1 ///////////////////////////////////////////////////////////////////////////////////
2 /// OpenGL Mathematics (glm.g-truc.net)
3 ///
4 /// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
5 /// Permission is hereby granted, free of charge, to any person obtaining a copy
6 /// of this software and associated documentation files (the "Software"), to deal
7 /// in the Software without restriction, including without limitation the rights
8 /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 /// copies of the Software, and to permit persons to whom the Software is
10 /// furnished to do so, subject to the following conditions:
11 ///
12 /// The above copyright notice and this permission notice shall be included in
13 /// all copies or substantial portions of the Software.
14 ///
15 /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21 /// THE SOFTWARE.
22 ///
23 /// @ref gtx_compatibility
24 /// @file glm/gtx/compatibility.hpp
25 /// @date 2007-01-24 / 2011-06-07
26 /// @author Christophe Riccio
27 ///
28 /// @see core (dependence)
29 /// @see gtc_half_float (dependence)
30 ///
31 /// @defgroup gtx_compatibility GLM_GTX_compatibility
32 /// @ingroup gtx
33 ///
34 /// @brief Provide functions to increase the compatibility with Cg and HLSL languages
35 ///
36 /// <glm/gtx/compatibility.hpp> need to be included to use these functionalities.
37 ///////////////////////////////////////////////////////////////////////////////////
38 
39 #ifndef GLM_GTX_compatibility
40 #define GLM_GTX_compatibility
41 
42 // Dependency:
43 #include "../glm.hpp"
44 #include "../gtc/quaternion.hpp"
45 
46 #if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
47 #	pragma message("GLM: GLM_GTX_compatibility extension included")
48 #endif
49 
50 #if(GLM_COMPILER & GLM_COMPILER_VC)
51 #	include <cfloat>
52 #elif(GLM_COMPILER & GLM_COMPILER_GCC)
53 #	include <cmath>
54 #	if(GLM_PLATFORM & GLM_PLATFORM_ANDROID)
55 #		undef isfinite
56 #	endif
57 #endif//GLM_COMPILER
58 
59 namespace glm
60 {
61 	/// @addtogroup gtx_compatibility
62 	/// @{
63 
lerp(T x,T y,T a)64 	template <typename T> GLM_FUNC_QUALIFIER T lerp(T x, T y, T a){return mix(x, y, a);}																					//!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
lerp(const detail::tvec2<T,P> & x,const detail::tvec2<T,P> & y,T a)65 	template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> lerp(const detail::tvec2<T, P>& x, const detail::tvec2<T, P>& y, T a){return mix(x, y, a);}							//!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
66 
lerp(const detail::tvec3<T,P> & x,const detail::tvec3<T,P> & y,T a)67 	template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> lerp(const detail::tvec3<T, P>& x, const detail::tvec3<T, P>& y, T a){return mix(x, y, a);}							//!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
lerp(const detail::tvec4<T,P> & x,const detail::tvec4<T,P> & y,T a)68 	template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> lerp(const detail::tvec4<T, P>& x, const detail::tvec4<T, P>& y, T a){return mix(x, y, a);}							//!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
lerp(const detail::tvec2<T,P> & x,const detail::tvec2<T,P> & y,const detail::tvec2<T,P> & a)69 	template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> lerp(const detail::tvec2<T, P>& x, const detail::tvec2<T, P>& y, const detail::tvec2<T, P>& a){return mix(x, y, a);}	//!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
lerp(const detail::tvec3<T,P> & x,const detail::tvec3<T,P> & y,const detail::tvec3<T,P> & a)70 	template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> lerp(const detail::tvec3<T, P>& x, const detail::tvec3<T, P>& y, const detail::tvec3<T, P>& a){return mix(x, y, a);}	//!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
lerp(const detail::tvec4<T,P> & x,const detail::tvec4<T,P> & y,const detail::tvec4<T,P> & a)71 	template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> lerp(const detail::tvec4<T, P>& x, const detail::tvec4<T, P>& y, const detail::tvec4<T, P>& a){return mix(x, y, a);}	//!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
72 
slerp(detail::tquat<T,P> const & x,detail::tquat<T,P> const & y,T const & a)73 	template <typename T, precision P> GLM_FUNC_QUALIFIER T slerp(detail::tquat<T, P> const & x, detail::tquat<T, P> const & y, T const & a){return mix(x, y, a);} //!< \brief Returns the slurp interpolation between two quaternions.
74 
saturate(T x)75 	template <typename T, precision P> GLM_FUNC_QUALIFIER T saturate(T x){return clamp(x, T(0), T(1));}														//!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
saturate(const detail::tvec2<T,P> & x)76 	template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> saturate(const detail::tvec2<T, P>& x){return clamp(x, T(0), T(1));}					//!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
saturate(const detail::tvec3<T,P> & x)77 	template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> saturate(const detail::tvec3<T, P>& x){return clamp(x, T(0), T(1));}					//!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
saturate(const detail::tvec4<T,P> & x)78 	template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> saturate(const detail::tvec4<T, P>& x){return clamp(x, T(0), T(1));}					//!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
79 
atan2(T x,T y)80 	template <typename T, precision P> GLM_FUNC_QUALIFIER T atan2(T x, T y){return atan(x, y);}																//!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
atan2(const detail::tvec2<T,P> & x,const detail::tvec2<T,P> & y)81 	template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> atan2(const detail::tvec2<T, P>& x, const detail::tvec2<T, P>& y){return atan(x, y);}	//!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
atan2(const detail::tvec3<T,P> & x,const detail::tvec3<T,P> & y)82 	template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> atan2(const detail::tvec3<T, P>& x, const detail::tvec3<T, P>& y){return atan(x, y);}	//!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
atan2(const detail::tvec4<T,P> & x,const detail::tvec4<T,P> & y)83 	template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> atan2(const detail::tvec4<T, P>& x, const detail::tvec4<T, P>& y){return atan(x, y);}	//!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
84 
85 	template <typename genType> GLM_FUNC_DECL bool isfinite(genType const & x);											//!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
86 	template <typename T, precision P> GLM_FUNC_DECL detail::tvec2<bool, P> isfinite(const detail::tvec2<T, P>& x);				//!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
87 	template <typename T, precision P> GLM_FUNC_DECL detail::tvec3<bool, P> isfinite(const detail::tvec3<T, P>& x);				//!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
88 	template <typename T, precision P> GLM_FUNC_DECL detail::tvec4<bool, P> isfinite(const detail::tvec4<T, P>& x);				//!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
89 
90 	typedef bool						bool1;			//!< \brief boolean type with 1 component. (From GLM_GTX_compatibility extension)
91 	typedef detail::tvec2<bool, highp>			bool2;			//!< \brief boolean type with 2 components. (From GLM_GTX_compatibility extension)
92 	typedef detail::tvec3<bool, highp>			bool3;			//!< \brief boolean type with 3 components. (From GLM_GTX_compatibility extension)
93 	typedef detail::tvec4<bool, highp>			bool4;			//!< \brief boolean type with 4 components. (From GLM_GTX_compatibility extension)
94 
95 	typedef bool						bool1x1;		//!< \brief boolean matrix with 1 x 1 component. (From GLM_GTX_compatibility extension)
96 	typedef detail::tmat2x2<bool, highp>		bool2x2;		//!< \brief boolean matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
97 	typedef detail::tmat2x3<bool, highp>		bool2x3;		//!< \brief boolean matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
98 	typedef detail::tmat2x4<bool, highp>		bool2x4;		//!< \brief boolean matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
99 	typedef detail::tmat3x2<bool, highp>		bool3x2;		//!< \brief boolean matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
100 	typedef detail::tmat3x3<bool, highp>		bool3x3;		//!< \brief boolean matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
101 	typedef detail::tmat3x4<bool, highp>		bool3x4;		//!< \brief boolean matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
102 	typedef detail::tmat4x2<bool, highp>		bool4x2;		//!< \brief boolean matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
103 	typedef detail::tmat4x3<bool, highp>		bool4x3;		//!< \brief boolean matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
104 	typedef detail::tmat4x4<bool, highp>		bool4x4;		//!< \brief boolean matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
105 
106 	typedef int							int1;			//!< \brief integer vector with 1 component. (From GLM_GTX_compatibility extension)
107 	typedef detail::tvec2<int, highp>			int2;			//!< \brief integer vector with 2 components. (From GLM_GTX_compatibility extension)
108 	typedef detail::tvec3<int, highp>			int3;			//!< \brief integer vector with 3 components. (From GLM_GTX_compatibility extension)
109 	typedef detail::tvec4<int, highp>			int4;			//!< \brief integer vector with 4 components. (From GLM_GTX_compatibility extension)
110 
111 	typedef int							int1x1;			//!< \brief integer matrix with 1 component. (From GLM_GTX_compatibility extension)
112 	typedef detail::tmat2x2<int, highp>		int2x2;			//!< \brief integer matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
113 	typedef detail::tmat2x3<int, highp>		int2x3;			//!< \brief integer matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
114 	typedef detail::tmat2x4<int, highp>		int2x4;			//!< \brief integer matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
115 	typedef detail::tmat3x2<int, highp>		int3x2;			//!< \brief integer matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
116 	typedef detail::tmat3x3<int, highp>		int3x3;			//!< \brief integer matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
117 	typedef detail::tmat3x4<int, highp>		int3x4;			//!< \brief integer matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
118 	typedef detail::tmat4x2<int, highp>		int4x2;			//!< \brief integer matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
119 	typedef detail::tmat4x3<int, highp>		int4x3;			//!< \brief integer matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
120 	typedef detail::tmat4x4<int, highp>		int4x4;			//!< \brief integer matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
121 
122 	typedef float						float1;			//!< \brief single-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension)
123 	typedef detail::tvec2<float, highp>		float2;			//!< \brief single-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension)
124 	typedef detail::tvec3<float, highp>		float3;			//!< \brief single-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension)
125 	typedef detail::tvec4<float, highp>		float4;			//!< \brief single-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension)
126 
127 	typedef float						float1x1;		//!< \brief single-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension)
128 	typedef detail::tmat2x2<float, highp>		float2x2;		//!< \brief single-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
129 	typedef detail::tmat2x3<float, highp>		float2x3;		//!< \brief single-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
130 	typedef detail::tmat2x4<float, highp>		float2x4;		//!< \brief single-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
131 	typedef detail::tmat3x2<float, highp>		float3x2;		//!< \brief single-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
132 	typedef detail::tmat3x3<float, highp>		float3x3;		//!< \brief single-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
133 	typedef detail::tmat3x4<float, highp>		float3x4;		//!< \brief single-precision floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
134 	typedef detail::tmat4x2<float, highp>		float4x2;		//!< \brief single-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
135 	typedef detail::tmat4x3<float, highp>		float4x3;		//!< \brief single-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
136 	typedef detail::tmat4x4<float, highp>		float4x4;		//!< \brief single-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
137 
138 	typedef double						double1;		//!< \brief double-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension)
139 	typedef detail::tvec2<double, highp>		double2;		//!< \brief double-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension)
140 	typedef detail::tvec3<double, highp>		double3;		//!< \brief double-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension)
141 	typedef detail::tvec4<double, highp>		double4;		//!< \brief double-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension)
142 
143 	typedef double						double1x1;		//!< \brief double-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension)
144 	typedef detail::tmat2x2<double, highp>		double2x2;		//!< \brief double-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
145 	typedef detail::tmat2x3<double, highp>		double2x3;		//!< \brief double-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
146 	typedef detail::tmat2x4<double, highp>		double2x4;		//!< \brief double-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
147 	typedef detail::tmat3x2<double, highp>		double3x2;		//!< \brief double-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
148 	typedef detail::tmat3x3<double, highp>		double3x3;		//!< \brief double-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
149 	typedef detail::tmat3x4<double, highp>		double3x4;		//!< \brief double-precision floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
150 	typedef detail::tmat4x2<double, highp>		double4x2;		//!< \brief double-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
151 	typedef detail::tmat4x3<double, highp>		double4x3;		//!< \brief double-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
152 	typedef detail::tmat4x4<double, highp>		double4x4;		//!< \brief double-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
153 
154 	/// @}
155 }//namespace glm
156 
157 #include "compatibility.inl"
158 
159 #endif//GLM_GTX_compatibility
160 
161