1 /*
2  * Copyright 2016 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "Sk4fGradientBase.h"
9 
10 namespace {
11 
12 const float kInv255Float = 1.0f / 255;
13 
pack_color(SkColor c,bool premul)14 SkPMColor pack_color(SkColor c, bool premul) {
15     return premul
16         ? SkPreMultiplyColor(c)
17         : SkPackARGB32NoCheck(SkColorGetA(c), SkColorGetR(c), SkColorGetG(c), SkColorGetB(c));
18 }
19 
20 // true when x is in [k1,k2)
in_range(SkScalar x,SkScalar k1,SkScalar k2)21 bool in_range(SkScalar x, SkScalar k1, SkScalar k2) {
22     SkASSERT(k1 != k2);
23     return (k1 < k2)
24         ? (x >= k1 && x < k2)
25         : (x >= k2 && x < k1);
26 }
27 
28 } // anonymous namespace
29 
30 SkGradientShaderBase::GradientShaderBase4fContext::
Interval(SkPMColor c0,SkScalar p0,SkPMColor c1,SkScalar p1,const Sk4f & componentScale)31 Interval::Interval(SkPMColor c0, SkScalar p0,
32                    SkPMColor c1, SkScalar p1,
33                    const Sk4f& componentScale)
34     : fP0(p0)
35     , fP1(p1)
36     , fZeroRamp(c0 == c1) {
37     SkASSERT(p0 != p1);
38 
39     const Sk4f c4f0 = SkNx_cast<float>(Sk4b::Load(&c0)) * componentScale;
40     const Sk4f c4f1 = SkNx_cast<float>(Sk4b::Load(&c1)) * componentScale;
41     const Sk4f dc4f = (c4f1 - c4f0) / (p1 - p0);
42 
43     c4f0.store(&fC0.fVec);
44     dc4f.store(&fDc.fVec);
45 }
46 
47 SkGradientShaderBase::GradientShaderBase4fContext::
Interval(const Sk4f & c0,const Sk4f & dc,SkScalar p0,SkScalar p1)48 Interval::Interval(const Sk4f& c0, const Sk4f& dc,
49                    SkScalar p0, SkScalar p1)
50     : fP0(p0)
51     , fP1(p1)
52     , fZeroRamp((dc == 0).allTrue()) {
53     c0.store(fC0.fVec);
54     dc.store(fDc.fVec);
55 }
56 
57 bool SkGradientShaderBase::GradientShaderBase4fContext::
contains(SkScalar fx) const58 Interval::contains(SkScalar fx) const {
59     return in_range(fx, fP0, fP1);
60 }
61 
62 SkGradientShaderBase::
GradientShaderBase4fContext(const SkGradientShaderBase & shader,const ContextRec & rec)63 GradientShaderBase4fContext::GradientShaderBase4fContext(const SkGradientShaderBase& shader,
64                                                          const ContextRec& rec)
65     : INHERITED(shader, rec)
66     , fFlags(this->INHERITED::getFlags())
67 #ifdef SK_SUPPORT_LEGACY_GRADIENT_DITHERING
68     , fDither(true)
69 #else
70     , fDither(rec.fPaint->isDither())
71 #endif
72 {
73     // The main job here is to build an interval list.  Intervals are a different
74     // representation of the color stops data, optimized for efficient scan line
75     // access during shading.
76     //
77     //   [{P0,C0} , {P1,C1}) [{P1,C2} , {P2,c3}) ... [{Pn,C2n} , {Pn+1,C2n+1})
78     //
79     // The list is sorted in increasing dst order, i.e. X(Pk) < X(Pk+1).  This
80     // allows us to always traverse left->right when iterating over a scan line.
81     // It also means that the interval order matches the color stops when dx >= 0,
82     // and is the inverse (pos, colors, order are flipped) when dx < 0.
83     //
84     // Note: the current representation duplicates pos data; we could refactor to
85     //       avoid this if interval storage size becomes a concern.
86     //
87     // Aside from reordering, we also perform two more pre-processing steps at
88     // this stage:
89     //
90     //   1) scale the color components depending on paint alpha and the requested
91     //      interpolation space (note: the interval color storage is SkPM4f, but
92     //      that doesn't necessarily mean the colors are premultiplied; that
93     //      property is tracked in fColorsArePremul)
94     //
95     //   2) inject synthetic intervals to support tiling.
96     //
97     //      * for kRepeat, no extra intervals are needed - the iterator just
98     //        wraps around at the end:
99     //
100     //          ->[P0,P1)->..[Pn-1,Pn)->
101     //
102     //      * for kClamp, we add two "infinite" intervals before/after:
103     //
104     //          [-/+inf , P0)->[P0 , P1)->..[Pn-1 , Pn)->[Pn , +/-inf)
105     //
106     //        (the iterator should never run off the end in this mode)
107     //
108     //      * for kMirror, we extend the range to [0..2] and add a flipped
109     //        interval series - then the iterator operates just as in the
110     //        kRepeat case:
111     //
112     //          ->[P0,P1)->..[Pn-1,Pn)->[2 - Pn,2 - Pn-1)->..[2 - P1,2 - P0)->
113     //
114     // TODO: investigate collapsing intervals << 1px.
115 
116     const SkMatrix& inverse = this->getTotalInverse();
117     fDstToPos.setConcat(shader.fPtsToUnit, inverse);
118     fDstToPosProc = fDstToPos.getMapXYProc();
119     fDstToPosClass = static_cast<uint8_t>(INHERITED::ComputeMatrixClass(fDstToPos));
120 
121     if (shader.fColorsAreOpaque && this->getPaintAlpha() == SK_AlphaOPAQUE) {
122         fFlags |= kOpaqueAlpha_Flag;
123     }
124 
125     fColorsArePremul =
126         (shader.fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag)
127         || shader.fColorsAreOpaque;
128 
129     const float paintAlpha = rec.fPaint->getAlpha() * kInv255Float;
130     const Sk4f componentScale = fColorsArePremul
131         ? Sk4f(paintAlpha * kInv255Float)
132         : Sk4f(kInv255Float, kInv255Float, kInv255Float, paintAlpha * kInv255Float);
133 
134     SkASSERT(shader.fColorCount > 1);
135     SkASSERT(shader.fOrigColors);
136 
137     int direction = 1;
138     int first_index = 0;
139     int last_index = shader.fColorCount - 1;
140     SkScalar first_pos = 0;
141     SkScalar last_pos = 1;
142     const bool dx_is_pos = fDstToPos.getScaleX() >= 0;
143     if (!dx_is_pos) {
144         direction = -direction;
145         SkTSwap(first_index, last_index);
146         SkTSwap(first_pos, last_pos);
147     }
148 
149     if (shader.fTileMode == SkShader::kClamp_TileMode) {
150         // synthetic edge interval: -/+inf .. P0)
151         const SkPMColor clamp_color = pack_color(shader.fOrigColors[first_index],
152                                                  fColorsArePremul);
153         const SkScalar clamp_pos = dx_is_pos ? SK_ScalarMin : SK_ScalarMax;
154         fIntervals.emplace_back(clamp_color, clamp_pos,
155                                 clamp_color, first_pos,
156                                 componentScale);
157     }
158 
159     int prev = first_index;
160     int curr = prev + direction;
161     SkScalar prev_pos = first_pos;
162     if (shader.fOrigPos) {
163         // explicit positions
164         do {
165             // TODO: this sanitization should be done in SkGradientShaderBase
166             const SkScalar curr_pos = (dx_is_pos)
167                 ? SkTPin(shader.fOrigPos[curr], prev_pos, last_pos)
168                 : SkTPin(shader.fOrigPos[curr], last_pos, prev_pos);
169             if (curr_pos != prev_pos) {
170                 fIntervals.emplace_back(
171                     pack_color(shader.fOrigColors[prev], fColorsArePremul),
172                     prev_pos,
173                     pack_color(shader.fOrigColors[curr], fColorsArePremul),
174                     curr_pos,
175                     componentScale);
176             }
177             prev = curr;
178             prev_pos = curr_pos;
179             curr += direction;
180         } while (prev != last_index);
181     } else {
182         // implicit positions
183         const SkScalar dt = direction * SK_Scalar1 / (shader.fColorCount - 1);
184         do {
185             const SkScalar curr_pos = prev_pos + dt;
186             fIntervals.emplace_back(
187                 pack_color(shader.fOrigColors[prev], fColorsArePremul),
188                 prev_pos,
189                 pack_color(shader.fOrigColors[curr], fColorsArePremul),
190                 curr_pos,
191                 componentScale);
192 
193             prev = curr;
194             prev_pos = curr_pos;
195             curr += direction;
196         } while (prev != last_index);
197         // pin the last pos to maintain accurate [0,1] pos coverage.
198         fIntervals.back().fP1 = last_pos;
199     }
200 
201     if (shader.fTileMode == SkShader::kClamp_TileMode) {
202         // synthetic edge interval: Pn .. +/-inf
203         const SkPMColor clamp_color =
204             pack_color(shader.fOrigColors[last_index], fColorsArePremul);
205         const SkScalar clamp_pos = dx_is_pos ? SK_ScalarMax : SK_ScalarMin;
206         fIntervals.emplace_back(clamp_color, last_pos,
207                                 clamp_color, clamp_pos,
208                                 componentScale);
209     } else if (shader.fTileMode == SkShader::kMirror_TileMode) {
210         const int count = fIntervals.count();
211         // synthetic flipped intervals in [1 .. 2)
212         for (int i = count - 1; i >= 0; --i) {
213             const Interval& interval = fIntervals[i];
214             const SkScalar p0 = interval.fP0;
215             const SkScalar p1 = interval.fP1;
216             Sk4f dc = Sk4f::Load(interval.fDc.fVec);
217             Sk4f c = Sk4f::Load(interval.fC0.fVec) + dc * Sk4f(p1 - p0);
218             fIntervals.emplace_back(c, dc * Sk4f(-1), 2 - p1, 2 - p0);
219         }
220 
221         if (!dx_is_pos) {
222             // When dx is negative, our initial invervals are in (1..0] order.
223             // The loop above appends their flipped counterparts, pivoted in 2: (1..0](2..1]
224             // To achieve the expected monotonic interval order, we need to
225             // swap the two halves: (2..1](1..0]
226             // TODO: we can probably avoid this late swap with some additional logic during
227             //       the initial interval buildup.
228             SkASSERT(fIntervals.count() == count * 2)
229             for (int i = 0; i < count; ++i) {
230                 SkTSwap(fIntervals[i], fIntervals[count + i]);
231             }
232         }
233     }
234 
235     SkASSERT(fIntervals.count() > 0);
236     fCachedInterval = fIntervals.begin();
237 }
238 
239 const SkGradientShaderBase::GradientShaderBase4fContext::Interval*
240 SkGradientShaderBase::
findInterval(SkScalar fx) const241 GradientShaderBase4fContext::findInterval(SkScalar fx) const {
242     SkASSERT(in_range(fx, fIntervals.front().fP0, fIntervals.back().fP1));
243 
244     if (1) {
245         // Linear search, using the last scanline interval as a starting point.
246         SkASSERT(fCachedInterval >= fIntervals.begin());
247         SkASSERT(fCachedInterval < fIntervals.end());
248         const int search_dir = fDstToPos.getScaleX() >= 0 ? 1 : -1;
249         while (!in_range(fx, fCachedInterval->fP0, fCachedInterval->fP1)) {
250             fCachedInterval += search_dir;
251             if (fCachedInterval >= fIntervals.end()) {
252                 fCachedInterval = fIntervals.begin();
253             } else if (fCachedInterval < fIntervals.begin()) {
254                 fCachedInterval = fIntervals.end() - 1;
255             }
256         }
257         return fCachedInterval;
258     } else {
259         // Binary search.  Seems less effective than linear + caching.
260         const Interval* i0 = fIntervals.begin();
261         const Interval* i1 = fIntervals.end() - 1;
262 
263         while (i0 != i1) {
264             SkASSERT(i0 < i1);
265             SkASSERT(in_range(fx, i0->fP0, i1->fP1));
266 
267             const Interval* i = i0 + ((i1 - i0) >> 1);
268 
269             if (in_range(fx, i0->fP0, i->fP1)) {
270                 i1 = i;
271             } else {
272                 SkASSERT(in_range(fx, i->fP1, i1->fP1));
273                 i0 = i + 1;
274             }
275         }
276 
277         SkASSERT(in_range(fx, i0->fP0, i0->fP1));
278         return i0;
279     }
280 }
281