1 /**************************************************************************
2 *
3 * Copyright � 2007 Red Hat Inc.
4 * Copyright � 2007-2012 Intel Corporation
5 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * The above copyright notice and this permission notice (including the
25 * next paragraph) shall be included in all copies or substantial portions
26 * of the Software.
27 *
28 *
29 **************************************************************************/
30 /*
31 * Authors: Thomas Hellstr�m <thomas-at-tungstengraphics-dot-com>
32 * Keith Whitwell <keithw-at-tungstengraphics-dot-com>
33 * Eric Anholt <eric@anholt.net>
34 * Dave Airlie <airlied@linux.ie>
35 */
36
37 #ifdef HAVE_CONFIG_H
38 #include "config.h"
39 #endif
40
41 #include <xf86drm.h>
42 #include <xf86atomic.h>
43 #include <fcntl.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <unistd.h>
48 #include <assert.h>
49 #include <pthread.h>
50 #include <sys/ioctl.h>
51 #include <sys/stat.h>
52 #include <sys/types.h>
53 #include <stdbool.h>
54
55 #include "errno.h"
56 #ifndef ETIME
57 #define ETIME ETIMEDOUT
58 #endif
59 #include "libdrm_macros.h"
60 #include "libdrm_lists.h"
61 #include "intel_bufmgr.h"
62 #include "intel_bufmgr_priv.h"
63 #include "intel_chipset.h"
64 #include "string.h"
65
66 #include "i915_drm.h"
67
68 #ifdef HAVE_VALGRIND
69 #include <valgrind.h>
70 #include <memcheck.h>
71 #define VG(x) x
72 #else
73 #define VG(x)
74 #endif
75
76 #define memclear(s) memset(&s, 0, sizeof(s))
77
78 #define DBG(...) do { \
79 if (bufmgr_gem->bufmgr.debug) \
80 fprintf(stderr, __VA_ARGS__); \
81 } while (0)
82
83 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
84 #define MAX2(A, B) ((A) > (B) ? (A) : (B))
85
86 /**
87 * upper_32_bits - return bits 32-63 of a number
88 * @n: the number we're accessing
89 *
90 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress
91 * the "right shift count >= width of type" warning when that quantity is
92 * 32-bits.
93 */
94 #define upper_32_bits(n) ((__u32)(((n) >> 16) >> 16))
95
96 /**
97 * lower_32_bits - return bits 0-31 of a number
98 * @n: the number we're accessing
99 */
100 #define lower_32_bits(n) ((__u32)(n))
101
102 typedef struct _drm_intel_bo_gem drm_intel_bo_gem;
103
104 struct drm_intel_gem_bo_bucket {
105 drmMMListHead head;
106 unsigned long size;
107 };
108
109 typedef struct _drm_intel_bufmgr_gem {
110 drm_intel_bufmgr bufmgr;
111
112 atomic_t refcount;
113
114 int fd;
115
116 int max_relocs;
117
118 pthread_mutex_t lock;
119
120 struct drm_i915_gem_exec_object *exec_objects;
121 struct drm_i915_gem_exec_object2 *exec2_objects;
122 drm_intel_bo **exec_bos;
123 int exec_size;
124 int exec_count;
125
126 /** Array of lists of cached gem objects of power-of-two sizes */
127 struct drm_intel_gem_bo_bucket cache_bucket[14 * 4];
128 int num_buckets;
129 time_t time;
130
131 drmMMListHead managers;
132
133 drmMMListHead named;
134 drmMMListHead vma_cache;
135 int vma_count, vma_open, vma_max;
136
137 uint64_t gtt_size;
138 int available_fences;
139 int pci_device;
140 int gen;
141 unsigned int has_bsd : 1;
142 unsigned int has_blt : 1;
143 unsigned int has_relaxed_fencing : 1;
144 unsigned int has_llc : 1;
145 unsigned int has_wait_timeout : 1;
146 unsigned int bo_reuse : 1;
147 unsigned int no_exec : 1;
148 unsigned int has_vebox : 1;
149 bool fenced_relocs;
150
151 struct {
152 void *ptr;
153 uint32_t handle;
154 } userptr_active;
155
156 } drm_intel_bufmgr_gem;
157
158 #define DRM_INTEL_RELOC_FENCE (1<<0)
159
160 typedef struct _drm_intel_reloc_target_info {
161 drm_intel_bo *bo;
162 int flags;
163 } drm_intel_reloc_target;
164
165 struct _drm_intel_bo_gem {
166 drm_intel_bo bo;
167
168 atomic_t refcount;
169 uint32_t gem_handle;
170 const char *name;
171
172 /**
173 * Kenel-assigned global name for this object
174 *
175 * List contains both flink named and prime fd'd objects
176 */
177 unsigned int global_name;
178 drmMMListHead name_list;
179
180 /**
181 * Index of the buffer within the validation list while preparing a
182 * batchbuffer execution.
183 */
184 int validate_index;
185
186 /**
187 * Current tiling mode
188 */
189 uint32_t tiling_mode;
190 uint32_t swizzle_mode;
191 unsigned long stride;
192
193 time_t free_time;
194
195 /** Array passed to the DRM containing relocation information. */
196 struct drm_i915_gem_relocation_entry *relocs;
197 /**
198 * Array of info structs corresponding to relocs[i].target_handle etc
199 */
200 drm_intel_reloc_target *reloc_target_info;
201 /** Number of entries in relocs */
202 int reloc_count;
203 /** Array of BOs that are referenced by this buffer and will be softpinned */
204 drm_intel_bo **softpin_target;
205 /** Number softpinned BOs that are referenced by this buffer */
206 int softpin_target_count;
207 /** Maximum amount of softpinned BOs that are referenced by this buffer */
208 int softpin_target_size;
209
210 /** Mapped address for the buffer, saved across map/unmap cycles */
211 void *mem_virtual;
212 /** GTT virtual address for the buffer, saved across map/unmap cycles */
213 void *gtt_virtual;
214 /**
215 * Virtual address of the buffer allocated by user, used for userptr
216 * objects only.
217 */
218 void *user_virtual;
219 int map_count;
220 drmMMListHead vma_list;
221
222 /** BO cache list */
223 drmMMListHead head;
224
225 /**
226 * Boolean of whether this BO and its children have been included in
227 * the current drm_intel_bufmgr_check_aperture_space() total.
228 */
229 bool included_in_check_aperture;
230
231 /**
232 * Boolean of whether this buffer has been used as a relocation
233 * target and had its size accounted for, and thus can't have any
234 * further relocations added to it.
235 */
236 bool used_as_reloc_target;
237
238 /**
239 * Boolean of whether we have encountered an error whilst building the relocation tree.
240 */
241 bool has_error;
242
243 /**
244 * Boolean of whether this buffer can be re-used
245 */
246 bool reusable;
247
248 /**
249 * Boolean of whether the GPU is definitely not accessing the buffer.
250 *
251 * This is only valid when reusable, since non-reusable
252 * buffers are those that have been shared wth other
253 * processes, so we don't know their state.
254 */
255 bool idle;
256
257 /**
258 * Boolean of whether this buffer was allocated with userptr
259 */
260 bool is_userptr;
261
262 /**
263 * Boolean of whether this buffer can be placed in the full 48-bit
264 * address range on gen8+.
265 *
266 * By default, buffers will be keep in a 32-bit range, unless this
267 * flag is explicitly set.
268 */
269 bool use_48b_address_range;
270
271 /**
272 * Whether this buffer is softpinned at offset specified by the user
273 */
274 bool is_softpin;
275
276 /**
277 * Size in bytes of this buffer and its relocation descendents.
278 *
279 * Used to avoid costly tree walking in
280 * drm_intel_bufmgr_check_aperture in the common case.
281 */
282 int reloc_tree_size;
283
284 /**
285 * Number of potential fence registers required by this buffer and its
286 * relocations.
287 */
288 int reloc_tree_fences;
289
290 /** Flags that we may need to do the SW_FINSIH ioctl on unmap. */
291 bool mapped_cpu_write;
292 };
293
294 static unsigned int
295 drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count);
296
297 static unsigned int
298 drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count);
299
300 static int
301 drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
302 uint32_t * swizzle_mode);
303
304 static int
305 drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
306 uint32_t tiling_mode,
307 uint32_t stride);
308
309 static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
310 time_t time);
311
312 static void drm_intel_gem_bo_unreference(drm_intel_bo *bo);
313
314 static void drm_intel_gem_bo_free(drm_intel_bo *bo);
315
to_bo_gem(drm_intel_bo * bo)316 static inline drm_intel_bo_gem *to_bo_gem(drm_intel_bo *bo)
317 {
318 return (drm_intel_bo_gem *)bo;
319 }
320
321 static unsigned long
drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem * bufmgr_gem,unsigned long size,uint32_t * tiling_mode)322 drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size,
323 uint32_t *tiling_mode)
324 {
325 unsigned long min_size, max_size;
326 unsigned long i;
327
328 if (*tiling_mode == I915_TILING_NONE)
329 return size;
330
331 /* 965+ just need multiples of page size for tiling */
332 if (bufmgr_gem->gen >= 4)
333 return ROUND_UP_TO(size, 4096);
334
335 /* Older chips need powers of two, of at least 512k or 1M */
336 if (bufmgr_gem->gen == 3) {
337 min_size = 1024*1024;
338 max_size = 128*1024*1024;
339 } else {
340 min_size = 512*1024;
341 max_size = 64*1024*1024;
342 }
343
344 if (size > max_size) {
345 *tiling_mode = I915_TILING_NONE;
346 return size;
347 }
348
349 /* Do we need to allocate every page for the fence? */
350 if (bufmgr_gem->has_relaxed_fencing)
351 return ROUND_UP_TO(size, 4096);
352
353 for (i = min_size; i < size; i <<= 1)
354 ;
355
356 return i;
357 }
358
359 /*
360 * Round a given pitch up to the minimum required for X tiling on a
361 * given chip. We use 512 as the minimum to allow for a later tiling
362 * change.
363 */
364 static unsigned long
drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem * bufmgr_gem,unsigned long pitch,uint32_t * tiling_mode)365 drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem,
366 unsigned long pitch, uint32_t *tiling_mode)
367 {
368 unsigned long tile_width;
369 unsigned long i;
370
371 /* If untiled, then just align it so that we can do rendering
372 * to it with the 3D engine.
373 */
374 if (*tiling_mode == I915_TILING_NONE)
375 return ALIGN(pitch, 64);
376
377 if (*tiling_mode == I915_TILING_X
378 || (IS_915(bufmgr_gem->pci_device)
379 && *tiling_mode == I915_TILING_Y))
380 tile_width = 512;
381 else
382 tile_width = 128;
383
384 /* 965 is flexible */
385 if (bufmgr_gem->gen >= 4)
386 return ROUND_UP_TO(pitch, tile_width);
387
388 /* The older hardware has a maximum pitch of 8192 with tiled
389 * surfaces, so fallback to untiled if it's too large.
390 */
391 if (pitch > 8192) {
392 *tiling_mode = I915_TILING_NONE;
393 return ALIGN(pitch, 64);
394 }
395
396 /* Pre-965 needs power of two tile width */
397 for (i = tile_width; i < pitch; i <<= 1)
398 ;
399
400 return i;
401 }
402
403 static struct drm_intel_gem_bo_bucket *
drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem * bufmgr_gem,unsigned long size)404 drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem,
405 unsigned long size)
406 {
407 int i;
408
409 for (i = 0; i < bufmgr_gem->num_buckets; i++) {
410 struct drm_intel_gem_bo_bucket *bucket =
411 &bufmgr_gem->cache_bucket[i];
412 if (bucket->size >= size) {
413 return bucket;
414 }
415 }
416
417 return NULL;
418 }
419
420 static void
drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem * bufmgr_gem)421 drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem)
422 {
423 int i, j;
424
425 for (i = 0; i < bufmgr_gem->exec_count; i++) {
426 drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
427 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
428
429 if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL) {
430 DBG("%2d: %d %s(%s)\n", i, bo_gem->gem_handle,
431 bo_gem->is_softpin ? "*" : "",
432 bo_gem->name);
433 continue;
434 }
435
436 for (j = 0; j < bo_gem->reloc_count; j++) {
437 drm_intel_bo *target_bo = bo_gem->reloc_target_info[j].bo;
438 drm_intel_bo_gem *target_gem =
439 (drm_intel_bo_gem *) target_bo;
440
441 DBG("%2d: %d %s(%s)@0x%08x %08x -> "
442 "%d (%s)@0x%08x %08x + 0x%08x\n",
443 i,
444 bo_gem->gem_handle,
445 bo_gem->is_softpin ? "*" : "",
446 bo_gem->name,
447 upper_32_bits(bo_gem->relocs[j].offset),
448 lower_32_bits(bo_gem->relocs[j].offset),
449 target_gem->gem_handle,
450 target_gem->name,
451 upper_32_bits(target_bo->offset64),
452 lower_32_bits(target_bo->offset64),
453 bo_gem->relocs[j].delta);
454 }
455
456 for (j = 0; j < bo_gem->softpin_target_count; j++) {
457 drm_intel_bo *target_bo = bo_gem->softpin_target[j];
458 drm_intel_bo_gem *target_gem =
459 (drm_intel_bo_gem *) target_bo;
460 DBG("%2d: %d %s(%s) -> "
461 "%d *(%s)@0x%08x %08x\n",
462 i,
463 bo_gem->gem_handle,
464 bo_gem->is_softpin ? "*" : "",
465 bo_gem->name,
466 target_gem->gem_handle,
467 target_gem->name,
468 upper_32_bits(target_bo->offset64),
469 lower_32_bits(target_bo->offset64));
470 }
471 }
472 }
473
474 static inline void
drm_intel_gem_bo_reference(drm_intel_bo * bo)475 drm_intel_gem_bo_reference(drm_intel_bo *bo)
476 {
477 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
478
479 atomic_inc(&bo_gem->refcount);
480 }
481
482 /**
483 * Adds the given buffer to the list of buffers to be validated (moved into the
484 * appropriate memory type) with the next batch submission.
485 *
486 * If a buffer is validated multiple times in a batch submission, it ends up
487 * with the intersection of the memory type flags and the union of the
488 * access flags.
489 */
490 static void
drm_intel_add_validate_buffer(drm_intel_bo * bo)491 drm_intel_add_validate_buffer(drm_intel_bo *bo)
492 {
493 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
494 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
495 int index;
496
497 if (bo_gem->validate_index != -1)
498 return;
499
500 /* Extend the array of validation entries as necessary. */
501 if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
502 int new_size = bufmgr_gem->exec_size * 2;
503
504 if (new_size == 0)
505 new_size = 5;
506
507 bufmgr_gem->exec_objects =
508 realloc(bufmgr_gem->exec_objects,
509 sizeof(*bufmgr_gem->exec_objects) * new_size);
510 bufmgr_gem->exec_bos =
511 realloc(bufmgr_gem->exec_bos,
512 sizeof(*bufmgr_gem->exec_bos) * new_size);
513 bufmgr_gem->exec_size = new_size;
514 }
515
516 index = bufmgr_gem->exec_count;
517 bo_gem->validate_index = index;
518 /* Fill in array entry */
519 bufmgr_gem->exec_objects[index].handle = bo_gem->gem_handle;
520 bufmgr_gem->exec_objects[index].relocation_count = bo_gem->reloc_count;
521 bufmgr_gem->exec_objects[index].relocs_ptr = (uintptr_t) bo_gem->relocs;
522 bufmgr_gem->exec_objects[index].alignment = bo->align;
523 bufmgr_gem->exec_objects[index].offset = 0;
524 bufmgr_gem->exec_bos[index] = bo;
525 bufmgr_gem->exec_count++;
526 }
527
528 static void
drm_intel_add_validate_buffer2(drm_intel_bo * bo,int need_fence)529 drm_intel_add_validate_buffer2(drm_intel_bo *bo, int need_fence)
530 {
531 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
532 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
533 int index;
534 int flags = 0;
535
536 if (need_fence)
537 flags |= EXEC_OBJECT_NEEDS_FENCE;
538 if (bo_gem->use_48b_address_range)
539 flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
540 if (bo_gem->is_softpin)
541 flags |= EXEC_OBJECT_PINNED;
542
543 if (bo_gem->validate_index != -1) {
544 bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |= flags;
545 return;
546 }
547
548 /* Extend the array of validation entries as necessary. */
549 if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
550 int new_size = bufmgr_gem->exec_size * 2;
551
552 if (new_size == 0)
553 new_size = 5;
554
555 bufmgr_gem->exec2_objects =
556 realloc(bufmgr_gem->exec2_objects,
557 sizeof(*bufmgr_gem->exec2_objects) * new_size);
558 bufmgr_gem->exec_bos =
559 realloc(bufmgr_gem->exec_bos,
560 sizeof(*bufmgr_gem->exec_bos) * new_size);
561 bufmgr_gem->exec_size = new_size;
562 }
563
564 index = bufmgr_gem->exec_count;
565 bo_gem->validate_index = index;
566 /* Fill in array entry */
567 bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle;
568 bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count;
569 bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs;
570 bufmgr_gem->exec2_objects[index].alignment = bo->align;
571 bufmgr_gem->exec2_objects[index].offset = bo_gem->is_softpin ?
572 bo->offset64 : 0;
573 bufmgr_gem->exec_bos[index] = bo;
574 bufmgr_gem->exec2_objects[index].flags = flags;
575 bufmgr_gem->exec2_objects[index].rsvd1 = 0;
576 bufmgr_gem->exec2_objects[index].rsvd2 = 0;
577 bufmgr_gem->exec_count++;
578 }
579
580 #define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \
581 sizeof(uint32_t))
582
583 static void
drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem * bufmgr_gem,drm_intel_bo_gem * bo_gem,unsigned int alignment)584 drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem,
585 drm_intel_bo_gem *bo_gem,
586 unsigned int alignment)
587 {
588 unsigned int size;
589
590 assert(!bo_gem->used_as_reloc_target);
591
592 /* The older chipsets are far-less flexible in terms of tiling,
593 * and require tiled buffer to be size aligned in the aperture.
594 * This means that in the worst possible case we will need a hole
595 * twice as large as the object in order for it to fit into the
596 * aperture. Optimal packing is for wimps.
597 */
598 size = bo_gem->bo.size;
599 if (bufmgr_gem->gen < 4 && bo_gem->tiling_mode != I915_TILING_NONE) {
600 unsigned int min_size;
601
602 if (bufmgr_gem->has_relaxed_fencing) {
603 if (bufmgr_gem->gen == 3)
604 min_size = 1024*1024;
605 else
606 min_size = 512*1024;
607
608 while (min_size < size)
609 min_size *= 2;
610 } else
611 min_size = size;
612
613 /* Account for worst-case alignment. */
614 alignment = MAX2(alignment, min_size);
615 }
616
617 bo_gem->reloc_tree_size = size + alignment;
618 }
619
620 static int
drm_intel_setup_reloc_list(drm_intel_bo * bo)621 drm_intel_setup_reloc_list(drm_intel_bo *bo)
622 {
623 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
624 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
625 unsigned int max_relocs = bufmgr_gem->max_relocs;
626
627 if (bo->size / 4 < max_relocs)
628 max_relocs = bo->size / 4;
629
630 bo_gem->relocs = malloc(max_relocs *
631 sizeof(struct drm_i915_gem_relocation_entry));
632 bo_gem->reloc_target_info = malloc(max_relocs *
633 sizeof(drm_intel_reloc_target));
634 if (bo_gem->relocs == NULL || bo_gem->reloc_target_info == NULL) {
635 bo_gem->has_error = true;
636
637 free (bo_gem->relocs);
638 bo_gem->relocs = NULL;
639
640 free (bo_gem->reloc_target_info);
641 bo_gem->reloc_target_info = NULL;
642
643 return 1;
644 }
645
646 return 0;
647 }
648
649 static int
drm_intel_gem_bo_busy(drm_intel_bo * bo)650 drm_intel_gem_bo_busy(drm_intel_bo *bo)
651 {
652 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
653 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
654 struct drm_i915_gem_busy busy;
655 int ret;
656
657 if (bo_gem->reusable && bo_gem->idle)
658 return false;
659
660 memclear(busy);
661 busy.handle = bo_gem->gem_handle;
662
663 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
664 if (ret == 0) {
665 bo_gem->idle = !busy.busy;
666 return busy.busy;
667 } else {
668 return false;
669 }
670 return (ret == 0 && busy.busy);
671 }
672
673 static int
drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem * bufmgr_gem,drm_intel_bo_gem * bo_gem,int state)674 drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem,
675 drm_intel_bo_gem *bo_gem, int state)
676 {
677 struct drm_i915_gem_madvise madv;
678
679 memclear(madv);
680 madv.handle = bo_gem->gem_handle;
681 madv.madv = state;
682 madv.retained = 1;
683 drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
684
685 return madv.retained;
686 }
687
688 static int
drm_intel_gem_bo_madvise(drm_intel_bo * bo,int madv)689 drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv)
690 {
691 return drm_intel_gem_bo_madvise_internal
692 ((drm_intel_bufmgr_gem *) bo->bufmgr,
693 (drm_intel_bo_gem *) bo,
694 madv);
695 }
696
697 /* drop the oldest entries that have been purged by the kernel */
698 static void
drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem * bufmgr_gem,struct drm_intel_gem_bo_bucket * bucket)699 drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem,
700 struct drm_intel_gem_bo_bucket *bucket)
701 {
702 while (!DRMLISTEMPTY(&bucket->head)) {
703 drm_intel_bo_gem *bo_gem;
704
705 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
706 bucket->head.next, head);
707 if (drm_intel_gem_bo_madvise_internal
708 (bufmgr_gem, bo_gem, I915_MADV_DONTNEED))
709 break;
710
711 DRMLISTDEL(&bo_gem->head);
712 drm_intel_gem_bo_free(&bo_gem->bo);
713 }
714 }
715
716 static drm_intel_bo *
drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr * bufmgr,const char * name,unsigned long size,unsigned long flags,uint32_t tiling_mode,unsigned long stride,unsigned int alignment)717 drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr,
718 const char *name,
719 unsigned long size,
720 unsigned long flags,
721 uint32_t tiling_mode,
722 unsigned long stride,
723 unsigned int alignment)
724 {
725 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
726 drm_intel_bo_gem *bo_gem;
727 unsigned int page_size = getpagesize();
728 int ret;
729 struct drm_intel_gem_bo_bucket *bucket;
730 bool alloc_from_cache;
731 unsigned long bo_size;
732 bool for_render = false;
733
734 if (flags & BO_ALLOC_FOR_RENDER)
735 for_render = true;
736
737 /* Round the allocated size up to a power of two number of pages. */
738 bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size);
739
740 /* If we don't have caching at this size, don't actually round the
741 * allocation up.
742 */
743 if (bucket == NULL) {
744 bo_size = size;
745 if (bo_size < page_size)
746 bo_size = page_size;
747 } else {
748 bo_size = bucket->size;
749 }
750
751 pthread_mutex_lock(&bufmgr_gem->lock);
752 /* Get a buffer out of the cache if available */
753 retry:
754 alloc_from_cache = false;
755 if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) {
756 if (for_render) {
757 /* Allocate new render-target BOs from the tail (MRU)
758 * of the list, as it will likely be hot in the GPU
759 * cache and in the aperture for us.
760 */
761 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
762 bucket->head.prev, head);
763 DRMLISTDEL(&bo_gem->head);
764 alloc_from_cache = true;
765 bo_gem->bo.align = alignment;
766 } else {
767 assert(alignment == 0);
768 /* For non-render-target BOs (where we're probably
769 * going to map it first thing in order to fill it
770 * with data), check if the last BO in the cache is
771 * unbusy, and only reuse in that case. Otherwise,
772 * allocating a new buffer is probably faster than
773 * waiting for the GPU to finish.
774 */
775 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
776 bucket->head.next, head);
777 if (!drm_intel_gem_bo_busy(&bo_gem->bo)) {
778 alloc_from_cache = true;
779 DRMLISTDEL(&bo_gem->head);
780 }
781 }
782
783 if (alloc_from_cache) {
784 if (!drm_intel_gem_bo_madvise_internal
785 (bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) {
786 drm_intel_gem_bo_free(&bo_gem->bo);
787 drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem,
788 bucket);
789 goto retry;
790 }
791
792 if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
793 tiling_mode,
794 stride)) {
795 drm_intel_gem_bo_free(&bo_gem->bo);
796 goto retry;
797 }
798 }
799 }
800 pthread_mutex_unlock(&bufmgr_gem->lock);
801
802 if (!alloc_from_cache) {
803 struct drm_i915_gem_create create;
804
805 bo_gem = calloc(1, sizeof(*bo_gem));
806 if (!bo_gem)
807 return NULL;
808
809 bo_gem->bo.size = bo_size;
810
811 memclear(create);
812 create.size = bo_size;
813
814 ret = drmIoctl(bufmgr_gem->fd,
815 DRM_IOCTL_I915_GEM_CREATE,
816 &create);
817 bo_gem->gem_handle = create.handle;
818 bo_gem->bo.handle = bo_gem->gem_handle;
819 if (ret != 0) {
820 free(bo_gem);
821 return NULL;
822 }
823 bo_gem->bo.bufmgr = bufmgr;
824 bo_gem->bo.align = alignment;
825
826 bo_gem->tiling_mode = I915_TILING_NONE;
827 bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
828 bo_gem->stride = 0;
829
830 /* drm_intel_gem_bo_free calls DRMLISTDEL() for an uninitialized
831 list (vma_list), so better set the list head here */
832 DRMINITLISTHEAD(&bo_gem->name_list);
833 DRMINITLISTHEAD(&bo_gem->vma_list);
834 if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
835 tiling_mode,
836 stride)) {
837 drm_intel_gem_bo_free(&bo_gem->bo);
838 return NULL;
839 }
840 }
841
842 bo_gem->name = name;
843 atomic_set(&bo_gem->refcount, 1);
844 bo_gem->validate_index = -1;
845 bo_gem->reloc_tree_fences = 0;
846 bo_gem->used_as_reloc_target = false;
847 bo_gem->has_error = false;
848 bo_gem->reusable = true;
849 bo_gem->use_48b_address_range = false;
850
851 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, alignment);
852
853 DBG("bo_create: buf %d (%s) %ldb\n",
854 bo_gem->gem_handle, bo_gem->name, size);
855
856 return &bo_gem->bo;
857 }
858
859 static drm_intel_bo *
drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr * bufmgr,const char * name,unsigned long size,unsigned int alignment)860 drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr,
861 const char *name,
862 unsigned long size,
863 unsigned int alignment)
864 {
865 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size,
866 BO_ALLOC_FOR_RENDER,
867 I915_TILING_NONE, 0,
868 alignment);
869 }
870
871 static drm_intel_bo *
drm_intel_gem_bo_alloc(drm_intel_bufmgr * bufmgr,const char * name,unsigned long size,unsigned int alignment)872 drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr,
873 const char *name,
874 unsigned long size,
875 unsigned int alignment)
876 {
877 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0,
878 I915_TILING_NONE, 0, 0);
879 }
880
881 static drm_intel_bo *
drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr * bufmgr,const char * name,int x,int y,int cpp,uint32_t * tiling_mode,unsigned long * pitch,unsigned long flags)882 drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name,
883 int x, int y, int cpp, uint32_t *tiling_mode,
884 unsigned long *pitch, unsigned long flags)
885 {
886 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
887 unsigned long size, stride;
888 uint32_t tiling;
889
890 do {
891 unsigned long aligned_y, height_alignment;
892
893 tiling = *tiling_mode;
894
895 /* If we're tiled, our allocations are in 8 or 32-row blocks,
896 * so failure to align our height means that we won't allocate
897 * enough pages.
898 *
899 * If we're untiled, we still have to align to 2 rows high
900 * because the data port accesses 2x2 blocks even if the
901 * bottom row isn't to be rendered, so failure to align means
902 * we could walk off the end of the GTT and fault. This is
903 * documented on 965, and may be the case on older chipsets
904 * too so we try to be careful.
905 */
906 aligned_y = y;
907 height_alignment = 2;
908
909 if ((bufmgr_gem->gen == 2) && tiling != I915_TILING_NONE)
910 height_alignment = 16;
911 else if (tiling == I915_TILING_X
912 || (IS_915(bufmgr_gem->pci_device)
913 && tiling == I915_TILING_Y))
914 height_alignment = 8;
915 else if (tiling == I915_TILING_Y)
916 height_alignment = 32;
917 aligned_y = ALIGN(y, height_alignment);
918
919 stride = x * cpp;
920 stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, tiling_mode);
921 size = stride * aligned_y;
922 size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode);
923 } while (*tiling_mode != tiling);
924 *pitch = stride;
925
926 if (tiling == I915_TILING_NONE)
927 stride = 0;
928
929 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags,
930 tiling, stride, 0);
931 }
932
933 static drm_intel_bo *
drm_intel_gem_bo_alloc_userptr(drm_intel_bufmgr * bufmgr,const char * name,void * addr,uint32_t tiling_mode,uint32_t stride,unsigned long size,unsigned long flags)934 drm_intel_gem_bo_alloc_userptr(drm_intel_bufmgr *bufmgr,
935 const char *name,
936 void *addr,
937 uint32_t tiling_mode,
938 uint32_t stride,
939 unsigned long size,
940 unsigned long flags)
941 {
942 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
943 drm_intel_bo_gem *bo_gem;
944 int ret;
945 struct drm_i915_gem_userptr userptr;
946
947 /* Tiling with userptr surfaces is not supported
948 * on all hardware so refuse it for time being.
949 */
950 if (tiling_mode != I915_TILING_NONE)
951 return NULL;
952
953 bo_gem = calloc(1, sizeof(*bo_gem));
954 if (!bo_gem)
955 return NULL;
956
957 bo_gem->bo.size = size;
958
959 memclear(userptr);
960 userptr.user_ptr = (__u64)((unsigned long)addr);
961 userptr.user_size = size;
962 userptr.flags = flags;
963
964 ret = drmIoctl(bufmgr_gem->fd,
965 DRM_IOCTL_I915_GEM_USERPTR,
966 &userptr);
967 if (ret != 0) {
968 DBG("bo_create_userptr: "
969 "ioctl failed with user ptr %p size 0x%lx, "
970 "user flags 0x%lx\n", addr, size, flags);
971 free(bo_gem);
972 return NULL;
973 }
974
975 bo_gem->gem_handle = userptr.handle;
976 bo_gem->bo.handle = bo_gem->gem_handle;
977 bo_gem->bo.bufmgr = bufmgr;
978 bo_gem->is_userptr = true;
979 bo_gem->bo.virtual = addr;
980 /* Save the address provided by user */
981 bo_gem->user_virtual = addr;
982 bo_gem->tiling_mode = I915_TILING_NONE;
983 bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
984 bo_gem->stride = 0;
985
986 DRMINITLISTHEAD(&bo_gem->name_list);
987 DRMINITLISTHEAD(&bo_gem->vma_list);
988
989 bo_gem->name = name;
990 atomic_set(&bo_gem->refcount, 1);
991 bo_gem->validate_index = -1;
992 bo_gem->reloc_tree_fences = 0;
993 bo_gem->used_as_reloc_target = false;
994 bo_gem->has_error = false;
995 bo_gem->reusable = false;
996 bo_gem->use_48b_address_range = false;
997
998 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
999
1000 DBG("bo_create_userptr: "
1001 "ptr %p buf %d (%s) size %ldb, stride 0x%x, tile mode %d\n",
1002 addr, bo_gem->gem_handle, bo_gem->name,
1003 size, stride, tiling_mode);
1004
1005 return &bo_gem->bo;
1006 }
1007
1008 static bool
has_userptr(drm_intel_bufmgr_gem * bufmgr_gem)1009 has_userptr(drm_intel_bufmgr_gem *bufmgr_gem)
1010 {
1011 int ret;
1012 void *ptr;
1013 long pgsz;
1014 struct drm_i915_gem_userptr userptr;
1015
1016 pgsz = sysconf(_SC_PAGESIZE);
1017 assert(pgsz > 0);
1018
1019 ret = posix_memalign(&ptr, pgsz, pgsz);
1020 if (ret) {
1021 DBG("Failed to get a page (%ld) for userptr detection!\n",
1022 pgsz);
1023 return false;
1024 }
1025
1026 memclear(userptr);
1027 userptr.user_ptr = (__u64)(unsigned long)ptr;
1028 userptr.user_size = pgsz;
1029
1030 retry:
1031 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_USERPTR, &userptr);
1032 if (ret) {
1033 if (errno == ENODEV && userptr.flags == 0) {
1034 userptr.flags = I915_USERPTR_UNSYNCHRONIZED;
1035 goto retry;
1036 }
1037 free(ptr);
1038 return false;
1039 }
1040
1041 /* We don't release the userptr bo here as we want to keep the
1042 * kernel mm tracking alive for our lifetime. The first time we
1043 * create a userptr object the kernel has to install a mmu_notifer
1044 * which is a heavyweight operation (e.g. it requires taking all
1045 * mm_locks and stop_machine()).
1046 */
1047
1048 bufmgr_gem->userptr_active.ptr = ptr;
1049 bufmgr_gem->userptr_active.handle = userptr.handle;
1050
1051 return true;
1052 }
1053
1054 static drm_intel_bo *
check_bo_alloc_userptr(drm_intel_bufmgr * bufmgr,const char * name,void * addr,uint32_t tiling_mode,uint32_t stride,unsigned long size,unsigned long flags)1055 check_bo_alloc_userptr(drm_intel_bufmgr *bufmgr,
1056 const char *name,
1057 void *addr,
1058 uint32_t tiling_mode,
1059 uint32_t stride,
1060 unsigned long size,
1061 unsigned long flags)
1062 {
1063 if (has_userptr((drm_intel_bufmgr_gem *)bufmgr))
1064 bufmgr->bo_alloc_userptr = drm_intel_gem_bo_alloc_userptr;
1065 else
1066 bufmgr->bo_alloc_userptr = NULL;
1067
1068 return drm_intel_bo_alloc_userptr(bufmgr, name, addr,
1069 tiling_mode, stride, size, flags);
1070 }
1071
1072 /**
1073 * Returns a drm_intel_bo wrapping the given buffer object handle.
1074 *
1075 * This can be used when one application needs to pass a buffer object
1076 * to another.
1077 */
1078 drm_intel_bo *
drm_intel_bo_gem_create_from_name(drm_intel_bufmgr * bufmgr,const char * name,unsigned int handle)1079 drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr,
1080 const char *name,
1081 unsigned int handle)
1082 {
1083 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1084 drm_intel_bo_gem *bo_gem;
1085 int ret;
1086 struct drm_gem_open open_arg;
1087 struct drm_i915_gem_get_tiling get_tiling;
1088 drmMMListHead *list;
1089
1090 /* At the moment most applications only have a few named bo.
1091 * For instance, in a DRI client only the render buffers passed
1092 * between X and the client are named. And since X returns the
1093 * alternating names for the front/back buffer a linear search
1094 * provides a sufficiently fast match.
1095 */
1096 pthread_mutex_lock(&bufmgr_gem->lock);
1097 for (list = bufmgr_gem->named.next;
1098 list != &bufmgr_gem->named;
1099 list = list->next) {
1100 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
1101 if (bo_gem->global_name == handle) {
1102 drm_intel_gem_bo_reference(&bo_gem->bo);
1103 pthread_mutex_unlock(&bufmgr_gem->lock);
1104 return &bo_gem->bo;
1105 }
1106 }
1107
1108 memclear(open_arg);
1109 open_arg.name = handle;
1110 ret = drmIoctl(bufmgr_gem->fd,
1111 DRM_IOCTL_GEM_OPEN,
1112 &open_arg);
1113 if (ret != 0) {
1114 DBG("Couldn't reference %s handle 0x%08x: %s\n",
1115 name, handle, strerror(errno));
1116 pthread_mutex_unlock(&bufmgr_gem->lock);
1117 return NULL;
1118 }
1119 /* Now see if someone has used a prime handle to get this
1120 * object from the kernel before by looking through the list
1121 * again for a matching gem_handle
1122 */
1123 for (list = bufmgr_gem->named.next;
1124 list != &bufmgr_gem->named;
1125 list = list->next) {
1126 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
1127 if (bo_gem->gem_handle == open_arg.handle) {
1128 drm_intel_gem_bo_reference(&bo_gem->bo);
1129 pthread_mutex_unlock(&bufmgr_gem->lock);
1130 return &bo_gem->bo;
1131 }
1132 }
1133
1134 bo_gem = calloc(1, sizeof(*bo_gem));
1135 if (!bo_gem) {
1136 pthread_mutex_unlock(&bufmgr_gem->lock);
1137 return NULL;
1138 }
1139
1140 bo_gem->bo.size = open_arg.size;
1141 bo_gem->bo.offset = 0;
1142 bo_gem->bo.offset64 = 0;
1143 bo_gem->bo.virtual = NULL;
1144 bo_gem->bo.bufmgr = bufmgr;
1145 bo_gem->name = name;
1146 atomic_set(&bo_gem->refcount, 1);
1147 bo_gem->validate_index = -1;
1148 bo_gem->gem_handle = open_arg.handle;
1149 bo_gem->bo.handle = open_arg.handle;
1150 bo_gem->global_name = handle;
1151 bo_gem->reusable = false;
1152 bo_gem->use_48b_address_range = false;
1153
1154 memclear(get_tiling);
1155 get_tiling.handle = bo_gem->gem_handle;
1156 ret = drmIoctl(bufmgr_gem->fd,
1157 DRM_IOCTL_I915_GEM_GET_TILING,
1158 &get_tiling);
1159 if (ret != 0) {
1160 drm_intel_gem_bo_unreference(&bo_gem->bo);
1161 pthread_mutex_unlock(&bufmgr_gem->lock);
1162 return NULL;
1163 }
1164 bo_gem->tiling_mode = get_tiling.tiling_mode;
1165 bo_gem->swizzle_mode = get_tiling.swizzle_mode;
1166 /* XXX stride is unknown */
1167 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
1168
1169 DRMINITLISTHEAD(&bo_gem->vma_list);
1170 DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
1171 pthread_mutex_unlock(&bufmgr_gem->lock);
1172 DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name);
1173
1174 return &bo_gem->bo;
1175 }
1176
1177 static void
drm_intel_gem_bo_free(drm_intel_bo * bo)1178 drm_intel_gem_bo_free(drm_intel_bo *bo)
1179 {
1180 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1181 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1182 struct drm_gem_close close;
1183 int ret;
1184
1185 DRMLISTDEL(&bo_gem->vma_list);
1186 if (bo_gem->mem_virtual) {
1187 VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_virtual, 0));
1188 drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1189 bufmgr_gem->vma_count--;
1190 }
1191 if (bo_gem->gtt_virtual) {
1192 drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1193 bufmgr_gem->vma_count--;
1194 }
1195
1196 /* Close this object */
1197 memclear(close);
1198 close.handle = bo_gem->gem_handle;
1199 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close);
1200 if (ret != 0) {
1201 DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
1202 bo_gem->gem_handle, bo_gem->name, strerror(errno));
1203 }
1204 free(bo);
1205 }
1206
1207 static void
drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo * bo)1208 drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo *bo)
1209 {
1210 #if HAVE_VALGRIND
1211 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1212
1213 if (bo_gem->mem_virtual)
1214 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_virtual, bo->size);
1215
1216 if (bo_gem->gtt_virtual)
1217 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->gtt_virtual, bo->size);
1218 #endif
1219 }
1220
1221 /** Frees all cached buffers significantly older than @time. */
1222 static void
drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem * bufmgr_gem,time_t time)1223 drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time)
1224 {
1225 int i;
1226
1227 if (bufmgr_gem->time == time)
1228 return;
1229
1230 for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1231 struct drm_intel_gem_bo_bucket *bucket =
1232 &bufmgr_gem->cache_bucket[i];
1233
1234 while (!DRMLISTEMPTY(&bucket->head)) {
1235 drm_intel_bo_gem *bo_gem;
1236
1237 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1238 bucket->head.next, head);
1239 if (time - bo_gem->free_time <= 1)
1240 break;
1241
1242 DRMLISTDEL(&bo_gem->head);
1243
1244 drm_intel_gem_bo_free(&bo_gem->bo);
1245 }
1246 }
1247
1248 bufmgr_gem->time = time;
1249 }
1250
drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem * bufmgr_gem)1251 static void drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem *bufmgr_gem)
1252 {
1253 int limit;
1254
1255 DBG("%s: cached=%d, open=%d, limit=%d\n", __FUNCTION__,
1256 bufmgr_gem->vma_count, bufmgr_gem->vma_open, bufmgr_gem->vma_max);
1257
1258 if (bufmgr_gem->vma_max < 0)
1259 return;
1260
1261 /* We may need to evict a few entries in order to create new mmaps */
1262 limit = bufmgr_gem->vma_max - 2*bufmgr_gem->vma_open;
1263 if (limit < 0)
1264 limit = 0;
1265
1266 while (bufmgr_gem->vma_count > limit) {
1267 drm_intel_bo_gem *bo_gem;
1268
1269 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1270 bufmgr_gem->vma_cache.next,
1271 vma_list);
1272 assert(bo_gem->map_count == 0);
1273 DRMLISTDELINIT(&bo_gem->vma_list);
1274
1275 if (bo_gem->mem_virtual) {
1276 drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1277 bo_gem->mem_virtual = NULL;
1278 bufmgr_gem->vma_count--;
1279 }
1280 if (bo_gem->gtt_virtual) {
1281 drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1282 bo_gem->gtt_virtual = NULL;
1283 bufmgr_gem->vma_count--;
1284 }
1285 }
1286 }
1287
drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem * bufmgr_gem,drm_intel_bo_gem * bo_gem)1288 static void drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1289 drm_intel_bo_gem *bo_gem)
1290 {
1291 bufmgr_gem->vma_open--;
1292 DRMLISTADDTAIL(&bo_gem->vma_list, &bufmgr_gem->vma_cache);
1293 if (bo_gem->mem_virtual)
1294 bufmgr_gem->vma_count++;
1295 if (bo_gem->gtt_virtual)
1296 bufmgr_gem->vma_count++;
1297 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1298 }
1299
drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem * bufmgr_gem,drm_intel_bo_gem * bo_gem)1300 static void drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1301 drm_intel_bo_gem *bo_gem)
1302 {
1303 bufmgr_gem->vma_open++;
1304 DRMLISTDEL(&bo_gem->vma_list);
1305 if (bo_gem->mem_virtual)
1306 bufmgr_gem->vma_count--;
1307 if (bo_gem->gtt_virtual)
1308 bufmgr_gem->vma_count--;
1309 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1310 }
1311
1312 static void
drm_intel_gem_bo_unreference_final(drm_intel_bo * bo,time_t time)1313 drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time)
1314 {
1315 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1316 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1317 struct drm_intel_gem_bo_bucket *bucket;
1318 int i;
1319
1320 /* Unreference all the target buffers */
1321 for (i = 0; i < bo_gem->reloc_count; i++) {
1322 if (bo_gem->reloc_target_info[i].bo != bo) {
1323 drm_intel_gem_bo_unreference_locked_timed(bo_gem->
1324 reloc_target_info[i].bo,
1325 time);
1326 }
1327 }
1328 for (i = 0; i < bo_gem->softpin_target_count; i++)
1329 drm_intel_gem_bo_unreference_locked_timed(bo_gem->softpin_target[i],
1330 time);
1331 bo_gem->reloc_count = 0;
1332 bo_gem->used_as_reloc_target = false;
1333 bo_gem->softpin_target_count = 0;
1334
1335 DBG("bo_unreference final: %d (%s)\n",
1336 bo_gem->gem_handle, bo_gem->name);
1337
1338 /* release memory associated with this object */
1339 if (bo_gem->reloc_target_info) {
1340 free(bo_gem->reloc_target_info);
1341 bo_gem->reloc_target_info = NULL;
1342 }
1343 if (bo_gem->relocs) {
1344 free(bo_gem->relocs);
1345 bo_gem->relocs = NULL;
1346 }
1347 if (bo_gem->softpin_target) {
1348 free(bo_gem->softpin_target);
1349 bo_gem->softpin_target = NULL;
1350 bo_gem->softpin_target_size = 0;
1351 }
1352
1353 /* Clear any left-over mappings */
1354 if (bo_gem->map_count) {
1355 DBG("bo freed with non-zero map-count %d\n", bo_gem->map_count);
1356 bo_gem->map_count = 0;
1357 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1358 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1359 }
1360
1361 DRMLISTDEL(&bo_gem->name_list);
1362
1363 bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size);
1364 /* Put the buffer into our internal cache for reuse if we can. */
1365 if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL &&
1366 drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem,
1367 I915_MADV_DONTNEED)) {
1368 bo_gem->free_time = time;
1369
1370 bo_gem->name = NULL;
1371 bo_gem->validate_index = -1;
1372
1373 DRMLISTADDTAIL(&bo_gem->head, &bucket->head);
1374 } else {
1375 drm_intel_gem_bo_free(bo);
1376 }
1377 }
1378
drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo * bo,time_t time)1379 static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
1380 time_t time)
1381 {
1382 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1383
1384 assert(atomic_read(&bo_gem->refcount) > 0);
1385 if (atomic_dec_and_test(&bo_gem->refcount))
1386 drm_intel_gem_bo_unreference_final(bo, time);
1387 }
1388
drm_intel_gem_bo_unreference(drm_intel_bo * bo)1389 static void drm_intel_gem_bo_unreference(drm_intel_bo *bo)
1390 {
1391 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1392
1393 assert(atomic_read(&bo_gem->refcount) > 0);
1394
1395 if (atomic_add_unless(&bo_gem->refcount, -1, 1)) {
1396 drm_intel_bufmgr_gem *bufmgr_gem =
1397 (drm_intel_bufmgr_gem *) bo->bufmgr;
1398 struct timespec time;
1399
1400 clock_gettime(CLOCK_MONOTONIC, &time);
1401
1402 pthread_mutex_lock(&bufmgr_gem->lock);
1403
1404 if (atomic_dec_and_test(&bo_gem->refcount)) {
1405 drm_intel_gem_bo_unreference_final(bo, time.tv_sec);
1406 drm_intel_gem_cleanup_bo_cache(bufmgr_gem, time.tv_sec);
1407 }
1408
1409 pthread_mutex_unlock(&bufmgr_gem->lock);
1410 }
1411 }
1412
drm_intel_gem_bo_map(drm_intel_bo * bo,int write_enable)1413 static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable)
1414 {
1415 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1416 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1417 struct drm_i915_gem_set_domain set_domain;
1418 int ret;
1419
1420 if (bo_gem->is_userptr) {
1421 /* Return the same user ptr */
1422 bo->virtual = bo_gem->user_virtual;
1423 return 0;
1424 }
1425
1426 pthread_mutex_lock(&bufmgr_gem->lock);
1427
1428 if (bo_gem->map_count++ == 0)
1429 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1430
1431 if (!bo_gem->mem_virtual) {
1432 struct drm_i915_gem_mmap mmap_arg;
1433
1434 DBG("bo_map: %d (%s), map_count=%d\n",
1435 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1436
1437 memclear(mmap_arg);
1438 mmap_arg.handle = bo_gem->gem_handle;
1439 mmap_arg.size = bo->size;
1440 ret = drmIoctl(bufmgr_gem->fd,
1441 DRM_IOCTL_I915_GEM_MMAP,
1442 &mmap_arg);
1443 if (ret != 0) {
1444 ret = -errno;
1445 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1446 __FILE__, __LINE__, bo_gem->gem_handle,
1447 bo_gem->name, strerror(errno));
1448 if (--bo_gem->map_count == 0)
1449 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1450 pthread_mutex_unlock(&bufmgr_gem->lock);
1451 return ret;
1452 }
1453 VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
1454 bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
1455 }
1456 DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1457 bo_gem->mem_virtual);
1458 bo->virtual = bo_gem->mem_virtual;
1459
1460 memclear(set_domain);
1461 set_domain.handle = bo_gem->gem_handle;
1462 set_domain.read_domains = I915_GEM_DOMAIN_CPU;
1463 if (write_enable)
1464 set_domain.write_domain = I915_GEM_DOMAIN_CPU;
1465 else
1466 set_domain.write_domain = 0;
1467 ret = drmIoctl(bufmgr_gem->fd,
1468 DRM_IOCTL_I915_GEM_SET_DOMAIN,
1469 &set_domain);
1470 if (ret != 0) {
1471 DBG("%s:%d: Error setting to CPU domain %d: %s\n",
1472 __FILE__, __LINE__, bo_gem->gem_handle,
1473 strerror(errno));
1474 }
1475
1476 if (write_enable)
1477 bo_gem->mapped_cpu_write = true;
1478
1479 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1480 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_virtual, bo->size));
1481 pthread_mutex_unlock(&bufmgr_gem->lock);
1482
1483 return 0;
1484 }
1485
1486 static int
map_gtt(drm_intel_bo * bo)1487 map_gtt(drm_intel_bo *bo)
1488 {
1489 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1490 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1491 int ret;
1492
1493 if (bo_gem->is_userptr)
1494 return -EINVAL;
1495
1496 if (bo_gem->map_count++ == 0)
1497 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1498
1499 /* Get a mapping of the buffer if we haven't before. */
1500 if (bo_gem->gtt_virtual == NULL) {
1501 struct drm_i915_gem_mmap_gtt mmap_arg;
1502
1503 DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
1504 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1505
1506 memclear(mmap_arg);
1507 mmap_arg.handle = bo_gem->gem_handle;
1508
1509 /* Get the fake offset back... */
1510 ret = drmIoctl(bufmgr_gem->fd,
1511 DRM_IOCTL_I915_GEM_MMAP_GTT,
1512 &mmap_arg);
1513 if (ret != 0) {
1514 ret = -errno;
1515 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1516 __FILE__, __LINE__,
1517 bo_gem->gem_handle, bo_gem->name,
1518 strerror(errno));
1519 if (--bo_gem->map_count == 0)
1520 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1521 return ret;
1522 }
1523
1524 /* and mmap it */
1525 bo_gem->gtt_virtual = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
1526 MAP_SHARED, bufmgr_gem->fd,
1527 mmap_arg.offset);
1528 if (bo_gem->gtt_virtual == MAP_FAILED) {
1529 bo_gem->gtt_virtual = NULL;
1530 ret = -errno;
1531 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1532 __FILE__, __LINE__,
1533 bo_gem->gem_handle, bo_gem->name,
1534 strerror(errno));
1535 if (--bo_gem->map_count == 0)
1536 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1537 return ret;
1538 }
1539 }
1540
1541 bo->virtual = bo_gem->gtt_virtual;
1542
1543 DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1544 bo_gem->gtt_virtual);
1545
1546 return 0;
1547 }
1548
1549 int
drm_intel_gem_bo_map_gtt(drm_intel_bo * bo)1550 drm_intel_gem_bo_map_gtt(drm_intel_bo *bo)
1551 {
1552 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1553 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1554 struct drm_i915_gem_set_domain set_domain;
1555 int ret;
1556
1557 pthread_mutex_lock(&bufmgr_gem->lock);
1558
1559 ret = map_gtt(bo);
1560 if (ret) {
1561 pthread_mutex_unlock(&bufmgr_gem->lock);
1562 return ret;
1563 }
1564
1565 /* Now move it to the GTT domain so that the GPU and CPU
1566 * caches are flushed and the GPU isn't actively using the
1567 * buffer.
1568 *
1569 * The pagefault handler does this domain change for us when
1570 * it has unbound the BO from the GTT, but it's up to us to
1571 * tell it when we're about to use things if we had done
1572 * rendering and it still happens to be bound to the GTT.
1573 */
1574 memclear(set_domain);
1575 set_domain.handle = bo_gem->gem_handle;
1576 set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1577 set_domain.write_domain = I915_GEM_DOMAIN_GTT;
1578 ret = drmIoctl(bufmgr_gem->fd,
1579 DRM_IOCTL_I915_GEM_SET_DOMAIN,
1580 &set_domain);
1581 if (ret != 0) {
1582 DBG("%s:%d: Error setting domain %d: %s\n",
1583 __FILE__, __LINE__, bo_gem->gem_handle,
1584 strerror(errno));
1585 }
1586
1587 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1588 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1589 pthread_mutex_unlock(&bufmgr_gem->lock);
1590
1591 return 0;
1592 }
1593
1594 /**
1595 * Performs a mapping of the buffer object like the normal GTT
1596 * mapping, but avoids waiting for the GPU to be done reading from or
1597 * rendering to the buffer.
1598 *
1599 * This is used in the implementation of GL_ARB_map_buffer_range: The
1600 * user asks to create a buffer, then does a mapping, fills some
1601 * space, runs a drawing command, then asks to map it again without
1602 * synchronizing because it guarantees that it won't write over the
1603 * data that the GPU is busy using (or, more specifically, that if it
1604 * does write over the data, it acknowledges that rendering is
1605 * undefined).
1606 */
1607
1608 int
drm_intel_gem_bo_map_unsynchronized(drm_intel_bo * bo)1609 drm_intel_gem_bo_map_unsynchronized(drm_intel_bo *bo)
1610 {
1611 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1612 #ifdef HAVE_VALGRIND
1613 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1614 #endif
1615 int ret;
1616
1617 /* If the CPU cache isn't coherent with the GTT, then use a
1618 * regular synchronized mapping. The problem is that we don't
1619 * track where the buffer was last used on the CPU side in
1620 * terms of drm_intel_bo_map vs drm_intel_gem_bo_map_gtt, so
1621 * we would potentially corrupt the buffer even when the user
1622 * does reasonable things.
1623 */
1624 if (!bufmgr_gem->has_llc)
1625 return drm_intel_gem_bo_map_gtt(bo);
1626
1627 pthread_mutex_lock(&bufmgr_gem->lock);
1628
1629 ret = map_gtt(bo);
1630 if (ret == 0) {
1631 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1632 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1633 }
1634
1635 pthread_mutex_unlock(&bufmgr_gem->lock);
1636
1637 return ret;
1638 }
1639
drm_intel_gem_bo_unmap(drm_intel_bo * bo)1640 static int drm_intel_gem_bo_unmap(drm_intel_bo *bo)
1641 {
1642 drm_intel_bufmgr_gem *bufmgr_gem;
1643 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1644 int ret = 0;
1645
1646 if (bo == NULL)
1647 return 0;
1648
1649 if (bo_gem->is_userptr)
1650 return 0;
1651
1652 bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1653
1654 pthread_mutex_lock(&bufmgr_gem->lock);
1655
1656 if (bo_gem->map_count <= 0) {
1657 DBG("attempted to unmap an unmapped bo\n");
1658 pthread_mutex_unlock(&bufmgr_gem->lock);
1659 /* Preserve the old behaviour of just treating this as a
1660 * no-op rather than reporting the error.
1661 */
1662 return 0;
1663 }
1664
1665 if (bo_gem->mapped_cpu_write) {
1666 struct drm_i915_gem_sw_finish sw_finish;
1667
1668 /* Cause a flush to happen if the buffer's pinned for
1669 * scanout, so the results show up in a timely manner.
1670 * Unlike GTT set domains, this only does work if the
1671 * buffer should be scanout-related.
1672 */
1673 memclear(sw_finish);
1674 sw_finish.handle = bo_gem->gem_handle;
1675 ret = drmIoctl(bufmgr_gem->fd,
1676 DRM_IOCTL_I915_GEM_SW_FINISH,
1677 &sw_finish);
1678 ret = ret == -1 ? -errno : 0;
1679
1680 bo_gem->mapped_cpu_write = false;
1681 }
1682
1683 /* We need to unmap after every innovation as we cannot track
1684 * an open vma for every bo as that will exhaasut the system
1685 * limits and cause later failures.
1686 */
1687 if (--bo_gem->map_count == 0) {
1688 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1689 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1690 bo->virtual = NULL;
1691 }
1692 pthread_mutex_unlock(&bufmgr_gem->lock);
1693
1694 return ret;
1695 }
1696
1697 int
drm_intel_gem_bo_unmap_gtt(drm_intel_bo * bo)1698 drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo)
1699 {
1700 return drm_intel_gem_bo_unmap(bo);
1701 }
1702
1703 static int
drm_intel_gem_bo_subdata(drm_intel_bo * bo,unsigned long offset,unsigned long size,const void * data)1704 drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset,
1705 unsigned long size, const void *data)
1706 {
1707 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1708 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1709 struct drm_i915_gem_pwrite pwrite;
1710 int ret;
1711
1712 if (bo_gem->is_userptr)
1713 return -EINVAL;
1714
1715 memclear(pwrite);
1716 pwrite.handle = bo_gem->gem_handle;
1717 pwrite.offset = offset;
1718 pwrite.size = size;
1719 pwrite.data_ptr = (uint64_t) (uintptr_t) data;
1720 ret = drmIoctl(bufmgr_gem->fd,
1721 DRM_IOCTL_I915_GEM_PWRITE,
1722 &pwrite);
1723 if (ret != 0) {
1724 ret = -errno;
1725 DBG("%s:%d: Error writing data to buffer %d: (%d %d) %s .\n",
1726 __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1727 (int)size, strerror(errno));
1728 }
1729
1730 return ret;
1731 }
1732
1733 static int
drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr * bufmgr,int crtc_id)1734 drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id)
1735 {
1736 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1737 struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id;
1738 int ret;
1739
1740 memclear(get_pipe_from_crtc_id);
1741 get_pipe_from_crtc_id.crtc_id = crtc_id;
1742 ret = drmIoctl(bufmgr_gem->fd,
1743 DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID,
1744 &get_pipe_from_crtc_id);
1745 if (ret != 0) {
1746 /* We return -1 here to signal that we don't
1747 * know which pipe is associated with this crtc.
1748 * This lets the caller know that this information
1749 * isn't available; using the wrong pipe for
1750 * vblank waiting can cause the chipset to lock up
1751 */
1752 return -1;
1753 }
1754
1755 return get_pipe_from_crtc_id.pipe;
1756 }
1757
1758 static int
drm_intel_gem_bo_get_subdata(drm_intel_bo * bo,unsigned long offset,unsigned long size,void * data)1759 drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset,
1760 unsigned long size, void *data)
1761 {
1762 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1763 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1764 struct drm_i915_gem_pread pread;
1765 int ret;
1766
1767 if (bo_gem->is_userptr)
1768 return -EINVAL;
1769
1770 memclear(pread);
1771 pread.handle = bo_gem->gem_handle;
1772 pread.offset = offset;
1773 pread.size = size;
1774 pread.data_ptr = (uint64_t) (uintptr_t) data;
1775 ret = drmIoctl(bufmgr_gem->fd,
1776 DRM_IOCTL_I915_GEM_PREAD,
1777 &pread);
1778 if (ret != 0) {
1779 ret = -errno;
1780 DBG("%s:%d: Error reading data from buffer %d: (%d %d) %s .\n",
1781 __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1782 (int)size, strerror(errno));
1783 }
1784
1785 return ret;
1786 }
1787
1788 /** Waits for all GPU rendering with the object to have completed. */
1789 static void
drm_intel_gem_bo_wait_rendering(drm_intel_bo * bo)1790 drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo)
1791 {
1792 drm_intel_gem_bo_start_gtt_access(bo, 1);
1793 }
1794
1795 /**
1796 * Waits on a BO for the given amount of time.
1797 *
1798 * @bo: buffer object to wait for
1799 * @timeout_ns: amount of time to wait in nanoseconds.
1800 * If value is less than 0, an infinite wait will occur.
1801 *
1802 * Returns 0 if the wait was successful ie. the last batch referencing the
1803 * object has completed within the allotted time. Otherwise some negative return
1804 * value describes the error. Of particular interest is -ETIME when the wait has
1805 * failed to yield the desired result.
1806 *
1807 * Similar to drm_intel_gem_bo_wait_rendering except a timeout parameter allows
1808 * the operation to give up after a certain amount of time. Another subtle
1809 * difference is the internal locking semantics are different (this variant does
1810 * not hold the lock for the duration of the wait). This makes the wait subject
1811 * to a larger userspace race window.
1812 *
1813 * The implementation shall wait until the object is no longer actively
1814 * referenced within a batch buffer at the time of the call. The wait will
1815 * not guarantee that the buffer is re-issued via another thread, or an flinked
1816 * handle. Userspace must make sure this race does not occur if such precision
1817 * is important.
1818 *
1819 * Note that some kernels have broken the inifite wait for negative values
1820 * promise, upgrade to latest stable kernels if this is the case.
1821 */
1822 int
drm_intel_gem_bo_wait(drm_intel_bo * bo,int64_t timeout_ns)1823 drm_intel_gem_bo_wait(drm_intel_bo *bo, int64_t timeout_ns)
1824 {
1825 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1826 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1827 struct drm_i915_gem_wait wait;
1828 int ret;
1829
1830 if (!bufmgr_gem->has_wait_timeout) {
1831 DBG("%s:%d: Timed wait is not supported. Falling back to "
1832 "infinite wait\n", __FILE__, __LINE__);
1833 if (timeout_ns) {
1834 drm_intel_gem_bo_wait_rendering(bo);
1835 return 0;
1836 } else {
1837 return drm_intel_gem_bo_busy(bo) ? -ETIME : 0;
1838 }
1839 }
1840
1841 memclear(wait);
1842 wait.bo_handle = bo_gem->gem_handle;
1843 wait.timeout_ns = timeout_ns;
1844 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1845 if (ret == -1)
1846 return -errno;
1847
1848 return ret;
1849 }
1850
1851 /**
1852 * Sets the object to the GTT read and possibly write domain, used by the X
1853 * 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt().
1854 *
1855 * In combination with drm_intel_gem_bo_pin() and manual fence management, we
1856 * can do tiled pixmaps this way.
1857 */
1858 void
drm_intel_gem_bo_start_gtt_access(drm_intel_bo * bo,int write_enable)1859 drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable)
1860 {
1861 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1862 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1863 struct drm_i915_gem_set_domain set_domain;
1864 int ret;
1865
1866 memclear(set_domain);
1867 set_domain.handle = bo_gem->gem_handle;
1868 set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1869 set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0;
1870 ret = drmIoctl(bufmgr_gem->fd,
1871 DRM_IOCTL_I915_GEM_SET_DOMAIN,
1872 &set_domain);
1873 if (ret != 0) {
1874 DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s .\n",
1875 __FILE__, __LINE__, bo_gem->gem_handle,
1876 set_domain.read_domains, set_domain.write_domain,
1877 strerror(errno));
1878 }
1879 }
1880
1881 static void
drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr * bufmgr)1882 drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr)
1883 {
1884 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1885 struct drm_gem_close close_bo;
1886 int i, ret;
1887
1888 free(bufmgr_gem->exec2_objects);
1889 free(bufmgr_gem->exec_objects);
1890 free(bufmgr_gem->exec_bos);
1891
1892 pthread_mutex_destroy(&bufmgr_gem->lock);
1893
1894 /* Free any cached buffer objects we were going to reuse */
1895 for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1896 struct drm_intel_gem_bo_bucket *bucket =
1897 &bufmgr_gem->cache_bucket[i];
1898 drm_intel_bo_gem *bo_gem;
1899
1900 while (!DRMLISTEMPTY(&bucket->head)) {
1901 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1902 bucket->head.next, head);
1903 DRMLISTDEL(&bo_gem->head);
1904
1905 drm_intel_gem_bo_free(&bo_gem->bo);
1906 }
1907 }
1908
1909 /* Release userptr bo kept hanging around for optimisation. */
1910 if (bufmgr_gem->userptr_active.ptr) {
1911 memclear(close_bo);
1912 close_bo.handle = bufmgr_gem->userptr_active.handle;
1913 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close_bo);
1914 free(bufmgr_gem->userptr_active.ptr);
1915 if (ret)
1916 fprintf(stderr,
1917 "Failed to release test userptr object! (%d) "
1918 "i915 kernel driver may not be sane!\n", errno);
1919 }
1920
1921 free(bufmgr);
1922 }
1923
1924 /**
1925 * Adds the target buffer to the validation list and adds the relocation
1926 * to the reloc_buffer's relocation list.
1927 *
1928 * The relocation entry at the given offset must already contain the
1929 * precomputed relocation value, because the kernel will optimize out
1930 * the relocation entry write when the buffer hasn't moved from the
1931 * last known offset in target_bo.
1932 */
1933 static int
do_bo_emit_reloc(drm_intel_bo * bo,uint32_t offset,drm_intel_bo * target_bo,uint32_t target_offset,uint32_t read_domains,uint32_t write_domain,bool need_fence)1934 do_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
1935 drm_intel_bo *target_bo, uint32_t target_offset,
1936 uint32_t read_domains, uint32_t write_domain,
1937 bool need_fence)
1938 {
1939 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1940 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1941 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
1942 bool fenced_command;
1943
1944 if (bo_gem->has_error)
1945 return -ENOMEM;
1946
1947 if (target_bo_gem->has_error) {
1948 bo_gem->has_error = true;
1949 return -ENOMEM;
1950 }
1951
1952 /* We never use HW fences for rendering on 965+ */
1953 if (bufmgr_gem->gen >= 4)
1954 need_fence = false;
1955
1956 fenced_command = need_fence;
1957 if (target_bo_gem->tiling_mode == I915_TILING_NONE)
1958 need_fence = false;
1959
1960 /* Create a new relocation list if needed */
1961 if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo))
1962 return -ENOMEM;
1963
1964 /* Check overflow */
1965 assert(bo_gem->reloc_count < bufmgr_gem->max_relocs);
1966
1967 /* Check args */
1968 assert(offset <= bo->size - 4);
1969 assert((write_domain & (write_domain - 1)) == 0);
1970
1971 /* An object needing a fence is a tiled buffer, so it won't have
1972 * relocs to other buffers.
1973 */
1974 if (need_fence) {
1975 assert(target_bo_gem->reloc_count == 0);
1976 target_bo_gem->reloc_tree_fences = 1;
1977 }
1978
1979 /* Make sure that we're not adding a reloc to something whose size has
1980 * already been accounted for.
1981 */
1982 assert(!bo_gem->used_as_reloc_target);
1983 if (target_bo_gem != bo_gem) {
1984 target_bo_gem->used_as_reloc_target = true;
1985 bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size;
1986 bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences;
1987 }
1988
1989 bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo;
1990 if (target_bo != bo)
1991 drm_intel_gem_bo_reference(target_bo);
1992 if (fenced_command)
1993 bo_gem->reloc_target_info[bo_gem->reloc_count].flags =
1994 DRM_INTEL_RELOC_FENCE;
1995 else
1996 bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0;
1997
1998 bo_gem->relocs[bo_gem->reloc_count].offset = offset;
1999 bo_gem->relocs[bo_gem->reloc_count].delta = target_offset;
2000 bo_gem->relocs[bo_gem->reloc_count].target_handle =
2001 target_bo_gem->gem_handle;
2002 bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains;
2003 bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain;
2004 bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset64;
2005 bo_gem->reloc_count++;
2006
2007 return 0;
2008 }
2009
2010 static void
drm_intel_gem_bo_use_48b_address_range(drm_intel_bo * bo,uint32_t enable)2011 drm_intel_gem_bo_use_48b_address_range(drm_intel_bo *bo, uint32_t enable)
2012 {
2013 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2014 bo_gem->use_48b_address_range = enable;
2015 }
2016
2017 static int
drm_intel_gem_bo_add_softpin_target(drm_intel_bo * bo,drm_intel_bo * target_bo)2018 drm_intel_gem_bo_add_softpin_target(drm_intel_bo *bo, drm_intel_bo *target_bo)
2019 {
2020 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2021 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2022 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
2023 if (bo_gem->has_error)
2024 return -ENOMEM;
2025
2026 if (target_bo_gem->has_error) {
2027 bo_gem->has_error = true;
2028 return -ENOMEM;
2029 }
2030
2031 if (!target_bo_gem->is_softpin)
2032 return -EINVAL;
2033 if (target_bo_gem == bo_gem)
2034 return -EINVAL;
2035
2036 if (bo_gem->softpin_target_count == bo_gem->softpin_target_size) {
2037 int new_size = bo_gem->softpin_target_size * 2;
2038 if (new_size == 0)
2039 new_size = bufmgr_gem->max_relocs;
2040
2041 bo_gem->softpin_target = realloc(bo_gem->softpin_target, new_size *
2042 sizeof(drm_intel_bo *));
2043 if (!bo_gem->softpin_target)
2044 return -ENOMEM;
2045
2046 bo_gem->softpin_target_size = new_size;
2047 }
2048 bo_gem->softpin_target[bo_gem->softpin_target_count] = target_bo;
2049 drm_intel_gem_bo_reference(target_bo);
2050 bo_gem->softpin_target_count++;
2051
2052 return 0;
2053 }
2054
2055 static int
drm_intel_gem_bo_emit_reloc(drm_intel_bo * bo,uint32_t offset,drm_intel_bo * target_bo,uint32_t target_offset,uint32_t read_domains,uint32_t write_domain)2056 drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
2057 drm_intel_bo *target_bo, uint32_t target_offset,
2058 uint32_t read_domains, uint32_t write_domain)
2059 {
2060 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2061 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *)target_bo;
2062
2063 if (target_bo_gem->is_softpin)
2064 return drm_intel_gem_bo_add_softpin_target(bo, target_bo);
2065 else
2066 return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
2067 read_domains, write_domain,
2068 !bufmgr_gem->fenced_relocs);
2069 }
2070
2071 static int
drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo * bo,uint32_t offset,drm_intel_bo * target_bo,uint32_t target_offset,uint32_t read_domains,uint32_t write_domain)2072 drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset,
2073 drm_intel_bo *target_bo,
2074 uint32_t target_offset,
2075 uint32_t read_domains, uint32_t write_domain)
2076 {
2077 return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
2078 read_domains, write_domain, true);
2079 }
2080
2081 int
drm_intel_gem_bo_get_reloc_count(drm_intel_bo * bo)2082 drm_intel_gem_bo_get_reloc_count(drm_intel_bo *bo)
2083 {
2084 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2085
2086 return bo_gem->reloc_count;
2087 }
2088
2089 /**
2090 * Removes existing relocation entries in the BO after "start".
2091 *
2092 * This allows a user to avoid a two-step process for state setup with
2093 * counting up all the buffer objects and doing a
2094 * drm_intel_bufmgr_check_aperture_space() before emitting any of the
2095 * relocations for the state setup. Instead, save the state of the
2096 * batchbuffer including drm_intel_gem_get_reloc_count(), emit all the
2097 * state, and then check if it still fits in the aperture.
2098 *
2099 * Any further drm_intel_bufmgr_check_aperture_space() queries
2100 * involving this buffer in the tree are undefined after this call.
2101 *
2102 * This also removes all softpinned targets being referenced by the BO.
2103 */
2104 void
drm_intel_gem_bo_clear_relocs(drm_intel_bo * bo,int start)2105 drm_intel_gem_bo_clear_relocs(drm_intel_bo *bo, int start)
2106 {
2107 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2108 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2109 int i;
2110 struct timespec time;
2111
2112 clock_gettime(CLOCK_MONOTONIC, &time);
2113
2114 assert(bo_gem->reloc_count >= start);
2115
2116 /* Unreference the cleared target buffers */
2117 pthread_mutex_lock(&bufmgr_gem->lock);
2118
2119 for (i = start; i < bo_gem->reloc_count; i++) {
2120 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->reloc_target_info[i].bo;
2121 if (&target_bo_gem->bo != bo) {
2122 bo_gem->reloc_tree_fences -= target_bo_gem->reloc_tree_fences;
2123 drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo,
2124 time.tv_sec);
2125 }
2126 }
2127 bo_gem->reloc_count = start;
2128
2129 for (i = 0; i < bo_gem->softpin_target_count; i++) {
2130 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->softpin_target[i];
2131 drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo, time.tv_sec);
2132 }
2133 bo_gem->softpin_target_count = 0;
2134
2135 pthread_mutex_unlock(&bufmgr_gem->lock);
2136
2137 }
2138
2139 /**
2140 * Walk the tree of relocations rooted at BO and accumulate the list of
2141 * validations to be performed and update the relocation buffers with
2142 * index values into the validation list.
2143 */
2144 static void
drm_intel_gem_bo_process_reloc(drm_intel_bo * bo)2145 drm_intel_gem_bo_process_reloc(drm_intel_bo *bo)
2146 {
2147 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2148 int i;
2149
2150 if (bo_gem->relocs == NULL)
2151 return;
2152
2153 for (i = 0; i < bo_gem->reloc_count; i++) {
2154 drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
2155
2156 if (target_bo == bo)
2157 continue;
2158
2159 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2160
2161 /* Continue walking the tree depth-first. */
2162 drm_intel_gem_bo_process_reloc(target_bo);
2163
2164 /* Add the target to the validate list */
2165 drm_intel_add_validate_buffer(target_bo);
2166 }
2167 }
2168
2169 static void
drm_intel_gem_bo_process_reloc2(drm_intel_bo * bo)2170 drm_intel_gem_bo_process_reloc2(drm_intel_bo *bo)
2171 {
2172 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2173 int i;
2174
2175 if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL)
2176 return;
2177
2178 for (i = 0; i < bo_gem->reloc_count; i++) {
2179 drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
2180 int need_fence;
2181
2182 if (target_bo == bo)
2183 continue;
2184
2185 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2186
2187 /* Continue walking the tree depth-first. */
2188 drm_intel_gem_bo_process_reloc2(target_bo);
2189
2190 need_fence = (bo_gem->reloc_target_info[i].flags &
2191 DRM_INTEL_RELOC_FENCE);
2192
2193 /* Add the target to the validate list */
2194 drm_intel_add_validate_buffer2(target_bo, need_fence);
2195 }
2196
2197 for (i = 0; i < bo_gem->softpin_target_count; i++) {
2198 drm_intel_bo *target_bo = bo_gem->softpin_target[i];
2199
2200 if (target_bo == bo)
2201 continue;
2202
2203 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2204 drm_intel_gem_bo_process_reloc2(target_bo);
2205 drm_intel_add_validate_buffer2(target_bo, false);
2206 }
2207 }
2208
2209
2210 static void
drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem * bufmgr_gem)2211 drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem *bufmgr_gem)
2212 {
2213 int i;
2214
2215 for (i = 0; i < bufmgr_gem->exec_count; i++) {
2216 drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2217 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2218
2219 /* Update the buffer offset */
2220 if (bufmgr_gem->exec_objects[i].offset != bo->offset64) {
2221 DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n",
2222 bo_gem->gem_handle, bo_gem->name,
2223 upper_32_bits(bo->offset64),
2224 lower_32_bits(bo->offset64),
2225 upper_32_bits(bufmgr_gem->exec_objects[i].offset),
2226 lower_32_bits(bufmgr_gem->exec_objects[i].offset));
2227 bo->offset64 = bufmgr_gem->exec_objects[i].offset;
2228 bo->offset = bufmgr_gem->exec_objects[i].offset;
2229 }
2230 }
2231 }
2232
2233 static void
drm_intel_update_buffer_offsets2(drm_intel_bufmgr_gem * bufmgr_gem)2234 drm_intel_update_buffer_offsets2 (drm_intel_bufmgr_gem *bufmgr_gem)
2235 {
2236 int i;
2237
2238 for (i = 0; i < bufmgr_gem->exec_count; i++) {
2239 drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2240 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2241
2242 /* Update the buffer offset */
2243 if (bufmgr_gem->exec2_objects[i].offset != bo->offset64) {
2244 /* If we're seeing softpinned object here it means that the kernel
2245 * has relocated our object... Indicating a programming error
2246 */
2247 assert(!bo_gem->is_softpin);
2248 DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n",
2249 bo_gem->gem_handle, bo_gem->name,
2250 upper_32_bits(bo->offset64),
2251 lower_32_bits(bo->offset64),
2252 upper_32_bits(bufmgr_gem->exec2_objects[i].offset),
2253 lower_32_bits(bufmgr_gem->exec2_objects[i].offset));
2254 bo->offset64 = bufmgr_gem->exec2_objects[i].offset;
2255 bo->offset = bufmgr_gem->exec2_objects[i].offset;
2256 }
2257 }
2258 }
2259
2260 void
drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo * bo,int x1,int y1,int width,int height,enum aub_dump_bmp_format format,int pitch,int offset)2261 drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo *bo,
2262 int x1, int y1, int width, int height,
2263 enum aub_dump_bmp_format format,
2264 int pitch, int offset)
2265 {
2266 }
2267
2268 static int
drm_intel_gem_bo_exec(drm_intel_bo * bo,int used,drm_clip_rect_t * cliprects,int num_cliprects,int DR4)2269 drm_intel_gem_bo_exec(drm_intel_bo *bo, int used,
2270 drm_clip_rect_t * cliprects, int num_cliprects, int DR4)
2271 {
2272 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2273 struct drm_i915_gem_execbuffer execbuf;
2274 int ret, i;
2275
2276 if (to_bo_gem(bo)->has_error)
2277 return -ENOMEM;
2278
2279 pthread_mutex_lock(&bufmgr_gem->lock);
2280 /* Update indices and set up the validate list. */
2281 drm_intel_gem_bo_process_reloc(bo);
2282
2283 /* Add the batch buffer to the validation list. There are no
2284 * relocations pointing to it.
2285 */
2286 drm_intel_add_validate_buffer(bo);
2287
2288 memclear(execbuf);
2289 execbuf.buffers_ptr = (uintptr_t) bufmgr_gem->exec_objects;
2290 execbuf.buffer_count = bufmgr_gem->exec_count;
2291 execbuf.batch_start_offset = 0;
2292 execbuf.batch_len = used;
2293 execbuf.cliprects_ptr = (uintptr_t) cliprects;
2294 execbuf.num_cliprects = num_cliprects;
2295 execbuf.DR1 = 0;
2296 execbuf.DR4 = DR4;
2297
2298 ret = drmIoctl(bufmgr_gem->fd,
2299 DRM_IOCTL_I915_GEM_EXECBUFFER,
2300 &execbuf);
2301 if (ret != 0) {
2302 ret = -errno;
2303 if (errno == ENOSPC) {
2304 DBG("Execbuffer fails to pin. "
2305 "Estimate: %u. Actual: %u. Available: %u\n",
2306 drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2307 bufmgr_gem->
2308 exec_count),
2309 drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2310 bufmgr_gem->
2311 exec_count),
2312 (unsigned int)bufmgr_gem->gtt_size);
2313 }
2314 }
2315 drm_intel_update_buffer_offsets(bufmgr_gem);
2316
2317 if (bufmgr_gem->bufmgr.debug)
2318 drm_intel_gem_dump_validation_list(bufmgr_gem);
2319
2320 for (i = 0; i < bufmgr_gem->exec_count; i++) {
2321 drm_intel_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]);
2322
2323 bo_gem->idle = false;
2324
2325 /* Disconnect the buffer from the validate list */
2326 bo_gem->validate_index = -1;
2327 bufmgr_gem->exec_bos[i] = NULL;
2328 }
2329 bufmgr_gem->exec_count = 0;
2330 pthread_mutex_unlock(&bufmgr_gem->lock);
2331
2332 return ret;
2333 }
2334
2335 static int
do_exec2(drm_intel_bo * bo,int used,drm_intel_context * ctx,drm_clip_rect_t * cliprects,int num_cliprects,int DR4,unsigned int flags)2336 do_exec2(drm_intel_bo *bo, int used, drm_intel_context *ctx,
2337 drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2338 unsigned int flags)
2339 {
2340 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2341 struct drm_i915_gem_execbuffer2 execbuf;
2342 int ret = 0;
2343 int i;
2344
2345 if (to_bo_gem(bo)->has_error)
2346 return -ENOMEM;
2347
2348 switch (flags & 0x7) {
2349 default:
2350 return -EINVAL;
2351 case I915_EXEC_BLT:
2352 if (!bufmgr_gem->has_blt)
2353 return -EINVAL;
2354 break;
2355 case I915_EXEC_BSD:
2356 if (!bufmgr_gem->has_bsd)
2357 return -EINVAL;
2358 break;
2359 case I915_EXEC_VEBOX:
2360 if (!bufmgr_gem->has_vebox)
2361 return -EINVAL;
2362 break;
2363 case I915_EXEC_RENDER:
2364 case I915_EXEC_DEFAULT:
2365 break;
2366 }
2367
2368 pthread_mutex_lock(&bufmgr_gem->lock);
2369 /* Update indices and set up the validate list. */
2370 drm_intel_gem_bo_process_reloc2(bo);
2371
2372 /* Add the batch buffer to the validation list. There are no relocations
2373 * pointing to it.
2374 */
2375 drm_intel_add_validate_buffer2(bo, 0);
2376
2377 memclear(execbuf);
2378 execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects;
2379 execbuf.buffer_count = bufmgr_gem->exec_count;
2380 execbuf.batch_start_offset = 0;
2381 execbuf.batch_len = used;
2382 execbuf.cliprects_ptr = (uintptr_t)cliprects;
2383 execbuf.num_cliprects = num_cliprects;
2384 execbuf.DR1 = 0;
2385 execbuf.DR4 = DR4;
2386 execbuf.flags = flags;
2387 if (ctx == NULL)
2388 i915_execbuffer2_set_context_id(execbuf, 0);
2389 else
2390 i915_execbuffer2_set_context_id(execbuf, ctx->ctx_id);
2391 execbuf.rsvd2 = 0;
2392
2393 if (bufmgr_gem->no_exec)
2394 goto skip_execution;
2395
2396 ret = drmIoctl(bufmgr_gem->fd,
2397 DRM_IOCTL_I915_GEM_EXECBUFFER2,
2398 &execbuf);
2399 if (ret != 0) {
2400 ret = -errno;
2401 if (ret == -ENOSPC) {
2402 DBG("Execbuffer fails to pin. "
2403 "Estimate: %u. Actual: %u. Available: %u\n",
2404 drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2405 bufmgr_gem->exec_count),
2406 drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2407 bufmgr_gem->exec_count),
2408 (unsigned int) bufmgr_gem->gtt_size);
2409 }
2410 }
2411 drm_intel_update_buffer_offsets2(bufmgr_gem);
2412
2413 skip_execution:
2414 if (bufmgr_gem->bufmgr.debug)
2415 drm_intel_gem_dump_validation_list(bufmgr_gem);
2416
2417 for (i = 0; i < bufmgr_gem->exec_count; i++) {
2418 drm_intel_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]);
2419
2420 bo_gem->idle = false;
2421
2422 /* Disconnect the buffer from the validate list */
2423 bo_gem->validate_index = -1;
2424 bufmgr_gem->exec_bos[i] = NULL;
2425 }
2426 bufmgr_gem->exec_count = 0;
2427 pthread_mutex_unlock(&bufmgr_gem->lock);
2428
2429 return ret;
2430 }
2431
2432 static int
drm_intel_gem_bo_exec2(drm_intel_bo * bo,int used,drm_clip_rect_t * cliprects,int num_cliprects,int DR4)2433 drm_intel_gem_bo_exec2(drm_intel_bo *bo, int used,
2434 drm_clip_rect_t *cliprects, int num_cliprects,
2435 int DR4)
2436 {
2437 return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2438 I915_EXEC_RENDER);
2439 }
2440
2441 static int
drm_intel_gem_bo_mrb_exec2(drm_intel_bo * bo,int used,drm_clip_rect_t * cliprects,int num_cliprects,int DR4,unsigned int flags)2442 drm_intel_gem_bo_mrb_exec2(drm_intel_bo *bo, int used,
2443 drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2444 unsigned int flags)
2445 {
2446 return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2447 flags);
2448 }
2449
2450 int
drm_intel_gem_bo_context_exec(drm_intel_bo * bo,drm_intel_context * ctx,int used,unsigned int flags)2451 drm_intel_gem_bo_context_exec(drm_intel_bo *bo, drm_intel_context *ctx,
2452 int used, unsigned int flags)
2453 {
2454 return do_exec2(bo, used, ctx, NULL, 0, 0, flags);
2455 }
2456
2457 static int
drm_intel_gem_bo_pin(drm_intel_bo * bo,uint32_t alignment)2458 drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment)
2459 {
2460 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2461 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2462 struct drm_i915_gem_pin pin;
2463 int ret;
2464
2465 memclear(pin);
2466 pin.handle = bo_gem->gem_handle;
2467 pin.alignment = alignment;
2468
2469 ret = drmIoctl(bufmgr_gem->fd,
2470 DRM_IOCTL_I915_GEM_PIN,
2471 &pin);
2472 if (ret != 0)
2473 return -errno;
2474
2475 bo->offset64 = pin.offset;
2476 bo->offset = pin.offset;
2477 return 0;
2478 }
2479
2480 static int
drm_intel_gem_bo_unpin(drm_intel_bo * bo)2481 drm_intel_gem_bo_unpin(drm_intel_bo *bo)
2482 {
2483 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2484 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2485 struct drm_i915_gem_unpin unpin;
2486 int ret;
2487
2488 memclear(unpin);
2489 unpin.handle = bo_gem->gem_handle;
2490
2491 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin);
2492 if (ret != 0)
2493 return -errno;
2494
2495 return 0;
2496 }
2497
2498 static int
drm_intel_gem_bo_set_tiling_internal(drm_intel_bo * bo,uint32_t tiling_mode,uint32_t stride)2499 drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
2500 uint32_t tiling_mode,
2501 uint32_t stride)
2502 {
2503 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2504 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2505 struct drm_i915_gem_set_tiling set_tiling;
2506 int ret;
2507
2508 if (bo_gem->global_name == 0 &&
2509 tiling_mode == bo_gem->tiling_mode &&
2510 stride == bo_gem->stride)
2511 return 0;
2512
2513 memset(&set_tiling, 0, sizeof(set_tiling));
2514 do {
2515 /* set_tiling is slightly broken and overwrites the
2516 * input on the error path, so we have to open code
2517 * rmIoctl.
2518 */
2519 set_tiling.handle = bo_gem->gem_handle;
2520 set_tiling.tiling_mode = tiling_mode;
2521 set_tiling.stride = stride;
2522
2523 ret = ioctl(bufmgr_gem->fd,
2524 DRM_IOCTL_I915_GEM_SET_TILING,
2525 &set_tiling);
2526 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
2527 if (ret == -1)
2528 return -errno;
2529
2530 bo_gem->tiling_mode = set_tiling.tiling_mode;
2531 bo_gem->swizzle_mode = set_tiling.swizzle_mode;
2532 bo_gem->stride = set_tiling.stride;
2533 return 0;
2534 }
2535
2536 static int
drm_intel_gem_bo_set_tiling(drm_intel_bo * bo,uint32_t * tiling_mode,uint32_t stride)2537 drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2538 uint32_t stride)
2539 {
2540 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2541 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2542 int ret;
2543
2544 /* Tiling with userptr surfaces is not supported
2545 * on all hardware so refuse it for time being.
2546 */
2547 if (bo_gem->is_userptr)
2548 return -EINVAL;
2549
2550 /* Linear buffers have no stride. By ensuring that we only ever use
2551 * stride 0 with linear buffers, we simplify our code.
2552 */
2553 if (*tiling_mode == I915_TILING_NONE)
2554 stride = 0;
2555
2556 ret = drm_intel_gem_bo_set_tiling_internal(bo, *tiling_mode, stride);
2557 if (ret == 0)
2558 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
2559
2560 *tiling_mode = bo_gem->tiling_mode;
2561 return ret;
2562 }
2563
2564 static int
drm_intel_gem_bo_get_tiling(drm_intel_bo * bo,uint32_t * tiling_mode,uint32_t * swizzle_mode)2565 drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2566 uint32_t * swizzle_mode)
2567 {
2568 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2569
2570 *tiling_mode = bo_gem->tiling_mode;
2571 *swizzle_mode = bo_gem->swizzle_mode;
2572 return 0;
2573 }
2574
2575 static int
drm_intel_gem_bo_set_softpin_offset(drm_intel_bo * bo,uint64_t offset)2576 drm_intel_gem_bo_set_softpin_offset(drm_intel_bo *bo, uint64_t offset)
2577 {
2578 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2579
2580 bo_gem->is_softpin = true;
2581 bo->offset64 = offset;
2582 bo->offset = offset;
2583 return 0;
2584 }
2585
2586 drm_intel_bo *
drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr * bufmgr,int prime_fd,int size)2587 drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr *bufmgr, int prime_fd, int size)
2588 {
2589 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2590 int ret;
2591 uint32_t handle;
2592 drm_intel_bo_gem *bo_gem;
2593 struct drm_i915_gem_get_tiling get_tiling;
2594 drmMMListHead *list;
2595
2596 pthread_mutex_lock(&bufmgr_gem->lock);
2597 ret = drmPrimeFDToHandle(bufmgr_gem->fd, prime_fd, &handle);
2598 if (ret) {
2599 DBG("create_from_prime: failed to obtain handle from fd: %s\n", strerror(errno));
2600 pthread_mutex_unlock(&bufmgr_gem->lock);
2601 return NULL;
2602 }
2603
2604 /*
2605 * See if the kernel has already returned this buffer to us. Just as
2606 * for named buffers, we must not create two bo's pointing at the same
2607 * kernel object
2608 */
2609 for (list = bufmgr_gem->named.next;
2610 list != &bufmgr_gem->named;
2611 list = list->next) {
2612 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
2613 if (bo_gem->gem_handle == handle) {
2614 drm_intel_gem_bo_reference(&bo_gem->bo);
2615 pthread_mutex_unlock(&bufmgr_gem->lock);
2616 return &bo_gem->bo;
2617 }
2618 }
2619
2620 bo_gem = calloc(1, sizeof(*bo_gem));
2621 if (!bo_gem) {
2622 pthread_mutex_unlock(&bufmgr_gem->lock);
2623 return NULL;
2624 }
2625 /* Determine size of bo. The fd-to-handle ioctl really should
2626 * return the size, but it doesn't. If we have kernel 3.12 or
2627 * later, we can lseek on the prime fd to get the size. Older
2628 * kernels will just fail, in which case we fall back to the
2629 * provided (estimated or guess size). */
2630 ret = lseek(prime_fd, 0, SEEK_END);
2631 if (ret != -1)
2632 bo_gem->bo.size = ret;
2633 else
2634 bo_gem->bo.size = size;
2635
2636 bo_gem->bo.handle = handle;
2637 bo_gem->bo.bufmgr = bufmgr;
2638
2639 bo_gem->gem_handle = handle;
2640
2641 atomic_set(&bo_gem->refcount, 1);
2642
2643 bo_gem->name = "prime";
2644 bo_gem->validate_index = -1;
2645 bo_gem->reloc_tree_fences = 0;
2646 bo_gem->used_as_reloc_target = false;
2647 bo_gem->has_error = false;
2648 bo_gem->reusable = false;
2649 bo_gem->use_48b_address_range = false;
2650
2651 DRMINITLISTHEAD(&bo_gem->vma_list);
2652 DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2653 pthread_mutex_unlock(&bufmgr_gem->lock);
2654
2655 memclear(get_tiling);
2656 get_tiling.handle = bo_gem->gem_handle;
2657 ret = drmIoctl(bufmgr_gem->fd,
2658 DRM_IOCTL_I915_GEM_GET_TILING,
2659 &get_tiling);
2660 if (ret != 0) {
2661 DBG("create_from_prime: failed to get tiling: %s\n", strerror(errno));
2662 drm_intel_gem_bo_unreference(&bo_gem->bo);
2663 return NULL;
2664 }
2665 bo_gem->tiling_mode = get_tiling.tiling_mode;
2666 bo_gem->swizzle_mode = get_tiling.swizzle_mode;
2667 /* XXX stride is unknown */
2668 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
2669
2670 return &bo_gem->bo;
2671 }
2672
2673 int
drm_intel_bo_gem_export_to_prime(drm_intel_bo * bo,int * prime_fd)2674 drm_intel_bo_gem_export_to_prime(drm_intel_bo *bo, int *prime_fd)
2675 {
2676 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2677 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2678
2679 pthread_mutex_lock(&bufmgr_gem->lock);
2680 if (DRMLISTEMPTY(&bo_gem->name_list))
2681 DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2682 pthread_mutex_unlock(&bufmgr_gem->lock);
2683
2684 if (drmPrimeHandleToFD(bufmgr_gem->fd, bo_gem->gem_handle,
2685 DRM_CLOEXEC, prime_fd) != 0)
2686 return -errno;
2687
2688 bo_gem->reusable = false;
2689
2690 return 0;
2691 }
2692
2693 static int
drm_intel_gem_bo_flink(drm_intel_bo * bo,uint32_t * name)2694 drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name)
2695 {
2696 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2697 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2698 int ret;
2699
2700 if (!bo_gem->global_name) {
2701 struct drm_gem_flink flink;
2702
2703 memclear(flink);
2704 flink.handle = bo_gem->gem_handle;
2705
2706 pthread_mutex_lock(&bufmgr_gem->lock);
2707
2708 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink);
2709 if (ret != 0) {
2710 pthread_mutex_unlock(&bufmgr_gem->lock);
2711 return -errno;
2712 }
2713
2714 bo_gem->global_name = flink.name;
2715 bo_gem->reusable = false;
2716
2717 if (DRMLISTEMPTY(&bo_gem->name_list))
2718 DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2719 pthread_mutex_unlock(&bufmgr_gem->lock);
2720 }
2721
2722 *name = bo_gem->global_name;
2723 return 0;
2724 }
2725
2726 /**
2727 * Enables unlimited caching of buffer objects for reuse.
2728 *
2729 * This is potentially very memory expensive, as the cache at each bucket
2730 * size is only bounded by how many buffers of that size we've managed to have
2731 * in flight at once.
2732 */
2733 void
drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr * bufmgr)2734 drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr)
2735 {
2736 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2737
2738 bufmgr_gem->bo_reuse = true;
2739 }
2740
2741 /**
2742 * Enable use of fenced reloc type.
2743 *
2744 * New code should enable this to avoid unnecessary fence register
2745 * allocation. If this option is not enabled, all relocs will have fence
2746 * register allocated.
2747 */
2748 void
drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr * bufmgr)2749 drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr)
2750 {
2751 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2752
2753 if (bufmgr_gem->bufmgr.bo_exec == drm_intel_gem_bo_exec2)
2754 bufmgr_gem->fenced_relocs = true;
2755 }
2756
2757 /**
2758 * Return the additional aperture space required by the tree of buffer objects
2759 * rooted at bo.
2760 */
2761 static int
drm_intel_gem_bo_get_aperture_space(drm_intel_bo * bo)2762 drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo)
2763 {
2764 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2765 int i;
2766 int total = 0;
2767
2768 if (bo == NULL || bo_gem->included_in_check_aperture)
2769 return 0;
2770
2771 total += bo->size;
2772 bo_gem->included_in_check_aperture = true;
2773
2774 for (i = 0; i < bo_gem->reloc_count; i++)
2775 total +=
2776 drm_intel_gem_bo_get_aperture_space(bo_gem->
2777 reloc_target_info[i].bo);
2778
2779 return total;
2780 }
2781
2782 /**
2783 * Count the number of buffers in this list that need a fence reg
2784 *
2785 * If the count is greater than the number of available regs, we'll have
2786 * to ask the caller to resubmit a batch with fewer tiled buffers.
2787 *
2788 * This function over-counts if the same buffer is used multiple times.
2789 */
2790 static unsigned int
drm_intel_gem_total_fences(drm_intel_bo ** bo_array,int count)2791 drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count)
2792 {
2793 int i;
2794 unsigned int total = 0;
2795
2796 for (i = 0; i < count; i++) {
2797 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2798
2799 if (bo_gem == NULL)
2800 continue;
2801
2802 total += bo_gem->reloc_tree_fences;
2803 }
2804 return total;
2805 }
2806
2807 /**
2808 * Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready
2809 * for the next drm_intel_bufmgr_check_aperture_space() call.
2810 */
2811 static void
drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo * bo)2812 drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo)
2813 {
2814 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2815 int i;
2816
2817 if (bo == NULL || !bo_gem->included_in_check_aperture)
2818 return;
2819
2820 bo_gem->included_in_check_aperture = false;
2821
2822 for (i = 0; i < bo_gem->reloc_count; i++)
2823 drm_intel_gem_bo_clear_aperture_space_flag(bo_gem->
2824 reloc_target_info[i].bo);
2825 }
2826
2827 /**
2828 * Return a conservative estimate for the amount of aperture required
2829 * for a collection of buffers. This may double-count some buffers.
2830 */
2831 static unsigned int
drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array,int count)2832 drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count)
2833 {
2834 int i;
2835 unsigned int total = 0;
2836
2837 for (i = 0; i < count; i++) {
2838 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2839 if (bo_gem != NULL)
2840 total += bo_gem->reloc_tree_size;
2841 }
2842 return total;
2843 }
2844
2845 /**
2846 * Return the amount of aperture needed for a collection of buffers.
2847 * This avoids double counting any buffers, at the cost of looking
2848 * at every buffer in the set.
2849 */
2850 static unsigned int
drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array,int count)2851 drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count)
2852 {
2853 int i;
2854 unsigned int total = 0;
2855
2856 for (i = 0; i < count; i++) {
2857 total += drm_intel_gem_bo_get_aperture_space(bo_array[i]);
2858 /* For the first buffer object in the array, we get an
2859 * accurate count back for its reloc_tree size (since nothing
2860 * had been flagged as being counted yet). We can save that
2861 * value out as a more conservative reloc_tree_size that
2862 * avoids double-counting target buffers. Since the first
2863 * buffer happens to usually be the batch buffer in our
2864 * callers, this can pull us back from doing the tree
2865 * walk on every new batch emit.
2866 */
2867 if (i == 0) {
2868 drm_intel_bo_gem *bo_gem =
2869 (drm_intel_bo_gem *) bo_array[i];
2870 bo_gem->reloc_tree_size = total;
2871 }
2872 }
2873
2874 for (i = 0; i < count; i++)
2875 drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]);
2876 return total;
2877 }
2878
2879 /**
2880 * Return -1 if the batchbuffer should be flushed before attempting to
2881 * emit rendering referencing the buffers pointed to by bo_array.
2882 *
2883 * This is required because if we try to emit a batchbuffer with relocations
2884 * to a tree of buffers that won't simultaneously fit in the aperture,
2885 * the rendering will return an error at a point where the software is not
2886 * prepared to recover from it.
2887 *
2888 * However, we also want to emit the batchbuffer significantly before we reach
2889 * the limit, as a series of batchbuffers each of which references buffers
2890 * covering almost all of the aperture means that at each emit we end up
2891 * waiting to evict a buffer from the last rendering, and we get synchronous
2892 * performance. By emitting smaller batchbuffers, we eat some CPU overhead to
2893 * get better parallelism.
2894 */
2895 static int
drm_intel_gem_check_aperture_space(drm_intel_bo ** bo_array,int count)2896 drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count)
2897 {
2898 drm_intel_bufmgr_gem *bufmgr_gem =
2899 (drm_intel_bufmgr_gem *) bo_array[0]->bufmgr;
2900 unsigned int total = 0;
2901 unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4;
2902 int total_fences;
2903
2904 /* Check for fence reg constraints if necessary */
2905 if (bufmgr_gem->available_fences) {
2906 total_fences = drm_intel_gem_total_fences(bo_array, count);
2907 if (total_fences > bufmgr_gem->available_fences)
2908 return -ENOSPC;
2909 }
2910
2911 total = drm_intel_gem_estimate_batch_space(bo_array, count);
2912
2913 if (total > threshold)
2914 total = drm_intel_gem_compute_batch_space(bo_array, count);
2915
2916 if (total > threshold) {
2917 DBG("check_space: overflowed available aperture, "
2918 "%dkb vs %dkb\n",
2919 total / 1024, (int)bufmgr_gem->gtt_size / 1024);
2920 return -ENOSPC;
2921 } else {
2922 DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024,
2923 (int)bufmgr_gem->gtt_size / 1024);
2924 return 0;
2925 }
2926 }
2927
2928 /*
2929 * Disable buffer reuse for objects which are shared with the kernel
2930 * as scanout buffers
2931 */
2932 static int
drm_intel_gem_bo_disable_reuse(drm_intel_bo * bo)2933 drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo)
2934 {
2935 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2936
2937 bo_gem->reusable = false;
2938 return 0;
2939 }
2940
2941 static int
drm_intel_gem_bo_is_reusable(drm_intel_bo * bo)2942 drm_intel_gem_bo_is_reusable(drm_intel_bo *bo)
2943 {
2944 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2945
2946 return bo_gem->reusable;
2947 }
2948
2949 static int
_drm_intel_gem_bo_references(drm_intel_bo * bo,drm_intel_bo * target_bo)2950 _drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
2951 {
2952 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2953 int i;
2954
2955 for (i = 0; i < bo_gem->reloc_count; i++) {
2956 if (bo_gem->reloc_target_info[i].bo == target_bo)
2957 return 1;
2958 if (bo == bo_gem->reloc_target_info[i].bo)
2959 continue;
2960 if (_drm_intel_gem_bo_references(bo_gem->reloc_target_info[i].bo,
2961 target_bo))
2962 return 1;
2963 }
2964
2965 for (i = 0; i< bo_gem->softpin_target_count; i++) {
2966 if (bo_gem->softpin_target[i] == target_bo)
2967 return 1;
2968 if (_drm_intel_gem_bo_references(bo_gem->softpin_target[i], target_bo))
2969 return 1;
2970 }
2971
2972 return 0;
2973 }
2974
2975 /** Return true if target_bo is referenced by bo's relocation tree. */
2976 static int
drm_intel_gem_bo_references(drm_intel_bo * bo,drm_intel_bo * target_bo)2977 drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
2978 {
2979 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
2980
2981 if (bo == NULL || target_bo == NULL)
2982 return 0;
2983 if (target_bo_gem->used_as_reloc_target)
2984 return _drm_intel_gem_bo_references(bo, target_bo);
2985 return 0;
2986 }
2987
2988 static void
add_bucket(drm_intel_bufmgr_gem * bufmgr_gem,int size)2989 add_bucket(drm_intel_bufmgr_gem *bufmgr_gem, int size)
2990 {
2991 unsigned int i = bufmgr_gem->num_buckets;
2992
2993 assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket));
2994
2995 DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head);
2996 bufmgr_gem->cache_bucket[i].size = size;
2997 bufmgr_gem->num_buckets++;
2998 }
2999
3000 static void
init_cache_buckets(drm_intel_bufmgr_gem * bufmgr_gem)3001 init_cache_buckets(drm_intel_bufmgr_gem *bufmgr_gem)
3002 {
3003 unsigned long size, cache_max_size = 64 * 1024 * 1024;
3004
3005 /* OK, so power of two buckets was too wasteful of memory.
3006 * Give 3 other sizes between each power of two, to hopefully
3007 * cover things accurately enough. (The alternative is
3008 * probably to just go for exact matching of sizes, and assume
3009 * that for things like composited window resize the tiled
3010 * width/height alignment and rounding of sizes to pages will
3011 * get us useful cache hit rates anyway)
3012 */
3013 add_bucket(bufmgr_gem, 4096);
3014 add_bucket(bufmgr_gem, 4096 * 2);
3015 add_bucket(bufmgr_gem, 4096 * 3);
3016
3017 /* Initialize the linked lists for BO reuse cache. */
3018 for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
3019 add_bucket(bufmgr_gem, size);
3020
3021 add_bucket(bufmgr_gem, size + size * 1 / 4);
3022 add_bucket(bufmgr_gem, size + size * 2 / 4);
3023 add_bucket(bufmgr_gem, size + size * 3 / 4);
3024 }
3025 }
3026
3027 void
drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr * bufmgr,int limit)3028 drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr *bufmgr, int limit)
3029 {
3030 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3031
3032 bufmgr_gem->vma_max = limit;
3033
3034 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
3035 }
3036
3037 /**
3038 * Get the PCI ID for the device. This can be overridden by setting the
3039 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
3040 */
3041 static int
get_pci_device_id(drm_intel_bufmgr_gem * bufmgr_gem)3042 get_pci_device_id(drm_intel_bufmgr_gem *bufmgr_gem)
3043 {
3044 char *devid_override;
3045 int devid = 0;
3046 int ret;
3047 drm_i915_getparam_t gp;
3048
3049 if (geteuid() == getuid()) {
3050 devid_override = getenv("INTEL_DEVID_OVERRIDE");
3051 if (devid_override) {
3052 bufmgr_gem->no_exec = true;
3053 return strtod(devid_override, NULL);
3054 }
3055 }
3056
3057 memclear(gp);
3058 gp.param = I915_PARAM_CHIPSET_ID;
3059 gp.value = &devid;
3060 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3061 if (ret) {
3062 fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno);
3063 fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value);
3064 }
3065 return devid;
3066 }
3067
3068 int
drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr * bufmgr)3069 drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr *bufmgr)
3070 {
3071 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3072
3073 return bufmgr_gem->pci_device;
3074 }
3075
3076 /**
3077 * Sets the AUB filename.
3078 *
3079 * This function has to be called before drm_intel_bufmgr_gem_set_aub_dump()
3080 * for it to have any effect.
3081 */
3082 void
drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr * bufmgr,const char * filename)3083 drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr *bufmgr,
3084 const char *filename)
3085 {
3086 }
3087
3088 /**
3089 * Sets up AUB dumping.
3090 *
3091 * This is a trace file format that can be used with the simulator.
3092 * Packets are emitted in a format somewhat like GPU command packets.
3093 * You can set up a GTT and upload your objects into the referenced
3094 * space, then send off batchbuffers and get BMPs out the other end.
3095 */
3096 void
drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr * bufmgr,int enable)3097 drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr *bufmgr, int enable)
3098 {
3099 fprintf(stderr, "libdrm aub dumping is deprecated.\n\n"
3100 "Use intel_aubdump from intel-gpu-tools instead. Install intel-gpu-tools,\n"
3101 "then run (for example)\n\n"
3102 "\t$ intel_aubdump --output=trace.aub glxgears -geometry 500x500\n\n"
3103 "See the intel_aubdump man page for more details.\n");
3104 }
3105
3106 drm_intel_context *
drm_intel_gem_context_create(drm_intel_bufmgr * bufmgr)3107 drm_intel_gem_context_create(drm_intel_bufmgr *bufmgr)
3108 {
3109 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3110 struct drm_i915_gem_context_create create;
3111 drm_intel_context *context = NULL;
3112 int ret;
3113
3114 context = calloc(1, sizeof(*context));
3115 if (!context)
3116 return NULL;
3117
3118 memclear(create);
3119 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
3120 if (ret != 0) {
3121 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n",
3122 strerror(errno));
3123 free(context);
3124 return NULL;
3125 }
3126
3127 context->ctx_id = create.ctx_id;
3128 context->bufmgr = bufmgr;
3129
3130 return context;
3131 }
3132
3133 void
drm_intel_gem_context_destroy(drm_intel_context * ctx)3134 drm_intel_gem_context_destroy(drm_intel_context *ctx)
3135 {
3136 drm_intel_bufmgr_gem *bufmgr_gem;
3137 struct drm_i915_gem_context_destroy destroy;
3138 int ret;
3139
3140 if (ctx == NULL)
3141 return;
3142
3143 memclear(destroy);
3144
3145 bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3146 destroy.ctx_id = ctx->ctx_id;
3147 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY,
3148 &destroy);
3149 if (ret != 0)
3150 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
3151 strerror(errno));
3152
3153 free(ctx);
3154 }
3155
3156 int
drm_intel_get_reset_stats(drm_intel_context * ctx,uint32_t * reset_count,uint32_t * active,uint32_t * pending)3157 drm_intel_get_reset_stats(drm_intel_context *ctx,
3158 uint32_t *reset_count,
3159 uint32_t *active,
3160 uint32_t *pending)
3161 {
3162 drm_intel_bufmgr_gem *bufmgr_gem;
3163 struct drm_i915_reset_stats stats;
3164 int ret;
3165
3166 if (ctx == NULL)
3167 return -EINVAL;
3168
3169 memclear(stats);
3170
3171 bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3172 stats.ctx_id = ctx->ctx_id;
3173 ret = drmIoctl(bufmgr_gem->fd,
3174 DRM_IOCTL_I915_GET_RESET_STATS,
3175 &stats);
3176 if (ret == 0) {
3177 if (reset_count != NULL)
3178 *reset_count = stats.reset_count;
3179
3180 if (active != NULL)
3181 *active = stats.batch_active;
3182
3183 if (pending != NULL)
3184 *pending = stats.batch_pending;
3185 }
3186
3187 return ret;
3188 }
3189
3190 int
drm_intel_reg_read(drm_intel_bufmgr * bufmgr,uint32_t offset,uint64_t * result)3191 drm_intel_reg_read(drm_intel_bufmgr *bufmgr,
3192 uint32_t offset,
3193 uint64_t *result)
3194 {
3195 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3196 struct drm_i915_reg_read reg_read;
3197 int ret;
3198
3199 memclear(reg_read);
3200 reg_read.offset = offset;
3201
3202 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_REG_READ, ®_read);
3203
3204 *result = reg_read.val;
3205 return ret;
3206 }
3207
3208 int
drm_intel_get_subslice_total(int fd,unsigned int * subslice_total)3209 drm_intel_get_subslice_total(int fd, unsigned int *subslice_total)
3210 {
3211 drm_i915_getparam_t gp;
3212 int ret;
3213
3214 memclear(gp);
3215 gp.value = (int*)subslice_total;
3216 gp.param = I915_PARAM_SUBSLICE_TOTAL;
3217 ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
3218 if (ret)
3219 return -errno;
3220
3221 return 0;
3222 }
3223
3224 int
drm_intel_get_eu_total(int fd,unsigned int * eu_total)3225 drm_intel_get_eu_total(int fd, unsigned int *eu_total)
3226 {
3227 drm_i915_getparam_t gp;
3228 int ret;
3229
3230 memclear(gp);
3231 gp.value = (int*)eu_total;
3232 gp.param = I915_PARAM_EU_TOTAL;
3233 ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
3234 if (ret)
3235 return -errno;
3236
3237 return 0;
3238 }
3239
3240 /**
3241 * Annotate the given bo for use in aub dumping.
3242 *
3243 * \param annotations is an array of drm_intel_aub_annotation objects
3244 * describing the type of data in various sections of the bo. Each
3245 * element of the array specifies the type and subtype of a section of
3246 * the bo, and the past-the-end offset of that section. The elements
3247 * of \c annotations must be sorted so that ending_offset is
3248 * increasing.
3249 *
3250 * \param count is the number of elements in the \c annotations array.
3251 * If \c count is zero, then \c annotations will not be dereferenced.
3252 *
3253 * Annotations are copied into a private data structure, so caller may
3254 * re-use the memory pointed to by \c annotations after the call
3255 * returns.
3256 *
3257 * Annotations are stored for the lifetime of the bo; to reset to the
3258 * default state (no annotations), call this function with a \c count
3259 * of zero.
3260 */
3261 void
drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo * bo,drm_intel_aub_annotation * annotations,unsigned count)3262 drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo *bo,
3263 drm_intel_aub_annotation *annotations,
3264 unsigned count)
3265 {
3266 }
3267
3268 static pthread_mutex_t bufmgr_list_mutex = PTHREAD_MUTEX_INITIALIZER;
3269 static drmMMListHead bufmgr_list = { &bufmgr_list, &bufmgr_list };
3270
3271 static drm_intel_bufmgr_gem *
drm_intel_bufmgr_gem_find(int fd)3272 drm_intel_bufmgr_gem_find(int fd)
3273 {
3274 drm_intel_bufmgr_gem *bufmgr_gem;
3275
3276 DRMLISTFOREACHENTRY(bufmgr_gem, &bufmgr_list, managers) {
3277 if (bufmgr_gem->fd == fd) {
3278 atomic_inc(&bufmgr_gem->refcount);
3279 return bufmgr_gem;
3280 }
3281 }
3282
3283 return NULL;
3284 }
3285
3286 static void
drm_intel_bufmgr_gem_unref(drm_intel_bufmgr * bufmgr)3287 drm_intel_bufmgr_gem_unref(drm_intel_bufmgr *bufmgr)
3288 {
3289 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3290
3291 if (atomic_add_unless(&bufmgr_gem->refcount, -1, 1)) {
3292 pthread_mutex_lock(&bufmgr_list_mutex);
3293
3294 if (atomic_dec_and_test(&bufmgr_gem->refcount)) {
3295 DRMLISTDEL(&bufmgr_gem->managers);
3296 drm_intel_bufmgr_gem_destroy(bufmgr);
3297 }
3298
3299 pthread_mutex_unlock(&bufmgr_list_mutex);
3300 }
3301 }
3302
3303 /**
3304 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
3305 * and manage map buffer objections.
3306 *
3307 * \param fd File descriptor of the opened DRM device.
3308 */
3309 drm_intel_bufmgr *
drm_intel_bufmgr_gem_init(int fd,int batch_size)3310 drm_intel_bufmgr_gem_init(int fd, int batch_size)
3311 {
3312 drm_intel_bufmgr_gem *bufmgr_gem;
3313 struct drm_i915_gem_get_aperture aperture;
3314 drm_i915_getparam_t gp;
3315 int ret, tmp;
3316 bool exec2 = false;
3317
3318 pthread_mutex_lock(&bufmgr_list_mutex);
3319
3320 bufmgr_gem = drm_intel_bufmgr_gem_find(fd);
3321 if (bufmgr_gem)
3322 goto exit;
3323
3324 bufmgr_gem = calloc(1, sizeof(*bufmgr_gem));
3325 if (bufmgr_gem == NULL)
3326 goto exit;
3327
3328 bufmgr_gem->fd = fd;
3329 atomic_set(&bufmgr_gem->refcount, 1);
3330
3331 if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) {
3332 free(bufmgr_gem);
3333 bufmgr_gem = NULL;
3334 goto exit;
3335 }
3336
3337 memclear(aperture);
3338 ret = drmIoctl(bufmgr_gem->fd,
3339 DRM_IOCTL_I915_GEM_GET_APERTURE,
3340 &aperture);
3341
3342 if (ret == 0)
3343 bufmgr_gem->gtt_size = aperture.aper_available_size;
3344 else {
3345 fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n",
3346 strerror(errno));
3347 bufmgr_gem->gtt_size = 128 * 1024 * 1024;
3348 fprintf(stderr, "Assuming %dkB available aperture size.\n"
3349 "May lead to reduced performance or incorrect "
3350 "rendering.\n",
3351 (int)bufmgr_gem->gtt_size / 1024);
3352 }
3353
3354 bufmgr_gem->pci_device = get_pci_device_id(bufmgr_gem);
3355
3356 if (IS_GEN2(bufmgr_gem->pci_device))
3357 bufmgr_gem->gen = 2;
3358 else if (IS_GEN3(bufmgr_gem->pci_device))
3359 bufmgr_gem->gen = 3;
3360 else if (IS_GEN4(bufmgr_gem->pci_device))
3361 bufmgr_gem->gen = 4;
3362 else if (IS_GEN5(bufmgr_gem->pci_device))
3363 bufmgr_gem->gen = 5;
3364 else if (IS_GEN6(bufmgr_gem->pci_device))
3365 bufmgr_gem->gen = 6;
3366 else if (IS_GEN7(bufmgr_gem->pci_device))
3367 bufmgr_gem->gen = 7;
3368 else if (IS_GEN8(bufmgr_gem->pci_device))
3369 bufmgr_gem->gen = 8;
3370 else if (IS_GEN9(bufmgr_gem->pci_device))
3371 bufmgr_gem->gen = 9;
3372 else {
3373 free(bufmgr_gem);
3374 bufmgr_gem = NULL;
3375 goto exit;
3376 }
3377
3378 if (IS_GEN3(bufmgr_gem->pci_device) &&
3379 bufmgr_gem->gtt_size > 256*1024*1024) {
3380 /* The unmappable part of gtt on gen 3 (i.e. above 256MB) can't
3381 * be used for tiled blits. To simplify the accounting, just
3382 * substract the unmappable part (fixed to 256MB on all known
3383 * gen3 devices) if the kernel advertises it. */
3384 bufmgr_gem->gtt_size -= 256*1024*1024;
3385 }
3386
3387 memclear(gp);
3388 gp.value = &tmp;
3389
3390 gp.param = I915_PARAM_HAS_EXECBUF2;
3391 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3392 if (!ret)
3393 exec2 = true;
3394
3395 gp.param = I915_PARAM_HAS_BSD;
3396 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3397 bufmgr_gem->has_bsd = ret == 0;
3398
3399 gp.param = I915_PARAM_HAS_BLT;
3400 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3401 bufmgr_gem->has_blt = ret == 0;
3402
3403 gp.param = I915_PARAM_HAS_RELAXED_FENCING;
3404 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3405 bufmgr_gem->has_relaxed_fencing = ret == 0;
3406
3407 bufmgr_gem->bufmgr.bo_alloc_userptr = check_bo_alloc_userptr;
3408
3409 gp.param = I915_PARAM_HAS_WAIT_TIMEOUT;
3410 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3411 bufmgr_gem->has_wait_timeout = ret == 0;
3412
3413 gp.param = I915_PARAM_HAS_LLC;
3414 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3415 if (ret != 0) {
3416 /* Kernel does not supports HAS_LLC query, fallback to GPU
3417 * generation detection and assume that we have LLC on GEN6/7
3418 */
3419 bufmgr_gem->has_llc = (IS_GEN6(bufmgr_gem->pci_device) |
3420 IS_GEN7(bufmgr_gem->pci_device));
3421 } else
3422 bufmgr_gem->has_llc = *gp.value;
3423
3424 gp.param = I915_PARAM_HAS_VEBOX;
3425 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3426 bufmgr_gem->has_vebox = (ret == 0) & (*gp.value > 0);
3427
3428 gp.param = I915_PARAM_HAS_EXEC_SOFTPIN;
3429 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3430 if (ret == 0 && *gp.value > 0)
3431 bufmgr_gem->bufmgr.bo_set_softpin_offset = drm_intel_gem_bo_set_softpin_offset;
3432
3433 if (bufmgr_gem->gen < 4) {
3434 gp.param = I915_PARAM_NUM_FENCES_AVAIL;
3435 gp.value = &bufmgr_gem->available_fences;
3436 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3437 if (ret) {
3438 fprintf(stderr, "get fences failed: %d [%d]\n", ret,
3439 errno);
3440 fprintf(stderr, "param: %d, val: %d\n", gp.param,
3441 *gp.value);
3442 bufmgr_gem->available_fences = 0;
3443 } else {
3444 /* XXX The kernel reports the total number of fences,
3445 * including any that may be pinned.
3446 *
3447 * We presume that there will be at least one pinned
3448 * fence for the scanout buffer, but there may be more
3449 * than one scanout and the user may be manually
3450 * pinning buffers. Let's move to execbuffer2 and
3451 * thereby forget the insanity of using fences...
3452 */
3453 bufmgr_gem->available_fences -= 2;
3454 if (bufmgr_gem->available_fences < 0)
3455 bufmgr_gem->available_fences = 0;
3456 }
3457 }
3458
3459 if (bufmgr_gem->gen >= 8) {
3460 gp.param = I915_PARAM_HAS_ALIASING_PPGTT;
3461 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3462 if (ret == 0 && *gp.value == 3)
3463 bufmgr_gem->bufmgr.bo_use_48b_address_range = drm_intel_gem_bo_use_48b_address_range;
3464 }
3465
3466 /* Let's go with one relocation per every 2 dwords (but round down a bit
3467 * since a power of two will mean an extra page allocation for the reloc
3468 * buffer).
3469 *
3470 * Every 4 was too few for the blender benchmark.
3471 */
3472 bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2;
3473
3474 bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc;
3475 bufmgr_gem->bufmgr.bo_alloc_for_render =
3476 drm_intel_gem_bo_alloc_for_render;
3477 bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled;
3478 bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference;
3479 bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference;
3480 bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map;
3481 bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap;
3482 bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata;
3483 bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata;
3484 bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering;
3485 bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc;
3486 bufmgr_gem->bufmgr.bo_emit_reloc_fence = drm_intel_gem_bo_emit_reloc_fence;
3487 bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin;
3488 bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin;
3489 bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling;
3490 bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling;
3491 bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink;
3492 /* Use the new one if available */
3493 if (exec2) {
3494 bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec2;
3495 bufmgr_gem->bufmgr.bo_mrb_exec = drm_intel_gem_bo_mrb_exec2;
3496 } else
3497 bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec;
3498 bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy;
3499 bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise;
3500 bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_unref;
3501 bufmgr_gem->bufmgr.debug = 0;
3502 bufmgr_gem->bufmgr.check_aperture_space =
3503 drm_intel_gem_check_aperture_space;
3504 bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse;
3505 bufmgr_gem->bufmgr.bo_is_reusable = drm_intel_gem_bo_is_reusable;
3506 bufmgr_gem->bufmgr.get_pipe_from_crtc_id =
3507 drm_intel_gem_get_pipe_from_crtc_id;
3508 bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references;
3509
3510 DRMINITLISTHEAD(&bufmgr_gem->named);
3511 init_cache_buckets(bufmgr_gem);
3512
3513 DRMINITLISTHEAD(&bufmgr_gem->vma_cache);
3514 bufmgr_gem->vma_max = -1; /* unlimited by default */
3515
3516 DRMLISTADD(&bufmgr_gem->managers, &bufmgr_list);
3517
3518 exit:
3519 pthread_mutex_unlock(&bufmgr_list_mutex);
3520
3521 return bufmgr_gem != NULL ? &bufmgr_gem->bufmgr : NULL;
3522 }
3523