1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "opencv2/ts/cuda_test.hpp"
44 #include <stdexcept>
45 
46 using namespace cv;
47 using namespace cv::cuda;
48 using namespace cvtest;
49 using namespace testing;
50 using namespace testing::internal;
51 
52 namespace perf
53 {
54     CV_EXPORTS void printCudaInfo();
55 }
56 
57 namespace cvtest
58 {
59     //////////////////////////////////////////////////////////////////////
60     // random generators
61 
randomInt(int minVal,int maxVal)62     int randomInt(int minVal, int maxVal)
63     {
64         RNG& rng = TS::ptr()->get_rng();
65         return rng.uniform(minVal, maxVal);
66     }
67 
randomDouble(double minVal,double maxVal)68     double randomDouble(double minVal, double maxVal)
69     {
70         RNG& rng = TS::ptr()->get_rng();
71         return rng.uniform(minVal, maxVal);
72     }
73 
randomSize(int minVal,int maxVal)74     Size randomSize(int minVal, int maxVal)
75     {
76         return Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal));
77     }
78 
randomScalar(double minVal,double maxVal)79     Scalar randomScalar(double minVal, double maxVal)
80     {
81         return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal));
82     }
83 
randomMat(Size size,int type,double minVal,double maxVal)84     Mat randomMat(Size size, int type, double minVal, double maxVal)
85     {
86         return randomMat(TS::ptr()->get_rng(), size, type, minVal, maxVal, false);
87     }
88 
89     //////////////////////////////////////////////////////////////////////
90     // GpuMat create
91 
createMat(Size size,int type,bool useRoi)92     GpuMat createMat(Size size, int type, bool useRoi)
93     {
94         Size size0 = size;
95 
96         if (useRoi)
97         {
98             size0.width += randomInt(5, 15);
99             size0.height += randomInt(5, 15);
100         }
101 
102         GpuMat d_m(size0, type);
103 
104         if (size0 != size)
105             d_m = d_m(Rect((size0.width - size.width) / 2, (size0.height - size.height) / 2, size.width, size.height));
106 
107         return d_m;
108     }
109 
loadMat(const Mat & m,bool useRoi)110     GpuMat loadMat(const Mat& m, bool useRoi)
111     {
112         GpuMat d_m = createMat(m.size(), m.type(), useRoi);
113         d_m.upload(m);
114         return d_m;
115     }
116 
117     //////////////////////////////////////////////////////////////////////
118     // Image load
119 
readImage(const std::string & fileName,int flags)120     Mat readImage(const std::string& fileName, int flags)
121     {
122         return imread(TS::ptr()->get_data_path() + fileName, flags);
123     }
124 
readImageType(const std::string & fname,int type)125     Mat readImageType(const std::string& fname, int type)
126     {
127         Mat src = readImage(fname, CV_MAT_CN(type) == 1 ? IMREAD_GRAYSCALE : IMREAD_COLOR);
128         if (CV_MAT_CN(type) == 4)
129         {
130             Mat temp;
131             cvtColor(src, temp, COLOR_BGR2BGRA);
132             swap(src, temp);
133         }
134         src.convertTo(src, CV_MAT_DEPTH(type), CV_MAT_DEPTH(type) == CV_32F ? 1.0 / 255.0 : 1.0);
135         return src;
136     }
137 
138     //////////////////////////////////////////////////////////////////////
139     // Gpu devices
140 
supportFeature(const DeviceInfo & info,FeatureSet feature)141     bool supportFeature(const DeviceInfo& info, FeatureSet feature)
142     {
143         return TargetArchs::builtWith(feature) && info.supports(feature);
144     }
145 
instance()146     DeviceManager& DeviceManager::instance()
147     {
148         static DeviceManager obj;
149         return obj;
150     }
151 
load(int i)152     void DeviceManager::load(int i)
153     {
154         devices_.clear();
155         devices_.reserve(1);
156 
157         std::ostringstream msg;
158 
159         if (i < 0 || i >= getCudaEnabledDeviceCount())
160         {
161             msg << "Incorrect device number - " << i;
162             throw std::runtime_error(msg.str());
163         }
164 
165         DeviceInfo info(i);
166 
167         if (!info.isCompatible())
168         {
169             msg << "Device " << i << " [" << info.name() << "] is NOT compatible with current CUDA module build";
170             throw std::runtime_error(msg.str());
171         }
172 
173         devices_.push_back(info);
174     }
175 
loadAll()176     void DeviceManager::loadAll()
177     {
178         int deviceCount = getCudaEnabledDeviceCount();
179 
180         devices_.clear();
181         devices_.reserve(deviceCount);
182 
183         for (int i = 0; i < deviceCount; ++i)
184         {
185             DeviceInfo info(i);
186             if (info.isCompatible())
187             {
188                 devices_.push_back(info);
189             }
190         }
191     }
192 
parseCudaDeviceOptions(int argc,char ** argv)193     void parseCudaDeviceOptions(int argc, char **argv)
194     {
195         cv::CommandLineParser cmd(argc, argv,
196             "{ cuda_device | -1    | CUDA device on which tests will be executed (-1 means all devices) }"
197             "{ h help      | false | Print help info                                                    }"
198         );
199 
200         if (cmd.has("help"))
201         {
202             std::cout << "\nAvailable options besides google test option: \n";
203             cmd.printMessage();
204         }
205 
206         int device = cmd.get<int>("cuda_device");
207         if (device < 0)
208         {
209             cvtest::DeviceManager::instance().loadAll();
210             std::cout << "Run tests on all supported CUDA devices \n" << std::endl;
211         }
212         else
213         {
214             cvtest::DeviceManager::instance().load(device);
215             cv::cuda::DeviceInfo info(device);
216             std::cout << "Run tests on CUDA device " << device << " [" << info.name() << "] \n" << std::endl;
217         }
218     }
219 
220     //////////////////////////////////////////////////////////////////////
221     // Additional assertion
222 
223     namespace
224     {
printMatValImpl(const Mat & m,Point p)225         template <typename T, typename OutT> std::string printMatValImpl(const Mat& m, Point p)
226         {
227             const int cn = m.channels();
228 
229             std::ostringstream ostr;
230             ostr << "(";
231 
232             p.x /= cn;
233 
234             ostr << static_cast<OutT>(m.at<T>(p.y, p.x * cn));
235             for (int c = 1; c < m.channels(); ++c)
236             {
237                 ostr << ", " << static_cast<OutT>(m.at<T>(p.y, p.x * cn + c));
238             }
239             ostr << ")";
240 
241             return ostr.str();
242         }
243 
printMatVal(const Mat & m,Point p)244         std::string printMatVal(const Mat& m, Point p)
245         {
246             typedef std::string (*func_t)(const Mat& m, Point p);
247 
248             static const func_t funcs[] =
249             {
250                 printMatValImpl<uchar, int>, printMatValImpl<schar, int>, printMatValImpl<ushort, int>, printMatValImpl<short, int>,
251                 printMatValImpl<int, int>, printMatValImpl<float, float>, printMatValImpl<double, double>
252             };
253 
254             return funcs[m.depth()](m, p);
255         }
256     }
257 
minMaxLocGold(const Mat & src,double * minVal_,double * maxVal_,Point * minLoc_,Point * maxLoc_,const Mat & mask)258     void minMaxLocGold(const Mat& src, double* minVal_, double* maxVal_, Point* minLoc_, Point* maxLoc_, const Mat& mask)
259     {
260         if (src.depth() != CV_8S)
261         {
262             minMaxLoc(src, minVal_, maxVal_, minLoc_, maxLoc_, mask);
263             return;
264         }
265 
266         // OpenCV's minMaxLoc doesn't support CV_8S type
267         double minVal = std::numeric_limits<double>::max();
268         Point minLoc(-1, -1);
269 
270         double maxVal = -std::numeric_limits<double>::max();
271         Point maxLoc(-1, -1);
272 
273         for (int y = 0; y < src.rows; ++y)
274         {
275             const schar* src_row = src.ptr<schar>(y);
276             const uchar* mask_row = mask.empty() ? 0 : mask.ptr<uchar>(y);
277 
278             for (int x = 0; x < src.cols; ++x)
279             {
280                 if (!mask_row || mask_row[x])
281                 {
282                     schar val = src_row[x];
283 
284                     if (val < minVal)
285                     {
286                         minVal = val;
287                         minLoc = cv::Point(x, y);
288                     }
289 
290                     if (val > maxVal)
291                     {
292                         maxVal = val;
293                         maxLoc = cv::Point(x, y);
294                     }
295                 }
296             }
297         }
298 
299         if (minVal_) *minVal_ = minVal;
300         if (maxVal_) *maxVal_ = maxVal;
301 
302         if (minLoc_) *minLoc_ = minLoc;
303         if (maxLoc_) *maxLoc_ = maxLoc;
304     }
305 
getMat(InputArray arr)306     Mat getMat(InputArray arr)
307     {
308         if (arr.kind() == _InputArray::CUDA_GPU_MAT)
309         {
310             Mat m;
311             arr.getGpuMat().download(m);
312             return m;
313         }
314 
315         return arr.getMat();
316     }
317 
assertMatNear(const char * expr1,const char * expr2,const char * eps_expr,InputArray m1_,InputArray m2_,double eps)318     AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, InputArray m1_, InputArray m2_, double eps)
319     {
320         Mat m1 = getMat(m1_);
321         Mat m2 = getMat(m2_);
322 
323         if (m1.size() != m2.size())
324         {
325             return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different sizes : \""
326                                       << expr1 << "\" [" << PrintToString(m1.size()) << "] vs \""
327                                       << expr2 << "\" [" << PrintToString(m2.size()) << "]";
328         }
329 
330         if (m1.type() != m2.type())
331         {
332             return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different types : \""
333                                       << expr1 << "\" [" << PrintToString(MatType(m1.type())) << "] vs \""
334                                       << expr2 << "\" [" << PrintToString(MatType(m2.type())) << "]";
335         }
336 
337         Mat diff;
338         absdiff(m1.reshape(1), m2.reshape(1), diff);
339 
340         double maxVal = 0.0;
341         Point maxLoc;
342         minMaxLocGold(diff, 0, &maxVal, 0, &maxLoc);
343 
344         if (maxVal > eps)
345         {
346             return AssertionFailure() << "The max difference between matrices \"" << expr1 << "\" and \"" << expr2
347                                       << "\" is " << maxVal << " at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ")"
348                                       << ", which exceeds \"" << eps_expr << "\", where \""
349                                       << expr1 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m1, maxLoc) << ", \""
350                                       << expr2 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m2, maxLoc) << ", \""
351                                       << eps_expr << "\" evaluates to " << eps;
352         }
353 
354         return AssertionSuccess();
355     }
356 
checkSimilarity(InputArray m1,InputArray m2)357     double checkSimilarity(InputArray m1, InputArray m2)
358     {
359         Mat diff;
360         matchTemplate(getMat(m1), getMat(m2), diff, TM_CCORR_NORMED);
361         return std::abs(diff.at<float>(0, 0) - 1.f);
362     }
363 
364     //////////////////////////////////////////////////////////////////////
365     // Helper structs for value-parameterized tests
366 
types(int depth_start,int depth_end,int cn_start,int cn_end)367     vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end)
368     {
369         vector<MatType> v;
370 
371         v.reserve((depth_end - depth_start + 1) * (cn_end - cn_start + 1));
372 
373         for (int depth = depth_start; depth <= depth_end; ++depth)
374         {
375             for (int cn = cn_start; cn <= cn_end; ++cn)
376             {
377                 v.push_back(MatType(CV_MAKE_TYPE(depth, cn)));
378             }
379         }
380 
381         return v;
382     }
383 
all_types()384     const vector<MatType>& all_types()
385     {
386         static vector<MatType> v = types(CV_8U, CV_64F, 1, 4);
387 
388         return v;
389     }
390 
PrintTo(const UseRoi & useRoi,std::ostream * os)391     void PrintTo(const UseRoi& useRoi, std::ostream* os)
392     {
393         if (useRoi)
394             (*os) << "sub matrix";
395         else
396             (*os) << "whole matrix";
397     }
398 
PrintTo(const Inverse & inverse,std::ostream * os)399     void PrintTo(const Inverse& inverse, std::ostream* os)
400     {
401         if (inverse)
402             (*os) << "inverse";
403         else
404             (*os) << "direct";
405     }
406 
407     //////////////////////////////////////////////////////////////////////
408     // Other
409 
dumpImage(const std::string & fileName,const Mat & image)410     void dumpImage(const std::string& fileName, const Mat& image)
411     {
412         imwrite(TS::ptr()->get_data_path() + fileName, image);
413     }
414 
showDiff(InputArray gold_,InputArray actual_,double eps)415     void showDiff(InputArray gold_, InputArray actual_, double eps)
416     {
417         Mat gold = getMat(gold_);
418         Mat actual = getMat(actual_);
419 
420         Mat diff;
421         absdiff(gold, actual, diff);
422         threshold(diff, diff, eps, 255.0, cv::THRESH_BINARY);
423 
424         namedWindow("gold", WINDOW_NORMAL);
425         namedWindow("actual", WINDOW_NORMAL);
426         namedWindow("diff", WINDOW_NORMAL);
427 
428         imshow("gold", gold);
429         imshow("actual", actual);
430         imshow("diff", diff);
431 
432         waitKey();
433     }
434 
435     namespace
436     {
keyPointsEquals(const cv::KeyPoint & p1,const cv::KeyPoint & p2)437         bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2)
438         {
439             const double maxPtDif = 1.0;
440             const double maxSizeDif = 1.0;
441             const double maxAngleDif = 2.0;
442             const double maxResponseDif = 0.1;
443 
444             double dist = cv::norm(p1.pt - p2.pt);
445 
446             if (dist < maxPtDif &&
447                 fabs(p1.size - p2.size) < maxSizeDif &&
448                 abs(p1.angle - p2.angle) < maxAngleDif &&
449                 abs(p1.response - p2.response) < maxResponseDif &&
450                 p1.octave == p2.octave &&
451                 p1.class_id == p2.class_id)
452             {
453                 return true;
454             }
455 
456             return false;
457         }
458 
459         struct KeyPointLess : std::binary_function<cv::KeyPoint, cv::KeyPoint, bool>
460         {
operator ()cvtest::__anonba47ddc00211::KeyPointLess461             bool operator()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const
462             {
463                 return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x);
464             }
465         };
466     }
467 
assertKeyPointsEquals(const char * gold_expr,const char * actual_expr,std::vector<cv::KeyPoint> & gold,std::vector<cv::KeyPoint> & actual)468     testing::AssertionResult assertKeyPointsEquals(const char* gold_expr, const char* actual_expr, std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
469     {
470         if (gold.size() != actual.size())
471         {
472             return testing::AssertionFailure() << "KeyPoints size mistmach\n"
473                                                << "\"" << gold_expr << "\" : " << gold.size() << "\n"
474                                                << "\"" << actual_expr << "\" : " << actual.size();
475         }
476 
477         std::sort(actual.begin(), actual.end(), KeyPointLess());
478         std::sort(gold.begin(), gold.end(), KeyPointLess());
479 
480         for (size_t i = 0; i < gold.size(); ++i)
481         {
482             const cv::KeyPoint& p1 = gold[i];
483             const cv::KeyPoint& p2 = actual[i];
484 
485             if (!keyPointsEquals(p1, p2))
486             {
487                 return testing::AssertionFailure() << "KeyPoints differ at " << i << "\n"
488                                                    << "\"" << gold_expr << "\" vs \"" << actual_expr << "\" : \n"
489                                                    << "pt : " << testing::PrintToString(p1.pt) << " vs " << testing::PrintToString(p2.pt) << "\n"
490                                                    << "size : " << p1.size << " vs " << p2.size << "\n"
491                                                    << "angle : " << p1.angle << " vs " << p2.angle << "\n"
492                                                    << "response : " << p1.response << " vs " << p2.response << "\n"
493                                                    << "octave : " << p1.octave << " vs " << p2.octave << "\n"
494                                                    << "class_id : " << p1.class_id << " vs " << p2.class_id;
495             }
496         }
497 
498         return ::testing::AssertionSuccess();
499     }
500 
getMatchedPointsCount(std::vector<cv::KeyPoint> & gold,std::vector<cv::KeyPoint> & actual)501     int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
502     {
503         std::sort(actual.begin(), actual.end(), KeyPointLess());
504         std::sort(gold.begin(), gold.end(), KeyPointLess());
505 
506         int validCount = 0;
507 
508         for (size_t i = 0; i < gold.size(); ++i)
509         {
510             const cv::KeyPoint& p1 = gold[i];
511             const cv::KeyPoint& p2 = actual[i];
512 
513             if (keyPointsEquals(p1, p2))
514                 ++validCount;
515         }
516 
517         return validCount;
518     }
519 
getMatchedPointsCount(const std::vector<cv::KeyPoint> & keypoints1,const std::vector<cv::KeyPoint> & keypoints2,const std::vector<cv::DMatch> & matches)520     int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches)
521     {
522         int validCount = 0;
523 
524         for (size_t i = 0; i < matches.size(); ++i)
525         {
526             const cv::DMatch& m = matches[i];
527 
528             const cv::KeyPoint& p1 = keypoints1[m.queryIdx];
529             const cv::KeyPoint& p2 = keypoints2[m.trainIdx];
530 
531             if (keyPointsEquals(p1, p2))
532                 ++validCount;
533         }
534 
535         return validCount;
536     }
537 
printCudaInfo()538     void printCudaInfo()
539     {
540         perf::printCudaInfo();
541     }
542 }
543 
544 
PrintTo(const DeviceInfo & info,std::ostream * os)545 void cv::cuda::PrintTo(const DeviceInfo& info, std::ostream* os)
546 {
547     (*os) << info.name();
548 }
549