational divide(BoundedRational r1, BoundedRational r2) { 238 return multiply(r1, inverse(r2)); 239 } 240 sqrt(BoundedRational r)241 static BoundedRational sqrt(BoundedRational r) { 242 // Return non-null if numerator and denominator are small perfect squares. 243 if (r == null) { 244 return null; 245 } 246 r = r.positiveDen().reduce(); 247 if (r.mNum.signum() < 0) { 248 throw new ArithmeticException("sqrt(negative)"); 249 } 250 final BigInteger num_sqrt = BigInteger.valueOf(Math.round(Math.sqrt(r.mNum.doubleValue()))); 251 if (!num_sqrt.multiply(num_sqrt).equals(r.mNum)) { 252 return null; 253 } 254 final BigInteger den_sqrt = BigInteger.valueOf(Math.round(Math.sqrt(r.mDen.doubleValue()))); 255 if (!den_sqrt.multiply(den_sqrt).equals(r.mDen)) { 256 return null; 257 } 258 return new BoundedRational(num_sqrt, den_sqrt); 259 } 260 261 public final static BoundedRational ZERO = new BoundedRational(0); 262 public final static BoundedRational HALF = new BoundedRational(1,2); 263 public final static BoundedRational MINUS_HALF = new BoundedRational(-1,2); 264 public final static BoundedRational ONE = new BoundedRational(1); 265 public final static BoundedRational MINUS_ONE = new BoundedRational(-1); 266 public final static BoundedRational TWO = new BoundedRational(2); 267 public final static BoundedRational MINUS_TWO = new BoundedRational(-2); 268 public final static BoundedRational THIRTY = new BoundedRational(30); 269 public final static BoundedRational MINUS_THIRTY = new BoundedRational(-30); 270 public final static BoundedRational FORTY_FIVE = new BoundedRational(45); 271 public final static BoundedRational MINUS_FORTY_FIVE = new BoundedRational(-45); 272 public final static BoundedRational NINETY = new BoundedRational(90); 273 public final static BoundedRational MINUS_NINETY = new BoundedRational(-90); 274 map0to0(BoundedRational r)275 private static BoundedRational map0to0(BoundedRational r) { 276 if (r == null) { 277 return null; 278 } 279 if (r.mNum.signum() == 0) { 280 return ZERO; 281 } 282 return null; 283 } 284 map0to1(BoundedRational r)285 private static BoundedRational map0to1(BoundedRational r) { 286 if (r == null) { 287 return null; 288 } 289 if (r.mNum.signum() == 0) { 290 return ONE; 291 } 292 return null; 293 } 294 map1to0(BoundedRational r)295 private static BoundedRational map1to0(BoundedRational r) { 296 if (r == null) { 297 return null; 298 } 299 if (r.mNum.equals(r.mDen)) { 300 return ZERO; 301 } 302 return null; 303 } 304 305 // Throw an exception if the argument is definitely out of bounds for asin or acos. checkAsinDomain(BoundedRational r)306 private static void checkAsinDomain(BoundedRational r) { 307 if (r == null) { 308 return; 309 } 310 if (r.mNum.abs().compareTo(r.mDen.abs()) > 0) { 311 throw new ArithmeticException("inverse trig argument out of range"); 312 } 313 } 314 sin(BoundedRational r)315 public static BoundedRational sin(BoundedRational r) { 316 return map0to0(r); 317 } 318 319 private final static BigInteger BIG360 = BigInteger.valueOf(360); 320 degreeSin(BoundedRational r)321 public static BoundedRational degreeSin(BoundedRational r) { 322 final BigInteger r_BI = asBigInteger(r); 323 if (r_BI == null) { 324 return null; 325 } 326 final int r_int = r_BI.mod(BIG360).intValue(); 327 if (r_int % 30 != 0) { 328 return null; 329 } 330 switch (r_int / 10) { 331 case 0: 332 return ZERO; 333 case 3: // 30 degrees 334 return HALF; 335 case 9: 336 return ONE; 337 case 15: 338 return HALF; 339 case 18: // 180 degrees 340 return ZERO; 341 case 21: 342 return MINUS_HALF; 343 case 27: 344 return MINUS_ONE; 345 case 33: 346 return MINUS_HALF; 347 default: 348 return null; 349 } 350 } 351 asin(BoundedRational r)352 public static BoundedRational asin(BoundedRational r) { 353 checkAsinDomain(r); 354 return map0to0(r); 355 } 356 degreeAsin(BoundedRational r)357 public static BoundedRational degreeAsin(BoundedRational r) { 358 checkAsinDomain(r); 359 final BigInteger r2_BI = asBigInteger(multiply(r, TWO)); 360 if (r2_BI == null) { 361 return null; 362 } 363 final int r2_int = r2_BI.intValue(); 364 // Somewhat surprisingly, it seems to be the case that the following covers all rational 365 // cases: 366 switch (r2_int) { 367 case -2: // Corresponding to -1 argument 368 return MINUS_NINETY; 369 case -1: // Corresponding to -1/2 argument 370 return MINUS_THIRTY; 371 case 0: 372 return ZERO; 373 case 1: 374 return THIRTY; 375 case 2: 376 return NINETY; 377 default: 378 throw new AssertionError("Impossible asin arg"); 379 } 380 } 381 tan(BoundedRational r)382 public static BoundedRational tan(BoundedRational r) { 383 // Unlike the degree case, we cannot check for the singularity, since it occurs at an 384 // irrational argument. 385 return map0to0(r); 386 } 387 degreeTan(BoundedRational r)388 public static BoundedRational degreeTan(BoundedRational r) { 389 final BoundedRational degSin = degreeSin(r); 390 final BoundedRational degCos = degreeCos(r); 391 if (degCos != null && degCos.mNum.signum() == 0) { 392 throw new ArithmeticException("Tangent undefined"); 393 } 394 return divide(degSin, degCos); 395 } 396 atan(BoundedRational r)397 public static BoundedRational atan(BoundedRational r) { 398 return map0to0(r); 399 } 400 degreeAtan(BoundedRational r)401 public static BoundedRational degreeAtan(BoundedRational r) { 402 final BigInteger r_BI = asBigInteger(r); 403 if (r_BI == null) { 404 return null; 405 } 406 if (r_BI.abs().compareTo(BigInteger.ONE) > 0) { 407 return null; 408 } 409 final int r_int = r_BI.intValue(); 410 // Again, these seem to be all rational cases: 411 switch (r_int) { 412 case -1: 413 return MINUS_FORTY_FIVE; 414 case 0: 415 return ZERO; 416 case 1: 417 return FORTY_FIVE; 418 default: 419 throw new AssertionError("Impossible atan arg"); 420 } 421 } 422 cos(BoundedRational r)423 public static BoundedRational cos(BoundedRational r) { 424 return map0to1(r); 425 } 426 degreeCos(BoundedRational r)427 public static BoundedRational degreeCos(BoundedRational r) { 428 return degreeSin(add(r, NINETY)); 429 } 430 acos(BoundedRational r)431 public static BoundedRational acos(BoundedRational r) { 432 checkAsinDomain(r); 433 return map1to0(r); 434 } 435 degreeAcos(BoundedRational r)436 public static BoundedRational degreeAcos(BoundedRational r) { 437 final BoundedRational asin_r = degreeAsin(r); 438 return subtract(NINETY, asin_r); 439 } 440 441 private static final BigInteger BIG_TWO = BigInteger.valueOf(2); 442 443 /** 444 * Compute an integral power of this. 445 */ pow(BigInteger exp)446 private BoundedRational pow(BigInteger exp) { 447 if (exp.signum() < 0) { 448 return inverse(pow(exp.negate())); 449 } 450 if (exp.equals(BigInteger.ONE)) { 451 return this; 452 } 453 if (exp.and(BigInteger.ONE).intValue() == 1) { 454 return multiply(pow(exp.subtract(BigInteger.ONE)), this); 455 } 456 if (exp.signum() == 0) { 457 return ONE; 458 } 459 BoundedRational tmp = pow(exp.shiftRight(1)); 460 if (Thread.interrupted()) { 461 throw new CR.AbortedException(); 462 } 463 return multiply(tmp, tmp); 464 } 465 pow(BoundedRational base, BoundedRational exp)466 public static BoundedRational pow(BoundedRational base, BoundedRational exp) { 467 if (exp == null) { 468 return null; 469 } 470 if (exp.mNum.signum() == 0) { 471 // Questionable if base has undefined value. Java.lang.Math.pow() returns 1 anyway, 472 // so we do the same. 473 return new BoundedRational(1); 474 } 475 if (base == null) { 476 return null; 477 } 478 exp = exp.reduce().positiveDen(); 479 if (!exp.mDen.equals(BigInteger.ONE)) { 480 return null; 481 } 482 return base.pow(exp.mNum); 483 } 484 ln(BoundedRational r)485 public static BoundedRational ln(BoundedRational r) { 486 if (r != null && r.signum() <= 0) { 487 throw new ArithmeticException("log(non-positive)"); 488 } 489 return map1to0(r); 490 } 491 exp(BoundedRational r)492 public static BoundedRational exp(BoundedRational r) { 493 return map0to1(r); 494 } 495 496 /** 497 * Return the base 10 log of n, if n is a power of 10, -1 otherwise. 498 * n must be positive. 499 */ b10Log(BigInteger n)500 private static long b10Log(BigInteger n) { 501 // This algorithm is very naive, but we doubt it matters. 502 long count = 0; 503 while (n.mod(BigInteger.TEN).signum() == 0) { 504 if (Thread.interrupted()) { 505 throw new CR.AbortedException(); 506 } 507 n = n.divide(BigInteger.TEN); 508 ++count; 509 } 510 if (n.equals(BigInteger.ONE)) { 511 return count; 512 } 513 return -1; 514 } 515 log(BoundedRational r)516 public static BoundedRational log(BoundedRational r) { 517 if (r == null) { 518 return null; 519 } 520 if (r.signum() <= 0) { 521 throw new ArithmeticException("log(non-positive)"); 522 } 523 r = r.reduce().positiveDen(); 524 if (r == null) { 525 return null; 526 } 527 if (r.mDen.equals(BigInteger.ONE)) { 528 long log = b10Log(r.mNum); 529 if (log != -1) { 530 return new BoundedRational(log); 531 } 532 } else if (r.mNum.equals(BigInteger.ONE)) { 533 long log = b10Log(r.mDen); 534 if (log != -1) { 535 return new BoundedRational(-log); 536 } 537 } 538 return null; 539 } 540 541 /** 542 * Generalized factorial. 543 * Compute n * (n - step) * (n - 2 * step) * etc. This can be used to compute factorial a bit 544 * faster, especially if BigInteger uses sub-quadratic multiplication. 545 */ genFactorial(long n, long step)546 private static BigInteger genFactorial(long n, long step) { 547 if (n > 4 * step) { 548 BigInteger prod1 = genFactorial(n, 2 * step); 549 if (Thread.interrupted()) { 550 throw new CR.AbortedException(); 551 } 552 BigInteger prod2 = genFactorial(n - step, 2 * step); 553 if (Thread.interrupted()) { 554 throw new CR.AbortedException(); 555 } 556 return prod1.multiply(prod2); 557 } else { 558 if (n == 0) { 559 return BigInteger.ONE; 560 } 561 BigInteger res = BigInteger.valueOf(n); 562 for (long i = n - step; i > 1; i -= step) { 563 res = res.multiply(BigInteger.valueOf(i)); 564 } 565 return res; 566 } 567 } 568 569 /** 570 * Factorial function. 571 * Always produces non-null (or exception) when called on non-null r. 572 */ fact(BoundedRational r)573 public static BoundedRational fact(BoundedRational r) { 574 if (r == null) { 575 return null; 576 } 577 final BigInteger rAsInt = asBigInteger(r); 578 if (rAsInt == null) { 579 throw new ArithmeticException("Non-integral factorial argument"); 580 } 581 if (rAsInt.signum() < 0) { 582 throw new ArithmeticException("Negative factorial argument"); 583 } 584 if (rAsInt.bitLength() > 30) { 585 // Will fail. LongValue() may not work. Punt now. 586 throw new ArithmeticException("Factorial argument too big"); 587 } 588 return new BoundedRational(genFactorial(rAsInt.longValue(), 1)); 589 } 590 591 private static final BigInteger BIG_FIVE = BigInteger.valueOf(5); 592 private static final BigInteger BIG_MINUS_ONE = BigInteger.valueOf(-1); 593 594 /** 595 * Return the number of decimal digits to the right of the decimal point required to represent 596 * the argument exactly. 597 * Return Integer.MAX_VALUE if that's not possible. Never returns a value less than zero, even 598 * if r is a power of ten. 599 */ digitsRequired(BoundedRational r)600 static int digitsRequired(BoundedRational r) { 601 if (r == null) { 602 return Integer.MAX_VALUE; 603 } 604 int powersOfTwo = 0; // Max power of 2 that divides denominator 605 int powersOfFive = 0; // Max power of 5 that divides denominator 606 // Try the easy case first to speed things up. 607 if (r.mDen.equals(BigInteger.ONE)) { 608 return 0; 609 } 610 r = r.reduce(); 611 BigInteger den = r.mDen; 612 if (den.bitLength() > MAX_SIZE) { 613 return Integer.MAX_VALUE; 614 } 615 while (!den.testBit(0)) { 616 ++powersOfTwo; 617 den = den.shiftRight(1); 618 } 619 while (den.mod(BIG_FIVE).signum() == 0) { 620 ++powersOfFive; 621 den = den.divide(BIG_FIVE); 622 } 623 // If the denominator has a factor of other than 2 or 5 (the divisors of 10), the decimal 624 // expansion does not terminate. Multiplying the fraction by any number of powers of 10 625 // will not cancel the demoniator. (Recall the fraction was in lowest terms to start 626 // with.) Otherwise the powers of 10 we need to cancel the denominator is the larger of 627 // powersOfTwo and powersOfFive. 628 if (!den.equals(BigInteger.ONE) && !den.equals(BIG_MINUS_ONE)) { 629 return Integer.MAX_VALUE; 630 } 631 return Math.max(powersOfTwo, powersOfFive); 632 } 633 } 634