1 /**************************************************************************
2  *
3  * Copyright � 2007 Red Hat Inc.
4  * Copyright � 2007-2012 Intel Corporation
5  * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
20  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22  * USE OR OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * The above copyright notice and this permission notice (including the
25  * next paragraph) shall be included in all copies or substantial portions
26  * of the Software.
27  *
28  *
29  **************************************************************************/
30 /*
31  * Authors: Thomas Hellstr�m <thomas-at-tungstengraphics-dot-com>
32  *          Keith Whitwell <keithw-at-tungstengraphics-dot-com>
33  *	    Eric Anholt <eric@anholt.net>
34  *	    Dave Airlie <airlied@linux.ie>
35  */
36 
37 #ifdef HAVE_CONFIG_H
38 #include "config.h"
39 #endif
40 
41 #include <xf86drm.h>
42 #include <xf86atomic.h>
43 #include <fcntl.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <unistd.h>
48 #include <assert.h>
49 #include <pthread.h>
50 #include <sys/ioctl.h>
51 #include <sys/stat.h>
52 #include <sys/types.h>
53 #include <stdbool.h>
54 
55 #include "errno.h"
56 #ifndef ETIME
57 #define ETIME ETIMEDOUT
58 #endif
59 #include "libdrm_macros.h"
60 #include "libdrm_lists.h"
61 #include "intel_bufmgr.h"
62 #include "intel_bufmgr_priv.h"
63 #include "intel_chipset.h"
64 #include "string.h"
65 
66 #include "i915_drm.h"
67 
68 #ifdef HAVE_VALGRIND
69 #include <valgrind.h>
70 #include <memcheck.h>
71 #define VG(x) x
72 #else
73 #define VG(x)
74 #endif
75 
76 #define memclear(s) memset(&s, 0, sizeof(s))
77 
78 #define DBG(...) do {					\
79 	if (bufmgr_gem->bufmgr.debug)			\
80 		fprintf(stderr, __VA_ARGS__);		\
81 } while (0)
82 
83 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
84 #define MAX2(A, B) ((A) > (B) ? (A) : (B))
85 
86 /**
87  * upper_32_bits - return bits 32-63 of a number
88  * @n: the number we're accessing
89  *
90  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
91  * the "right shift count >= width of type" warning when that quantity is
92  * 32-bits.
93  */
94 #define upper_32_bits(n) ((__u32)(((n) >> 16) >> 16))
95 
96 /**
97  * lower_32_bits - return bits 0-31 of a number
98  * @n: the number we're accessing
99  */
100 #define lower_32_bits(n) ((__u32)(n))
101 
102 typedef struct _drm_intel_bo_gem drm_intel_bo_gem;
103 
104 struct drm_intel_gem_bo_bucket {
105 	drmMMListHead head;
106 	unsigned long size;
107 };
108 
109 typedef struct _drm_intel_bufmgr_gem {
110 	drm_intel_bufmgr bufmgr;
111 
112 	atomic_t refcount;
113 
114 	int fd;
115 
116 	int max_relocs;
117 
118 	pthread_mutex_t lock;
119 
120 	struct drm_i915_gem_exec_object *exec_objects;
121 	struct drm_i915_gem_exec_object2 *exec2_objects;
122 	drm_intel_bo **exec_bos;
123 	int exec_size;
124 	int exec_count;
125 
126 	/** Array of lists of cached gem objects of power-of-two sizes */
127 	struct drm_intel_gem_bo_bucket cache_bucket[14 * 4];
128 	int num_buckets;
129 	time_t time;
130 
131 	drmMMListHead managers;
132 
133 	drmMMListHead named;
134 	drmMMListHead vma_cache;
135 	int vma_count, vma_open, vma_max;
136 
137 	uint64_t gtt_size;
138 	int available_fences;
139 	int pci_device;
140 	int gen;
141 	unsigned int has_bsd : 1;
142 	unsigned int has_blt : 1;
143 	unsigned int has_relaxed_fencing : 1;
144 	unsigned int has_llc : 1;
145 	unsigned int has_wait_timeout : 1;
146 	unsigned int bo_reuse : 1;
147 	unsigned int no_exec : 1;
148 	unsigned int has_vebox : 1;
149 	bool fenced_relocs;
150 
151 	struct {
152 		void *ptr;
153 		uint32_t handle;
154 	} userptr_active;
155 
156 } drm_intel_bufmgr_gem;
157 
158 #define DRM_INTEL_RELOC_FENCE (1<<0)
159 
160 typedef struct _drm_intel_reloc_target_info {
161 	drm_intel_bo *bo;
162 	int flags;
163 } drm_intel_reloc_target;
164 
165 struct _drm_intel_bo_gem {
166 	drm_intel_bo bo;
167 
168 	atomic_t refcount;
169 	uint32_t gem_handle;
170 	const char *name;
171 
172 	/**
173 	 * Kenel-assigned global name for this object
174          *
175          * List contains both flink named and prime fd'd objects
176 	 */
177 	unsigned int global_name;
178 	drmMMListHead name_list;
179 
180 	/**
181 	 * Index of the buffer within the validation list while preparing a
182 	 * batchbuffer execution.
183 	 */
184 	int validate_index;
185 
186 	/**
187 	 * Current tiling mode
188 	 */
189 	uint32_t tiling_mode;
190 	uint32_t swizzle_mode;
191 	unsigned long stride;
192 
193 	time_t free_time;
194 
195 	/** Array passed to the DRM containing relocation information. */
196 	struct drm_i915_gem_relocation_entry *relocs;
197 	/**
198 	 * Array of info structs corresponding to relocs[i].target_handle etc
199 	 */
200 	drm_intel_reloc_target *reloc_target_info;
201 	/** Number of entries in relocs */
202 	int reloc_count;
203 	/** Array of BOs that are referenced by this buffer and will be softpinned */
204 	drm_intel_bo **softpin_target;
205 	/** Number softpinned BOs that are referenced by this buffer */
206 	int softpin_target_count;
207 	/** Maximum amount of softpinned BOs that are referenced by this buffer */
208 	int softpin_target_size;
209 
210 	/** Mapped address for the buffer, saved across map/unmap cycles */
211 	void *mem_virtual;
212 	/** GTT virtual address for the buffer, saved across map/unmap cycles */
213 	void *gtt_virtual;
214 	/**
215 	 * Virtual address of the buffer allocated by user, used for userptr
216 	 * objects only.
217 	 */
218 	void *user_virtual;
219 	int map_count;
220 	drmMMListHead vma_list;
221 
222 	/** BO cache list */
223 	drmMMListHead head;
224 
225 	/**
226 	 * Boolean of whether this BO and its children have been included in
227 	 * the current drm_intel_bufmgr_check_aperture_space() total.
228 	 */
229 	bool included_in_check_aperture;
230 
231 	/**
232 	 * Boolean of whether this buffer has been used as a relocation
233 	 * target and had its size accounted for, and thus can't have any
234 	 * further relocations added to it.
235 	 */
236 	bool used_as_reloc_target;
237 
238 	/**
239 	 * Boolean of whether we have encountered an error whilst building the relocation tree.
240 	 */
241 	bool has_error;
242 
243 	/**
244 	 * Boolean of whether this buffer can be re-used
245 	 */
246 	bool reusable;
247 
248 	/**
249 	 * Boolean of whether the GPU is definitely not accessing the buffer.
250 	 *
251 	 * This is only valid when reusable, since non-reusable
252 	 * buffers are those that have been shared wth other
253 	 * processes, so we don't know their state.
254 	 */
255 	bool idle;
256 
257 	/**
258 	 * Boolean of whether this buffer was allocated with userptr
259 	 */
260 	bool is_userptr;
261 
262 	/**
263 	 * Boolean of whether this buffer can be placed in the full 48-bit
264 	 * address range on gen8+.
265 	 *
266 	 * By default, buffers will be keep in a 32-bit range, unless this
267 	 * flag is explicitly set.
268 	 */
269 	bool use_48b_address_range;
270 
271 	/**
272 	 * Whether this buffer is softpinned at offset specified by the user
273 	 */
274 	bool is_softpin;
275 
276 	/**
277 	 * Size in bytes of this buffer and its relocation descendents.
278 	 *
279 	 * Used to avoid costly tree walking in
280 	 * drm_intel_bufmgr_check_aperture in the common case.
281 	 */
282 	int reloc_tree_size;
283 
284 	/**
285 	 * Number of potential fence registers required by this buffer and its
286 	 * relocations.
287 	 */
288 	int reloc_tree_fences;
289 
290 	/** Flags that we may need to do the SW_FINSIH ioctl on unmap. */
291 	bool mapped_cpu_write;
292 };
293 
294 static unsigned int
295 drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count);
296 
297 static unsigned int
298 drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count);
299 
300 static int
301 drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
302 			    uint32_t * swizzle_mode);
303 
304 static int
305 drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
306 				     uint32_t tiling_mode,
307 				     uint32_t stride);
308 
309 static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
310 						      time_t time);
311 
312 static void drm_intel_gem_bo_unreference(drm_intel_bo *bo);
313 
314 static void drm_intel_gem_bo_free(drm_intel_bo *bo);
315 
to_bo_gem(drm_intel_bo * bo)316 static inline drm_intel_bo_gem *to_bo_gem(drm_intel_bo *bo)
317 {
318         return (drm_intel_bo_gem *)bo;
319 }
320 
321 static unsigned long
drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem * bufmgr_gem,unsigned long size,uint32_t * tiling_mode)322 drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size,
323 			   uint32_t *tiling_mode)
324 {
325 	unsigned long min_size, max_size;
326 	unsigned long i;
327 
328 	if (*tiling_mode == I915_TILING_NONE)
329 		return size;
330 
331 	/* 965+ just need multiples of page size for tiling */
332 	if (bufmgr_gem->gen >= 4)
333 		return ROUND_UP_TO(size, 4096);
334 
335 	/* Older chips need powers of two, of at least 512k or 1M */
336 	if (bufmgr_gem->gen == 3) {
337 		min_size = 1024*1024;
338 		max_size = 128*1024*1024;
339 	} else {
340 		min_size = 512*1024;
341 		max_size = 64*1024*1024;
342 	}
343 
344 	if (size > max_size) {
345 		*tiling_mode = I915_TILING_NONE;
346 		return size;
347 	}
348 
349 	/* Do we need to allocate every page for the fence? */
350 	if (bufmgr_gem->has_relaxed_fencing)
351 		return ROUND_UP_TO(size, 4096);
352 
353 	for (i = min_size; i < size; i <<= 1)
354 		;
355 
356 	return i;
357 }
358 
359 /*
360  * Round a given pitch up to the minimum required for X tiling on a
361  * given chip.  We use 512 as the minimum to allow for a later tiling
362  * change.
363  */
364 static unsigned long
drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem * bufmgr_gem,unsigned long pitch,uint32_t * tiling_mode)365 drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem,
366 			    unsigned long pitch, uint32_t *tiling_mode)
367 {
368 	unsigned long tile_width;
369 	unsigned long i;
370 
371 	/* If untiled, then just align it so that we can do rendering
372 	 * to it with the 3D engine.
373 	 */
374 	if (*tiling_mode == I915_TILING_NONE)
375 		return ALIGN(pitch, 64);
376 
377 	if (*tiling_mode == I915_TILING_X
378 			|| (IS_915(bufmgr_gem->pci_device)
379 			    && *tiling_mode == I915_TILING_Y))
380 		tile_width = 512;
381 	else
382 		tile_width = 128;
383 
384 	/* 965 is flexible */
385 	if (bufmgr_gem->gen >= 4)
386 		return ROUND_UP_TO(pitch, tile_width);
387 
388 	/* The older hardware has a maximum pitch of 8192 with tiled
389 	 * surfaces, so fallback to untiled if it's too large.
390 	 */
391 	if (pitch > 8192) {
392 		*tiling_mode = I915_TILING_NONE;
393 		return ALIGN(pitch, 64);
394 	}
395 
396 	/* Pre-965 needs power of two tile width */
397 	for (i = tile_width; i < pitch; i <<= 1)
398 		;
399 
400 	return i;
401 }
402 
403 static struct drm_intel_gem_bo_bucket *
drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem * bufmgr_gem,unsigned long size)404 drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem,
405 				 unsigned long size)
406 {
407 	int i;
408 
409 	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
410 		struct drm_intel_gem_bo_bucket *bucket =
411 		    &bufmgr_gem->cache_bucket[i];
412 		if (bucket->size >= size) {
413 			return bucket;
414 		}
415 	}
416 
417 	return NULL;
418 }
419 
420 static void
drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem * bufmgr_gem)421 drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem)
422 {
423 	int i, j;
424 
425 	for (i = 0; i < bufmgr_gem->exec_count; i++) {
426 		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
427 		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
428 
429 		if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL) {
430 			DBG("%2d: %d %s(%s)\n", i, bo_gem->gem_handle,
431 			    bo_gem->is_softpin ? "*" : "",
432 			    bo_gem->name);
433 			continue;
434 		}
435 
436 		for (j = 0; j < bo_gem->reloc_count; j++) {
437 			drm_intel_bo *target_bo = bo_gem->reloc_target_info[j].bo;
438 			drm_intel_bo_gem *target_gem =
439 			    (drm_intel_bo_gem *) target_bo;
440 
441 			DBG("%2d: %d %s(%s)@0x%08x %08x -> "
442 			    "%d (%s)@0x%08x %08x + 0x%08x\n",
443 			    i,
444 			    bo_gem->gem_handle,
445 			    bo_gem->is_softpin ? "*" : "",
446 			    bo_gem->name,
447 			    upper_32_bits(bo_gem->relocs[j].offset),
448 			    lower_32_bits(bo_gem->relocs[j].offset),
449 			    target_gem->gem_handle,
450 			    target_gem->name,
451 			    upper_32_bits(target_bo->offset64),
452 			    lower_32_bits(target_bo->offset64),
453 			    bo_gem->relocs[j].delta);
454 		}
455 
456 		for (j = 0; j < bo_gem->softpin_target_count; j++) {
457 			drm_intel_bo *target_bo = bo_gem->softpin_target[j];
458 			drm_intel_bo_gem *target_gem =
459 			    (drm_intel_bo_gem *) target_bo;
460 			DBG("%2d: %d %s(%s) -> "
461 			    "%d *(%s)@0x%08x %08x\n",
462 			    i,
463 			    bo_gem->gem_handle,
464 			    bo_gem->is_softpin ? "*" : "",
465 			    bo_gem->name,
466 			    target_gem->gem_handle,
467 			    target_gem->name,
468 			    upper_32_bits(target_bo->offset64),
469 			    lower_32_bits(target_bo->offset64));
470 		}
471 	}
472 }
473 
474 static inline void
drm_intel_gem_bo_reference(drm_intel_bo * bo)475 drm_intel_gem_bo_reference(drm_intel_bo *bo)
476 {
477 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
478 
479 	atomic_inc(&bo_gem->refcount);
480 }
481 
482 /**
483  * Adds the given buffer to the list of buffers to be validated (moved into the
484  * appropriate memory type) with the next batch submission.
485  *
486  * If a buffer is validated multiple times in a batch submission, it ends up
487  * with the intersection of the memory type flags and the union of the
488  * access flags.
489  */
490 static void
drm_intel_add_validate_buffer(drm_intel_bo * bo)491 drm_intel_add_validate_buffer(drm_intel_bo *bo)
492 {
493 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
494 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
495 	int index;
496 
497 	if (bo_gem->validate_index != -1)
498 		return;
499 
500 	/* Extend the array of validation entries as necessary. */
501 	if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
502 		int new_size = bufmgr_gem->exec_size * 2;
503 
504 		if (new_size == 0)
505 			new_size = 5;
506 
507 		bufmgr_gem->exec_objects =
508 		    realloc(bufmgr_gem->exec_objects,
509 			    sizeof(*bufmgr_gem->exec_objects) * new_size);
510 		bufmgr_gem->exec_bos =
511 		    realloc(bufmgr_gem->exec_bos,
512 			    sizeof(*bufmgr_gem->exec_bos) * new_size);
513 		bufmgr_gem->exec_size = new_size;
514 	}
515 
516 	index = bufmgr_gem->exec_count;
517 	bo_gem->validate_index = index;
518 	/* Fill in array entry */
519 	bufmgr_gem->exec_objects[index].handle = bo_gem->gem_handle;
520 	bufmgr_gem->exec_objects[index].relocation_count = bo_gem->reloc_count;
521 	bufmgr_gem->exec_objects[index].relocs_ptr = (uintptr_t) bo_gem->relocs;
522 	bufmgr_gem->exec_objects[index].alignment = bo->align;
523 	bufmgr_gem->exec_objects[index].offset = 0;
524 	bufmgr_gem->exec_bos[index] = bo;
525 	bufmgr_gem->exec_count++;
526 }
527 
528 static void
drm_intel_add_validate_buffer2(drm_intel_bo * bo,int need_fence)529 drm_intel_add_validate_buffer2(drm_intel_bo *bo, int need_fence)
530 {
531 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
532 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
533 	int index;
534 	int flags = 0;
535 
536 	if (need_fence)
537 		flags |= EXEC_OBJECT_NEEDS_FENCE;
538 	if (bo_gem->use_48b_address_range)
539 		flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
540 	if (bo_gem->is_softpin)
541 		flags |= EXEC_OBJECT_PINNED;
542 
543 	if (bo_gem->validate_index != -1) {
544 		bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |= flags;
545 		return;
546 	}
547 
548 	/* Extend the array of validation entries as necessary. */
549 	if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
550 		int new_size = bufmgr_gem->exec_size * 2;
551 
552 		if (new_size == 0)
553 			new_size = 5;
554 
555 		bufmgr_gem->exec2_objects =
556 			realloc(bufmgr_gem->exec2_objects,
557 				sizeof(*bufmgr_gem->exec2_objects) * new_size);
558 		bufmgr_gem->exec_bos =
559 			realloc(bufmgr_gem->exec_bos,
560 				sizeof(*bufmgr_gem->exec_bos) * new_size);
561 		bufmgr_gem->exec_size = new_size;
562 	}
563 
564 	index = bufmgr_gem->exec_count;
565 	bo_gem->validate_index = index;
566 	/* Fill in array entry */
567 	bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle;
568 	bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count;
569 	bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs;
570 	bufmgr_gem->exec2_objects[index].alignment = bo->align;
571 	bufmgr_gem->exec2_objects[index].offset = bo_gem->is_softpin ?
572 		bo->offset64 : 0;
573 	bufmgr_gem->exec_bos[index] = bo;
574 	bufmgr_gem->exec2_objects[index].flags = flags;
575 	bufmgr_gem->exec2_objects[index].rsvd1 = 0;
576 	bufmgr_gem->exec2_objects[index].rsvd2 = 0;
577 	bufmgr_gem->exec_count++;
578 }
579 
580 #define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \
581 	sizeof(uint32_t))
582 
583 static void
drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem * bufmgr_gem,drm_intel_bo_gem * bo_gem,unsigned int alignment)584 drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem,
585 				      drm_intel_bo_gem *bo_gem,
586 				      unsigned int alignment)
587 {
588 	unsigned int size;
589 
590 	assert(!bo_gem->used_as_reloc_target);
591 
592 	/* The older chipsets are far-less flexible in terms of tiling,
593 	 * and require tiled buffer to be size aligned in the aperture.
594 	 * This means that in the worst possible case we will need a hole
595 	 * twice as large as the object in order for it to fit into the
596 	 * aperture. Optimal packing is for wimps.
597 	 */
598 	size = bo_gem->bo.size;
599 	if (bufmgr_gem->gen < 4 && bo_gem->tiling_mode != I915_TILING_NONE) {
600 		unsigned int min_size;
601 
602 		if (bufmgr_gem->has_relaxed_fencing) {
603 			if (bufmgr_gem->gen == 3)
604 				min_size = 1024*1024;
605 			else
606 				min_size = 512*1024;
607 
608 			while (min_size < size)
609 				min_size *= 2;
610 		} else
611 			min_size = size;
612 
613 		/* Account for worst-case alignment. */
614 		alignment = MAX2(alignment, min_size);
615 	}
616 
617 	bo_gem->reloc_tree_size = size + alignment;
618 }
619 
620 static int
drm_intel_setup_reloc_list(drm_intel_bo * bo)621 drm_intel_setup_reloc_list(drm_intel_bo *bo)
622 {
623 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
624 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
625 	unsigned int max_relocs = bufmgr_gem->max_relocs;
626 
627 	if (bo->size / 4 < max_relocs)
628 		max_relocs = bo->size / 4;
629 
630 	bo_gem->relocs = malloc(max_relocs *
631 				sizeof(struct drm_i915_gem_relocation_entry));
632 	bo_gem->reloc_target_info = malloc(max_relocs *
633 					   sizeof(drm_intel_reloc_target));
634 	if (bo_gem->relocs == NULL || bo_gem->reloc_target_info == NULL) {
635 		bo_gem->has_error = true;
636 
637 		free (bo_gem->relocs);
638 		bo_gem->relocs = NULL;
639 
640 		free (bo_gem->reloc_target_info);
641 		bo_gem->reloc_target_info = NULL;
642 
643 		return 1;
644 	}
645 
646 	return 0;
647 }
648 
649 static int
drm_intel_gem_bo_busy(drm_intel_bo * bo)650 drm_intel_gem_bo_busy(drm_intel_bo *bo)
651 {
652 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
653 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
654 	struct drm_i915_gem_busy busy;
655 	int ret;
656 
657 	if (bo_gem->reusable && bo_gem->idle)
658 		return false;
659 
660 	memclear(busy);
661 	busy.handle = bo_gem->gem_handle;
662 
663 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
664 	if (ret == 0) {
665 		bo_gem->idle = !busy.busy;
666 		return busy.busy;
667 	} else {
668 		return false;
669 	}
670 	return (ret == 0 && busy.busy);
671 }
672 
673 static int
drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem * bufmgr_gem,drm_intel_bo_gem * bo_gem,int state)674 drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem,
675 				  drm_intel_bo_gem *bo_gem, int state)
676 {
677 	struct drm_i915_gem_madvise madv;
678 
679 	memclear(madv);
680 	madv.handle = bo_gem->gem_handle;
681 	madv.madv = state;
682 	madv.retained = 1;
683 	drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
684 
685 	return madv.retained;
686 }
687 
688 static int
drm_intel_gem_bo_madvise(drm_intel_bo * bo,int madv)689 drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv)
690 {
691 	return drm_intel_gem_bo_madvise_internal
692 		((drm_intel_bufmgr_gem *) bo->bufmgr,
693 		 (drm_intel_bo_gem *) bo,
694 		 madv);
695 }
696 
697 /* drop the oldest entries that have been purged by the kernel */
698 static void
drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem * bufmgr_gem,struct drm_intel_gem_bo_bucket * bucket)699 drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem,
700 				    struct drm_intel_gem_bo_bucket *bucket)
701 {
702 	while (!DRMLISTEMPTY(&bucket->head)) {
703 		drm_intel_bo_gem *bo_gem;
704 
705 		bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
706 				      bucket->head.next, head);
707 		if (drm_intel_gem_bo_madvise_internal
708 		    (bufmgr_gem, bo_gem, I915_MADV_DONTNEED))
709 			break;
710 
711 		DRMLISTDEL(&bo_gem->head);
712 		drm_intel_gem_bo_free(&bo_gem->bo);
713 	}
714 }
715 
716 static drm_intel_bo *
drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr * bufmgr,const char * name,unsigned long size,unsigned long flags,uint32_t tiling_mode,unsigned long stride,unsigned int alignment)717 drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr,
718 				const char *name,
719 				unsigned long size,
720 				unsigned long flags,
721 				uint32_t tiling_mode,
722 				unsigned long stride,
723 				unsigned int alignment)
724 {
725 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
726 	drm_intel_bo_gem *bo_gem;
727 	unsigned int page_size = getpagesize();
728 	int ret;
729 	struct drm_intel_gem_bo_bucket *bucket;
730 	bool alloc_from_cache;
731 	unsigned long bo_size;
732 	bool for_render = false;
733 
734 	if (flags & BO_ALLOC_FOR_RENDER)
735 		for_render = true;
736 
737 	/* Round the allocated size up to a power of two number of pages. */
738 	bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size);
739 
740 	/* If we don't have caching at this size, don't actually round the
741 	 * allocation up.
742 	 */
743 	if (bucket == NULL) {
744 		bo_size = size;
745 		if (bo_size < page_size)
746 			bo_size = page_size;
747 	} else {
748 		bo_size = bucket->size;
749 	}
750 
751 	pthread_mutex_lock(&bufmgr_gem->lock);
752 	/* Get a buffer out of the cache if available */
753 retry:
754 	alloc_from_cache = false;
755 	if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) {
756 		if (for_render) {
757 			/* Allocate new render-target BOs from the tail (MRU)
758 			 * of the list, as it will likely be hot in the GPU
759 			 * cache and in the aperture for us.
760 			 */
761 			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
762 					      bucket->head.prev, head);
763 			DRMLISTDEL(&bo_gem->head);
764 			alloc_from_cache = true;
765 			bo_gem->bo.align = alignment;
766 		} else {
767 			assert(alignment == 0);
768 			/* For non-render-target BOs (where we're probably
769 			 * going to map it first thing in order to fill it
770 			 * with data), check if the last BO in the cache is
771 			 * unbusy, and only reuse in that case. Otherwise,
772 			 * allocating a new buffer is probably faster than
773 			 * waiting for the GPU to finish.
774 			 */
775 			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
776 					      bucket->head.next, head);
777 			if (!drm_intel_gem_bo_busy(&bo_gem->bo)) {
778 				alloc_from_cache = true;
779 				DRMLISTDEL(&bo_gem->head);
780 			}
781 		}
782 
783 		if (alloc_from_cache) {
784 			if (!drm_intel_gem_bo_madvise_internal
785 			    (bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) {
786 				drm_intel_gem_bo_free(&bo_gem->bo);
787 				drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem,
788 								    bucket);
789 				goto retry;
790 			}
791 
792 			if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
793 								 tiling_mode,
794 								 stride)) {
795 				drm_intel_gem_bo_free(&bo_gem->bo);
796 				goto retry;
797 			}
798 		}
799 	}
800 	pthread_mutex_unlock(&bufmgr_gem->lock);
801 
802 	if (!alloc_from_cache) {
803 		struct drm_i915_gem_create create;
804 
805 		bo_gem = calloc(1, sizeof(*bo_gem));
806 		if (!bo_gem)
807 			return NULL;
808 
809 		bo_gem->bo.size = bo_size;
810 
811 		memclear(create);
812 		create.size = bo_size;
813 
814 		ret = drmIoctl(bufmgr_gem->fd,
815 			       DRM_IOCTL_I915_GEM_CREATE,
816 			       &create);
817 		bo_gem->gem_handle = create.handle;
818 		bo_gem->bo.handle = bo_gem->gem_handle;
819 		if (ret != 0) {
820 			free(bo_gem);
821 			return NULL;
822 		}
823 		bo_gem->bo.bufmgr = bufmgr;
824 		bo_gem->bo.align = alignment;
825 
826 		bo_gem->tiling_mode = I915_TILING_NONE;
827 		bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
828 		bo_gem->stride = 0;
829 
830 		/* drm_intel_gem_bo_free calls DRMLISTDEL() for an uninitialized
831 		   list (vma_list), so better set the list head here */
832 		DRMINITLISTHEAD(&bo_gem->name_list);
833 		DRMINITLISTHEAD(&bo_gem->vma_list);
834 		if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
835 							 tiling_mode,
836 							 stride)) {
837 		    drm_intel_gem_bo_free(&bo_gem->bo);
838 		    return NULL;
839 		}
840 	}
841 
842 	bo_gem->name = name;
843 	atomic_set(&bo_gem->refcount, 1);
844 	bo_gem->validate_index = -1;
845 	bo_gem->reloc_tree_fences = 0;
846 	bo_gem->used_as_reloc_target = false;
847 	bo_gem->has_error = false;
848 	bo_gem->reusable = true;
849 	bo_gem->use_48b_address_range = false;
850 
851 	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, alignment);
852 
853 	DBG("bo_create: buf %d (%s) %ldb\n",
854 	    bo_gem->gem_handle, bo_gem->name, size);
855 
856 	return &bo_gem->bo;
857 }
858 
859 static drm_intel_bo *
drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr * bufmgr,const char * name,unsigned long size,unsigned int alignment)860 drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr,
861 				  const char *name,
862 				  unsigned long size,
863 				  unsigned int alignment)
864 {
865 	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size,
866 					       BO_ALLOC_FOR_RENDER,
867 					       I915_TILING_NONE, 0,
868 					       alignment);
869 }
870 
871 static drm_intel_bo *
drm_intel_gem_bo_alloc(drm_intel_bufmgr * bufmgr,const char * name,unsigned long size,unsigned int alignment)872 drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr,
873 		       const char *name,
874 		       unsigned long size,
875 		       unsigned int alignment)
876 {
877 	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0,
878 					       I915_TILING_NONE, 0, 0);
879 }
880 
881 static drm_intel_bo *
drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr * bufmgr,const char * name,int x,int y,int cpp,uint32_t * tiling_mode,unsigned long * pitch,unsigned long flags)882 drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name,
883 			     int x, int y, int cpp, uint32_t *tiling_mode,
884 			     unsigned long *pitch, unsigned long flags)
885 {
886 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
887 	unsigned long size, stride;
888 	uint32_t tiling;
889 
890 	do {
891 		unsigned long aligned_y, height_alignment;
892 
893 		tiling = *tiling_mode;
894 
895 		/* If we're tiled, our allocations are in 8 or 32-row blocks,
896 		 * so failure to align our height means that we won't allocate
897 		 * enough pages.
898 		 *
899 		 * If we're untiled, we still have to align to 2 rows high
900 		 * because the data port accesses 2x2 blocks even if the
901 		 * bottom row isn't to be rendered, so failure to align means
902 		 * we could walk off the end of the GTT and fault.  This is
903 		 * documented on 965, and may be the case on older chipsets
904 		 * too so we try to be careful.
905 		 */
906 		aligned_y = y;
907 		height_alignment = 2;
908 
909 		if ((bufmgr_gem->gen == 2) && tiling != I915_TILING_NONE)
910 			height_alignment = 16;
911 		else if (tiling == I915_TILING_X
912 			|| (IS_915(bufmgr_gem->pci_device)
913 			    && tiling == I915_TILING_Y))
914 			height_alignment = 8;
915 		else if (tiling == I915_TILING_Y)
916 			height_alignment = 32;
917 		aligned_y = ALIGN(y, height_alignment);
918 
919 		stride = x * cpp;
920 		stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, tiling_mode);
921 		size = stride * aligned_y;
922 		size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode);
923 	} while (*tiling_mode != tiling);
924 	*pitch = stride;
925 
926 	if (tiling == I915_TILING_NONE)
927 		stride = 0;
928 
929 	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags,
930 					       tiling, stride, 0);
931 }
932 
933 static drm_intel_bo *
drm_intel_gem_bo_alloc_userptr(drm_intel_bufmgr * bufmgr,const char * name,void * addr,uint32_t tiling_mode,uint32_t stride,unsigned long size,unsigned long flags)934 drm_intel_gem_bo_alloc_userptr(drm_intel_bufmgr *bufmgr,
935 				const char *name,
936 				void *addr,
937 				uint32_t tiling_mode,
938 				uint32_t stride,
939 				unsigned long size,
940 				unsigned long flags)
941 {
942 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
943 	drm_intel_bo_gem *bo_gem;
944 	int ret;
945 	struct drm_i915_gem_userptr userptr;
946 
947 	/* Tiling with userptr surfaces is not supported
948 	 * on all hardware so refuse it for time being.
949 	 */
950 	if (tiling_mode != I915_TILING_NONE)
951 		return NULL;
952 
953 	bo_gem = calloc(1, sizeof(*bo_gem));
954 	if (!bo_gem)
955 		return NULL;
956 
957 	bo_gem->bo.size = size;
958 
959 	memclear(userptr);
960 	userptr.user_ptr = (__u64)((unsigned long)addr);
961 	userptr.user_size = size;
962 	userptr.flags = flags;
963 
964 	ret = drmIoctl(bufmgr_gem->fd,
965 			DRM_IOCTL_I915_GEM_USERPTR,
966 			&userptr);
967 	if (ret != 0) {
968 		DBG("bo_create_userptr: "
969 		    "ioctl failed with user ptr %p size 0x%lx, "
970 		    "user flags 0x%lx\n", addr, size, flags);
971 		free(bo_gem);
972 		return NULL;
973 	}
974 
975 	bo_gem->gem_handle = userptr.handle;
976 	bo_gem->bo.handle = bo_gem->gem_handle;
977 	bo_gem->bo.bufmgr    = bufmgr;
978 	bo_gem->is_userptr   = true;
979 	bo_gem->bo.virtual   = addr;
980 	/* Save the address provided by user */
981 	bo_gem->user_virtual = addr;
982 	bo_gem->tiling_mode  = I915_TILING_NONE;
983 	bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
984 	bo_gem->stride       = 0;
985 
986 	DRMINITLISTHEAD(&bo_gem->name_list);
987 	DRMINITLISTHEAD(&bo_gem->vma_list);
988 
989 	bo_gem->name = name;
990 	atomic_set(&bo_gem->refcount, 1);
991 	bo_gem->validate_index = -1;
992 	bo_gem->reloc_tree_fences = 0;
993 	bo_gem->used_as_reloc_target = false;
994 	bo_gem->has_error = false;
995 	bo_gem->reusable = false;
996 	bo_gem->use_48b_address_range = false;
997 
998 	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
999 
1000 	DBG("bo_create_userptr: "
1001 	    "ptr %p buf %d (%s) size %ldb, stride 0x%x, tile mode %d\n",
1002 		addr, bo_gem->gem_handle, bo_gem->name,
1003 		size, stride, tiling_mode);
1004 
1005 	return &bo_gem->bo;
1006 }
1007 
1008 static bool
has_userptr(drm_intel_bufmgr_gem * bufmgr_gem)1009 has_userptr(drm_intel_bufmgr_gem *bufmgr_gem)
1010 {
1011 	int ret;
1012 	void *ptr;
1013 	long pgsz;
1014 	struct drm_i915_gem_userptr userptr;
1015 
1016 	pgsz = sysconf(_SC_PAGESIZE);
1017 	assert(pgsz > 0);
1018 
1019 	ret = posix_memalign(&ptr, pgsz, pgsz);
1020 	if (ret) {
1021 		DBG("Failed to get a page (%ld) for userptr detection!\n",
1022 			pgsz);
1023 		return false;
1024 	}
1025 
1026 	memclear(userptr);
1027 	userptr.user_ptr = (__u64)(unsigned long)ptr;
1028 	userptr.user_size = pgsz;
1029 
1030 retry:
1031 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_USERPTR, &userptr);
1032 	if (ret) {
1033 		if (errno == ENODEV && userptr.flags == 0) {
1034 			userptr.flags = I915_USERPTR_UNSYNCHRONIZED;
1035 			goto retry;
1036 		}
1037 		free(ptr);
1038 		return false;
1039 	}
1040 
1041 	/* We don't release the userptr bo here as we want to keep the
1042 	 * kernel mm tracking alive for our lifetime. The first time we
1043 	 * create a userptr object the kernel has to install a mmu_notifer
1044 	 * which is a heavyweight operation (e.g. it requires taking all
1045 	 * mm_locks and stop_machine()).
1046 	 */
1047 
1048 	bufmgr_gem->userptr_active.ptr = ptr;
1049 	bufmgr_gem->userptr_active.handle = userptr.handle;
1050 
1051 	return true;
1052 }
1053 
1054 static drm_intel_bo *
check_bo_alloc_userptr(drm_intel_bufmgr * bufmgr,const char * name,void * addr,uint32_t tiling_mode,uint32_t stride,unsigned long size,unsigned long flags)1055 check_bo_alloc_userptr(drm_intel_bufmgr *bufmgr,
1056 		       const char *name,
1057 		       void *addr,
1058 		       uint32_t tiling_mode,
1059 		       uint32_t stride,
1060 		       unsigned long size,
1061 		       unsigned long flags)
1062 {
1063 	if (has_userptr((drm_intel_bufmgr_gem *)bufmgr))
1064 		bufmgr->bo_alloc_userptr = drm_intel_gem_bo_alloc_userptr;
1065 	else
1066 		bufmgr->bo_alloc_userptr = NULL;
1067 
1068 	return drm_intel_bo_alloc_userptr(bufmgr, name, addr,
1069 					  tiling_mode, stride, size, flags);
1070 }
1071 
1072 /**
1073  * Returns a drm_intel_bo wrapping the given buffer object handle.
1074  *
1075  * This can be used when one application needs to pass a buffer object
1076  * to another.
1077  */
1078 drm_intel_bo *
drm_intel_bo_gem_create_from_name(drm_intel_bufmgr * bufmgr,const char * name,unsigned int handle)1079 drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr,
1080 				  const char *name,
1081 				  unsigned int handle)
1082 {
1083 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1084 	drm_intel_bo_gem *bo_gem;
1085 	int ret;
1086 	struct drm_gem_open open_arg;
1087 	struct drm_i915_gem_get_tiling get_tiling;
1088 	drmMMListHead *list;
1089 
1090 	/* At the moment most applications only have a few named bo.
1091 	 * For instance, in a DRI client only the render buffers passed
1092 	 * between X and the client are named. And since X returns the
1093 	 * alternating names for the front/back buffer a linear search
1094 	 * provides a sufficiently fast match.
1095 	 */
1096 	pthread_mutex_lock(&bufmgr_gem->lock);
1097 	for (list = bufmgr_gem->named.next;
1098 	     list != &bufmgr_gem->named;
1099 	     list = list->next) {
1100 		bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
1101 		if (bo_gem->global_name == handle) {
1102 			drm_intel_gem_bo_reference(&bo_gem->bo);
1103 			pthread_mutex_unlock(&bufmgr_gem->lock);
1104 			return &bo_gem->bo;
1105 		}
1106 	}
1107 
1108 	memclear(open_arg);
1109 	open_arg.name = handle;
1110 	ret = drmIoctl(bufmgr_gem->fd,
1111 		       DRM_IOCTL_GEM_OPEN,
1112 		       &open_arg);
1113 	if (ret != 0) {
1114 		DBG("Couldn't reference %s handle 0x%08x: %s\n",
1115 		    name, handle, strerror(errno));
1116 		pthread_mutex_unlock(&bufmgr_gem->lock);
1117 		return NULL;
1118 	}
1119         /* Now see if someone has used a prime handle to get this
1120          * object from the kernel before by looking through the list
1121          * again for a matching gem_handle
1122          */
1123 	for (list = bufmgr_gem->named.next;
1124 	     list != &bufmgr_gem->named;
1125 	     list = list->next) {
1126 		bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
1127 		if (bo_gem->gem_handle == open_arg.handle) {
1128 			drm_intel_gem_bo_reference(&bo_gem->bo);
1129 			pthread_mutex_unlock(&bufmgr_gem->lock);
1130 			return &bo_gem->bo;
1131 		}
1132 	}
1133 
1134 	bo_gem = calloc(1, sizeof(*bo_gem));
1135 	if (!bo_gem) {
1136 		pthread_mutex_unlock(&bufmgr_gem->lock);
1137 		return NULL;
1138 	}
1139 
1140 	bo_gem->bo.size = open_arg.size;
1141 	bo_gem->bo.offset = 0;
1142 	bo_gem->bo.offset64 = 0;
1143 	bo_gem->bo.virtual = NULL;
1144 	bo_gem->bo.bufmgr = bufmgr;
1145 	bo_gem->name = name;
1146 	atomic_set(&bo_gem->refcount, 1);
1147 	bo_gem->validate_index = -1;
1148 	bo_gem->gem_handle = open_arg.handle;
1149 	bo_gem->bo.handle = open_arg.handle;
1150 	bo_gem->global_name = handle;
1151 	bo_gem->reusable = false;
1152 	bo_gem->use_48b_address_range = false;
1153 
1154 	memclear(get_tiling);
1155 	get_tiling.handle = bo_gem->gem_handle;
1156 	ret = drmIoctl(bufmgr_gem->fd,
1157 		       DRM_IOCTL_I915_GEM_GET_TILING,
1158 		       &get_tiling);
1159 	if (ret != 0) {
1160 		drm_intel_gem_bo_unreference(&bo_gem->bo);
1161 		pthread_mutex_unlock(&bufmgr_gem->lock);
1162 		return NULL;
1163 	}
1164 	bo_gem->tiling_mode = get_tiling.tiling_mode;
1165 	bo_gem->swizzle_mode = get_tiling.swizzle_mode;
1166 	/* XXX stride is unknown */
1167 	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
1168 
1169 	DRMINITLISTHEAD(&bo_gem->vma_list);
1170 	DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
1171 	pthread_mutex_unlock(&bufmgr_gem->lock);
1172 	DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name);
1173 
1174 	return &bo_gem->bo;
1175 }
1176 
1177 static void
drm_intel_gem_bo_free(drm_intel_bo * bo)1178 drm_intel_gem_bo_free(drm_intel_bo *bo)
1179 {
1180 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1181 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1182 	struct drm_gem_close close;
1183 	int ret;
1184 
1185 	DRMLISTDEL(&bo_gem->vma_list);
1186 	if (bo_gem->mem_virtual) {
1187 		VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_virtual, 0));
1188 		drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1189 		bufmgr_gem->vma_count--;
1190 	}
1191 	if (bo_gem->gtt_virtual) {
1192 		drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1193 		bufmgr_gem->vma_count--;
1194 	}
1195 
1196 	/* Close this object */
1197 	memclear(close);
1198 	close.handle = bo_gem->gem_handle;
1199 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close);
1200 	if (ret != 0) {
1201 		DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
1202 		    bo_gem->gem_handle, bo_gem->name, strerror(errno));
1203 	}
1204 	free(bo);
1205 }
1206 
1207 static void
drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo * bo)1208 drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo *bo)
1209 {
1210 #if HAVE_VALGRIND
1211 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1212 
1213 	if (bo_gem->mem_virtual)
1214 		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_virtual, bo->size);
1215 
1216 	if (bo_gem->gtt_virtual)
1217 		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->gtt_virtual, bo->size);
1218 #endif
1219 }
1220 
1221 /** Frees all cached buffers significantly older than @time. */
1222 static void
drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem * bufmgr_gem,time_t time)1223 drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time)
1224 {
1225 	int i;
1226 
1227 	if (bufmgr_gem->time == time)
1228 		return;
1229 
1230 	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1231 		struct drm_intel_gem_bo_bucket *bucket =
1232 		    &bufmgr_gem->cache_bucket[i];
1233 
1234 		while (!DRMLISTEMPTY(&bucket->head)) {
1235 			drm_intel_bo_gem *bo_gem;
1236 
1237 			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1238 					      bucket->head.next, head);
1239 			if (time - bo_gem->free_time <= 1)
1240 				break;
1241 
1242 			DRMLISTDEL(&bo_gem->head);
1243 
1244 			drm_intel_gem_bo_free(&bo_gem->bo);
1245 		}
1246 	}
1247 
1248 	bufmgr_gem->time = time;
1249 }
1250 
drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem * bufmgr_gem)1251 static void drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem *bufmgr_gem)
1252 {
1253 	int limit;
1254 
1255 	DBG("%s: cached=%d, open=%d, limit=%d\n", __FUNCTION__,
1256 	    bufmgr_gem->vma_count, bufmgr_gem->vma_open, bufmgr_gem->vma_max);
1257 
1258 	if (bufmgr_gem->vma_max < 0)
1259 		return;
1260 
1261 	/* We may need to evict a few entries in order to create new mmaps */
1262 	limit = bufmgr_gem->vma_max - 2*bufmgr_gem->vma_open;
1263 	if (limit < 0)
1264 		limit = 0;
1265 
1266 	while (bufmgr_gem->vma_count > limit) {
1267 		drm_intel_bo_gem *bo_gem;
1268 
1269 		bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1270 				      bufmgr_gem->vma_cache.next,
1271 				      vma_list);
1272 		assert(bo_gem->map_count == 0);
1273 		DRMLISTDELINIT(&bo_gem->vma_list);
1274 
1275 		if (bo_gem->mem_virtual) {
1276 			drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1277 			bo_gem->mem_virtual = NULL;
1278 			bufmgr_gem->vma_count--;
1279 		}
1280 		if (bo_gem->gtt_virtual) {
1281 			drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1282 			bo_gem->gtt_virtual = NULL;
1283 			bufmgr_gem->vma_count--;
1284 		}
1285 	}
1286 }
1287 
drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem * bufmgr_gem,drm_intel_bo_gem * bo_gem)1288 static void drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1289 				       drm_intel_bo_gem *bo_gem)
1290 {
1291 	bufmgr_gem->vma_open--;
1292 	DRMLISTADDTAIL(&bo_gem->vma_list, &bufmgr_gem->vma_cache);
1293 	if (bo_gem->mem_virtual)
1294 		bufmgr_gem->vma_count++;
1295 	if (bo_gem->gtt_virtual)
1296 		bufmgr_gem->vma_count++;
1297 	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1298 }
1299 
drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem * bufmgr_gem,drm_intel_bo_gem * bo_gem)1300 static void drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1301 				      drm_intel_bo_gem *bo_gem)
1302 {
1303 	bufmgr_gem->vma_open++;
1304 	DRMLISTDEL(&bo_gem->vma_list);
1305 	if (bo_gem->mem_virtual)
1306 		bufmgr_gem->vma_count--;
1307 	if (bo_gem->gtt_virtual)
1308 		bufmgr_gem->vma_count--;
1309 	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1310 }
1311 
1312 static void
drm_intel_gem_bo_unreference_final(drm_intel_bo * bo,time_t time)1313 drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time)
1314 {
1315 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1316 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1317 	struct drm_intel_gem_bo_bucket *bucket;
1318 	int i;
1319 
1320 	/* Unreference all the target buffers */
1321 	for (i = 0; i < bo_gem->reloc_count; i++) {
1322 		if (bo_gem->reloc_target_info[i].bo != bo) {
1323 			drm_intel_gem_bo_unreference_locked_timed(bo_gem->
1324 								  reloc_target_info[i].bo,
1325 								  time);
1326 		}
1327 	}
1328 	for (i = 0; i < bo_gem->softpin_target_count; i++)
1329 		drm_intel_gem_bo_unreference_locked_timed(bo_gem->softpin_target[i],
1330 								  time);
1331 	bo_gem->reloc_count = 0;
1332 	bo_gem->used_as_reloc_target = false;
1333 	bo_gem->softpin_target_count = 0;
1334 
1335 	DBG("bo_unreference final: %d (%s)\n",
1336 	    bo_gem->gem_handle, bo_gem->name);
1337 
1338 	/* release memory associated with this object */
1339 	if (bo_gem->reloc_target_info) {
1340 		free(bo_gem->reloc_target_info);
1341 		bo_gem->reloc_target_info = NULL;
1342 	}
1343 	if (bo_gem->relocs) {
1344 		free(bo_gem->relocs);
1345 		bo_gem->relocs = NULL;
1346 	}
1347 	if (bo_gem->softpin_target) {
1348 		free(bo_gem->softpin_target);
1349 		bo_gem->softpin_target = NULL;
1350 		bo_gem->softpin_target_size = 0;
1351 	}
1352 
1353 	/* Clear any left-over mappings */
1354 	if (bo_gem->map_count) {
1355 		DBG("bo freed with non-zero map-count %d\n", bo_gem->map_count);
1356 		bo_gem->map_count = 0;
1357 		drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1358 		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1359 	}
1360 
1361 	DRMLISTDEL(&bo_gem->name_list);
1362 
1363 	bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size);
1364 	/* Put the buffer into our internal cache for reuse if we can. */
1365 	if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL &&
1366 	    drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem,
1367 					      I915_MADV_DONTNEED)) {
1368 		bo_gem->free_time = time;
1369 
1370 		bo_gem->name = NULL;
1371 		bo_gem->validate_index = -1;
1372 
1373 		DRMLISTADDTAIL(&bo_gem->head, &bucket->head);
1374 	} else {
1375 		drm_intel_gem_bo_free(bo);
1376 	}
1377 }
1378 
drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo * bo,time_t time)1379 static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
1380 						      time_t time)
1381 {
1382 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1383 
1384 	assert(atomic_read(&bo_gem->refcount) > 0);
1385 	if (atomic_dec_and_test(&bo_gem->refcount))
1386 		drm_intel_gem_bo_unreference_final(bo, time);
1387 }
1388 
drm_intel_gem_bo_unreference(drm_intel_bo * bo)1389 static void drm_intel_gem_bo_unreference(drm_intel_bo *bo)
1390 {
1391 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1392 
1393 	assert(atomic_read(&bo_gem->refcount) > 0);
1394 
1395 	if (atomic_add_unless(&bo_gem->refcount, -1, 1)) {
1396 		drm_intel_bufmgr_gem *bufmgr_gem =
1397 		    (drm_intel_bufmgr_gem *) bo->bufmgr;
1398 		struct timespec time;
1399 
1400 		clock_gettime(CLOCK_MONOTONIC, &time);
1401 
1402 		pthread_mutex_lock(&bufmgr_gem->lock);
1403 
1404 		if (atomic_dec_and_test(&bo_gem->refcount)) {
1405 			drm_intel_gem_bo_unreference_final(bo, time.tv_sec);
1406 			drm_intel_gem_cleanup_bo_cache(bufmgr_gem, time.tv_sec);
1407 		}
1408 
1409 		pthread_mutex_unlock(&bufmgr_gem->lock);
1410 	}
1411 }
1412 
drm_intel_gem_bo_map(drm_intel_bo * bo,int write_enable)1413 static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable)
1414 {
1415 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1416 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1417 	struct drm_i915_gem_set_domain set_domain;
1418 	int ret;
1419 
1420 	if (bo_gem->is_userptr) {
1421 		/* Return the same user ptr */
1422 		bo->virtual = bo_gem->user_virtual;
1423 		return 0;
1424 	}
1425 
1426 	pthread_mutex_lock(&bufmgr_gem->lock);
1427 
1428 	if (bo_gem->map_count++ == 0)
1429 		drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1430 
1431 	if (!bo_gem->mem_virtual) {
1432 		struct drm_i915_gem_mmap mmap_arg;
1433 
1434 		DBG("bo_map: %d (%s), map_count=%d\n",
1435 		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1436 
1437 		memclear(mmap_arg);
1438 		mmap_arg.handle = bo_gem->gem_handle;
1439 		mmap_arg.size = bo->size;
1440 		ret = drmIoctl(bufmgr_gem->fd,
1441 			       DRM_IOCTL_I915_GEM_MMAP,
1442 			       &mmap_arg);
1443 		if (ret != 0) {
1444 			ret = -errno;
1445 			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1446 			    __FILE__, __LINE__, bo_gem->gem_handle,
1447 			    bo_gem->name, strerror(errno));
1448 			if (--bo_gem->map_count == 0)
1449 				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1450 			pthread_mutex_unlock(&bufmgr_gem->lock);
1451 			return ret;
1452 		}
1453 		VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
1454 		bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
1455 	}
1456 	DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1457 	    bo_gem->mem_virtual);
1458 	bo->virtual = bo_gem->mem_virtual;
1459 
1460 	memclear(set_domain);
1461 	set_domain.handle = bo_gem->gem_handle;
1462 	set_domain.read_domains = I915_GEM_DOMAIN_CPU;
1463 	if (write_enable)
1464 		set_domain.write_domain = I915_GEM_DOMAIN_CPU;
1465 	else
1466 		set_domain.write_domain = 0;
1467 	ret = drmIoctl(bufmgr_gem->fd,
1468 		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1469 		       &set_domain);
1470 	if (ret != 0) {
1471 		DBG("%s:%d: Error setting to CPU domain %d: %s\n",
1472 		    __FILE__, __LINE__, bo_gem->gem_handle,
1473 		    strerror(errno));
1474 	}
1475 
1476 	if (write_enable)
1477 		bo_gem->mapped_cpu_write = true;
1478 
1479 	drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1480 	VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_virtual, bo->size));
1481 	pthread_mutex_unlock(&bufmgr_gem->lock);
1482 
1483 	return 0;
1484 }
1485 
1486 static int
map_gtt(drm_intel_bo * bo)1487 map_gtt(drm_intel_bo *bo)
1488 {
1489 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1490 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1491 	int ret;
1492 
1493 	if (bo_gem->is_userptr)
1494 		return -EINVAL;
1495 
1496 	if (bo_gem->map_count++ == 0)
1497 		drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1498 
1499 	/* Get a mapping of the buffer if we haven't before. */
1500 	if (bo_gem->gtt_virtual == NULL) {
1501 		struct drm_i915_gem_mmap_gtt mmap_arg;
1502 
1503 		DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
1504 		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1505 
1506 		memclear(mmap_arg);
1507 		mmap_arg.handle = bo_gem->gem_handle;
1508 
1509 		/* Get the fake offset back... */
1510 		ret = drmIoctl(bufmgr_gem->fd,
1511 			       DRM_IOCTL_I915_GEM_MMAP_GTT,
1512 			       &mmap_arg);
1513 		if (ret != 0) {
1514 			ret = -errno;
1515 			DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1516 			    __FILE__, __LINE__,
1517 			    bo_gem->gem_handle, bo_gem->name,
1518 			    strerror(errno));
1519 			if (--bo_gem->map_count == 0)
1520 				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1521 			return ret;
1522 		}
1523 
1524 		/* and mmap it */
1525 		bo_gem->gtt_virtual = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
1526 					       MAP_SHARED, bufmgr_gem->fd,
1527 					       mmap_arg.offset);
1528 		if (bo_gem->gtt_virtual == MAP_FAILED) {
1529 			bo_gem->gtt_virtual = NULL;
1530 			ret = -errno;
1531 			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1532 			    __FILE__, __LINE__,
1533 			    bo_gem->gem_handle, bo_gem->name,
1534 			    strerror(errno));
1535 			if (--bo_gem->map_count == 0)
1536 				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1537 			return ret;
1538 		}
1539 	}
1540 
1541 	bo->virtual = bo_gem->gtt_virtual;
1542 
1543 	DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1544 	    bo_gem->gtt_virtual);
1545 
1546 	return 0;
1547 }
1548 
1549 int
drm_intel_gem_bo_map_gtt(drm_intel_bo * bo)1550 drm_intel_gem_bo_map_gtt(drm_intel_bo *bo)
1551 {
1552 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1553 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1554 	struct drm_i915_gem_set_domain set_domain;
1555 	int ret;
1556 
1557 	pthread_mutex_lock(&bufmgr_gem->lock);
1558 
1559 	ret = map_gtt(bo);
1560 	if (ret) {
1561 		pthread_mutex_unlock(&bufmgr_gem->lock);
1562 		return ret;
1563 	}
1564 
1565 	/* Now move it to the GTT domain so that the GPU and CPU
1566 	 * caches are flushed and the GPU isn't actively using the
1567 	 * buffer.
1568 	 *
1569 	 * The pagefault handler does this domain change for us when
1570 	 * it has unbound the BO from the GTT, but it's up to us to
1571 	 * tell it when we're about to use things if we had done
1572 	 * rendering and it still happens to be bound to the GTT.
1573 	 */
1574 	memclear(set_domain);
1575 	set_domain.handle = bo_gem->gem_handle;
1576 	set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1577 	set_domain.write_domain = I915_GEM_DOMAIN_GTT;
1578 	ret = drmIoctl(bufmgr_gem->fd,
1579 		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1580 		       &set_domain);
1581 	if (ret != 0) {
1582 		DBG("%s:%d: Error setting domain %d: %s\n",
1583 		    __FILE__, __LINE__, bo_gem->gem_handle,
1584 		    strerror(errno));
1585 	}
1586 
1587 	drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1588 	VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1589 	pthread_mutex_unlock(&bufmgr_gem->lock);
1590 
1591 	return 0;
1592 }
1593 
1594 /**
1595  * Performs a mapping of the buffer object like the normal GTT
1596  * mapping, but avoids waiting for the GPU to be done reading from or
1597  * rendering to the buffer.
1598  *
1599  * This is used in the implementation of GL_ARB_map_buffer_range: The
1600  * user asks to create a buffer, then does a mapping, fills some
1601  * space, runs a drawing command, then asks to map it again without
1602  * synchronizing because it guarantees that it won't write over the
1603  * data that the GPU is busy using (or, more specifically, that if it
1604  * does write over the data, it acknowledges that rendering is
1605  * undefined).
1606  */
1607 
1608 int
drm_intel_gem_bo_map_unsynchronized(drm_intel_bo * bo)1609 drm_intel_gem_bo_map_unsynchronized(drm_intel_bo *bo)
1610 {
1611 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1612 #ifdef HAVE_VALGRIND
1613 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1614 #endif
1615 	int ret;
1616 
1617 	/* If the CPU cache isn't coherent with the GTT, then use a
1618 	 * regular synchronized mapping.  The problem is that we don't
1619 	 * track where the buffer was last used on the CPU side in
1620 	 * terms of drm_intel_bo_map vs drm_intel_gem_bo_map_gtt, so
1621 	 * we would potentially corrupt the buffer even when the user
1622 	 * does reasonable things.
1623 	 */
1624 	if (!bufmgr_gem->has_llc)
1625 		return drm_intel_gem_bo_map_gtt(bo);
1626 
1627 	pthread_mutex_lock(&bufmgr_gem->lock);
1628 
1629 	ret = map_gtt(bo);
1630 	if (ret == 0) {
1631 		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1632 		VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1633 	}
1634 
1635 	pthread_mutex_unlock(&bufmgr_gem->lock);
1636 
1637 	return ret;
1638 }
1639 
drm_intel_gem_bo_unmap(drm_intel_bo * bo)1640 static int drm_intel_gem_bo_unmap(drm_intel_bo *bo)
1641 {
1642 	drm_intel_bufmgr_gem *bufmgr_gem;
1643 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1644 	int ret = 0;
1645 
1646 	if (bo == NULL)
1647 		return 0;
1648 
1649 	if (bo_gem->is_userptr)
1650 		return 0;
1651 
1652 	bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1653 
1654 	pthread_mutex_lock(&bufmgr_gem->lock);
1655 
1656 	if (bo_gem->map_count <= 0) {
1657 		DBG("attempted to unmap an unmapped bo\n");
1658 		pthread_mutex_unlock(&bufmgr_gem->lock);
1659 		/* Preserve the old behaviour of just treating this as a
1660 		 * no-op rather than reporting the error.
1661 		 */
1662 		return 0;
1663 	}
1664 
1665 	if (bo_gem->mapped_cpu_write) {
1666 		struct drm_i915_gem_sw_finish sw_finish;
1667 
1668 		/* Cause a flush to happen if the buffer's pinned for
1669 		 * scanout, so the results show up in a timely manner.
1670 		 * Unlike GTT set domains, this only does work if the
1671 		 * buffer should be scanout-related.
1672 		 */
1673 		memclear(sw_finish);
1674 		sw_finish.handle = bo_gem->gem_handle;
1675 		ret = drmIoctl(bufmgr_gem->fd,
1676 			       DRM_IOCTL_I915_GEM_SW_FINISH,
1677 			       &sw_finish);
1678 		ret = ret == -1 ? -errno : 0;
1679 
1680 		bo_gem->mapped_cpu_write = false;
1681 	}
1682 
1683 	/* We need to unmap after every innovation as we cannot track
1684 	 * an open vma for every bo as that will exhaasut the system
1685 	 * limits and cause later failures.
1686 	 */
1687 	if (--bo_gem->map_count == 0) {
1688 		drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1689 		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1690 		bo->virtual = NULL;
1691 	}
1692 	pthread_mutex_unlock(&bufmgr_gem->lock);
1693 
1694 	return ret;
1695 }
1696 
1697 int
drm_intel_gem_bo_unmap_gtt(drm_intel_bo * bo)1698 drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo)
1699 {
1700 	return drm_intel_gem_bo_unmap(bo);
1701 }
1702 
1703 static int
drm_intel_gem_bo_subdata(drm_intel_bo * bo,unsigned long offset,unsigned long size,const void * data)1704 drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset,
1705 			 unsigned long size, const void *data)
1706 {
1707 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1708 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1709 	struct drm_i915_gem_pwrite pwrite;
1710 	int ret;
1711 
1712 	if (bo_gem->is_userptr)
1713 		return -EINVAL;
1714 
1715 	memclear(pwrite);
1716 	pwrite.handle = bo_gem->gem_handle;
1717 	pwrite.offset = offset;
1718 	pwrite.size = size;
1719 	pwrite.data_ptr = (uint64_t) (uintptr_t) data;
1720 	ret = drmIoctl(bufmgr_gem->fd,
1721 		       DRM_IOCTL_I915_GEM_PWRITE,
1722 		       &pwrite);
1723 	if (ret != 0) {
1724 		ret = -errno;
1725 		DBG("%s:%d: Error writing data to buffer %d: (%d %d) %s .\n",
1726 		    __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1727 		    (int)size, strerror(errno));
1728 	}
1729 
1730 	return ret;
1731 }
1732 
1733 static int
drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr * bufmgr,int crtc_id)1734 drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id)
1735 {
1736 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1737 	struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id;
1738 	int ret;
1739 
1740 	memclear(get_pipe_from_crtc_id);
1741 	get_pipe_from_crtc_id.crtc_id = crtc_id;
1742 	ret = drmIoctl(bufmgr_gem->fd,
1743 		       DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID,
1744 		       &get_pipe_from_crtc_id);
1745 	if (ret != 0) {
1746 		/* We return -1 here to signal that we don't
1747 		 * know which pipe is associated with this crtc.
1748 		 * This lets the caller know that this information
1749 		 * isn't available; using the wrong pipe for
1750 		 * vblank waiting can cause the chipset to lock up
1751 		 */
1752 		return -1;
1753 	}
1754 
1755 	return get_pipe_from_crtc_id.pipe;
1756 }
1757 
1758 static int
drm_intel_gem_bo_get_subdata(drm_intel_bo * bo,unsigned long offset,unsigned long size,void * data)1759 drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset,
1760 			     unsigned long size, void *data)
1761 {
1762 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1763 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1764 	struct drm_i915_gem_pread pread;
1765 	int ret;
1766 
1767 	if (bo_gem->is_userptr)
1768 		return -EINVAL;
1769 
1770 	memclear(pread);
1771 	pread.handle = bo_gem->gem_handle;
1772 	pread.offset = offset;
1773 	pread.size = size;
1774 	pread.data_ptr = (uint64_t) (uintptr_t) data;
1775 	ret = drmIoctl(bufmgr_gem->fd,
1776 		       DRM_IOCTL_I915_GEM_PREAD,
1777 		       &pread);
1778 	if (ret != 0) {
1779 		ret = -errno;
1780 		DBG("%s:%d: Error reading data from buffer %d: (%d %d) %s .\n",
1781 		    __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1782 		    (int)size, strerror(errno));
1783 	}
1784 
1785 	return ret;
1786 }
1787 
1788 /** Waits for all GPU rendering with the object to have completed. */
1789 static void
drm_intel_gem_bo_wait_rendering(drm_intel_bo * bo)1790 drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo)
1791 {
1792 	drm_intel_gem_bo_start_gtt_access(bo, 1);
1793 }
1794 
1795 /**
1796  * Waits on a BO for the given amount of time.
1797  *
1798  * @bo: buffer object to wait for
1799  * @timeout_ns: amount of time to wait in nanoseconds.
1800  *   If value is less than 0, an infinite wait will occur.
1801  *
1802  * Returns 0 if the wait was successful ie. the last batch referencing the
1803  * object has completed within the allotted time. Otherwise some negative return
1804  * value describes the error. Of particular interest is -ETIME when the wait has
1805  * failed to yield the desired result.
1806  *
1807  * Similar to drm_intel_gem_bo_wait_rendering except a timeout parameter allows
1808  * the operation to give up after a certain amount of time. Another subtle
1809  * difference is the internal locking semantics are different (this variant does
1810  * not hold the lock for the duration of the wait). This makes the wait subject
1811  * to a larger userspace race window.
1812  *
1813  * The implementation shall wait until the object is no longer actively
1814  * referenced within a batch buffer at the time of the call. The wait will
1815  * not guarantee that the buffer is re-issued via another thread, or an flinked
1816  * handle. Userspace must make sure this race does not occur if such precision
1817  * is important.
1818  *
1819  * Note that some kernels have broken the inifite wait for negative values
1820  * promise, upgrade to latest stable kernels if this is the case.
1821  */
1822 int
drm_intel_gem_bo_wait(drm_intel_bo * bo,int64_t timeout_ns)1823 drm_intel_gem_bo_wait(drm_intel_bo *bo, int64_t timeout_ns)
1824 {
1825 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1826 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1827 	struct drm_i915_gem_wait wait;
1828 	int ret;
1829 
1830 	if (!bufmgr_gem->has_wait_timeout) {
1831 		DBG("%s:%d: Timed wait is not supported. Falling back to "
1832 		    "infinite wait\n", __FILE__, __LINE__);
1833 		if (timeout_ns) {
1834 			drm_intel_gem_bo_wait_rendering(bo);
1835 			return 0;
1836 		} else {
1837 			return drm_intel_gem_bo_busy(bo) ? -ETIME : 0;
1838 		}
1839 	}
1840 
1841 	memclear(wait);
1842 	wait.bo_handle = bo_gem->gem_handle;
1843 	wait.timeout_ns = timeout_ns;
1844 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1845 	if (ret == -1)
1846 		return -errno;
1847 
1848 	return ret;
1849 }
1850 
1851 /**
1852  * Sets the object to the GTT read and possibly write domain, used by the X
1853  * 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt().
1854  *
1855  * In combination with drm_intel_gem_bo_pin() and manual fence management, we
1856  * can do tiled pixmaps this way.
1857  */
1858 void
drm_intel_gem_bo_start_gtt_access(drm_intel_bo * bo,int write_enable)1859 drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable)
1860 {
1861 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1862 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1863 	struct drm_i915_gem_set_domain set_domain;
1864 	int ret;
1865 
1866 	memclear(set_domain);
1867 	set_domain.handle = bo_gem->gem_handle;
1868 	set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1869 	set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0;
1870 	ret = drmIoctl(bufmgr_gem->fd,
1871 		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1872 		       &set_domain);
1873 	if (ret != 0) {
1874 		DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s .\n",
1875 		    __FILE__, __LINE__, bo_gem->gem_handle,
1876 		    set_domain.read_domains, set_domain.write_domain,
1877 		    strerror(errno));
1878 	}
1879 }
1880 
1881 static void
drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr * bufmgr)1882 drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr)
1883 {
1884 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1885 	struct drm_gem_close close_bo;
1886 	int i, ret;
1887 
1888 	free(bufmgr_gem->exec2_objects);
1889 	free(bufmgr_gem->exec_objects);
1890 	free(bufmgr_gem->exec_bos);
1891 
1892 	pthread_mutex_destroy(&bufmgr_gem->lock);
1893 
1894 	/* Free any cached buffer objects we were going to reuse */
1895 	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1896 		struct drm_intel_gem_bo_bucket *bucket =
1897 		    &bufmgr_gem->cache_bucket[i];
1898 		drm_intel_bo_gem *bo_gem;
1899 
1900 		while (!DRMLISTEMPTY(&bucket->head)) {
1901 			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1902 					      bucket->head.next, head);
1903 			DRMLISTDEL(&bo_gem->head);
1904 
1905 			drm_intel_gem_bo_free(&bo_gem->bo);
1906 		}
1907 	}
1908 
1909 	/* Release userptr bo kept hanging around for optimisation. */
1910 	if (bufmgr_gem->userptr_active.ptr) {
1911 		memclear(close_bo);
1912 		close_bo.handle = bufmgr_gem->userptr_active.handle;
1913 		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close_bo);
1914 		free(bufmgr_gem->userptr_active.ptr);
1915 		if (ret)
1916 			fprintf(stderr,
1917 				"Failed to release test userptr object! (%d) "
1918 				"i915 kernel driver may not be sane!\n", errno);
1919 	}
1920 
1921 	free(bufmgr);
1922 }
1923 
1924 /**
1925  * Adds the target buffer to the validation list and adds the relocation
1926  * to the reloc_buffer's relocation list.
1927  *
1928  * The relocation entry at the given offset must already contain the
1929  * precomputed relocation value, because the kernel will optimize out
1930  * the relocation entry write when the buffer hasn't moved from the
1931  * last known offset in target_bo.
1932  */
1933 static int
do_bo_emit_reloc(drm_intel_bo * bo,uint32_t offset,drm_intel_bo * target_bo,uint32_t target_offset,uint32_t read_domains,uint32_t write_domain,bool need_fence)1934 do_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
1935 		 drm_intel_bo *target_bo, uint32_t target_offset,
1936 		 uint32_t read_domains, uint32_t write_domain,
1937 		 bool need_fence)
1938 {
1939 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1940 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1941 	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
1942 	bool fenced_command;
1943 
1944 	if (bo_gem->has_error)
1945 		return -ENOMEM;
1946 
1947 	if (target_bo_gem->has_error) {
1948 		bo_gem->has_error = true;
1949 		return -ENOMEM;
1950 	}
1951 
1952 	/* We never use HW fences for rendering on 965+ */
1953 	if (bufmgr_gem->gen >= 4)
1954 		need_fence = false;
1955 
1956 	fenced_command = need_fence;
1957 	if (target_bo_gem->tiling_mode == I915_TILING_NONE)
1958 		need_fence = false;
1959 
1960 	/* Create a new relocation list if needed */
1961 	if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo))
1962 		return -ENOMEM;
1963 
1964 	/* Check overflow */
1965 	assert(bo_gem->reloc_count < bufmgr_gem->max_relocs);
1966 
1967 	/* Check args */
1968 	assert(offset <= bo->size - 4);
1969 	assert((write_domain & (write_domain - 1)) == 0);
1970 
1971 	/* An object needing a fence is a tiled buffer, so it won't have
1972 	 * relocs to other buffers.
1973 	 */
1974 	if (need_fence) {
1975 		assert(target_bo_gem->reloc_count == 0);
1976 		target_bo_gem->reloc_tree_fences = 1;
1977 	}
1978 
1979 	/* Make sure that we're not adding a reloc to something whose size has
1980 	 * already been accounted for.
1981 	 */
1982 	assert(!bo_gem->used_as_reloc_target);
1983 	if (target_bo_gem != bo_gem) {
1984 		target_bo_gem->used_as_reloc_target = true;
1985 		bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size;
1986 		bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences;
1987 	}
1988 
1989 	bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo;
1990 	if (target_bo != bo)
1991 		drm_intel_gem_bo_reference(target_bo);
1992 	if (fenced_command)
1993 		bo_gem->reloc_target_info[bo_gem->reloc_count].flags =
1994 			DRM_INTEL_RELOC_FENCE;
1995 	else
1996 		bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0;
1997 
1998 	bo_gem->relocs[bo_gem->reloc_count].offset = offset;
1999 	bo_gem->relocs[bo_gem->reloc_count].delta = target_offset;
2000 	bo_gem->relocs[bo_gem->reloc_count].target_handle =
2001 	    target_bo_gem->gem_handle;
2002 	bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains;
2003 	bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain;
2004 	bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset64;
2005 	bo_gem->reloc_count++;
2006 
2007 	return 0;
2008 }
2009 
2010 static void
drm_intel_gem_bo_use_48b_address_range(drm_intel_bo * bo,uint32_t enable)2011 drm_intel_gem_bo_use_48b_address_range(drm_intel_bo *bo, uint32_t enable)
2012 {
2013 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2014 	bo_gem->use_48b_address_range = enable;
2015 }
2016 
2017 static int
drm_intel_gem_bo_add_softpin_target(drm_intel_bo * bo,drm_intel_bo * target_bo)2018 drm_intel_gem_bo_add_softpin_target(drm_intel_bo *bo, drm_intel_bo *target_bo)
2019 {
2020 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2021 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2022 	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
2023 	if (bo_gem->has_error)
2024 		return -ENOMEM;
2025 
2026 	if (target_bo_gem->has_error) {
2027 		bo_gem->has_error = true;
2028 		return -ENOMEM;
2029 	}
2030 
2031 	if (!target_bo_gem->is_softpin)
2032 		return -EINVAL;
2033 	if (target_bo_gem == bo_gem)
2034 		return -EINVAL;
2035 
2036 	if (bo_gem->softpin_target_count == bo_gem->softpin_target_size) {
2037 		int new_size = bo_gem->softpin_target_size * 2;
2038 		if (new_size == 0)
2039 			new_size = bufmgr_gem->max_relocs;
2040 
2041 		bo_gem->softpin_target = realloc(bo_gem->softpin_target, new_size *
2042 				sizeof(drm_intel_bo *));
2043 		if (!bo_gem->softpin_target)
2044 			return -ENOMEM;
2045 
2046 		bo_gem->softpin_target_size = new_size;
2047 	}
2048 	bo_gem->softpin_target[bo_gem->softpin_target_count] = target_bo;
2049 	drm_intel_gem_bo_reference(target_bo);
2050 	bo_gem->softpin_target_count++;
2051 
2052 	return 0;
2053 }
2054 
2055 static int
drm_intel_gem_bo_emit_reloc(drm_intel_bo * bo,uint32_t offset,drm_intel_bo * target_bo,uint32_t target_offset,uint32_t read_domains,uint32_t write_domain)2056 drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
2057 			    drm_intel_bo *target_bo, uint32_t target_offset,
2058 			    uint32_t read_domains, uint32_t write_domain)
2059 {
2060 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2061 	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *)target_bo;
2062 
2063 	if (target_bo_gem->is_softpin)
2064 		return drm_intel_gem_bo_add_softpin_target(bo, target_bo);
2065 	else
2066 		return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
2067 					read_domains, write_domain,
2068 					!bufmgr_gem->fenced_relocs);
2069 }
2070 
2071 static int
drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo * bo,uint32_t offset,drm_intel_bo * target_bo,uint32_t target_offset,uint32_t read_domains,uint32_t write_domain)2072 drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset,
2073 				  drm_intel_bo *target_bo,
2074 				  uint32_t target_offset,
2075 				  uint32_t read_domains, uint32_t write_domain)
2076 {
2077 	return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
2078 				read_domains, write_domain, true);
2079 }
2080 
2081 int
drm_intel_gem_bo_get_reloc_count(drm_intel_bo * bo)2082 drm_intel_gem_bo_get_reloc_count(drm_intel_bo *bo)
2083 {
2084 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2085 
2086 	return bo_gem->reloc_count;
2087 }
2088 
2089 /**
2090  * Removes existing relocation entries in the BO after "start".
2091  *
2092  * This allows a user to avoid a two-step process for state setup with
2093  * counting up all the buffer objects and doing a
2094  * drm_intel_bufmgr_check_aperture_space() before emitting any of the
2095  * relocations for the state setup.  Instead, save the state of the
2096  * batchbuffer including drm_intel_gem_get_reloc_count(), emit all the
2097  * state, and then check if it still fits in the aperture.
2098  *
2099  * Any further drm_intel_bufmgr_check_aperture_space() queries
2100  * involving this buffer in the tree are undefined after this call.
2101  *
2102  * This also removes all softpinned targets being referenced by the BO.
2103  */
2104 void
drm_intel_gem_bo_clear_relocs(drm_intel_bo * bo,int start)2105 drm_intel_gem_bo_clear_relocs(drm_intel_bo *bo, int start)
2106 {
2107 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2108 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2109 	int i;
2110 	struct timespec time;
2111 
2112 	clock_gettime(CLOCK_MONOTONIC, &time);
2113 
2114 	assert(bo_gem->reloc_count >= start);
2115 
2116 	/* Unreference the cleared target buffers */
2117 	pthread_mutex_lock(&bufmgr_gem->lock);
2118 
2119 	for (i = start; i < bo_gem->reloc_count; i++) {
2120 		drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->reloc_target_info[i].bo;
2121 		if (&target_bo_gem->bo != bo) {
2122 			bo_gem->reloc_tree_fences -= target_bo_gem->reloc_tree_fences;
2123 			drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo,
2124 								  time.tv_sec);
2125 		}
2126 	}
2127 	bo_gem->reloc_count = start;
2128 
2129 	for (i = 0; i < bo_gem->softpin_target_count; i++) {
2130 		drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->softpin_target[i];
2131 		drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo, time.tv_sec);
2132 	}
2133 	bo_gem->softpin_target_count = 0;
2134 
2135 	pthread_mutex_unlock(&bufmgr_gem->lock);
2136 
2137 }
2138 
2139 /**
2140  * Walk the tree of relocations rooted at BO and accumulate the list of
2141  * validations to be performed and update the relocation buffers with
2142  * index values into the validation list.
2143  */
2144 static void
drm_intel_gem_bo_process_reloc(drm_intel_bo * bo)2145 drm_intel_gem_bo_process_reloc(drm_intel_bo *bo)
2146 {
2147 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2148 	int i;
2149 
2150 	if (bo_gem->relocs == NULL)
2151 		return;
2152 
2153 	for (i = 0; i < bo_gem->reloc_count; i++) {
2154 		drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
2155 
2156 		if (target_bo == bo)
2157 			continue;
2158 
2159 		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2160 
2161 		/* Continue walking the tree depth-first. */
2162 		drm_intel_gem_bo_process_reloc(target_bo);
2163 
2164 		/* Add the target to the validate list */
2165 		drm_intel_add_validate_buffer(target_bo);
2166 	}
2167 }
2168 
2169 static void
drm_intel_gem_bo_process_reloc2(drm_intel_bo * bo)2170 drm_intel_gem_bo_process_reloc2(drm_intel_bo *bo)
2171 {
2172 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2173 	int i;
2174 
2175 	if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL)
2176 		return;
2177 
2178 	for (i = 0; i < bo_gem->reloc_count; i++) {
2179 		drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
2180 		int need_fence;
2181 
2182 		if (target_bo == bo)
2183 			continue;
2184 
2185 		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2186 
2187 		/* Continue walking the tree depth-first. */
2188 		drm_intel_gem_bo_process_reloc2(target_bo);
2189 
2190 		need_fence = (bo_gem->reloc_target_info[i].flags &
2191 			      DRM_INTEL_RELOC_FENCE);
2192 
2193 		/* Add the target to the validate list */
2194 		drm_intel_add_validate_buffer2(target_bo, need_fence);
2195 	}
2196 
2197 	for (i = 0; i < bo_gem->softpin_target_count; i++) {
2198 		drm_intel_bo *target_bo = bo_gem->softpin_target[i];
2199 
2200 		if (target_bo == bo)
2201 			continue;
2202 
2203 		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2204 		drm_intel_gem_bo_process_reloc2(target_bo);
2205 		drm_intel_add_validate_buffer2(target_bo, false);
2206 	}
2207 }
2208 
2209 
2210 static void
drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem * bufmgr_gem)2211 drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem *bufmgr_gem)
2212 {
2213 	int i;
2214 
2215 	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2216 		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2217 		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2218 
2219 		/* Update the buffer offset */
2220 		if (bufmgr_gem->exec_objects[i].offset != bo->offset64) {
2221 			DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n",
2222 			    bo_gem->gem_handle, bo_gem->name,
2223 			    upper_32_bits(bo->offset64),
2224 			    lower_32_bits(bo->offset64),
2225 			    upper_32_bits(bufmgr_gem->exec_objects[i].offset),
2226 			    lower_32_bits(bufmgr_gem->exec_objects[i].offset));
2227 			bo->offset64 = bufmgr_gem->exec_objects[i].offset;
2228 			bo->offset = bufmgr_gem->exec_objects[i].offset;
2229 		}
2230 	}
2231 }
2232 
2233 static void
drm_intel_update_buffer_offsets2(drm_intel_bufmgr_gem * bufmgr_gem)2234 drm_intel_update_buffer_offsets2 (drm_intel_bufmgr_gem *bufmgr_gem)
2235 {
2236 	int i;
2237 
2238 	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2239 		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2240 		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2241 
2242 		/* Update the buffer offset */
2243 		if (bufmgr_gem->exec2_objects[i].offset != bo->offset64) {
2244 			/* If we're seeing softpinned object here it means that the kernel
2245 			 * has relocated our object... Indicating a programming error
2246 			 */
2247 			assert(!bo_gem->is_softpin);
2248 			DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n",
2249 			    bo_gem->gem_handle, bo_gem->name,
2250 			    upper_32_bits(bo->offset64),
2251 			    lower_32_bits(bo->offset64),
2252 			    upper_32_bits(bufmgr_gem->exec2_objects[i].offset),
2253 			    lower_32_bits(bufmgr_gem->exec2_objects[i].offset));
2254 			bo->offset64 = bufmgr_gem->exec2_objects[i].offset;
2255 			bo->offset = bufmgr_gem->exec2_objects[i].offset;
2256 		}
2257 	}
2258 }
2259 
2260 void
drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo * bo,int x1,int y1,int width,int height,enum aub_dump_bmp_format format,int pitch,int offset)2261 drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo *bo,
2262 			      int x1, int y1, int width, int height,
2263 			      enum aub_dump_bmp_format format,
2264 			      int pitch, int offset)
2265 {
2266 }
2267 
2268 static int
drm_intel_gem_bo_exec(drm_intel_bo * bo,int used,drm_clip_rect_t * cliprects,int num_cliprects,int DR4)2269 drm_intel_gem_bo_exec(drm_intel_bo *bo, int used,
2270 		      drm_clip_rect_t * cliprects, int num_cliprects, int DR4)
2271 {
2272 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2273 	struct drm_i915_gem_execbuffer execbuf;
2274 	int ret, i;
2275 
2276 	if (to_bo_gem(bo)->has_error)
2277 		return -ENOMEM;
2278 
2279 	pthread_mutex_lock(&bufmgr_gem->lock);
2280 	/* Update indices and set up the validate list. */
2281 	drm_intel_gem_bo_process_reloc(bo);
2282 
2283 	/* Add the batch buffer to the validation list.  There are no
2284 	 * relocations pointing to it.
2285 	 */
2286 	drm_intel_add_validate_buffer(bo);
2287 
2288 	memclear(execbuf);
2289 	execbuf.buffers_ptr = (uintptr_t) bufmgr_gem->exec_objects;
2290 	execbuf.buffer_count = bufmgr_gem->exec_count;
2291 	execbuf.batch_start_offset = 0;
2292 	execbuf.batch_len = used;
2293 	execbuf.cliprects_ptr = (uintptr_t) cliprects;
2294 	execbuf.num_cliprects = num_cliprects;
2295 	execbuf.DR1 = 0;
2296 	execbuf.DR4 = DR4;
2297 
2298 	ret = drmIoctl(bufmgr_gem->fd,
2299 		       DRM_IOCTL_I915_GEM_EXECBUFFER,
2300 		       &execbuf);
2301 	if (ret != 0) {
2302 		ret = -errno;
2303 		if (errno == ENOSPC) {
2304 			DBG("Execbuffer fails to pin. "
2305 			    "Estimate: %u. Actual: %u. Available: %u\n",
2306 			    drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2307 							       bufmgr_gem->
2308 							       exec_count),
2309 			    drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2310 							      bufmgr_gem->
2311 							      exec_count),
2312 			    (unsigned int)bufmgr_gem->gtt_size);
2313 		}
2314 	}
2315 	drm_intel_update_buffer_offsets(bufmgr_gem);
2316 
2317 	if (bufmgr_gem->bufmgr.debug)
2318 		drm_intel_gem_dump_validation_list(bufmgr_gem);
2319 
2320 	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2321 		drm_intel_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]);
2322 
2323 		bo_gem->idle = false;
2324 
2325 		/* Disconnect the buffer from the validate list */
2326 		bo_gem->validate_index = -1;
2327 		bufmgr_gem->exec_bos[i] = NULL;
2328 	}
2329 	bufmgr_gem->exec_count = 0;
2330 	pthread_mutex_unlock(&bufmgr_gem->lock);
2331 
2332 	return ret;
2333 }
2334 
2335 static int
do_exec2(drm_intel_bo * bo,int used,drm_intel_context * ctx,drm_clip_rect_t * cliprects,int num_cliprects,int DR4,unsigned int flags)2336 do_exec2(drm_intel_bo *bo, int used, drm_intel_context *ctx,
2337 	 drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2338 	 unsigned int flags)
2339 {
2340 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2341 	struct drm_i915_gem_execbuffer2 execbuf;
2342 	int ret = 0;
2343 	int i;
2344 
2345 	if (to_bo_gem(bo)->has_error)
2346 		return -ENOMEM;
2347 
2348 	switch (flags & 0x7) {
2349 	default:
2350 		return -EINVAL;
2351 	case I915_EXEC_BLT:
2352 		if (!bufmgr_gem->has_blt)
2353 			return -EINVAL;
2354 		break;
2355 	case I915_EXEC_BSD:
2356 		if (!bufmgr_gem->has_bsd)
2357 			return -EINVAL;
2358 		break;
2359 	case I915_EXEC_VEBOX:
2360 		if (!bufmgr_gem->has_vebox)
2361 			return -EINVAL;
2362 		break;
2363 	case I915_EXEC_RENDER:
2364 	case I915_EXEC_DEFAULT:
2365 		break;
2366 	}
2367 
2368 	pthread_mutex_lock(&bufmgr_gem->lock);
2369 	/* Update indices and set up the validate list. */
2370 	drm_intel_gem_bo_process_reloc2(bo);
2371 
2372 	/* Add the batch buffer to the validation list.  There are no relocations
2373 	 * pointing to it.
2374 	 */
2375 	drm_intel_add_validate_buffer2(bo, 0);
2376 
2377 	memclear(execbuf);
2378 	execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects;
2379 	execbuf.buffer_count = bufmgr_gem->exec_count;
2380 	execbuf.batch_start_offset = 0;
2381 	execbuf.batch_len = used;
2382 	execbuf.cliprects_ptr = (uintptr_t)cliprects;
2383 	execbuf.num_cliprects = num_cliprects;
2384 	execbuf.DR1 = 0;
2385 	execbuf.DR4 = DR4;
2386 	execbuf.flags = flags;
2387 	if (ctx == NULL)
2388 		i915_execbuffer2_set_context_id(execbuf, 0);
2389 	else
2390 		i915_execbuffer2_set_context_id(execbuf, ctx->ctx_id);
2391 	execbuf.rsvd2 = 0;
2392 
2393 	if (bufmgr_gem->no_exec)
2394 		goto skip_execution;
2395 
2396 	ret = drmIoctl(bufmgr_gem->fd,
2397 		       DRM_IOCTL_I915_GEM_EXECBUFFER2,
2398 		       &execbuf);
2399 	if (ret != 0) {
2400 		ret = -errno;
2401 		if (ret == -ENOSPC) {
2402 			DBG("Execbuffer fails to pin. "
2403 			    "Estimate: %u. Actual: %u. Available: %u\n",
2404 			    drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2405 							       bufmgr_gem->exec_count),
2406 			    drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2407 							      bufmgr_gem->exec_count),
2408 			    (unsigned int) bufmgr_gem->gtt_size);
2409 		}
2410 	}
2411 	drm_intel_update_buffer_offsets2(bufmgr_gem);
2412 
2413 skip_execution:
2414 	if (bufmgr_gem->bufmgr.debug)
2415 		drm_intel_gem_dump_validation_list(bufmgr_gem);
2416 
2417 	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2418 		drm_intel_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]);
2419 
2420 		bo_gem->idle = false;
2421 
2422 		/* Disconnect the buffer from the validate list */
2423 		bo_gem->validate_index = -1;
2424 		bufmgr_gem->exec_bos[i] = NULL;
2425 	}
2426 	bufmgr_gem->exec_count = 0;
2427 	pthread_mutex_unlock(&bufmgr_gem->lock);
2428 
2429 	return ret;
2430 }
2431 
2432 static int
drm_intel_gem_bo_exec2(drm_intel_bo * bo,int used,drm_clip_rect_t * cliprects,int num_cliprects,int DR4)2433 drm_intel_gem_bo_exec2(drm_intel_bo *bo, int used,
2434 		       drm_clip_rect_t *cliprects, int num_cliprects,
2435 		       int DR4)
2436 {
2437 	return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2438 			I915_EXEC_RENDER);
2439 }
2440 
2441 static int
drm_intel_gem_bo_mrb_exec2(drm_intel_bo * bo,int used,drm_clip_rect_t * cliprects,int num_cliprects,int DR4,unsigned int flags)2442 drm_intel_gem_bo_mrb_exec2(drm_intel_bo *bo, int used,
2443 			drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2444 			unsigned int flags)
2445 {
2446 	return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2447 			flags);
2448 }
2449 
2450 int
drm_intel_gem_bo_context_exec(drm_intel_bo * bo,drm_intel_context * ctx,int used,unsigned int flags)2451 drm_intel_gem_bo_context_exec(drm_intel_bo *bo, drm_intel_context *ctx,
2452 			      int used, unsigned int flags)
2453 {
2454 	return do_exec2(bo, used, ctx, NULL, 0, 0, flags);
2455 }
2456 
2457 static int
drm_intel_gem_bo_pin(drm_intel_bo * bo,uint32_t alignment)2458 drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment)
2459 {
2460 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2461 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2462 	struct drm_i915_gem_pin pin;
2463 	int ret;
2464 
2465 	memclear(pin);
2466 	pin.handle = bo_gem->gem_handle;
2467 	pin.alignment = alignment;
2468 
2469 	ret = drmIoctl(bufmgr_gem->fd,
2470 		       DRM_IOCTL_I915_GEM_PIN,
2471 		       &pin);
2472 	if (ret != 0)
2473 		return -errno;
2474 
2475 	bo->offset64 = pin.offset;
2476 	bo->offset = pin.offset;
2477 	return 0;
2478 }
2479 
2480 static int
drm_intel_gem_bo_unpin(drm_intel_bo * bo)2481 drm_intel_gem_bo_unpin(drm_intel_bo *bo)
2482 {
2483 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2484 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2485 	struct drm_i915_gem_unpin unpin;
2486 	int ret;
2487 
2488 	memclear(unpin);
2489 	unpin.handle = bo_gem->gem_handle;
2490 
2491 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin);
2492 	if (ret != 0)
2493 		return -errno;
2494 
2495 	return 0;
2496 }
2497 
2498 static int
drm_intel_gem_bo_set_tiling_internal(drm_intel_bo * bo,uint32_t tiling_mode,uint32_t stride)2499 drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
2500 				     uint32_t tiling_mode,
2501 				     uint32_t stride)
2502 {
2503 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2504 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2505 	struct drm_i915_gem_set_tiling set_tiling;
2506 	int ret;
2507 
2508 	if (bo_gem->global_name == 0 &&
2509 	    tiling_mode == bo_gem->tiling_mode &&
2510 	    stride == bo_gem->stride)
2511 		return 0;
2512 
2513 	memset(&set_tiling, 0, sizeof(set_tiling));
2514 	do {
2515 		/* set_tiling is slightly broken and overwrites the
2516 		 * input on the error path, so we have to open code
2517 		 * rmIoctl.
2518 		 */
2519 		set_tiling.handle = bo_gem->gem_handle;
2520 		set_tiling.tiling_mode = tiling_mode;
2521 		set_tiling.stride = stride;
2522 
2523 		ret = ioctl(bufmgr_gem->fd,
2524 			    DRM_IOCTL_I915_GEM_SET_TILING,
2525 			    &set_tiling);
2526 	} while (ret == -1 && (errno == EINTR || errno == EAGAIN));
2527 	if (ret == -1)
2528 		return -errno;
2529 
2530 	bo_gem->tiling_mode = set_tiling.tiling_mode;
2531 	bo_gem->swizzle_mode = set_tiling.swizzle_mode;
2532 	bo_gem->stride = set_tiling.stride;
2533 	return 0;
2534 }
2535 
2536 static int
drm_intel_gem_bo_set_tiling(drm_intel_bo * bo,uint32_t * tiling_mode,uint32_t stride)2537 drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2538 			    uint32_t stride)
2539 {
2540 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2541 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2542 	int ret;
2543 
2544 	/* Tiling with userptr surfaces is not supported
2545 	 * on all hardware so refuse it for time being.
2546 	 */
2547 	if (bo_gem->is_userptr)
2548 		return -EINVAL;
2549 
2550 	/* Linear buffers have no stride. By ensuring that we only ever use
2551 	 * stride 0 with linear buffers, we simplify our code.
2552 	 */
2553 	if (*tiling_mode == I915_TILING_NONE)
2554 		stride = 0;
2555 
2556 	ret = drm_intel_gem_bo_set_tiling_internal(bo, *tiling_mode, stride);
2557 	if (ret == 0)
2558 		drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
2559 
2560 	*tiling_mode = bo_gem->tiling_mode;
2561 	return ret;
2562 }
2563 
2564 static int
drm_intel_gem_bo_get_tiling(drm_intel_bo * bo,uint32_t * tiling_mode,uint32_t * swizzle_mode)2565 drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2566 			    uint32_t * swizzle_mode)
2567 {
2568 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2569 
2570 	*tiling_mode = bo_gem->tiling_mode;
2571 	*swizzle_mode = bo_gem->swizzle_mode;
2572 	return 0;
2573 }
2574 
2575 static int
drm_intel_gem_bo_set_softpin_offset(drm_intel_bo * bo,uint64_t offset)2576 drm_intel_gem_bo_set_softpin_offset(drm_intel_bo *bo, uint64_t offset)
2577 {
2578 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2579 
2580 	bo_gem->is_softpin = true;
2581 	bo->offset64 = offset;
2582 	bo->offset = offset;
2583 	return 0;
2584 }
2585 
2586 drm_intel_bo *
drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr * bufmgr,int prime_fd,int size)2587 drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr *bufmgr, int prime_fd, int size)
2588 {
2589 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2590 	int ret;
2591 	uint32_t handle;
2592 	drm_intel_bo_gem *bo_gem;
2593 	struct drm_i915_gem_get_tiling get_tiling;
2594 	drmMMListHead *list;
2595 
2596 	pthread_mutex_lock(&bufmgr_gem->lock);
2597 	ret = drmPrimeFDToHandle(bufmgr_gem->fd, prime_fd, &handle);
2598 	if (ret) {
2599 		DBG("create_from_prime: failed to obtain handle from fd: %s\n", strerror(errno));
2600 		pthread_mutex_unlock(&bufmgr_gem->lock);
2601 		return NULL;
2602 	}
2603 
2604 	/*
2605 	 * See if the kernel has already returned this buffer to us. Just as
2606 	 * for named buffers, we must not create two bo's pointing at the same
2607 	 * kernel object
2608 	 */
2609 	for (list = bufmgr_gem->named.next;
2610 	     list != &bufmgr_gem->named;
2611 	     list = list->next) {
2612 		bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
2613 		if (bo_gem->gem_handle == handle) {
2614 			drm_intel_gem_bo_reference(&bo_gem->bo);
2615 			pthread_mutex_unlock(&bufmgr_gem->lock);
2616 			return &bo_gem->bo;
2617 		}
2618 	}
2619 
2620 	bo_gem = calloc(1, sizeof(*bo_gem));
2621 	if (!bo_gem) {
2622 		pthread_mutex_unlock(&bufmgr_gem->lock);
2623 		return NULL;
2624 	}
2625 	/* Determine size of bo.  The fd-to-handle ioctl really should
2626 	 * return the size, but it doesn't.  If we have kernel 3.12 or
2627 	 * later, we can lseek on the prime fd to get the size.  Older
2628 	 * kernels will just fail, in which case we fall back to the
2629 	 * provided (estimated or guess size). */
2630 	ret = lseek(prime_fd, 0, SEEK_END);
2631 	if (ret != -1)
2632 		bo_gem->bo.size = ret;
2633 	else
2634 		bo_gem->bo.size = size;
2635 
2636 	bo_gem->bo.handle = handle;
2637 	bo_gem->bo.bufmgr = bufmgr;
2638 
2639 	bo_gem->gem_handle = handle;
2640 
2641 	atomic_set(&bo_gem->refcount, 1);
2642 
2643 	bo_gem->name = "prime";
2644 	bo_gem->validate_index = -1;
2645 	bo_gem->reloc_tree_fences = 0;
2646 	bo_gem->used_as_reloc_target = false;
2647 	bo_gem->has_error = false;
2648 	bo_gem->reusable = false;
2649 	bo_gem->use_48b_address_range = false;
2650 
2651 	DRMINITLISTHEAD(&bo_gem->vma_list);
2652 	DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2653 	pthread_mutex_unlock(&bufmgr_gem->lock);
2654 
2655 	memclear(get_tiling);
2656 	get_tiling.handle = bo_gem->gem_handle;
2657 	ret = drmIoctl(bufmgr_gem->fd,
2658 		       DRM_IOCTL_I915_GEM_GET_TILING,
2659 		       &get_tiling);
2660 	if (ret != 0) {
2661 		DBG("create_from_prime: failed to get tiling: %s\n", strerror(errno));
2662 		drm_intel_gem_bo_unreference(&bo_gem->bo);
2663 		return NULL;
2664 	}
2665 	bo_gem->tiling_mode = get_tiling.tiling_mode;
2666 	bo_gem->swizzle_mode = get_tiling.swizzle_mode;
2667 	/* XXX stride is unknown */
2668 	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
2669 
2670 	return &bo_gem->bo;
2671 }
2672 
2673 int
drm_intel_bo_gem_export_to_prime(drm_intel_bo * bo,int * prime_fd)2674 drm_intel_bo_gem_export_to_prime(drm_intel_bo *bo, int *prime_fd)
2675 {
2676 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2677 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2678 
2679 	pthread_mutex_lock(&bufmgr_gem->lock);
2680         if (DRMLISTEMPTY(&bo_gem->name_list))
2681                 DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2682 	pthread_mutex_unlock(&bufmgr_gem->lock);
2683 
2684 	if (drmPrimeHandleToFD(bufmgr_gem->fd, bo_gem->gem_handle,
2685 			       DRM_CLOEXEC, prime_fd) != 0)
2686 		return -errno;
2687 
2688 	bo_gem->reusable = false;
2689 
2690 	return 0;
2691 }
2692 
2693 static int
drm_intel_gem_bo_flink(drm_intel_bo * bo,uint32_t * name)2694 drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name)
2695 {
2696 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2697 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2698 	int ret;
2699 
2700 	if (!bo_gem->global_name) {
2701 		struct drm_gem_flink flink;
2702 
2703 		memclear(flink);
2704 		flink.handle = bo_gem->gem_handle;
2705 
2706 		pthread_mutex_lock(&bufmgr_gem->lock);
2707 
2708 		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink);
2709 		if (ret != 0) {
2710 			pthread_mutex_unlock(&bufmgr_gem->lock);
2711 			return -errno;
2712 		}
2713 
2714 		bo_gem->global_name = flink.name;
2715 		bo_gem->reusable = false;
2716 
2717                 if (DRMLISTEMPTY(&bo_gem->name_list))
2718                         DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2719 		pthread_mutex_unlock(&bufmgr_gem->lock);
2720 	}
2721 
2722 	*name = bo_gem->global_name;
2723 	return 0;
2724 }
2725 
2726 /**
2727  * Enables unlimited caching of buffer objects for reuse.
2728  *
2729  * This is potentially very memory expensive, as the cache at each bucket
2730  * size is only bounded by how many buffers of that size we've managed to have
2731  * in flight at once.
2732  */
2733 void
drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr * bufmgr)2734 drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr)
2735 {
2736 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2737 
2738 	bufmgr_gem->bo_reuse = true;
2739 }
2740 
2741 /**
2742  * Enable use of fenced reloc type.
2743  *
2744  * New code should enable this to avoid unnecessary fence register
2745  * allocation.  If this option is not enabled, all relocs will have fence
2746  * register allocated.
2747  */
2748 void
drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr * bufmgr)2749 drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr)
2750 {
2751 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2752 
2753 	if (bufmgr_gem->bufmgr.bo_exec == drm_intel_gem_bo_exec2)
2754 		bufmgr_gem->fenced_relocs = true;
2755 }
2756 
2757 /**
2758  * Return the additional aperture space required by the tree of buffer objects
2759  * rooted at bo.
2760  */
2761 static int
drm_intel_gem_bo_get_aperture_space(drm_intel_bo * bo)2762 drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo)
2763 {
2764 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2765 	int i;
2766 	int total = 0;
2767 
2768 	if (bo == NULL || bo_gem->included_in_check_aperture)
2769 		return 0;
2770 
2771 	total += bo->size;
2772 	bo_gem->included_in_check_aperture = true;
2773 
2774 	for (i = 0; i < bo_gem->reloc_count; i++)
2775 		total +=
2776 		    drm_intel_gem_bo_get_aperture_space(bo_gem->
2777 							reloc_target_info[i].bo);
2778 
2779 	return total;
2780 }
2781 
2782 /**
2783  * Count the number of buffers in this list that need a fence reg
2784  *
2785  * If the count is greater than the number of available regs, we'll have
2786  * to ask the caller to resubmit a batch with fewer tiled buffers.
2787  *
2788  * This function over-counts if the same buffer is used multiple times.
2789  */
2790 static unsigned int
drm_intel_gem_total_fences(drm_intel_bo ** bo_array,int count)2791 drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count)
2792 {
2793 	int i;
2794 	unsigned int total = 0;
2795 
2796 	for (i = 0; i < count; i++) {
2797 		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2798 
2799 		if (bo_gem == NULL)
2800 			continue;
2801 
2802 		total += bo_gem->reloc_tree_fences;
2803 	}
2804 	return total;
2805 }
2806 
2807 /**
2808  * Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready
2809  * for the next drm_intel_bufmgr_check_aperture_space() call.
2810  */
2811 static void
drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo * bo)2812 drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo)
2813 {
2814 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2815 	int i;
2816 
2817 	if (bo == NULL || !bo_gem->included_in_check_aperture)
2818 		return;
2819 
2820 	bo_gem->included_in_check_aperture = false;
2821 
2822 	for (i = 0; i < bo_gem->reloc_count; i++)
2823 		drm_intel_gem_bo_clear_aperture_space_flag(bo_gem->
2824 							   reloc_target_info[i].bo);
2825 }
2826 
2827 /**
2828  * Return a conservative estimate for the amount of aperture required
2829  * for a collection of buffers. This may double-count some buffers.
2830  */
2831 static unsigned int
drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array,int count)2832 drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count)
2833 {
2834 	int i;
2835 	unsigned int total = 0;
2836 
2837 	for (i = 0; i < count; i++) {
2838 		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2839 		if (bo_gem != NULL)
2840 			total += bo_gem->reloc_tree_size;
2841 	}
2842 	return total;
2843 }
2844 
2845 /**
2846  * Return the amount of aperture needed for a collection of buffers.
2847  * This avoids double counting any buffers, at the cost of looking
2848  * at every buffer in the set.
2849  */
2850 static unsigned int
drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array,int count)2851 drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count)
2852 {
2853 	int i;
2854 	unsigned int total = 0;
2855 
2856 	for (i = 0; i < count; i++) {
2857 		total += drm_intel_gem_bo_get_aperture_space(bo_array[i]);
2858 		/* For the first buffer object in the array, we get an
2859 		 * accurate count back for its reloc_tree size (since nothing
2860 		 * had been flagged as being counted yet).  We can save that
2861 		 * value out as a more conservative reloc_tree_size that
2862 		 * avoids double-counting target buffers.  Since the first
2863 		 * buffer happens to usually be the batch buffer in our
2864 		 * callers, this can pull us back from doing the tree
2865 		 * walk on every new batch emit.
2866 		 */
2867 		if (i == 0) {
2868 			drm_intel_bo_gem *bo_gem =
2869 			    (drm_intel_bo_gem *) bo_array[i];
2870 			bo_gem->reloc_tree_size = total;
2871 		}
2872 	}
2873 
2874 	for (i = 0; i < count; i++)
2875 		drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]);
2876 	return total;
2877 }
2878 
2879 /**
2880  * Return -1 if the batchbuffer should be flushed before attempting to
2881  * emit rendering referencing the buffers pointed to by bo_array.
2882  *
2883  * This is required because if we try to emit a batchbuffer with relocations
2884  * to a tree of buffers that won't simultaneously fit in the aperture,
2885  * the rendering will return an error at a point where the software is not
2886  * prepared to recover from it.
2887  *
2888  * However, we also want to emit the batchbuffer significantly before we reach
2889  * the limit, as a series of batchbuffers each of which references buffers
2890  * covering almost all of the aperture means that at each emit we end up
2891  * waiting to evict a buffer from the last rendering, and we get synchronous
2892  * performance.  By emitting smaller batchbuffers, we eat some CPU overhead to
2893  * get better parallelism.
2894  */
2895 static int
drm_intel_gem_check_aperture_space(drm_intel_bo ** bo_array,int count)2896 drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count)
2897 {
2898 	drm_intel_bufmgr_gem *bufmgr_gem =
2899 	    (drm_intel_bufmgr_gem *) bo_array[0]->bufmgr;
2900 	unsigned int total = 0;
2901 	unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4;
2902 	int total_fences;
2903 
2904 	/* Check for fence reg constraints if necessary */
2905 	if (bufmgr_gem->available_fences) {
2906 		total_fences = drm_intel_gem_total_fences(bo_array, count);
2907 		if (total_fences > bufmgr_gem->available_fences)
2908 			return -ENOSPC;
2909 	}
2910 
2911 	total = drm_intel_gem_estimate_batch_space(bo_array, count);
2912 
2913 	if (total > threshold)
2914 		total = drm_intel_gem_compute_batch_space(bo_array, count);
2915 
2916 	if (total > threshold) {
2917 		DBG("check_space: overflowed available aperture, "
2918 		    "%dkb vs %dkb\n",
2919 		    total / 1024, (int)bufmgr_gem->gtt_size / 1024);
2920 		return -ENOSPC;
2921 	} else {
2922 		DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024,
2923 		    (int)bufmgr_gem->gtt_size / 1024);
2924 		return 0;
2925 	}
2926 }
2927 
2928 /*
2929  * Disable buffer reuse for objects which are shared with the kernel
2930  * as scanout buffers
2931  */
2932 static int
drm_intel_gem_bo_disable_reuse(drm_intel_bo * bo)2933 drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo)
2934 {
2935 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2936 
2937 	bo_gem->reusable = false;
2938 	return 0;
2939 }
2940 
2941 static int
drm_intel_gem_bo_is_reusable(drm_intel_bo * bo)2942 drm_intel_gem_bo_is_reusable(drm_intel_bo *bo)
2943 {
2944 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2945 
2946 	return bo_gem->reusable;
2947 }
2948 
2949 static int
_drm_intel_gem_bo_references(drm_intel_bo * bo,drm_intel_bo * target_bo)2950 _drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
2951 {
2952 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2953 	int i;
2954 
2955 	for (i = 0; i < bo_gem->reloc_count; i++) {
2956 		if (bo_gem->reloc_target_info[i].bo == target_bo)
2957 			return 1;
2958 		if (bo == bo_gem->reloc_target_info[i].bo)
2959 			continue;
2960 		if (_drm_intel_gem_bo_references(bo_gem->reloc_target_info[i].bo,
2961 						target_bo))
2962 			return 1;
2963 	}
2964 
2965 	for (i = 0; i< bo_gem->softpin_target_count; i++) {
2966 		if (bo_gem->softpin_target[i] == target_bo)
2967 			return 1;
2968 		if (_drm_intel_gem_bo_references(bo_gem->softpin_target[i], target_bo))
2969 			return 1;
2970 	}
2971 
2972 	return 0;
2973 }
2974 
2975 /** Return true if target_bo is referenced by bo's relocation tree. */
2976 static int
drm_intel_gem_bo_references(drm_intel_bo * bo,drm_intel_bo * target_bo)2977 drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
2978 {
2979 	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
2980 
2981 	if (bo == NULL || target_bo == NULL)
2982 		return 0;
2983 	if (target_bo_gem->used_as_reloc_target)
2984 		return _drm_intel_gem_bo_references(bo, target_bo);
2985 	return 0;
2986 }
2987 
2988 static void
add_bucket(drm_intel_bufmgr_gem * bufmgr_gem,int size)2989 add_bucket(drm_intel_bufmgr_gem *bufmgr_gem, int size)
2990 {
2991 	unsigned int i = bufmgr_gem->num_buckets;
2992 
2993 	assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket));
2994 
2995 	DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head);
2996 	bufmgr_gem->cache_bucket[i].size = size;
2997 	bufmgr_gem->num_buckets++;
2998 }
2999 
3000 static void
init_cache_buckets(drm_intel_bufmgr_gem * bufmgr_gem)3001 init_cache_buckets(drm_intel_bufmgr_gem *bufmgr_gem)
3002 {
3003 	unsigned long size, cache_max_size = 64 * 1024 * 1024;
3004 
3005 	/* OK, so power of two buckets was too wasteful of memory.
3006 	 * Give 3 other sizes between each power of two, to hopefully
3007 	 * cover things accurately enough.  (The alternative is
3008 	 * probably to just go for exact matching of sizes, and assume
3009 	 * that for things like composited window resize the tiled
3010 	 * width/height alignment and rounding of sizes to pages will
3011 	 * get us useful cache hit rates anyway)
3012 	 */
3013 	add_bucket(bufmgr_gem, 4096);
3014 	add_bucket(bufmgr_gem, 4096 * 2);
3015 	add_bucket(bufmgr_gem, 4096 * 3);
3016 
3017 	/* Initialize the linked lists for BO reuse cache. */
3018 	for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
3019 		add_bucket(bufmgr_gem, size);
3020 
3021 		add_bucket(bufmgr_gem, size + size * 1 / 4);
3022 		add_bucket(bufmgr_gem, size + size * 2 / 4);
3023 		add_bucket(bufmgr_gem, size + size * 3 / 4);
3024 	}
3025 }
3026 
3027 void
drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr * bufmgr,int limit)3028 drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr *bufmgr, int limit)
3029 {
3030 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3031 
3032 	bufmgr_gem->vma_max = limit;
3033 
3034 	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
3035 }
3036 
3037 /**
3038  * Get the PCI ID for the device.  This can be overridden by setting the
3039  * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
3040  */
3041 static int
get_pci_device_id(drm_intel_bufmgr_gem * bufmgr_gem)3042 get_pci_device_id(drm_intel_bufmgr_gem *bufmgr_gem)
3043 {
3044 	char *devid_override;
3045 	int devid = 0;
3046 	int ret;
3047 	drm_i915_getparam_t gp;
3048 
3049 	if (geteuid() == getuid()) {
3050 		devid_override = getenv("INTEL_DEVID_OVERRIDE");
3051 		if (devid_override) {
3052 			bufmgr_gem->no_exec = true;
3053 			return strtod(devid_override, NULL);
3054 		}
3055 	}
3056 
3057 	memclear(gp);
3058 	gp.param = I915_PARAM_CHIPSET_ID;
3059 	gp.value = &devid;
3060 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3061 	if (ret) {
3062 		fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno);
3063 		fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value);
3064 	}
3065 	return devid;
3066 }
3067 
3068 int
drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr * bufmgr)3069 drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr *bufmgr)
3070 {
3071 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3072 
3073 	return bufmgr_gem->pci_device;
3074 }
3075 
3076 /**
3077  * Sets the AUB filename.
3078  *
3079  * This function has to be called before drm_intel_bufmgr_gem_set_aub_dump()
3080  * for it to have any effect.
3081  */
3082 void
drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr * bufmgr,const char * filename)3083 drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr *bufmgr,
3084 				      const char *filename)
3085 {
3086 }
3087 
3088 /**
3089  * Sets up AUB dumping.
3090  *
3091  * This is a trace file format that can be used with the simulator.
3092  * Packets are emitted in a format somewhat like GPU command packets.
3093  * You can set up a GTT and upload your objects into the referenced
3094  * space, then send off batchbuffers and get BMPs out the other end.
3095  */
3096 void
drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr * bufmgr,int enable)3097 drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr *bufmgr, int enable)
3098 {
3099 	fprintf(stderr, "libdrm aub dumping is deprecated.\n\n"
3100 		"Use intel_aubdump from intel-gpu-tools instead.  Install intel-gpu-tools,\n"
3101 		"then run (for example)\n\n"
3102 		"\t$ intel_aubdump --output=trace.aub glxgears -geometry 500x500\n\n"
3103 		"See the intel_aubdump man page for more details.\n");
3104 }
3105 
3106 drm_intel_context *
drm_intel_gem_context_create(drm_intel_bufmgr * bufmgr)3107 drm_intel_gem_context_create(drm_intel_bufmgr *bufmgr)
3108 {
3109 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3110 	struct drm_i915_gem_context_create create;
3111 	drm_intel_context *context = NULL;
3112 	int ret;
3113 
3114 	context = calloc(1, sizeof(*context));
3115 	if (!context)
3116 		return NULL;
3117 
3118 	memclear(create);
3119 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
3120 	if (ret != 0) {
3121 		DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n",
3122 		    strerror(errno));
3123 		free(context);
3124 		return NULL;
3125 	}
3126 
3127 	context->ctx_id = create.ctx_id;
3128 	context->bufmgr = bufmgr;
3129 
3130 	return context;
3131 }
3132 
3133 void
drm_intel_gem_context_destroy(drm_intel_context * ctx)3134 drm_intel_gem_context_destroy(drm_intel_context *ctx)
3135 {
3136 	drm_intel_bufmgr_gem *bufmgr_gem;
3137 	struct drm_i915_gem_context_destroy destroy;
3138 	int ret;
3139 
3140 	if (ctx == NULL)
3141 		return;
3142 
3143 	memclear(destroy);
3144 
3145 	bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3146 	destroy.ctx_id = ctx->ctx_id;
3147 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY,
3148 		       &destroy);
3149 	if (ret != 0)
3150 		fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
3151 			strerror(errno));
3152 
3153 	free(ctx);
3154 }
3155 
3156 int
drm_intel_get_reset_stats(drm_intel_context * ctx,uint32_t * reset_count,uint32_t * active,uint32_t * pending)3157 drm_intel_get_reset_stats(drm_intel_context *ctx,
3158 			  uint32_t *reset_count,
3159 			  uint32_t *active,
3160 			  uint32_t *pending)
3161 {
3162 	drm_intel_bufmgr_gem *bufmgr_gem;
3163 	struct drm_i915_reset_stats stats;
3164 	int ret;
3165 
3166 	if (ctx == NULL)
3167 		return -EINVAL;
3168 
3169 	memclear(stats);
3170 
3171 	bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3172 	stats.ctx_id = ctx->ctx_id;
3173 	ret = drmIoctl(bufmgr_gem->fd,
3174 		       DRM_IOCTL_I915_GET_RESET_STATS,
3175 		       &stats);
3176 	if (ret == 0) {
3177 		if (reset_count != NULL)
3178 			*reset_count = stats.reset_count;
3179 
3180 		if (active != NULL)
3181 			*active = stats.batch_active;
3182 
3183 		if (pending != NULL)
3184 			*pending = stats.batch_pending;
3185 	}
3186 
3187 	return ret;
3188 }
3189 
3190 int
drm_intel_reg_read(drm_intel_bufmgr * bufmgr,uint32_t offset,uint64_t * result)3191 drm_intel_reg_read(drm_intel_bufmgr *bufmgr,
3192 		   uint32_t offset,
3193 		   uint64_t *result)
3194 {
3195 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3196 	struct drm_i915_reg_read reg_read;
3197 	int ret;
3198 
3199 	memclear(reg_read);
3200 	reg_read.offset = offset;
3201 
3202 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
3203 
3204 	*result = reg_read.val;
3205 	return ret;
3206 }
3207 
3208 int
drm_intel_get_subslice_total(int fd,unsigned int * subslice_total)3209 drm_intel_get_subslice_total(int fd, unsigned int *subslice_total)
3210 {
3211 	drm_i915_getparam_t gp;
3212 	int ret;
3213 
3214 	memclear(gp);
3215 	gp.value = (int*)subslice_total;
3216 	gp.param = I915_PARAM_SUBSLICE_TOTAL;
3217 	ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
3218 	if (ret)
3219 		return -errno;
3220 
3221 	return 0;
3222 }
3223 
3224 int
drm_intel_get_eu_total(int fd,unsigned int * eu_total)3225 drm_intel_get_eu_total(int fd, unsigned int *eu_total)
3226 {
3227 	drm_i915_getparam_t gp;
3228 	int ret;
3229 
3230 	memclear(gp);
3231 	gp.value = (int*)eu_total;
3232 	gp.param = I915_PARAM_EU_TOTAL;
3233 	ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
3234 	if (ret)
3235 		return -errno;
3236 
3237 	return 0;
3238 }
3239 
3240 /**
3241  * Annotate the given bo for use in aub dumping.
3242  *
3243  * \param annotations is an array of drm_intel_aub_annotation objects
3244  * describing the type of data in various sections of the bo.  Each
3245  * element of the array specifies the type and subtype of a section of
3246  * the bo, and the past-the-end offset of that section.  The elements
3247  * of \c annotations must be sorted so that ending_offset is
3248  * increasing.
3249  *
3250  * \param count is the number of elements in the \c annotations array.
3251  * If \c count is zero, then \c annotations will not be dereferenced.
3252  *
3253  * Annotations are copied into a private data structure, so caller may
3254  * re-use the memory pointed to by \c annotations after the call
3255  * returns.
3256  *
3257  * Annotations are stored for the lifetime of the bo; to reset to the
3258  * default state (no annotations), call this function with a \c count
3259  * of zero.
3260  */
3261 void
drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo * bo,drm_intel_aub_annotation * annotations,unsigned count)3262 drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo *bo,
3263 					 drm_intel_aub_annotation *annotations,
3264 					 unsigned count)
3265 {
3266 }
3267 
3268 static pthread_mutex_t bufmgr_list_mutex = PTHREAD_MUTEX_INITIALIZER;
3269 static drmMMListHead bufmgr_list = { &bufmgr_list, &bufmgr_list };
3270 
3271 static drm_intel_bufmgr_gem *
drm_intel_bufmgr_gem_find(int fd)3272 drm_intel_bufmgr_gem_find(int fd)
3273 {
3274 	drm_intel_bufmgr_gem *bufmgr_gem;
3275 
3276 	DRMLISTFOREACHENTRY(bufmgr_gem, &bufmgr_list, managers) {
3277 		if (bufmgr_gem->fd == fd) {
3278 			atomic_inc(&bufmgr_gem->refcount);
3279 			return bufmgr_gem;
3280 		}
3281 	}
3282 
3283 	return NULL;
3284 }
3285 
3286 static void
drm_intel_bufmgr_gem_unref(drm_intel_bufmgr * bufmgr)3287 drm_intel_bufmgr_gem_unref(drm_intel_bufmgr *bufmgr)
3288 {
3289 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3290 
3291 	if (atomic_add_unless(&bufmgr_gem->refcount, -1, 1)) {
3292 		pthread_mutex_lock(&bufmgr_list_mutex);
3293 
3294 		if (atomic_dec_and_test(&bufmgr_gem->refcount)) {
3295 			DRMLISTDEL(&bufmgr_gem->managers);
3296 			drm_intel_bufmgr_gem_destroy(bufmgr);
3297 		}
3298 
3299 		pthread_mutex_unlock(&bufmgr_list_mutex);
3300 	}
3301 }
3302 
3303 /**
3304  * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
3305  * and manage map buffer objections.
3306  *
3307  * \param fd File descriptor of the opened DRM device.
3308  */
3309 drm_intel_bufmgr *
drm_intel_bufmgr_gem_init(int fd,int batch_size)3310 drm_intel_bufmgr_gem_init(int fd, int batch_size)
3311 {
3312 	drm_intel_bufmgr_gem *bufmgr_gem;
3313 	struct drm_i915_gem_get_aperture aperture;
3314 	drm_i915_getparam_t gp;
3315 	int ret, tmp;
3316 	bool exec2 = false;
3317 
3318 	pthread_mutex_lock(&bufmgr_list_mutex);
3319 
3320 	bufmgr_gem = drm_intel_bufmgr_gem_find(fd);
3321 	if (bufmgr_gem)
3322 		goto exit;
3323 
3324 	bufmgr_gem = calloc(1, sizeof(*bufmgr_gem));
3325 	if (bufmgr_gem == NULL)
3326 		goto exit;
3327 
3328 	bufmgr_gem->fd = fd;
3329 	atomic_set(&bufmgr_gem->refcount, 1);
3330 
3331 	if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) {
3332 		free(bufmgr_gem);
3333 		bufmgr_gem = NULL;
3334 		goto exit;
3335 	}
3336 
3337 	memclear(aperture);
3338 	ret = drmIoctl(bufmgr_gem->fd,
3339 		       DRM_IOCTL_I915_GEM_GET_APERTURE,
3340 		       &aperture);
3341 
3342 	if (ret == 0)
3343 		bufmgr_gem->gtt_size = aperture.aper_available_size;
3344 	else {
3345 		fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n",
3346 			strerror(errno));
3347 		bufmgr_gem->gtt_size = 128 * 1024 * 1024;
3348 		fprintf(stderr, "Assuming %dkB available aperture size.\n"
3349 			"May lead to reduced performance or incorrect "
3350 			"rendering.\n",
3351 			(int)bufmgr_gem->gtt_size / 1024);
3352 	}
3353 
3354 	bufmgr_gem->pci_device = get_pci_device_id(bufmgr_gem);
3355 
3356 	if (IS_GEN2(bufmgr_gem->pci_device))
3357 		bufmgr_gem->gen = 2;
3358 	else if (IS_GEN3(bufmgr_gem->pci_device))
3359 		bufmgr_gem->gen = 3;
3360 	else if (IS_GEN4(bufmgr_gem->pci_device))
3361 		bufmgr_gem->gen = 4;
3362 	else if (IS_GEN5(bufmgr_gem->pci_device))
3363 		bufmgr_gem->gen = 5;
3364 	else if (IS_GEN6(bufmgr_gem->pci_device))
3365 		bufmgr_gem->gen = 6;
3366 	else if (IS_GEN7(bufmgr_gem->pci_device))
3367 		bufmgr_gem->gen = 7;
3368 	else if (IS_GEN8(bufmgr_gem->pci_device))
3369 		bufmgr_gem->gen = 8;
3370 	else if (IS_GEN9(bufmgr_gem->pci_device))
3371 		bufmgr_gem->gen = 9;
3372 	else {
3373 		free(bufmgr_gem);
3374 		bufmgr_gem = NULL;
3375 		goto exit;
3376 	}
3377 
3378 	if (IS_GEN3(bufmgr_gem->pci_device) &&
3379 	    bufmgr_gem->gtt_size > 256*1024*1024) {
3380 		/* The unmappable part of gtt on gen 3 (i.e. above 256MB) can't
3381 		 * be used for tiled blits. To simplify the accounting, just
3382 		 * substract the unmappable part (fixed to 256MB on all known
3383 		 * gen3 devices) if the kernel advertises it. */
3384 		bufmgr_gem->gtt_size -= 256*1024*1024;
3385 	}
3386 
3387 	memclear(gp);
3388 	gp.value = &tmp;
3389 
3390 	gp.param = I915_PARAM_HAS_EXECBUF2;
3391 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3392 	if (!ret)
3393 		exec2 = true;
3394 
3395 	gp.param = I915_PARAM_HAS_BSD;
3396 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3397 	bufmgr_gem->has_bsd = ret == 0;
3398 
3399 	gp.param = I915_PARAM_HAS_BLT;
3400 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3401 	bufmgr_gem->has_blt = ret == 0;
3402 
3403 	gp.param = I915_PARAM_HAS_RELAXED_FENCING;
3404 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3405 	bufmgr_gem->has_relaxed_fencing = ret == 0;
3406 
3407 	bufmgr_gem->bufmgr.bo_alloc_userptr = check_bo_alloc_userptr;
3408 
3409 	gp.param = I915_PARAM_HAS_WAIT_TIMEOUT;
3410 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3411 	bufmgr_gem->has_wait_timeout = ret == 0;
3412 
3413 	gp.param = I915_PARAM_HAS_LLC;
3414 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3415 	if (ret != 0) {
3416 		/* Kernel does not supports HAS_LLC query, fallback to GPU
3417 		 * generation detection and assume that we have LLC on GEN6/7
3418 		 */
3419 		bufmgr_gem->has_llc = (IS_GEN6(bufmgr_gem->pci_device) |
3420 				IS_GEN7(bufmgr_gem->pci_device));
3421 	} else
3422 		bufmgr_gem->has_llc = *gp.value;
3423 
3424 	gp.param = I915_PARAM_HAS_VEBOX;
3425 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3426 	bufmgr_gem->has_vebox = (ret == 0) & (*gp.value > 0);
3427 
3428 	gp.param = I915_PARAM_HAS_EXEC_SOFTPIN;
3429 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3430 	if (ret == 0 && *gp.value > 0)
3431 		bufmgr_gem->bufmgr.bo_set_softpin_offset = drm_intel_gem_bo_set_softpin_offset;
3432 
3433 	if (bufmgr_gem->gen < 4) {
3434 		gp.param = I915_PARAM_NUM_FENCES_AVAIL;
3435 		gp.value = &bufmgr_gem->available_fences;
3436 		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3437 		if (ret) {
3438 			fprintf(stderr, "get fences failed: %d [%d]\n", ret,
3439 				errno);
3440 			fprintf(stderr, "param: %d, val: %d\n", gp.param,
3441 				*gp.value);
3442 			bufmgr_gem->available_fences = 0;
3443 		} else {
3444 			/* XXX The kernel reports the total number of fences,
3445 			 * including any that may be pinned.
3446 			 *
3447 			 * We presume that there will be at least one pinned
3448 			 * fence for the scanout buffer, but there may be more
3449 			 * than one scanout and the user may be manually
3450 			 * pinning buffers. Let's move to execbuffer2 and
3451 			 * thereby forget the insanity of using fences...
3452 			 */
3453 			bufmgr_gem->available_fences -= 2;
3454 			if (bufmgr_gem->available_fences < 0)
3455 				bufmgr_gem->available_fences = 0;
3456 		}
3457 	}
3458 
3459 	if (bufmgr_gem->gen >= 8) {
3460 		gp.param = I915_PARAM_HAS_ALIASING_PPGTT;
3461 		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3462 		if (ret == 0 && *gp.value == 3)
3463 			bufmgr_gem->bufmgr.bo_use_48b_address_range = drm_intel_gem_bo_use_48b_address_range;
3464 	}
3465 
3466 	/* Let's go with one relocation per every 2 dwords (but round down a bit
3467 	 * since a power of two will mean an extra page allocation for the reloc
3468 	 * buffer).
3469 	 *
3470 	 * Every 4 was too few for the blender benchmark.
3471 	 */
3472 	bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2;
3473 
3474 	bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc;
3475 	bufmgr_gem->bufmgr.bo_alloc_for_render =
3476 	    drm_intel_gem_bo_alloc_for_render;
3477 	bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled;
3478 	bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference;
3479 	bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference;
3480 	bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map;
3481 	bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap;
3482 	bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata;
3483 	bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata;
3484 	bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering;
3485 	bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc;
3486 	bufmgr_gem->bufmgr.bo_emit_reloc_fence = drm_intel_gem_bo_emit_reloc_fence;
3487 	bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin;
3488 	bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin;
3489 	bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling;
3490 	bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling;
3491 	bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink;
3492 	/* Use the new one if available */
3493 	if (exec2) {
3494 		bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec2;
3495 		bufmgr_gem->bufmgr.bo_mrb_exec = drm_intel_gem_bo_mrb_exec2;
3496 	} else
3497 		bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec;
3498 	bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy;
3499 	bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise;
3500 	bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_unref;
3501 	bufmgr_gem->bufmgr.debug = 0;
3502 	bufmgr_gem->bufmgr.check_aperture_space =
3503 	    drm_intel_gem_check_aperture_space;
3504 	bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse;
3505 	bufmgr_gem->bufmgr.bo_is_reusable = drm_intel_gem_bo_is_reusable;
3506 	bufmgr_gem->bufmgr.get_pipe_from_crtc_id =
3507 	    drm_intel_gem_get_pipe_from_crtc_id;
3508 	bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references;
3509 
3510 	DRMINITLISTHEAD(&bufmgr_gem->named);
3511 	init_cache_buckets(bufmgr_gem);
3512 
3513 	DRMINITLISTHEAD(&bufmgr_gem->vma_cache);
3514 	bufmgr_gem->vma_max = -1; /* unlimited by default */
3515 
3516 	DRMLISTADD(&bufmgr_gem->managers, &bufmgr_list);
3517 
3518 exit:
3519 	pthread_mutex_unlock(&bufmgr_list_mutex);
3520 
3521 	return bufmgr_gem != NULL ? &bufmgr_gem->bufmgr : NULL;
3522 }
3523