1 // icf.cc -- Identical Code Folding.
2 //
3 // Copyright (C) 2009-2014 Free Software Foundation, Inc.
4 // Written by Sriraman Tallam <tmsriram@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 // Identical Code Folding Algorithm
24 // ----------------------------------
25 // Detecting identical functions is done here and the basic algorithm
26 // is as follows.  A checksum is computed on each foldable section using
27 // its contents and relocations.  If the symbol name corresponding to
28 // a relocation is known it is used to compute the checksum.  If the
29 // symbol name is not known the stringified name of the object and the
30 // section number pointed to by the relocation is used.  The checksums
31 // are stored as keys in a hash map and a section is identical to some
32 // other section if its checksum is already present in the hash map.
33 // Checksum collisions are handled by using a multimap and explicitly
34 // checking the contents when two sections have the same checksum.
35 //
36 // However, two functions A and B with identical text but with
37 // relocations pointing to different foldable sections can be identical if
38 // the corresponding foldable sections to which their relocations point to
39 // turn out to be identical.  Hence, this checksumming process must be
40 // done repeatedly until convergence is obtained.  Here is an example for
41 // the following case :
42 //
43 // int funcA ()               int funcB ()
44 // {                          {
45 //   return foo();              return goo();
46 // }                          }
47 //
48 // The functions funcA and funcB are identical if functions foo() and
49 // goo() are identical.
50 //
51 // Hence, as described above, we repeatedly do the checksumming,
52 // assigning identical functions to the same group, until convergence is
53 // obtained.  Now, we have two different ways to do this depending on how
54 // we initialize.
55 //
56 // Algorithm I :
57 // -----------
58 // We can start with marking all functions as different and repeatedly do
59 // the checksumming.  This has the advantage that we do not need to wait
60 // for convergence. We can stop at any point and correctness will be
61 // guaranteed although not all cases would have been found.  However, this
62 // has a problem that some cases can never be found even if it is run until
63 // convergence.  Here is an example with mutually recursive functions :
64 //
65 // int funcA (int a)            int funcB (int a)
66 // {                            {
67 //   if (a == 1)                  if (a == 1)
68 //     return 1;                    return 1;
69 //   return 1 + funcB(a - 1);     return 1 + funcA(a - 1);
70 // }                            }
71 //
72 // In this example funcA and funcB are identical and one of them could be
73 // folded into the other.  However, if we start with assuming that funcA
74 // and funcB are not identical, the algorithm, even after it is run to
75 // convergence, cannot detect that they are identical.  It should be noted
76 // that even if the functions were self-recursive, Algorithm I cannot catch
77 // that they are identical, at least as is.
78 //
79 // Algorithm II :
80 // ------------
81 // Here we start with marking all functions as identical and then repeat
82 // the checksumming until convergence.  This can detect the above case
83 // mentioned above.  It can detect all cases that Algorithm I can and more.
84 // However, the caveat is that it has to be run to convergence.  It cannot
85 // be stopped arbitrarily like Algorithm I as correctness cannot be
86 // guaranteed.  Algorithm II is not implemented.
87 //
88 // Algorithm I is used because experiments show that about three
89 // iterations are more than enough to achieve convergence. Algorithm I can
90 // handle recursive calls if it is changed to use a special common symbol
91 // for recursive relocs.  This seems to be the most common case that
92 // Algorithm I could not catch as is.  Mutually recursive calls are not
93 // frequent and Algorithm I wins because of its ability to be stopped
94 // arbitrarily.
95 //
96 // Caveat with using function pointers :
97 // ------------------------------------
98 //
99 // Programs using function pointer comparisons/checks should use function
100 // folding with caution as the result of such comparisons could be different
101 // when folding takes place.  This could lead to unexpected run-time
102 // behaviour.
103 //
104 // Safe Folding :
105 // ------------
106 //
107 // ICF in safe mode folds only ctors and dtors if their function pointers can
108 // never be taken.  Also, for X86-64, safe folding uses the relocation
109 // type to determine if a function's pointer is taken or not and only folds
110 // functions whose pointers are definitely not taken.
111 //
112 // Caveat with safe folding :
113 // ------------------------
114 //
115 // This applies only to x86_64.
116 //
117 // Position independent executables are created from PIC objects (compiled
118 // with -fPIC) and/or PIE objects (compiled with -fPIE).  For PIE objects, the
119 // relocation types for function pointer taken and a call are the same.
120 // Now, it is not always possible to tell if an object used in the link of
121 // a pie executable is a PIC object or a PIE object.  Hence, for pie
122 // executables, using relocation types to disambiguate function pointers is
123 // currently disabled.
124 //
125 // Further, it is not correct to use safe folding to build non-pie
126 // executables using PIC/PIE objects.  PIC/PIE objects have different
127 // relocation types for function pointers than non-PIC objects, and the
128 // current implementation of safe folding does not handle those relocation
129 // types.  Hence, if used, functions whose pointers are taken could still be
130 // folded causing unpredictable run-time behaviour if the pointers were used
131 // in comparisons.
132 //
133 //
134 //
135 // How to run  : --icf=[safe|all|none]
136 // Optional parameters : --icf-iterations <num> --print-icf-sections
137 //
138 // Performance : Less than 20 % link-time overhead on industry strength
139 // applications.  Up to 6 %  text size reductions.
140 
141 #include "gold.h"
142 #include "object.h"
143 #include "gc.h"
144 #include "icf.h"
145 #include "symtab.h"
146 #include "libiberty.h"
147 #include "demangle.h"
148 #include "elfcpp.h"
149 #include "int_encoding.h"
150 
151 namespace gold
152 {
153 
154 // This function determines if a section or a group of identical
155 // sections has unique contents.  Such unique sections or groups can be
156 // declared final and need not be processed any further.
157 // Parameters :
158 // ID_SECTION : Vector mapping a section index to a Section_id pair.
159 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
160 //                            sections is already known to be unique.
161 // SECTION_CONTENTS : Contains the section's text and relocs to sections
162 //                    that cannot be folded.   SECTION_CONTENTS are NULL
163 //                    implies that this function is being called for the
164 //                    first time before the first iteration of icf.
165 
166 static void
preprocess_for_unique_sections(const std::vector<Section_id> & id_section,std::vector<bool> * is_secn_or_group_unique,std::vector<std::string> * section_contents)167 preprocess_for_unique_sections(const std::vector<Section_id>& id_section,
168                                std::vector<bool>* is_secn_or_group_unique,
169                                std::vector<std::string>* section_contents)
170 {
171   Unordered_map<uint32_t, unsigned int> uniq_map;
172   std::pair<Unordered_map<uint32_t, unsigned int>::iterator, bool>
173     uniq_map_insert;
174 
175   for (unsigned int i = 0; i < id_section.size(); i++)
176     {
177       if ((*is_secn_or_group_unique)[i])
178         continue;
179 
180       uint32_t cksum;
181       Section_id secn = id_section[i];
182       section_size_type plen;
183       if (section_contents == NULL)
184         {
185           // Lock the object so we can read from it.  This is only called
186           // single-threaded from queue_middle_tasks, so it is OK to lock.
187           // Unfortunately we have no way to pass in a Task token.
188           const Task* dummy_task = reinterpret_cast<const Task*>(-1);
189           Task_lock_obj<Object> tl(dummy_task, secn.first);
190           const unsigned char* contents;
191           contents = secn.first->section_contents(secn.second,
192                                                   &plen,
193                                                   false);
194           cksum = xcrc32(contents, plen, 0xffffffff);
195         }
196       else
197         {
198           const unsigned char* contents_array = reinterpret_cast
199             <const unsigned char*>((*section_contents)[i].c_str());
200           cksum = xcrc32(contents_array, (*section_contents)[i].length(),
201                          0xffffffff);
202         }
203       uniq_map_insert = uniq_map.insert(std::make_pair(cksum, i));
204       if (uniq_map_insert.second)
205         {
206           (*is_secn_or_group_unique)[i] = true;
207         }
208       else
209         {
210           (*is_secn_or_group_unique)[i] = false;
211           (*is_secn_or_group_unique)[uniq_map_insert.first->second] = false;
212         }
213     }
214 }
215 
216 // This returns the buffer containing the section's contents, both
217 // text and relocs.  Relocs are differentiated as those pointing to
218 // sections that could be folded and those that cannot.  Only relocs
219 // pointing to sections that could be folded are recomputed on
220 // subsequent invocations of this function.
221 // Parameters  :
222 // FIRST_ITERATION    : true if it is the first invocation.
223 // SECN               : Section for which contents are desired.
224 // SECTION_NUM        : Unique section number of this section.
225 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
226 //                      to ICF sections.
227 // KEPT_SECTION_ID    : Vector which maps folded sections to kept sections.
228 // SECTION_CONTENTS   : Store the section's text and relocs to non-ICF
229 //                      sections.
230 
231 static std::string
get_section_contents(bool first_iteration,const Section_id & secn,unsigned int section_num,unsigned int * num_tracked_relocs,Symbol_table * symtab,const std::vector<unsigned int> & kept_section_id,std::vector<std::string> * section_contents)232 get_section_contents(bool first_iteration,
233                      const Section_id& secn,
234                      unsigned int section_num,
235                      unsigned int* num_tracked_relocs,
236                      Symbol_table* symtab,
237                      const std::vector<unsigned int>& kept_section_id,
238                      std::vector<std::string>* section_contents)
239 {
240   // Lock the object so we can read from it.  This is only called
241   // single-threaded from queue_middle_tasks, so it is OK to lock.
242   // Unfortunately we have no way to pass in a Task token.
243   const Task* dummy_task = reinterpret_cast<const Task*>(-1);
244   Task_lock_obj<Object> tl(dummy_task, secn.first);
245 
246   section_size_type plen;
247   const unsigned char* contents = NULL;
248   if (first_iteration)
249     contents = secn.first->section_contents(secn.second, &plen, false);
250 
251   // The buffer to hold all the contents including relocs.  A checksum
252   // is then computed on this buffer.
253   std::string buffer;
254   std::string icf_reloc_buffer;
255 
256   if (num_tracked_relocs)
257     *num_tracked_relocs = 0;
258 
259   Icf::Reloc_info_list& reloc_info_list =
260     symtab->icf()->reloc_info_list();
261 
262   Icf::Reloc_info_list::iterator it_reloc_info_list =
263     reloc_info_list.find(secn);
264 
265   buffer.clear();
266   icf_reloc_buffer.clear();
267 
268   // Process relocs and put them into the buffer.
269 
270   if (it_reloc_info_list != reloc_info_list.end())
271     {
272       Icf::Sections_reachable_info &v =
273         (it_reloc_info_list->second).section_info;
274       // Stores the information of the symbol pointed to by the reloc.
275       const Icf::Symbol_info &s = (it_reloc_info_list->second).symbol_info;
276       // Stores the addend and the symbol value.
277       Icf::Addend_info &a = (it_reloc_info_list->second).addend_info;
278       // Stores the offset of the reloc.
279       const Icf::Offset_info &o = (it_reloc_info_list->second).offset_info;
280       const Icf::Reloc_addend_size_info &reloc_addend_size_info =
281         (it_reloc_info_list->second).reloc_addend_size_info;
282       Icf::Sections_reachable_info::iterator it_v = v.begin();
283       Icf::Symbol_info::const_iterator it_s = s.begin();
284       Icf::Addend_info::iterator it_a = a.begin();
285       Icf::Offset_info::const_iterator it_o = o.begin();
286       Icf::Reloc_addend_size_info::const_iterator it_addend_size =
287         reloc_addend_size_info.begin();
288 
289       for (; it_v != v.end(); ++it_v, ++it_s, ++it_a, ++it_o, ++it_addend_size)
290         {
291 	  if (first_iteration
292 	      && it_v->first != NULL)
293 	    {
294 	      Symbol_location loc;
295 	      loc.object = it_v->first;
296 	      loc.shndx = it_v->second;
297 	      loc.offset = convert_types<off_t, long long>(it_a->first
298 							   + it_a->second);
299 	      // Look through function descriptors
300 	      parameters->target().function_location(&loc);
301 	      if (loc.shndx != it_v->second)
302 		{
303 		  it_v->second = loc.shndx;
304 		  // Modify symvalue/addend to the code entry.
305 		  it_a->first = loc.offset;
306 		  it_a->second = 0;
307 		}
308 	    }
309 
310           // ADDEND_STR stores the symbol value and addend and offset,
311           // each at most 16 hex digits long.  it_a points to a pair
312           // where first is the symbol value and second is the
313           // addend.
314           char addend_str[50];
315 
316 	  // It would be nice if we could use format macros in inttypes.h
317 	  // here but there are not in ISO/IEC C++ 1998.
318           snprintf(addend_str, sizeof(addend_str), "%llx %llx %llux",
319                    static_cast<long long>((*it_a).first),
320 		   static_cast<long long>((*it_a).second),
321 		   static_cast<unsigned long long>(*it_o));
322 
323 	  // If the symbol pointed to by the reloc is not in an ordinary
324 	  // section or if the symbol type is not FROM_OBJECT, then the
325 	  // object is NULL.
326 	  if (it_v->first == NULL)
327             {
328 	      if (first_iteration)
329                 {
330 		  // If the symbol name is available, use it.
331                   if ((*it_s) != NULL)
332                       buffer.append((*it_s)->name());
333                   // Append the addend.
334                   buffer.append(addend_str);
335                   buffer.append("@");
336 		}
337 	      continue;
338 	    }
339 
340           Section_id reloc_secn(it_v->first, it_v->second);
341 
342           // If this reloc turns back and points to the same section,
343           // like a recursive call, use a special symbol to mark this.
344           if (reloc_secn.first == secn.first
345               && reloc_secn.second == secn.second)
346             {
347               if (first_iteration)
348                 {
349                   buffer.append("R");
350                   buffer.append(addend_str);
351                   buffer.append("@");
352                 }
353               continue;
354             }
355           Icf::Uniq_secn_id_map& section_id_map =
356             symtab->icf()->section_to_int_map();
357           Icf::Uniq_secn_id_map::iterator section_id_map_it =
358             section_id_map.find(reloc_secn);
359           bool is_sym_preemptible = (*it_s != NULL
360 				     && !(*it_s)->is_from_dynobj()
361 				     && !(*it_s)->is_undefined()
362 				     && (*it_s)->is_preemptible());
363           if (!is_sym_preemptible
364               && section_id_map_it != section_id_map.end())
365             {
366               // This is a reloc to a section that might be folded.
367               if (num_tracked_relocs)
368                 (*num_tracked_relocs)++;
369 
370               char kept_section_str[10];
371               unsigned int secn_id = section_id_map_it->second;
372               snprintf(kept_section_str, sizeof(kept_section_str), "%u",
373                        kept_section_id[secn_id]);
374               if (first_iteration)
375                 {
376                   buffer.append("ICF_R");
377                   buffer.append(addend_str);
378                 }
379               icf_reloc_buffer.append(kept_section_str);
380               // Append the addend.
381               icf_reloc_buffer.append(addend_str);
382               icf_reloc_buffer.append("@");
383             }
384           else
385             {
386               // This is a reloc to a section that cannot be folded.
387               // Process it only in the first iteration.
388               if (!first_iteration)
389                 continue;
390 
391               uint64_t secn_flags = (it_v->first)->section_flags(it_v->second);
392               // This reloc points to a merge section.  Hash the
393               // contents of this section.
394               if ((secn_flags & elfcpp::SHF_MERGE) != 0
395 		  && parameters->target().can_icf_inline_merge_sections())
396                 {
397                   uint64_t entsize =
398                     (it_v->first)->section_entsize(it_v->second);
399 		  long long offset = it_a->first;
400 
401                   unsigned long long addend = it_a->second;
402                   // Ignoring the addend when it is a negative value.  See the
403                   // comments in Merged_symbol_value::Value in object.h.
404                   if (addend < 0xffffff00)
405                     offset = offset + addend;
406 
407 		  // For SHT_REL relocation sections, the addend is stored in the
408 		  // text section at the relocation offset.
409 		  uint64_t reloc_addend_value = 0;
410                   const unsigned char* reloc_addend_ptr =
411 		    contents + static_cast<unsigned long long>(*it_o);
412 		  switch(*it_addend_size)
413 		    {
414 		      case 0:
415 		        {
416                           break;
417                         }
418                       case 1:
419                         {
420                           reloc_addend_value =
421                             read_from_pointer<8>(reloc_addend_ptr);
422 			  break;
423                         }
424                       case 2:
425                         {
426                           reloc_addend_value =
427                             read_from_pointer<16>(reloc_addend_ptr);
428 			  break;
429                         }
430                       case 4:
431                         {
432                           reloc_addend_value =
433                             read_from_pointer<32>(reloc_addend_ptr);
434 			  break;
435                         }
436                       case 8:
437                         {
438                           reloc_addend_value =
439                             read_from_pointer<64>(reloc_addend_ptr);
440 			  break;
441                         }
442 		      default:
443 		        gold_unreachable();
444 		    }
445 		  offset = offset + reloc_addend_value;
446 
447                   section_size_type secn_len;
448                   const unsigned char* str_contents =
449                   (it_v->first)->section_contents(it_v->second,
450                                                   &secn_len,
451                                                   false) + offset;
452                   if ((secn_flags & elfcpp::SHF_STRINGS) != 0)
453                     {
454                       // String merge section.
455                       const char* str_char =
456                         reinterpret_cast<const char*>(str_contents);
457                       switch(entsize)
458                         {
459                         case 1:
460                           {
461                             buffer.append(str_char);
462                             break;
463                           }
464                         case 2:
465                           {
466                             const uint16_t* ptr_16 =
467                               reinterpret_cast<const uint16_t*>(str_char);
468                             unsigned int strlen_16 = 0;
469                             // Find the NULL character.
470                             while(*(ptr_16 + strlen_16) != 0)
471                                 strlen_16++;
472                             buffer.append(str_char, strlen_16 * 2);
473                           }
474                           break;
475                         case 4:
476                           {
477                             const uint32_t* ptr_32 =
478                               reinterpret_cast<const uint32_t*>(str_char);
479                             unsigned int strlen_32 = 0;
480                             // Find the NULL character.
481                             while(*(ptr_32 + strlen_32) != 0)
482                                 strlen_32++;
483                             buffer.append(str_char, strlen_32 * 4);
484                           }
485                           break;
486                         default:
487                           gold_unreachable();
488                         }
489                     }
490                   else
491                     {
492                       // Use the entsize to determine the length.
493                       buffer.append(reinterpret_cast<const
494                                                      char*>(str_contents),
495                                     entsize);
496                     }
497 		  buffer.append("@");
498                 }
499               else if ((*it_s) != NULL)
500                 {
501                   // If symbol name is available use that.
502                   buffer.append((*it_s)->name());
503                   // Append the addend.
504                   buffer.append(addend_str);
505                   buffer.append("@");
506                 }
507               else
508                 {
509                   // Symbol name is not available, like for a local symbol,
510                   // use object and section id.
511                   buffer.append(it_v->first->name());
512                   char secn_id[10];
513                   snprintf(secn_id, sizeof(secn_id), "%u",it_v->second);
514                   buffer.append(secn_id);
515                   // Append the addend.
516                   buffer.append(addend_str);
517                   buffer.append("@");
518                 }
519             }
520         }
521     }
522 
523   if (first_iteration)
524     {
525       buffer.append("Contents = ");
526       buffer.append(reinterpret_cast<const char*>(contents), plen);
527       // Store the section contents that dont change to avoid recomputing
528       // during the next call to this function.
529       (*section_contents)[section_num] = buffer;
530     }
531   else
532     {
533       gold_assert(buffer.empty());
534       // Reuse the contents computed in the previous iteration.
535       buffer.append((*section_contents)[section_num]);
536     }
537 
538   buffer.append(icf_reloc_buffer);
539   return buffer;
540 }
541 
542 // This function computes a checksum on each section to detect and form
543 // groups of identical sections.  The first iteration does this for all
544 // sections.
545 // Further iterations do this only for the kept sections from each group to
546 // determine if larger groups of identical sections could be formed.  The
547 // first section in each group is the kept section for that group.
548 //
549 // CRC32 is the checksumming algorithm and can have collisions.  That is,
550 // two sections with different contents can have the same checksum. Hence,
551 // a multimap is used to maintain more than one group of checksum
552 // identical sections.  A section is added to a group only after its
553 // contents are explicitly compared with the kept section of the group.
554 //
555 // Parameters  :
556 // ITERATION_NUM           : Invocation instance of this function.
557 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
558 //                      to ICF sections.
559 // KEPT_SECTION_ID    : Vector which maps folded sections to kept sections.
560 // ID_SECTION         : Vector mapping a section to an unique integer.
561 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
562 //                            sections is already known to be unique.
563 // SECTION_CONTENTS   : Store the section's text and relocs to non-ICF
564 //                      sections.
565 
566 static bool
match_sections(unsigned int iteration_num,Symbol_table * symtab,std::vector<unsigned int> * num_tracked_relocs,std::vector<unsigned int> * kept_section_id,const std::vector<Section_id> & id_section,std::vector<bool> * is_secn_or_group_unique,std::vector<std::string> * section_contents)567 match_sections(unsigned int iteration_num,
568                Symbol_table* symtab,
569                std::vector<unsigned int>* num_tracked_relocs,
570                std::vector<unsigned int>* kept_section_id,
571                const std::vector<Section_id>& id_section,
572                std::vector<bool>* is_secn_or_group_unique,
573                std::vector<std::string>* section_contents)
574 {
575   Unordered_multimap<uint32_t, unsigned int> section_cksum;
576   std::pair<Unordered_multimap<uint32_t, unsigned int>::iterator,
577             Unordered_multimap<uint32_t, unsigned int>::iterator> key_range;
578   bool converged = true;
579 
580   if (iteration_num == 1)
581     preprocess_for_unique_sections(id_section,
582                                    is_secn_or_group_unique,
583                                    NULL);
584   else
585     preprocess_for_unique_sections(id_section,
586                                    is_secn_or_group_unique,
587                                    section_contents);
588 
589   std::vector<std::string> full_section_contents;
590 
591   for (unsigned int i = 0; i < id_section.size(); i++)
592     {
593       full_section_contents.push_back("");
594       if ((*is_secn_or_group_unique)[i])
595         continue;
596 
597       Section_id secn = id_section[i];
598       std::string this_secn_contents;
599       uint32_t cksum;
600       if (iteration_num == 1)
601         {
602           unsigned int num_relocs = 0;
603           this_secn_contents = get_section_contents(true, secn, i, &num_relocs,
604                                                     symtab, (*kept_section_id),
605                                                     section_contents);
606           (*num_tracked_relocs)[i] = num_relocs;
607         }
608       else
609         {
610           if ((*kept_section_id)[i] != i)
611             {
612               // This section is already folded into something.  See
613               // if it should point to a different kept section.
614               unsigned int kept_section = (*kept_section_id)[i];
615               if (kept_section != (*kept_section_id)[kept_section])
616                 {
617                   (*kept_section_id)[i] = (*kept_section_id)[kept_section];
618                 }
619               continue;
620             }
621           this_secn_contents = get_section_contents(false, secn, i, NULL,
622                                                     symtab, (*kept_section_id),
623                                                     section_contents);
624         }
625 
626       const unsigned char* this_secn_contents_array =
627             reinterpret_cast<const unsigned char*>(this_secn_contents.c_str());
628       cksum = xcrc32(this_secn_contents_array, this_secn_contents.length(),
629                      0xffffffff);
630       size_t count = section_cksum.count(cksum);
631 
632       if (count == 0)
633         {
634           // Start a group with this cksum.
635           section_cksum.insert(std::make_pair(cksum, i));
636           full_section_contents[i] = this_secn_contents;
637         }
638       else
639         {
640           key_range = section_cksum.equal_range(cksum);
641           Unordered_multimap<uint32_t, unsigned int>::iterator it;
642           // Search all the groups with this cksum for a match.
643           for (it = key_range.first; it != key_range.second; ++it)
644             {
645               unsigned int kept_section = it->second;
646               if (full_section_contents[kept_section].length()
647                   != this_secn_contents.length())
648                   continue;
649               if (memcmp(full_section_contents[kept_section].c_str(),
650                          this_secn_contents.c_str(),
651                          this_secn_contents.length()) != 0)
652                   continue;
653               (*kept_section_id)[i] = kept_section;
654               converged = false;
655               break;
656             }
657           if (it == key_range.second)
658             {
659               // Create a new group for this cksum.
660               section_cksum.insert(std::make_pair(cksum, i));
661               full_section_contents[i] = this_secn_contents;
662             }
663         }
664       // If there are no relocs to foldable sections do not process
665       // this section any further.
666       if (iteration_num == 1 && (*num_tracked_relocs)[i] == 0)
667         (*is_secn_or_group_unique)[i] = true;
668     }
669 
670   return converged;
671 }
672 
673 // During safe icf (--icf=safe), only fold functions that are ctors or dtors.
674 // This function returns true if the section name is that of a ctor or a dtor.
675 
676 static bool
is_function_ctor_or_dtor(const std::string & section_name)677 is_function_ctor_or_dtor(const std::string& section_name)
678 {
679   const char* mangled_func_name = strrchr(section_name.c_str(), '.');
680   gold_assert(mangled_func_name != NULL);
681   if ((is_prefix_of("._ZN", mangled_func_name)
682        || is_prefix_of("._ZZ", mangled_func_name))
683       && (is_gnu_v3_mangled_ctor(mangled_func_name + 1)
684           || is_gnu_v3_mangled_dtor(mangled_func_name + 1)))
685     {
686       return true;
687     }
688   return false;
689 }
690 
691 // This is the main ICF function called in gold.cc.  This does the
692 // initialization and calls match_sections repeatedly (twice by default)
693 // which computes the crc checksums and detects identical functions.
694 
695 void
find_identical_sections(const Input_objects * input_objects,Symbol_table * symtab)696 Icf::find_identical_sections(const Input_objects* input_objects,
697                              Symbol_table* symtab)
698 {
699   unsigned int section_num = 0;
700   std::vector<unsigned int> num_tracked_relocs;
701   std::vector<bool> is_secn_or_group_unique;
702   std::vector<std::string> section_contents;
703   const Target& target = parameters->target();
704 
705   // Decide which sections are possible candidates first.
706 
707   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
708        p != input_objects->relobj_end();
709        ++p)
710     {
711       // Lock the object so we can read from it.  This is only called
712       // single-threaded from queue_middle_tasks, so it is OK to lock.
713       // Unfortunately we have no way to pass in a Task token.
714       const Task* dummy_task = reinterpret_cast<const Task*>(-1);
715       Task_lock_obj<Object> tl(dummy_task, *p);
716 
717       for (unsigned int i = 0;i < (*p)->shnum(); ++i)
718         {
719 	  const std::string section_name = (*p)->section_name(i);
720           if (!is_section_foldable_candidate(section_name))
721             continue;
722           if (!(*p)->is_section_included(i))
723             continue;
724           if (parameters->options().gc_sections()
725               && symtab->gc()->is_section_garbage(*p, i))
726               continue;
727 	  // With --icf=safe, check if the mangled function name is a ctor
728 	  // or a dtor.  The mangled function name can be obtained from the
729 	  // section name by stripping the section prefix.
730 	  if (parameters->options().icf_safe_folding()
731               && !is_function_ctor_or_dtor(section_name)
732 	      && (!target.can_check_for_function_pointers()
733                   || section_has_function_pointers(*p, i)))
734             {
735 	      continue;
736             }
737           this->id_section_.push_back(Section_id(*p, i));
738           this->section_id_[Section_id(*p, i)] = section_num;
739           this->kept_section_id_.push_back(section_num);
740           num_tracked_relocs.push_back(0);
741           is_secn_or_group_unique.push_back(false);
742           section_contents.push_back("");
743           section_num++;
744         }
745     }
746 
747   unsigned int num_iterations = 0;
748 
749   // Default number of iterations to run ICF is 2.
750   unsigned int max_iterations = (parameters->options().icf_iterations() > 0)
751                             ? parameters->options().icf_iterations()
752                             : 2;
753 
754   bool converged = false;
755 
756   while (!converged && (num_iterations < max_iterations))
757     {
758       num_iterations++;
759       converged = match_sections(num_iterations, symtab,
760                                  &num_tracked_relocs, &this->kept_section_id_,
761                                  this->id_section_, &is_secn_or_group_unique,
762                                  &section_contents);
763     }
764 
765   if (parameters->options().print_icf_sections())
766     {
767       if (converged)
768         gold_info(_("%s: ICF Converged after %u iteration(s)"),
769                   program_name, num_iterations);
770       else
771         gold_info(_("%s: ICF stopped after %u iteration(s)"),
772                   program_name, num_iterations);
773     }
774 
775   // Unfold --keep-unique symbols.
776   for (options::String_set::const_iterator p =
777 	 parameters->options().keep_unique_begin();
778        p != parameters->options().keep_unique_end();
779        ++p)
780     {
781       const char* name = p->c_str();
782       Symbol* sym = symtab->lookup(name);
783       if (sym == NULL)
784 	{
785 	  gold_warning(_("Could not find symbol %s to unfold\n"), name);
786 	}
787       else if (sym->source() == Symbol::FROM_OBJECT
788                && !sym->object()->is_dynamic())
789         {
790           Object* obj = sym->object();
791           bool is_ordinary;
792           unsigned int shndx = sym->shndx(&is_ordinary);
793           if (is_ordinary)
794             {
795 	      this->unfold_section(obj, shndx);
796             }
797         }
798 
799     }
800 
801   this->icf_ready();
802 }
803 
804 // Unfolds the section denoted by OBJ and SHNDX if folded.
805 
806 void
unfold_section(Object * obj,unsigned int shndx)807 Icf::unfold_section(Object* obj, unsigned int shndx)
808 {
809   Section_id secn(obj, shndx);
810   Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
811   if (it == this->section_id_.end())
812     return;
813   unsigned int section_num = it->second;
814   unsigned int kept_section_id = this->kept_section_id_[section_num];
815   if (kept_section_id != section_num)
816     this->kept_section_id_[section_num] = section_num;
817 }
818 
819 // This function determines if the section corresponding to the
820 // given object and index is folded based on if the kept section
821 // is different from this section.
822 
823 bool
is_section_folded(Object * obj,unsigned int shndx)824 Icf::is_section_folded(Object* obj, unsigned int shndx)
825 {
826   Section_id secn(obj, shndx);
827   Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
828   if (it == this->section_id_.end())
829     return false;
830   unsigned int section_num = it->second;
831   unsigned int kept_section_id = this->kept_section_id_[section_num];
832   return kept_section_id != section_num;
833 }
834 
835 // This function returns the folded section for the given section.
836 
837 Section_id
get_folded_section(Object * dup_obj,unsigned int dup_shndx)838 Icf::get_folded_section(Object* dup_obj, unsigned int dup_shndx)
839 {
840   Section_id dup_secn(dup_obj, dup_shndx);
841   Uniq_secn_id_map::iterator it = this->section_id_.find(dup_secn);
842   gold_assert(it != this->section_id_.end());
843   unsigned int section_num = it->second;
844   unsigned int kept_section_id = this->kept_section_id_[section_num];
845   Section_id folded_section = this->id_section_[kept_section_id];
846   return folded_section;
847 }
848 
849 } // End of namespace gold.
850