1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
15 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17
18 using namespace clang;
19 using namespace ento;
20
21 namespace {
22 class SimpleSValBuilder : public SValBuilder {
23 protected:
24 SVal dispatchCast(SVal val, QualType castTy) override;
25 SVal evalCastFromNonLoc(NonLoc val, QualType castTy) override;
26 SVal evalCastFromLoc(Loc val, QualType castTy) override;
27
28 public:
SimpleSValBuilder(llvm::BumpPtrAllocator & alloc,ASTContext & context,ProgramStateManager & stateMgr)29 SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
30 ProgramStateManager &stateMgr)
31 : SValBuilder(alloc, context, stateMgr) {}
~SimpleSValBuilder()32 ~SimpleSValBuilder() override {}
33
34 SVal evalMinus(NonLoc val) override;
35 SVal evalComplement(NonLoc val) override;
36 SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
37 NonLoc lhs, NonLoc rhs, QualType resultTy) override;
38 SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
39 Loc lhs, Loc rhs, QualType resultTy) override;
40 SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
41 Loc lhs, NonLoc rhs, QualType resultTy) override;
42
43 /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
44 /// (integer) value, that value is returned. Otherwise, returns NULL.
45 const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override;
46
47 SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
48 const llvm::APSInt &RHS, QualType resultTy);
49 };
50 } // end anonymous namespace
51
createSimpleSValBuilder(llvm::BumpPtrAllocator & alloc,ASTContext & context,ProgramStateManager & stateMgr)52 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
53 ASTContext &context,
54 ProgramStateManager &stateMgr) {
55 return new SimpleSValBuilder(alloc, context, stateMgr);
56 }
57
58 //===----------------------------------------------------------------------===//
59 // Transfer function for Casts.
60 //===----------------------------------------------------------------------===//
61
dispatchCast(SVal Val,QualType CastTy)62 SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
63 assert(Val.getAs<Loc>() || Val.getAs<NonLoc>());
64 return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy)
65 : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy);
66 }
67
evalCastFromNonLoc(NonLoc val,QualType castTy)68 SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
69
70 bool isLocType = Loc::isLocType(castTy);
71
72 if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) {
73 if (isLocType)
74 return LI->getLoc();
75
76 // FIXME: Correctly support promotions/truncations.
77 unsigned castSize = Context.getTypeSize(castTy);
78 if (castSize == LI->getNumBits())
79 return val;
80 return makeLocAsInteger(LI->getLoc(), castSize);
81 }
82
83 if (const SymExpr *se = val.getAsSymbolicExpression()) {
84 QualType T = Context.getCanonicalType(se->getType());
85 // If types are the same or both are integers, ignore the cast.
86 // FIXME: Remove this hack when we support symbolic truncation/extension.
87 // HACK: If both castTy and T are integers, ignore the cast. This is
88 // not a permanent solution. Eventually we want to precisely handle
89 // extension/truncation of symbolic integers. This prevents us from losing
90 // precision when we assign 'x = y' and 'y' is symbolic and x and y are
91 // different integer types.
92 if (haveSameType(T, castTy))
93 return val;
94
95 if (!isLocType)
96 return makeNonLoc(se, T, castTy);
97 return UnknownVal();
98 }
99
100 // If value is a non-integer constant, produce unknown.
101 if (!val.getAs<nonloc::ConcreteInt>())
102 return UnknownVal();
103
104 // Handle casts to a boolean type.
105 if (castTy->isBooleanType()) {
106 bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue();
107 return makeTruthVal(b, castTy);
108 }
109
110 // Only handle casts from integers to integers - if val is an integer constant
111 // being cast to a non-integer type, produce unknown.
112 if (!isLocType && !castTy->isIntegralOrEnumerationType())
113 return UnknownVal();
114
115 llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue();
116 BasicVals.getAPSIntType(castTy).apply(i);
117
118 if (isLocType)
119 return makeIntLocVal(i);
120 else
121 return makeIntVal(i);
122 }
123
evalCastFromLoc(Loc val,QualType castTy)124 SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
125
126 // Casts from pointers -> pointers, just return the lval.
127 //
128 // Casts from pointers -> references, just return the lval. These
129 // can be introduced by the frontend for corner cases, e.g
130 // casting from va_list* to __builtin_va_list&.
131 //
132 if (Loc::isLocType(castTy) || castTy->isReferenceType())
133 return val;
134
135 // FIXME: Handle transparent unions where a value can be "transparently"
136 // lifted into a union type.
137 if (castTy->isUnionType())
138 return UnknownVal();
139
140 // Casting a Loc to a bool will almost always be true,
141 // unless this is a weak function or a symbolic region.
142 if (castTy->isBooleanType()) {
143 switch (val.getSubKind()) {
144 case loc::MemRegionKind: {
145 const MemRegion *R = val.castAs<loc::MemRegionVal>().getRegion();
146 if (const FunctionTextRegion *FTR = dyn_cast<FunctionTextRegion>(R))
147 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl()))
148 if (FD->isWeak())
149 // FIXME: Currently we are using an extent symbol here,
150 // because there are no generic region address metadata
151 // symbols to use, only content metadata.
152 return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR));
153
154 if (const SymbolicRegion *SymR = R->getSymbolicBase())
155 return nonloc::SymbolVal(SymR->getSymbol());
156
157 // FALL-THROUGH
158 }
159
160 case loc::GotoLabelKind:
161 // Labels and non-symbolic memory regions are always true.
162 return makeTruthVal(true, castTy);
163 }
164 }
165
166 if (castTy->isIntegralOrEnumerationType()) {
167 unsigned BitWidth = Context.getTypeSize(castTy);
168
169 if (!val.getAs<loc::ConcreteInt>())
170 return makeLocAsInteger(val, BitWidth);
171
172 llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue();
173 BasicVals.getAPSIntType(castTy).apply(i);
174 return makeIntVal(i);
175 }
176
177 // All other cases: return 'UnknownVal'. This includes casting pointers
178 // to floats, which is probably badness it itself, but this is a good
179 // intermediate solution until we do something better.
180 return UnknownVal();
181 }
182
183 //===----------------------------------------------------------------------===//
184 // Transfer function for unary operators.
185 //===----------------------------------------------------------------------===//
186
evalMinus(NonLoc val)187 SVal SimpleSValBuilder::evalMinus(NonLoc val) {
188 switch (val.getSubKind()) {
189 case nonloc::ConcreteIntKind:
190 return val.castAs<nonloc::ConcreteInt>().evalMinus(*this);
191 default:
192 return UnknownVal();
193 }
194 }
195
evalComplement(NonLoc X)196 SVal SimpleSValBuilder::evalComplement(NonLoc X) {
197 switch (X.getSubKind()) {
198 case nonloc::ConcreteIntKind:
199 return X.castAs<nonloc::ConcreteInt>().evalComplement(*this);
200 default:
201 return UnknownVal();
202 }
203 }
204
205 //===----------------------------------------------------------------------===//
206 // Transfer function for binary operators.
207 //===----------------------------------------------------------------------===//
208
MakeSymIntVal(const SymExpr * LHS,BinaryOperator::Opcode op,const llvm::APSInt & RHS,QualType resultTy)209 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
210 BinaryOperator::Opcode op,
211 const llvm::APSInt &RHS,
212 QualType resultTy) {
213 bool isIdempotent = false;
214
215 // Check for a few special cases with known reductions first.
216 switch (op) {
217 default:
218 // We can't reduce this case; just treat it normally.
219 break;
220 case BO_Mul:
221 // a*0 and a*1
222 if (RHS == 0)
223 return makeIntVal(0, resultTy);
224 else if (RHS == 1)
225 isIdempotent = true;
226 break;
227 case BO_Div:
228 // a/0 and a/1
229 if (RHS == 0)
230 // This is also handled elsewhere.
231 return UndefinedVal();
232 else if (RHS == 1)
233 isIdempotent = true;
234 break;
235 case BO_Rem:
236 // a%0 and a%1
237 if (RHS == 0)
238 // This is also handled elsewhere.
239 return UndefinedVal();
240 else if (RHS == 1)
241 return makeIntVal(0, resultTy);
242 break;
243 case BO_Add:
244 case BO_Sub:
245 case BO_Shl:
246 case BO_Shr:
247 case BO_Xor:
248 // a+0, a-0, a<<0, a>>0, a^0
249 if (RHS == 0)
250 isIdempotent = true;
251 break;
252 case BO_And:
253 // a&0 and a&(~0)
254 if (RHS == 0)
255 return makeIntVal(0, resultTy);
256 else if (RHS.isAllOnesValue())
257 isIdempotent = true;
258 break;
259 case BO_Or:
260 // a|0 and a|(~0)
261 if (RHS == 0)
262 isIdempotent = true;
263 else if (RHS.isAllOnesValue()) {
264 const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
265 return nonloc::ConcreteInt(Result);
266 }
267 break;
268 }
269
270 // Idempotent ops (like a*1) can still change the type of an expression.
271 // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
272 // dirty work.
273 if (isIdempotent)
274 return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
275
276 // If we reach this point, the expression cannot be simplified.
277 // Make a SymbolVal for the entire expression, after converting the RHS.
278 const llvm::APSInt *ConvertedRHS = &RHS;
279 if (BinaryOperator::isComparisonOp(op)) {
280 // We're looking for a type big enough to compare the symbolic value
281 // with the given constant.
282 // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
283 ASTContext &Ctx = getContext();
284 QualType SymbolType = LHS->getType();
285 uint64_t ValWidth = RHS.getBitWidth();
286 uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
287
288 if (ValWidth < TypeWidth) {
289 // If the value is too small, extend it.
290 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
291 } else if (ValWidth == TypeWidth) {
292 // If the value is signed but the symbol is unsigned, do the comparison
293 // in unsigned space. [C99 6.3.1.8]
294 // (For the opposite case, the value is already unsigned.)
295 if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
296 ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
297 }
298 } else
299 ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
300
301 return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
302 }
303
evalBinOpNN(ProgramStateRef state,BinaryOperator::Opcode op,NonLoc lhs,NonLoc rhs,QualType resultTy)304 SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
305 BinaryOperator::Opcode op,
306 NonLoc lhs, NonLoc rhs,
307 QualType resultTy) {
308 NonLoc InputLHS = lhs;
309 NonLoc InputRHS = rhs;
310
311 // Handle trivial case where left-side and right-side are the same.
312 if (lhs == rhs)
313 switch (op) {
314 default:
315 break;
316 case BO_EQ:
317 case BO_LE:
318 case BO_GE:
319 return makeTruthVal(true, resultTy);
320 case BO_LT:
321 case BO_GT:
322 case BO_NE:
323 return makeTruthVal(false, resultTy);
324 case BO_Xor:
325 case BO_Sub:
326 if (resultTy->isIntegralOrEnumerationType())
327 return makeIntVal(0, resultTy);
328 return evalCastFromNonLoc(makeIntVal(0, /*Unsigned=*/false), resultTy);
329 case BO_Or:
330 case BO_And:
331 return evalCastFromNonLoc(lhs, resultTy);
332 }
333
334 while (1) {
335 switch (lhs.getSubKind()) {
336 default:
337 return makeSymExprValNN(state, op, lhs, rhs, resultTy);
338 case nonloc::LocAsIntegerKind: {
339 Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
340 switch (rhs.getSubKind()) {
341 case nonloc::LocAsIntegerKind:
342 return evalBinOpLL(state, op, lhsL,
343 rhs.castAs<nonloc::LocAsInteger>().getLoc(),
344 resultTy);
345 case nonloc::ConcreteIntKind: {
346 // Transform the integer into a location and compare.
347 llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
348 BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
349 return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
350 }
351 default:
352 switch (op) {
353 case BO_EQ:
354 return makeTruthVal(false, resultTy);
355 case BO_NE:
356 return makeTruthVal(true, resultTy);
357 default:
358 // This case also handles pointer arithmetic.
359 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
360 }
361 }
362 }
363 case nonloc::ConcreteIntKind: {
364 llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();
365
366 // If we're dealing with two known constants, just perform the operation.
367 if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
368 llvm::APSInt RHSValue = *KnownRHSValue;
369 if (BinaryOperator::isComparisonOp(op)) {
370 // We're looking for a type big enough to compare the two values.
371 // FIXME: This is not correct. char + short will result in a promotion
372 // to int. Unfortunately we have lost types by this point.
373 APSIntType CompareType = std::max(APSIntType(LHSValue),
374 APSIntType(RHSValue));
375 CompareType.apply(LHSValue);
376 CompareType.apply(RHSValue);
377 } else if (!BinaryOperator::isShiftOp(op)) {
378 APSIntType IntType = BasicVals.getAPSIntType(resultTy);
379 IntType.apply(LHSValue);
380 IntType.apply(RHSValue);
381 }
382
383 const llvm::APSInt *Result =
384 BasicVals.evalAPSInt(op, LHSValue, RHSValue);
385 if (!Result)
386 return UndefinedVal();
387
388 return nonloc::ConcreteInt(*Result);
389 }
390
391 // Swap the left and right sides and flip the operator if doing so
392 // allows us to better reason about the expression (this is a form
393 // of expression canonicalization).
394 // While we're at it, catch some special cases for non-commutative ops.
395 switch (op) {
396 case BO_LT:
397 case BO_GT:
398 case BO_LE:
399 case BO_GE:
400 op = BinaryOperator::reverseComparisonOp(op);
401 // FALL-THROUGH
402 case BO_EQ:
403 case BO_NE:
404 case BO_Add:
405 case BO_Mul:
406 case BO_And:
407 case BO_Xor:
408 case BO_Or:
409 std::swap(lhs, rhs);
410 continue;
411 case BO_Shr:
412 // (~0)>>a
413 if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
414 return evalCastFromNonLoc(lhs, resultTy);
415 // FALL-THROUGH
416 case BO_Shl:
417 // 0<<a and 0>>a
418 if (LHSValue == 0)
419 return evalCastFromNonLoc(lhs, resultTy);
420 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
421 default:
422 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
423 }
424 }
425 case nonloc::SymbolValKind: {
426 // We only handle LHS as simple symbols or SymIntExprs.
427 SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();
428
429 // LHS is a symbolic expression.
430 if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
431
432 // Is this a logical not? (!x is represented as x == 0.)
433 if (op == BO_EQ && rhs.isZeroConstant()) {
434 // We know how to negate certain expressions. Simplify them here.
435
436 BinaryOperator::Opcode opc = symIntExpr->getOpcode();
437 switch (opc) {
438 default:
439 // We don't know how to negate this operation.
440 // Just handle it as if it were a normal comparison to 0.
441 break;
442 case BO_LAnd:
443 case BO_LOr:
444 llvm_unreachable("Logical operators handled by branching logic.");
445 case BO_Assign:
446 case BO_MulAssign:
447 case BO_DivAssign:
448 case BO_RemAssign:
449 case BO_AddAssign:
450 case BO_SubAssign:
451 case BO_ShlAssign:
452 case BO_ShrAssign:
453 case BO_AndAssign:
454 case BO_XorAssign:
455 case BO_OrAssign:
456 case BO_Comma:
457 llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
458 case BO_PtrMemD:
459 case BO_PtrMemI:
460 llvm_unreachable("Pointer arithmetic not handled here.");
461 case BO_LT:
462 case BO_GT:
463 case BO_LE:
464 case BO_GE:
465 case BO_EQ:
466 case BO_NE:
467 assert(resultTy->isBooleanType() ||
468 resultTy == getConditionType());
469 assert(symIntExpr->getType()->isBooleanType() ||
470 getContext().hasSameUnqualifiedType(symIntExpr->getType(),
471 getConditionType()));
472 // Negate the comparison and make a value.
473 opc = BinaryOperator::negateComparisonOp(opc);
474 return makeNonLoc(symIntExpr->getLHS(), opc,
475 symIntExpr->getRHS(), resultTy);
476 }
477 }
478
479 // For now, only handle expressions whose RHS is a constant.
480 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
481 // If both the LHS and the current expression are additive,
482 // fold their constants and try again.
483 if (BinaryOperator::isAdditiveOp(op)) {
484 BinaryOperator::Opcode lop = symIntExpr->getOpcode();
485 if (BinaryOperator::isAdditiveOp(lop)) {
486 // Convert the two constants to a common type, then combine them.
487
488 // resultTy may not be the best type to convert to, but it's
489 // probably the best choice in expressions with mixed type
490 // (such as x+1U+2LL). The rules for implicit conversions should
491 // choose a reasonable type to preserve the expression, and will
492 // at least match how the value is going to be used.
493 APSIntType IntType = BasicVals.getAPSIntType(resultTy);
494 const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
495 const llvm::APSInt &second = IntType.convert(*RHSValue);
496
497 const llvm::APSInt *newRHS;
498 if (lop == op)
499 newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
500 else
501 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
502
503 assert(newRHS && "Invalid operation despite common type!");
504 rhs = nonloc::ConcreteInt(*newRHS);
505 lhs = nonloc::SymbolVal(symIntExpr->getLHS());
506 op = lop;
507 continue;
508 }
509 }
510
511 // Otherwise, make a SymIntExpr out of the expression.
512 return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
513 }
514 }
515
516 // Does the symbolic expression simplify to a constant?
517 // If so, "fold" the constant by setting 'lhs' to a ConcreteInt
518 // and try again.
519 ConstraintManager &CMgr = state->getConstraintManager();
520 if (const llvm::APSInt *Constant = CMgr.getSymVal(state, Sym)) {
521 lhs = nonloc::ConcreteInt(*Constant);
522 continue;
523 }
524
525 // Is the RHS a constant?
526 if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
527 return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
528
529 // Give up -- this is not a symbolic expression we can handle.
530 return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
531 }
532 }
533 }
534 }
535
evalBinOpFieldRegionFieldRegion(const FieldRegion * LeftFR,const FieldRegion * RightFR,BinaryOperator::Opcode op,QualType resultTy,SimpleSValBuilder & SVB)536 static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR,
537 const FieldRegion *RightFR,
538 BinaryOperator::Opcode op,
539 QualType resultTy,
540 SimpleSValBuilder &SVB) {
541 // Only comparisons are meaningful here!
542 if (!BinaryOperator::isComparisonOp(op))
543 return UnknownVal();
544
545 // Next, see if the two FRs have the same super-region.
546 // FIXME: This doesn't handle casts yet, and simply stripping the casts
547 // doesn't help.
548 if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
549 return UnknownVal();
550
551 const FieldDecl *LeftFD = LeftFR->getDecl();
552 const FieldDecl *RightFD = RightFR->getDecl();
553 const RecordDecl *RD = LeftFD->getParent();
554
555 // Make sure the two FRs are from the same kind of record. Just in case!
556 // FIXME: This is probably where inheritance would be a problem.
557 if (RD != RightFD->getParent())
558 return UnknownVal();
559
560 // We know for sure that the two fields are not the same, since that
561 // would have given us the same SVal.
562 if (op == BO_EQ)
563 return SVB.makeTruthVal(false, resultTy);
564 if (op == BO_NE)
565 return SVB.makeTruthVal(true, resultTy);
566
567 // Iterate through the fields and see which one comes first.
568 // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
569 // members and the units in which bit-fields reside have addresses that
570 // increase in the order in which they are declared."
571 bool leftFirst = (op == BO_LT || op == BO_LE);
572 for (const auto *I : RD->fields()) {
573 if (I == LeftFD)
574 return SVB.makeTruthVal(leftFirst, resultTy);
575 if (I == RightFD)
576 return SVB.makeTruthVal(!leftFirst, resultTy);
577 }
578
579 llvm_unreachable("Fields not found in parent record's definition");
580 }
581
582 // FIXME: all this logic will change if/when we have MemRegion::getLocation().
evalBinOpLL(ProgramStateRef state,BinaryOperator::Opcode op,Loc lhs,Loc rhs,QualType resultTy)583 SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
584 BinaryOperator::Opcode op,
585 Loc lhs, Loc rhs,
586 QualType resultTy) {
587 // Only comparisons and subtractions are valid operations on two pointers.
588 // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
589 // However, if a pointer is casted to an integer, evalBinOpNN may end up
590 // calling this function with another operation (PR7527). We don't attempt to
591 // model this for now, but it could be useful, particularly when the
592 // "location" is actually an integer value that's been passed through a void*.
593 if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
594 return UnknownVal();
595
596 // Special cases for when both sides are identical.
597 if (lhs == rhs) {
598 switch (op) {
599 default:
600 llvm_unreachable("Unimplemented operation for two identical values");
601 case BO_Sub:
602 return makeZeroVal(resultTy);
603 case BO_EQ:
604 case BO_LE:
605 case BO_GE:
606 return makeTruthVal(true, resultTy);
607 case BO_NE:
608 case BO_LT:
609 case BO_GT:
610 return makeTruthVal(false, resultTy);
611 }
612 }
613
614 switch (lhs.getSubKind()) {
615 default:
616 llvm_unreachable("Ordering not implemented for this Loc.");
617
618 case loc::GotoLabelKind:
619 // The only thing we know about labels is that they're non-null.
620 if (rhs.isZeroConstant()) {
621 switch (op) {
622 default:
623 break;
624 case BO_Sub:
625 return evalCastFromLoc(lhs, resultTy);
626 case BO_EQ:
627 case BO_LE:
628 case BO_LT:
629 return makeTruthVal(false, resultTy);
630 case BO_NE:
631 case BO_GT:
632 case BO_GE:
633 return makeTruthVal(true, resultTy);
634 }
635 }
636 // There may be two labels for the same location, and a function region may
637 // have the same address as a label at the start of the function (depending
638 // on the ABI).
639 // FIXME: we can probably do a comparison against other MemRegions, though.
640 // FIXME: is there a way to tell if two labels refer to the same location?
641 return UnknownVal();
642
643 case loc::ConcreteIntKind: {
644 // If one of the operands is a symbol and the other is a constant,
645 // build an expression for use by the constraint manager.
646 if (SymbolRef rSym = rhs.getAsLocSymbol()) {
647 // We can only build expressions with symbols on the left,
648 // so we need a reversible operator.
649 if (!BinaryOperator::isComparisonOp(op))
650 return UnknownVal();
651
652 const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue();
653 op = BinaryOperator::reverseComparisonOp(op);
654 return makeNonLoc(rSym, op, lVal, resultTy);
655 }
656
657 // If both operands are constants, just perform the operation.
658 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
659 SVal ResultVal =
660 lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt);
661 if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>())
662 return evalCastFromNonLoc(*Result, resultTy);
663
664 assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs");
665 return UnknownVal();
666 }
667
668 // Special case comparisons against NULL.
669 // This must come after the test if the RHS is a symbol, which is used to
670 // build constraints. The address of any non-symbolic region is guaranteed
671 // to be non-NULL, as is any label.
672 assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>());
673 if (lhs.isZeroConstant()) {
674 switch (op) {
675 default:
676 break;
677 case BO_EQ:
678 case BO_GT:
679 case BO_GE:
680 return makeTruthVal(false, resultTy);
681 case BO_NE:
682 case BO_LT:
683 case BO_LE:
684 return makeTruthVal(true, resultTy);
685 }
686 }
687
688 // Comparing an arbitrary integer to a region or label address is
689 // completely unknowable.
690 return UnknownVal();
691 }
692 case loc::MemRegionKind: {
693 if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
694 // If one of the operands is a symbol and the other is a constant,
695 // build an expression for use by the constraint manager.
696 if (SymbolRef lSym = lhs.getAsLocSymbol(true))
697 return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
698
699 // Special case comparisons to NULL.
700 // This must come after the test if the LHS is a symbol, which is used to
701 // build constraints. The address of any non-symbolic region is guaranteed
702 // to be non-NULL.
703 if (rInt->isZeroConstant()) {
704 if (op == BO_Sub)
705 return evalCastFromLoc(lhs, resultTy);
706
707 if (BinaryOperator::isComparisonOp(op)) {
708 QualType boolType = getContext().BoolTy;
709 NonLoc l = evalCastFromLoc(lhs, boolType).castAs<NonLoc>();
710 NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>();
711 return evalBinOpNN(state, op, l, r, resultTy);
712 }
713 }
714
715 // Comparing a region to an arbitrary integer is completely unknowable.
716 return UnknownVal();
717 }
718
719 // Get both values as regions, if possible.
720 const MemRegion *LeftMR = lhs.getAsRegion();
721 assert(LeftMR && "MemRegionKind SVal doesn't have a region!");
722
723 const MemRegion *RightMR = rhs.getAsRegion();
724 if (!RightMR)
725 // The RHS is probably a label, which in theory could address a region.
726 // FIXME: we can probably make a more useful statement about non-code
727 // regions, though.
728 return UnknownVal();
729
730 const MemRegion *LeftBase = LeftMR->getBaseRegion();
731 const MemRegion *RightBase = RightMR->getBaseRegion();
732 const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
733 const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
734 const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
735
736 // If the two regions are from different known memory spaces they cannot be
737 // equal. Also, assume that no symbolic region (whose memory space is
738 // unknown) is on the stack.
739 if (LeftMS != RightMS &&
740 ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
741 (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
742 switch (op) {
743 default:
744 return UnknownVal();
745 case BO_EQ:
746 return makeTruthVal(false, resultTy);
747 case BO_NE:
748 return makeTruthVal(true, resultTy);
749 }
750 }
751
752 // If both values wrap regions, see if they're from different base regions.
753 // Note, heap base symbolic regions are assumed to not alias with
754 // each other; for example, we assume that malloc returns different address
755 // on each invocation.
756 if (LeftBase != RightBase &&
757 ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
758 (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
759 switch (op) {
760 default:
761 return UnknownVal();
762 case BO_EQ:
763 return makeTruthVal(false, resultTy);
764 case BO_NE:
765 return makeTruthVal(true, resultTy);
766 }
767 }
768
769 // Handle special cases for when both regions are element regions.
770 const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
771 const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR);
772 if (RightER && LeftER) {
773 // Next, see if the two ERs have the same super-region and matching types.
774 // FIXME: This should do something useful even if the types don't match,
775 // though if both indexes are constant the RegionRawOffset path will
776 // give the correct answer.
777 if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
778 LeftER->getElementType() == RightER->getElementType()) {
779 // Get the left index and cast it to the correct type.
780 // If the index is unknown or undefined, bail out here.
781 SVal LeftIndexVal = LeftER->getIndex();
782 Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
783 if (!LeftIndex)
784 return UnknownVal();
785 LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy);
786 LeftIndex = LeftIndexVal.getAs<NonLoc>();
787 if (!LeftIndex)
788 return UnknownVal();
789
790 // Do the same for the right index.
791 SVal RightIndexVal = RightER->getIndex();
792 Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
793 if (!RightIndex)
794 return UnknownVal();
795 RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy);
796 RightIndex = RightIndexVal.getAs<NonLoc>();
797 if (!RightIndex)
798 return UnknownVal();
799
800 // Actually perform the operation.
801 // evalBinOpNN expects the two indexes to already be the right type.
802 return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
803 }
804 }
805
806 // Special handling of the FieldRegions, even with symbolic offsets.
807 const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
808 const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR);
809 if (RightFR && LeftFR) {
810 SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy,
811 *this);
812 if (!R.isUnknown())
813 return R;
814 }
815
816 // Compare the regions using the raw offsets.
817 RegionOffset LeftOffset = LeftMR->getAsOffset();
818 RegionOffset RightOffset = RightMR->getAsOffset();
819
820 if (LeftOffset.getRegion() != nullptr &&
821 LeftOffset.getRegion() == RightOffset.getRegion() &&
822 !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) {
823 int64_t left = LeftOffset.getOffset();
824 int64_t right = RightOffset.getOffset();
825
826 switch (op) {
827 default:
828 return UnknownVal();
829 case BO_LT:
830 return makeTruthVal(left < right, resultTy);
831 case BO_GT:
832 return makeTruthVal(left > right, resultTy);
833 case BO_LE:
834 return makeTruthVal(left <= right, resultTy);
835 case BO_GE:
836 return makeTruthVal(left >= right, resultTy);
837 case BO_EQ:
838 return makeTruthVal(left == right, resultTy);
839 case BO_NE:
840 return makeTruthVal(left != right, resultTy);
841 }
842 }
843
844 // At this point we're not going to get a good answer, but we can try
845 // conjuring an expression instead.
846 SymbolRef LHSSym = lhs.getAsLocSymbol();
847 SymbolRef RHSSym = rhs.getAsLocSymbol();
848 if (LHSSym && RHSSym)
849 return makeNonLoc(LHSSym, op, RHSSym, resultTy);
850
851 // If we get here, we have no way of comparing the regions.
852 return UnknownVal();
853 }
854 }
855 }
856
evalBinOpLN(ProgramStateRef state,BinaryOperator::Opcode op,Loc lhs,NonLoc rhs,QualType resultTy)857 SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
858 BinaryOperator::Opcode op,
859 Loc lhs, NonLoc rhs, QualType resultTy) {
860 assert(!BinaryOperator::isComparisonOp(op) &&
861 "arguments to comparison ops must be of the same type");
862
863 // Special case: rhs is a zero constant.
864 if (rhs.isZeroConstant())
865 return lhs;
866
867 // We are dealing with pointer arithmetic.
868
869 // Handle pointer arithmetic on constant values.
870 if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) {
871 if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) {
872 const llvm::APSInt &leftI = lhsInt->getValue();
873 assert(leftI.isUnsigned());
874 llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
875
876 // Convert the bitwidth of rightI. This should deal with overflow
877 // since we are dealing with concrete values.
878 rightI = rightI.extOrTrunc(leftI.getBitWidth());
879
880 // Offset the increment by the pointer size.
881 llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
882 rightI *= Multiplicand;
883
884 // Compute the adjusted pointer.
885 switch (op) {
886 case BO_Add:
887 rightI = leftI + rightI;
888 break;
889 case BO_Sub:
890 rightI = leftI - rightI;
891 break;
892 default:
893 llvm_unreachable("Invalid pointer arithmetic operation");
894 }
895 return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
896 }
897 }
898
899 // Handle cases where 'lhs' is a region.
900 if (const MemRegion *region = lhs.getAsRegion()) {
901 rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
902 SVal index = UnknownVal();
903 const MemRegion *superR = nullptr;
904 QualType elementType;
905
906 if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
907 assert(op == BO_Add || op == BO_Sub);
908 index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
909 getArrayIndexType());
910 superR = elemReg->getSuperRegion();
911 elementType = elemReg->getElementType();
912 }
913 else if (isa<SubRegion>(region)) {
914 assert(op == BO_Add || op == BO_Sub);
915 index = (op == BO_Add) ? rhs : evalMinus(rhs);
916 superR = region;
917 if (resultTy->isAnyPointerType())
918 elementType = resultTy->getPointeeType();
919 }
920
921 if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) {
922 return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
923 superR, getContext()));
924 }
925 }
926 return UnknownVal();
927 }
928
getKnownValue(ProgramStateRef state,SVal V)929 const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
930 SVal V) {
931 if (V.isUnknownOrUndef())
932 return nullptr;
933
934 if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
935 return &X->getValue();
936
937 if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
938 return &X->getValue();
939
940 if (SymbolRef Sym = V.getAsSymbol())
941 return state->getConstraintManager().getSymVal(state, Sym);
942
943 // FIXME: Add support for SymExprs.
944 return nullptr;
945 }
946