1 /* Originally written by Bodo Moeller for the OpenSSL project.
2 * ====================================================================
3 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55 /* ====================================================================
56 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57 *
58 * Portions of the attached software ("Contribution") are developed by
59 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60 *
61 * The Contribution is licensed pursuant to the OpenSSL open source
62 * license provided above.
63 *
64 * The elliptic curve binary polynomial software is originally written by
65 * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66 * Laboratories. */
67
68 #include <openssl/ec.h>
69
70 #include <string.h>
71
72 #include <openssl/bn.h>
73 #include <openssl/err.h>
74 #include <openssl/mem.h>
75 #include <openssl/thread.h>
76
77 #include "internal.h"
78 #include "../internal.h"
79
80
81 /* This file implements the wNAF-based interleaving multi-exponentation method
82 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
83 * */
84
85 /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
86 * This is an array r[] of values that are either zero or odd with an
87 * absolute value less than 2^w satisfying
88 * scalar = \sum_j r[j]*2^j
89 * where at most one of any w+1 consecutive digits is non-zero
90 * with the exception that the most significant digit may be only
91 * w-1 zeros away from that next non-zero digit.
92 */
compute_wNAF(const BIGNUM * scalar,int w,size_t * ret_len)93 static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) {
94 int window_val;
95 int ok = 0;
96 signed char *r = NULL;
97 int sign = 1;
98 int bit, next_bit, mask;
99 size_t len = 0, j;
100
101 if (BN_is_zero(scalar)) {
102 r = OPENSSL_malloc(1);
103 if (!r) {
104 OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
105 goto err;
106 }
107 r[0] = 0;
108 *ret_len = 1;
109 return r;
110 }
111
112 if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute
113 values less than 2^7 */
114 {
115 OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
116 goto err;
117 }
118 bit = 1 << w; /* at most 128 */
119 next_bit = bit << 1; /* at most 256 */
120 mask = next_bit - 1; /* at most 255 */
121
122 if (BN_is_negative(scalar)) {
123 sign = -1;
124 }
125
126 if (scalar->d == NULL || scalar->top == 0) {
127 OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
128 goto err;
129 }
130
131 len = BN_num_bits(scalar);
132 r = OPENSSL_malloc(
133 len +
134 1); /* modified wNAF may be one digit longer than binary representation
135 * (*ret_len will be set to the actual length, i.e. at most
136 * BN_num_bits(scalar) + 1) */
137 if (r == NULL) {
138 OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
139 goto err;
140 }
141 window_val = scalar->d[0] & mask;
142 j = 0;
143 while ((window_val != 0) ||
144 (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
145 {
146 int digit = 0;
147
148 /* 0 <= window_val <= 2^(w+1) */
149
150 if (window_val & 1) {
151 /* 0 < window_val < 2^(w+1) */
152
153 if (window_val & bit) {
154 digit = window_val - next_bit; /* -2^w < digit < 0 */
155
156 #if 1 /* modified wNAF */
157 if (j + w + 1 >= len) {
158 /* special case for generating modified wNAFs:
159 * no new bits will be added into window_val,
160 * so using a positive digit here will decrease
161 * the total length of the representation */
162
163 digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
164 }
165 #endif
166 } else {
167 digit = window_val; /* 0 < digit < 2^w */
168 }
169
170 if (digit <= -bit || digit >= bit || !(digit & 1)) {
171 OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
172 goto err;
173 }
174
175 window_val -= digit;
176
177 /* now window_val is 0 or 2^(w+1) in standard wNAF generation;
178 * for modified window NAFs, it may also be 2^w
179 */
180 if (window_val != 0 && window_val != next_bit && window_val != bit) {
181 OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
182 goto err;
183 }
184 }
185
186 r[j++] = sign * digit;
187
188 window_val >>= 1;
189 window_val += bit * BN_is_bit_set(scalar, j + w);
190
191 if (window_val > next_bit) {
192 OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
193 goto err;
194 }
195 }
196
197 if (j > len + 1) {
198 OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
199 goto err;
200 }
201 len = j;
202 ok = 1;
203
204 err:
205 if (!ok) {
206 OPENSSL_free(r);
207 r = NULL;
208 }
209 if (ok) {
210 *ret_len = len;
211 }
212 return r;
213 }
214
215
216 /* TODO: table should be optimised for the wNAF-based implementation,
217 * sometimes smaller windows will give better performance
218 * (thus the boundaries should be increased)
219 */
220 #define EC_window_bits_for_scalar_size(b) \
221 ((size_t)((b) >= 2000 ? 6 : (b) >= 800 ? 5 : (b) >= 300 \
222 ? 4 \
223 : (b) >= 70 ? 3 : (b) >= 20 \
224 ? 2 \
225 : 1))
226
ec_wNAF_mul(const EC_GROUP * group,EC_POINT * r,const BIGNUM * g_scalar,const EC_POINT * p,const BIGNUM * p_scalar,BN_CTX * ctx)227 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
228 const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) {
229 BN_CTX *new_ctx = NULL;
230 const EC_POINT *generator = NULL;
231 EC_POINT *tmp = NULL;
232 size_t total_num;
233 size_t i, j;
234 int k;
235 int r_is_inverted = 0;
236 int r_is_at_infinity = 1;
237 size_t *wsize = NULL; /* individual window sizes */
238 signed char **wNAF = NULL; /* individual wNAFs */
239 size_t *wNAF_len = NULL;
240 size_t max_len = 0;
241 size_t num_val;
242 EC_POINT **val = NULL; /* precomputation */
243 EC_POINT **v;
244 EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */
245 int ret = 0;
246
247 if (ctx == NULL) {
248 ctx = new_ctx = BN_CTX_new();
249 if (ctx == NULL) {
250 goto err;
251 }
252 }
253
254 /* TODO: This function used to take |points| and |scalars| as arrays of
255 * |num| elements. The code below should be simplified to work in terms of |p|
256 * and |p_scalar|. */
257 size_t num = p != NULL ? 1 : 0;
258 const EC_POINT **points = p != NULL ? &p : NULL;
259 const BIGNUM **scalars = p != NULL ? &p_scalar : NULL;
260
261 total_num = num;
262
263 if (g_scalar != NULL) {
264 generator = EC_GROUP_get0_generator(group);
265 if (generator == NULL) {
266 OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
267 goto err;
268 }
269
270 ++total_num; /* treat 'g_scalar' like 'num'-th element of 'scalars' */
271 }
272
273
274 wsize = OPENSSL_malloc(total_num * sizeof wsize[0]);
275 wNAF_len = OPENSSL_malloc(total_num * sizeof wNAF_len[0]);
276 wNAF = OPENSSL_malloc((total_num + 1) *
277 sizeof wNAF[0]); /* includes space for pivot */
278 val_sub = OPENSSL_malloc(total_num * sizeof val_sub[0]);
279
280 /* Ensure wNAF is initialised in case we end up going to err. */
281 if (wNAF) {
282 wNAF[0] = NULL; /* preliminary pivot */
283 }
284
285 if (!wsize || !wNAF_len || !wNAF || !val_sub) {
286 OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
287 goto err;
288 }
289
290 /* num_val will be the total number of temporarily precomputed points */
291 num_val = 0;
292
293 for (i = 0; i < total_num; i++) {
294 size_t bits;
295
296 bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(g_scalar);
297 wsize[i] = EC_window_bits_for_scalar_size(bits);
298 num_val += (size_t)1 << (wsize[i] - 1);
299 wNAF[i + 1] = NULL; /* make sure we always have a pivot */
300 wNAF[i] =
301 compute_wNAF((i < num ? scalars[i] : g_scalar), wsize[i], &wNAF_len[i]);
302 if (wNAF[i] == NULL) {
303 goto err;
304 }
305 if (wNAF_len[i] > max_len) {
306 max_len = wNAF_len[i];
307 }
308 }
309
310 /* All points we precompute now go into a single array 'val'. 'val_sub[i]' is
311 * a pointer to the subarray for the i-th point. */
312 val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
313 if (val == NULL) {
314 OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
315 goto err;
316 }
317 val[num_val] = NULL; /* pivot element */
318
319 /* allocate points for precomputation */
320 v = val;
321 for (i = 0; i < total_num; i++) {
322 val_sub[i] = v;
323 for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
324 *v = EC_POINT_new(group);
325 if (*v == NULL) {
326 goto err;
327 }
328 v++;
329 }
330 }
331 if (!(v == val + num_val)) {
332 OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
333 goto err;
334 }
335
336 if (!(tmp = EC_POINT_new(group))) {
337 goto err;
338 }
339
340 /* prepare precomputed values:
341 * val_sub[i][0] := points[i]
342 * val_sub[i][1] := 3 * points[i]
343 * val_sub[i][2] := 5 * points[i]
344 * ...
345 */
346 for (i = 0; i < total_num; i++) {
347 if (i < num) {
348 if (!EC_POINT_copy(val_sub[i][0], points[i])) {
349 goto err;
350 }
351 } else if (!EC_POINT_copy(val_sub[i][0], generator)) {
352 goto err;
353 }
354
355 if (wsize[i] > 1) {
356 if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) {
357 goto err;
358 }
359 for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
360 if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) {
361 goto err;
362 }
363 }
364 }
365 }
366
367 #if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
368 if (!EC_POINTs_make_affine(group, num_val, val, ctx)) {
369 goto err;
370 }
371 #endif
372
373 r_is_at_infinity = 1;
374
375 for (k = max_len - 1; k >= 0; k--) {
376 if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) {
377 goto err;
378 }
379
380 for (i = 0; i < total_num; i++) {
381 if (wNAF_len[i] > (size_t)k) {
382 int digit = wNAF[i][k];
383 int is_neg;
384
385 if (digit) {
386 is_neg = digit < 0;
387
388 if (is_neg) {
389 digit = -digit;
390 }
391
392 if (is_neg != r_is_inverted) {
393 if (!r_is_at_infinity && !EC_POINT_invert(group, r, ctx)) {
394 goto err;
395 }
396 r_is_inverted = !r_is_inverted;
397 }
398
399 /* digit > 0 */
400
401 if (r_is_at_infinity) {
402 if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) {
403 goto err;
404 }
405 r_is_at_infinity = 0;
406 } else {
407 if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) {
408 goto err;
409 }
410 }
411 }
412 }
413 }
414 }
415
416 if (r_is_at_infinity) {
417 if (!EC_POINT_set_to_infinity(group, r)) {
418 goto err;
419 }
420 } else if (r_is_inverted && !EC_POINT_invert(group, r, ctx)) {
421 goto err;
422 }
423
424 ret = 1;
425
426 err:
427 BN_CTX_free(new_ctx);
428 EC_POINT_free(tmp);
429 OPENSSL_free(wsize);
430 OPENSSL_free(wNAF_len);
431 if (wNAF != NULL) {
432 signed char **w;
433
434 for (w = wNAF; *w != NULL; w++) {
435 OPENSSL_free(*w);
436 }
437
438 OPENSSL_free(wNAF);
439 }
440 if (val != NULL) {
441 for (v = val; *v != NULL; v++) {
442 EC_POINT_clear_free(*v);
443 }
444
445 OPENSSL_free(val);
446 }
447 OPENSSL_free(val_sub);
448 return ret;
449 }
450