1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                          License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "precomp.hpp"
44 
45 using namespace cv;
46 
47 namespace {
48 
49 template<typename _Tp> static inline bool
decomposeCholesky(_Tp * A,size_t astep,int m)50 decomposeCholesky(_Tp* A, size_t astep, int m)
51 {
52     if (!hal::Cholesky(A, astep, m, 0, 0, 0))
53         return false;
54     astep /= sizeof(A[0]);
55     for (int i = 0; i < m; ++i)
56         A[i*astep + i] = (_Tp)(1./A[i*astep + i]);
57     return true;
58 }
59 
60 } // namespace
61 
62 
63 namespace cv {
64 namespace detail {
65 
focalsFromHomography(const Mat & H,double & f0,double & f1,bool & f0_ok,bool & f1_ok)66 void focalsFromHomography(const Mat& H, double &f0, double &f1, bool &f0_ok, bool &f1_ok)
67 {
68     CV_Assert(H.type() == CV_64F && H.size() == Size(3, 3));
69 
70     const double* h = H.ptr<double>();
71 
72     double d1, d2; // Denominators
73     double v1, v2; // Focal squares value candidates
74 
75     f1_ok = true;
76     d1 = h[6] * h[7];
77     d2 = (h[7] - h[6]) * (h[7] + h[6]);
78     v1 = -(h[0] * h[1] + h[3] * h[4]) / d1;
79     v2 = (h[0] * h[0] + h[3] * h[3] - h[1] * h[1] - h[4] * h[4]) / d2;
80     if (v1 < v2) std::swap(v1, v2);
81     if (v1 > 0 && v2 > 0) f1 = std::sqrt(std::abs(d1) > std::abs(d2) ? v1 : v2);
82     else if (v1 > 0) f1 = std::sqrt(v1);
83     else f1_ok = false;
84 
85     f0_ok = true;
86     d1 = h[0] * h[3] + h[1] * h[4];
87     d2 = h[0] * h[0] + h[1] * h[1] - h[3] * h[3] - h[4] * h[4];
88     v1 = -h[2] * h[5] / d1;
89     v2 = (h[5] * h[5] - h[2] * h[2]) / d2;
90     if (v1 < v2) std::swap(v1, v2);
91     if (v1 > 0 && v2 > 0) f0 = std::sqrt(std::abs(d1) > std::abs(d2) ? v1 : v2);
92     else if (v1 > 0) f0 = std::sqrt(v1);
93     else f0_ok = false;
94 }
95 
96 
estimateFocal(const std::vector<ImageFeatures> & features,const std::vector<MatchesInfo> & pairwise_matches,std::vector<double> & focals)97 void estimateFocal(const std::vector<ImageFeatures> &features, const std::vector<MatchesInfo> &pairwise_matches,
98                        std::vector<double> &focals)
99 {
100     const int num_images = static_cast<int>(features.size());
101     focals.resize(num_images);
102 
103     std::vector<double> all_focals;
104 
105     for (int i = 0; i < num_images; ++i)
106     {
107         for (int j = 0; j < num_images; ++j)
108         {
109             const MatchesInfo &m = pairwise_matches[i*num_images + j];
110             if (m.H.empty())
111                 continue;
112             double f0, f1;
113             bool f0ok, f1ok;
114             focalsFromHomography(m.H, f0, f1, f0ok, f1ok);
115             if (f0ok && f1ok)
116                 all_focals.push_back(std::sqrt(f0 * f1));
117         }
118     }
119 
120     if (static_cast<int>(all_focals.size()) >= num_images - 1)
121     {
122         double median;
123 
124         std::sort(all_focals.begin(), all_focals.end());
125         if (all_focals.size() % 2 == 1)
126             median = all_focals[all_focals.size() / 2];
127         else
128             median = (all_focals[all_focals.size() / 2 - 1] + all_focals[all_focals.size() / 2]) * 0.5;
129 
130         for (int i = 0; i < num_images; ++i)
131             focals[i] = median;
132     }
133     else
134     {
135         LOGLN("Can't estimate focal length, will use naive approach");
136         double focals_sum = 0;
137         for (int i = 0; i < num_images; ++i)
138             focals_sum += features[i].img_size.width + features[i].img_size.height;
139         for (int i = 0; i < num_images; ++i)
140             focals[i] = focals_sum / num_images;
141     }
142 }
143 
144 
calibrateRotatingCamera(const std::vector<Mat> & Hs,Mat & K)145 bool calibrateRotatingCamera(const std::vector<Mat> &Hs, Mat &K)
146 {
147     int m = static_cast<int>(Hs.size());
148     CV_Assert(m >= 1);
149 
150     std::vector<Mat> Hs_(m);
151     for (int i = 0; i < m; ++i)
152     {
153         CV_Assert(Hs[i].size() == Size(3, 3) && Hs[i].type() == CV_64F);
154         Hs_[i] = Hs[i] / std::pow(determinant(Hs[i]), 1./3.);
155     }
156 
157     const int idx_map[3][3] = {{0, 1, 2}, {1, 3, 4}, {2, 4, 5}};
158     Mat_<double> A(6*m, 6);
159     A.setTo(0);
160 
161     int eq_idx = 0;
162     for (int k = 0; k < m; ++k)
163     {
164         Mat_<double> H(Hs_[k]);
165         for (int i = 0; i < 3; ++i)
166         {
167             for (int j = i; j < 3; ++j, ++eq_idx)
168             {
169                 for (int l = 0; l < 3; ++l)
170                 {
171                     for (int s = 0; s < 3; ++s)
172                     {
173                         int idx = idx_map[l][s];
174                         A(eq_idx, idx) += H(i,l) * H(j,s);
175                     }
176                 }
177                 A(eq_idx, idx_map[i][j]) -= 1;
178             }
179         }
180     }
181 
182     Mat_<double> wcoef;
183     SVD::solveZ(A, wcoef);
184 
185     Mat_<double> W(3,3);
186     for (int i = 0; i < 3; ++i)
187         for (int j = i; j < 3; ++j)
188             W(i,j) = W(j,i) = wcoef(idx_map[i][j], 0) / wcoef(5,0);
189     if (!decomposeCholesky(W.ptr<double>(), W.step, 3))
190         return false;
191     W(0,1) = W(0,2) = W(1,2) = 0;
192     K = W.t();
193     return true;
194 }
195 
196 } // namespace detail
197 } // namespace cv
198