1 /* dtbmv.f -- translated by f2c (version 20100827).
2    You must link the resulting object file with libf2c:
3 	on Microsoft Windows system, link with libf2c.lib;
4 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
5 	or, if you install libf2c.a in a standard place, with -lf2c -lm
6 	-- in that order, at the end of the command line, as in
7 		cc *.o -lf2c -lm
8 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
9 
10 		http://www.netlib.org/f2c/libf2c.zip
11 */
12 
13 #include "datatypes.h"
14 
dtbmv_(char * uplo,char * trans,char * diag,integer * n,integer * k,doublereal * a,integer * lda,doublereal * x,integer * incx,ftnlen uplo_len,ftnlen trans_len,ftnlen diag_len)15 /* Subroutine */ int dtbmv_(char *uplo, char *trans, char *diag, integer *n,
16 	integer *k, doublereal *a, integer *lda, doublereal *x, integer *incx,
17 	 ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
18 {
19     /* System generated locals */
20     integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
21 
22     /* Local variables */
23     integer i__, j, l, ix, jx, kx, info;
24     doublereal temp;
25     extern logical lsame_(char *, char *, ftnlen, ftnlen);
26     integer kplus1;
27     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
28     logical nounit;
29 
30 /*     .. Scalar Arguments .. */
31 /*     .. */
32 /*     .. Array Arguments .. */
33 /*     .. */
34 
35 /*  Purpose */
36 /*  ======= */
37 
38 /*  DTBMV  performs one of the matrix-vector operations */
39 
40 /*     x := A*x,   or   x := A'*x, */
41 
42 /*  where x is an n element vector and  A is an n by n unit, or non-unit, */
43 /*  upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
44 
45 /*  Arguments */
46 /*  ========== */
47 
48 /*  UPLO   - CHARACTER*1. */
49 /*           On entry, UPLO specifies whether the matrix is an upper or */
50 /*           lower triangular matrix as follows: */
51 
52 /*              UPLO = 'U' or 'u'   A is an upper triangular matrix. */
53 
54 /*              UPLO = 'L' or 'l'   A is a lower triangular matrix. */
55 
56 /*           Unchanged on exit. */
57 
58 /*  TRANS  - CHARACTER*1. */
59 /*           On entry, TRANS specifies the operation to be performed as */
60 /*           follows: */
61 
62 /*              TRANS = 'N' or 'n'   x := A*x. */
63 
64 /*              TRANS = 'T' or 't'   x := A'*x. */
65 
66 /*              TRANS = 'C' or 'c'   x := A'*x. */
67 
68 /*           Unchanged on exit. */
69 
70 /*  DIAG   - CHARACTER*1. */
71 /*           On entry, DIAG specifies whether or not A is unit */
72 /*           triangular as follows: */
73 
74 /*              DIAG = 'U' or 'u'   A is assumed to be unit triangular. */
75 
76 /*              DIAG = 'N' or 'n'   A is not assumed to be unit */
77 /*                                  triangular. */
78 
79 /*           Unchanged on exit. */
80 
81 /*  N      - INTEGER. */
82 /*           On entry, N specifies the order of the matrix A. */
83 /*           N must be at least zero. */
84 /*           Unchanged on exit. */
85 
86 /*  K      - INTEGER. */
87 /*           On entry with UPLO = 'U' or 'u', K specifies the number of */
88 /*           super-diagonals of the matrix A. */
89 /*           On entry with UPLO = 'L' or 'l', K specifies the number of */
90 /*           sub-diagonals of the matrix A. */
91 /*           K must satisfy  0 .le. K. */
92 /*           Unchanged on exit. */
93 
94 /*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
95 /*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
96 /*           by n part of the array A must contain the upper triangular */
97 /*           band part of the matrix of coefficients, supplied column by */
98 /*           column, with the leading diagonal of the matrix in row */
99 /*           ( k + 1 ) of the array, the first super-diagonal starting at */
100 /*           position 2 in row k, and so on. The top left k by k triangle */
101 /*           of the array A is not referenced. */
102 /*           The following program segment will transfer an upper */
103 /*           triangular band matrix from conventional full matrix storage */
104 /*           to band storage: */
105 
106 /*                 DO 20, J = 1, N */
107 /*                    M = K + 1 - J */
108 /*                    DO 10, I = MAX( 1, J - K ), J */
109 /*                       A( M + I, J ) = matrix( I, J ) */
110 /*              10    CONTINUE */
111 /*              20 CONTINUE */
112 
113 /*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
114 /*           by n part of the array A must contain the lower triangular */
115 /*           band part of the matrix of coefficients, supplied column by */
116 /*           column, with the leading diagonal of the matrix in row 1 of */
117 /*           the array, the first sub-diagonal starting at position 1 in */
118 /*           row 2, and so on. The bottom right k by k triangle of the */
119 /*           array A is not referenced. */
120 /*           The following program segment will transfer a lower */
121 /*           triangular band matrix from conventional full matrix storage */
122 /*           to band storage: */
123 
124 /*                 DO 20, J = 1, N */
125 /*                    M = 1 - J */
126 /*                    DO 10, I = J, MIN( N, J + K ) */
127 /*                       A( M + I, J ) = matrix( I, J ) */
128 /*              10    CONTINUE */
129 /*              20 CONTINUE */
130 
131 /*           Note that when DIAG = 'U' or 'u' the elements of the array A */
132 /*           corresponding to the diagonal elements of the matrix are not */
133 /*           referenced, but are assumed to be unity. */
134 /*           Unchanged on exit. */
135 
136 /*  LDA    - INTEGER. */
137 /*           On entry, LDA specifies the first dimension of A as declared */
138 /*           in the calling (sub) program. LDA must be at least */
139 /*           ( k + 1 ). */
140 /*           Unchanged on exit. */
141 
142 /*  X      - DOUBLE PRECISION array of dimension at least */
143 /*           ( 1 + ( n - 1 )*abs( INCX ) ). */
144 /*           Before entry, the incremented array X must contain the n */
145 /*           element vector x. On exit, X is overwritten with the */
146 /*           tranformed vector x. */
147 
148 /*  INCX   - INTEGER. */
149 /*           On entry, INCX specifies the increment for the elements of */
150 /*           X. INCX must not be zero. */
151 /*           Unchanged on exit. */
152 
153 /*  Further Details */
154 /*  =============== */
155 
156 /*  Level 2 Blas routine. */
157 
158 /*  -- Written on 22-October-1986. */
159 /*     Jack Dongarra, Argonne National Lab. */
160 /*     Jeremy Du Croz, Nag Central Office. */
161 /*     Sven Hammarling, Nag Central Office. */
162 /*     Richard Hanson, Sandia National Labs. */
163 
164 /*  ===================================================================== */
165 
166 /*     .. Parameters .. */
167 /*     .. */
168 /*     .. Local Scalars .. */
169 /*     .. */
170 /*     .. External Functions .. */
171 /*     .. */
172 /*     .. External Subroutines .. */
173 /*     .. */
174 /*     .. Intrinsic Functions .. */
175 /*     .. */
176 
177 /*     Test the input parameters. */
178 
179     /* Parameter adjustments */
180     a_dim1 = *lda;
181     a_offset = 1 + a_dim1;
182     a -= a_offset;
183     --x;
184 
185     /* Function Body */
186     info = 0;
187     if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
188 	    ftnlen)1, (ftnlen)1)) {
189 	info = 1;
190     } else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
191 	    "T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
192 	    ftnlen)1)) {
193 	info = 2;
194     } else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
195 	    "N", (ftnlen)1, (ftnlen)1)) {
196 	info = 3;
197     } else if (*n < 0) {
198 	info = 4;
199     } else if (*k < 0) {
200 	info = 5;
201     } else if (*lda < *k + 1) {
202 	info = 7;
203     } else if (*incx == 0) {
204 	info = 9;
205     }
206     if (info != 0) {
207 	xerbla_("DTBMV ", &info, (ftnlen)6);
208 	return 0;
209     }
210 
211 /*     Quick return if possible. */
212 
213     if (*n == 0) {
214 	return 0;
215     }
216 
217     nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
218 
219 /*     Set up the start point in X if the increment is not unity. This */
220 /*     will be  ( N - 1 )*INCX   too small for descending loops. */
221 
222     if (*incx <= 0) {
223 	kx = 1 - (*n - 1) * *incx;
224     } else if (*incx != 1) {
225 	kx = 1;
226     }
227 
228 /*     Start the operations. In this version the elements of A are */
229 /*     accessed sequentially with one pass through A. */
230 
231     if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
232 
233 /*         Form  x := A*x. */
234 
235 	if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
236 	    kplus1 = *k + 1;
237 	    if (*incx == 1) {
238 		i__1 = *n;
239 		for (j = 1; j <= i__1; ++j) {
240 		    if (x[j] != 0.) {
241 			temp = x[j];
242 			l = kplus1 - j;
243 /* Computing MAX */
244 			i__2 = 1, i__3 = j - *k;
245 			i__4 = j - 1;
246 			for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
247 			    x[i__] += temp * a[l + i__ + j * a_dim1];
248 /* L10: */
249 			}
250 			if (nounit) {
251 			    x[j] *= a[kplus1 + j * a_dim1];
252 			}
253 		    }
254 /* L20: */
255 		}
256 	    } else {
257 		jx = kx;
258 		i__1 = *n;
259 		for (j = 1; j <= i__1; ++j) {
260 		    if (x[jx] != 0.) {
261 			temp = x[jx];
262 			ix = kx;
263 			l = kplus1 - j;
264 /* Computing MAX */
265 			i__4 = 1, i__2 = j - *k;
266 			i__3 = j - 1;
267 			for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
268 			    x[ix] += temp * a[l + i__ + j * a_dim1];
269 			    ix += *incx;
270 /* L30: */
271 			}
272 			if (nounit) {
273 			    x[jx] *= a[kplus1 + j * a_dim1];
274 			}
275 		    }
276 		    jx += *incx;
277 		    if (j > *k) {
278 			kx += *incx;
279 		    }
280 /* L40: */
281 		}
282 	    }
283 	} else {
284 	    if (*incx == 1) {
285 		for (j = *n; j >= 1; --j) {
286 		    if (x[j] != 0.) {
287 			temp = x[j];
288 			l = 1 - j;
289 /* Computing MIN */
290 			i__1 = *n, i__3 = j + *k;
291 			i__4 = j + 1;
292 			for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
293 			    x[i__] += temp * a[l + i__ + j * a_dim1];
294 /* L50: */
295 			}
296 			if (nounit) {
297 			    x[j] *= a[j * a_dim1 + 1];
298 			}
299 		    }
300 /* L60: */
301 		}
302 	    } else {
303 		kx += (*n - 1) * *incx;
304 		jx = kx;
305 		for (j = *n; j >= 1; --j) {
306 		    if (x[jx] != 0.) {
307 			temp = x[jx];
308 			ix = kx;
309 			l = 1 - j;
310 /* Computing MIN */
311 			i__4 = *n, i__1 = j + *k;
312 			i__3 = j + 1;
313 			for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
314 			    x[ix] += temp * a[l + i__ + j * a_dim1];
315 			    ix -= *incx;
316 /* L70: */
317 			}
318 			if (nounit) {
319 			    x[jx] *= a[j * a_dim1 + 1];
320 			}
321 		    }
322 		    jx -= *incx;
323 		    if (*n - j >= *k) {
324 			kx -= *incx;
325 		    }
326 /* L80: */
327 		}
328 	    }
329 	}
330     } else {
331 
332 /*        Form  x := A'*x. */
333 
334 	if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
335 	    kplus1 = *k + 1;
336 	    if (*incx == 1) {
337 		for (j = *n; j >= 1; --j) {
338 		    temp = x[j];
339 		    l = kplus1 - j;
340 		    if (nounit) {
341 			temp *= a[kplus1 + j * a_dim1];
342 		    }
343 /* Computing MAX */
344 		    i__4 = 1, i__1 = j - *k;
345 		    i__3 = max(i__4,i__1);
346 		    for (i__ = j - 1; i__ >= i__3; --i__) {
347 			temp += a[l + i__ + j * a_dim1] * x[i__];
348 /* L90: */
349 		    }
350 		    x[j] = temp;
351 /* L100: */
352 		}
353 	    } else {
354 		kx += (*n - 1) * *incx;
355 		jx = kx;
356 		for (j = *n; j >= 1; --j) {
357 		    temp = x[jx];
358 		    kx -= *incx;
359 		    ix = kx;
360 		    l = kplus1 - j;
361 		    if (nounit) {
362 			temp *= a[kplus1 + j * a_dim1];
363 		    }
364 /* Computing MAX */
365 		    i__4 = 1, i__1 = j - *k;
366 		    i__3 = max(i__4,i__1);
367 		    for (i__ = j - 1; i__ >= i__3; --i__) {
368 			temp += a[l + i__ + j * a_dim1] * x[ix];
369 			ix -= *incx;
370 /* L110: */
371 		    }
372 		    x[jx] = temp;
373 		    jx -= *incx;
374 /* L120: */
375 		}
376 	    }
377 	} else {
378 	    if (*incx == 1) {
379 		i__3 = *n;
380 		for (j = 1; j <= i__3; ++j) {
381 		    temp = x[j];
382 		    l = 1 - j;
383 		    if (nounit) {
384 			temp *= a[j * a_dim1 + 1];
385 		    }
386 /* Computing MIN */
387 		    i__1 = *n, i__2 = j + *k;
388 		    i__4 = min(i__1,i__2);
389 		    for (i__ = j + 1; i__ <= i__4; ++i__) {
390 			temp += a[l + i__ + j * a_dim1] * x[i__];
391 /* L130: */
392 		    }
393 		    x[j] = temp;
394 /* L140: */
395 		}
396 	    } else {
397 		jx = kx;
398 		i__3 = *n;
399 		for (j = 1; j <= i__3; ++j) {
400 		    temp = x[jx];
401 		    kx += *incx;
402 		    ix = kx;
403 		    l = 1 - j;
404 		    if (nounit) {
405 			temp *= a[j * a_dim1 + 1];
406 		    }
407 /* Computing MIN */
408 		    i__1 = *n, i__2 = j + *k;
409 		    i__4 = min(i__1,i__2);
410 		    for (i__ = j + 1; i__ <= i__4; ++i__) {
411 			temp += a[l + i__ + j * a_dim1] * x[ix];
412 			ix += *incx;
413 /* L150: */
414 		    }
415 		    x[jx] = temp;
416 		    jx += *incx;
417 /* L160: */
418 		}
419 	    }
420 	}
421     }
422 
423     return 0;
424 
425 /*     End of DTBMV . */
426 
427 } /* dtbmv_ */
428 
429