1 /*
2  * Licensed to the Apache Software Foundation (ASF) under one or more
3  * contributor license agreements.  See the NOTICE file distributed with
4  * this work for additional information regarding copyright ownership.
5  * The ASF licenses this file to You under the Apache License, Version 2.0
6  * (the "License"); you may not use this file except in compliance with
7  * the License.  You may obtain a copy of the License at
8  *
9  *      http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17 package org.apache.commons.math.genetics;
18 
19 import org.apache.commons.math.random.RandomGenerator;
20 import org.apache.commons.math.random.JDKRandomGenerator;
21 
22 /**
23  * Implementation of a genetic algorithm. All factors that govern the operation
24  * of the algorithm can be configured for a specific problem.
25  *
26  * @since 2.0
27  * @version $Revision: 925812 $ $Date: 2010-03-21 16:49:31 +0100 (dim. 21 mars 2010) $
28  */
29 public class GeneticAlgorithm {
30 
31     /**
32      * Static random number generator shared by GA implementation classes.
33      * Set the randomGenerator seed to get reproducible results.
34      * Use {@link #setRandomGenerator(RandomGenerator)} to supply an alternative
35      * to the default JDK-provided PRNG.
36      */
37     //@GuardedBy("this")
38     private static RandomGenerator randomGenerator = new JDKRandomGenerator();
39 
40     /** the crossover policy used by the algorithm. */
41     private final CrossoverPolicy crossoverPolicy;
42 
43     /** the rate of crossover for the algorithm. */
44     private final double crossoverRate;
45 
46     /** the mutation policy used by the algorithm. */
47     private final MutationPolicy mutationPolicy;
48 
49     /** the rate of mutation for the algorithm. */
50     private final double mutationRate;
51 
52     /** the selection policy used by the algorithm. */
53     private final SelectionPolicy selectionPolicy;
54 
55     /** the number of generations evolved to reach {@link StoppingCondition} in the last run. */
56     private int generationsEvolved = 0;
57 
58     /**
59      * @param crossoverPolicy The {@link CrossoverPolicy}
60      * @param crossoverRate The crossover rate as a percentage (0-1 inclusive)
61      * @param mutationPolicy The {@link MutationPolicy}
62      * @param mutationRate The mutation rate as a percentage (0-1 inclusive)
63      * @param selectionPolicy The {@link SelectionPolicy}
64      */
GeneticAlgorithm( CrossoverPolicy crossoverPolicy, double crossoverRate, MutationPolicy mutationPolicy, double mutationRate, SelectionPolicy selectionPolicy)65     public GeneticAlgorithm(
66             CrossoverPolicy crossoverPolicy, double crossoverRate,
67             MutationPolicy mutationPolicy, double mutationRate,
68             SelectionPolicy selectionPolicy) {
69         if (crossoverRate < 0 || crossoverRate > 1) {
70             throw new IllegalArgumentException("crossoverRate must be between 0 and 1");
71         }
72         if (mutationRate < 0 || mutationRate > 1) {
73             throw new IllegalArgumentException("mutationRate must be between 0 and 1");
74         }
75         this.crossoverPolicy = crossoverPolicy;
76         this.crossoverRate = crossoverRate;
77         this.mutationPolicy = mutationPolicy;
78         this.mutationRate = mutationRate;
79         this.selectionPolicy = selectionPolicy;
80     }
81 
82     /**
83      * Set the (static) random generator.
84      *
85      * @param random random generator
86      */
setRandomGenerator(RandomGenerator random)87     public static synchronized void setRandomGenerator(RandomGenerator random) {
88         randomGenerator = random;
89     }
90 
91     /**
92      * Returns the (static) random generator.
93      *
94      * @return the static random generator shared by GA implementation classes
95      */
getRandomGenerator()96     public static synchronized RandomGenerator getRandomGenerator() {
97         return randomGenerator;
98     }
99 
100     /**
101      * Evolve the given population. Evolution stops when the stopping condition
102      * is satisfied. Updates the {@link #getGenerationsEvolved() generationsEvolved}
103      * property with the number of generations evolved before the StoppingCondition
104      * is satisfied.
105      *
106      * @param initial the initial, seed population.
107      * @param condition the stopping condition used to stop evolution.
108      * @return the population that satisfies the stopping condition.
109      */
evolve(Population initial, StoppingCondition condition)110     public Population evolve(Population initial, StoppingCondition condition) {
111         Population current = initial;
112         generationsEvolved = 0;
113         while (!condition.isSatisfied(current)) {
114             current = nextGeneration(current);
115             generationsEvolved++;
116         }
117         return current;
118     }
119 
120     /**
121      * <p>Evolve the given population into the next generation.</p>
122      * <p><ol>
123      *    <li>Get nextGeneration population to fill from <code>current</code>
124      *        generation, using its nextGeneration method</li>
125      *    <li>Loop until new generation is filled:</li>
126      *    <ul><li>Apply configured SelectionPolicy to select a pair of parents
127      *            from <code>current</code></li>
128      *        <li>With probability = {@link #getCrossoverRate()}, apply
129      *            configured {@link CrossoverPolicy} to parents</li>
130      *        <li>With probability = {@link #getMutationRate()}, apply
131      *            configured {@link MutationPolicy} to each of the offspring</li>
132      *        <li>Add offspring individually to nextGeneration,
133      *            space permitting</li>
134      *    </ul>
135      *    <li>Return nextGeneration</li>
136      *    </ol>
137      * </p>
138      *
139      * @param current the current population.
140      * @return the population for the next generation.
141      */
nextGeneration(Population current)142     public Population nextGeneration(Population current) {
143         Population nextGeneration = current.nextGeneration();
144 
145         RandomGenerator randGen = getRandomGenerator();
146 
147         while (nextGeneration.getPopulationSize() < nextGeneration.getPopulationLimit()) {
148             // select parent chromosomes
149             ChromosomePair pair = getSelectionPolicy().select(current);
150 
151             // crossover?
152             if (randGen.nextDouble() < getCrossoverRate()) {
153                 // apply crossover policy to create two offspring
154                 pair = getCrossoverPolicy().crossover(pair.getFirst(), pair.getSecond());
155             }
156 
157             // mutation?
158             if (randGen.nextDouble() < getMutationRate()) {
159                 // apply mutation policy to the chromosomes
160                 pair = new ChromosomePair(
161                     getMutationPolicy().mutate(pair.getFirst()),
162                     getMutationPolicy().mutate(pair.getSecond()));
163             }
164 
165             // add the first chromosome to the population
166             nextGeneration.addChromosome(pair.getFirst());
167             // is there still a place for the second chromosome?
168             if (nextGeneration.getPopulationSize() < nextGeneration.getPopulationLimit()) {
169                 // add the second chromosome to the population
170                 nextGeneration.addChromosome(pair.getSecond());
171             }
172         }
173 
174         return nextGeneration;
175     }
176 
177     /**
178      * Returns the crossover policy.
179      * @return crossover policy
180      */
getCrossoverPolicy()181     public CrossoverPolicy getCrossoverPolicy() {
182         return crossoverPolicy;
183     }
184 
185     /**
186      * Returns the crossover rate.
187      * @return crossover rate
188      */
getCrossoverRate()189     public double getCrossoverRate() {
190         return crossoverRate;
191     }
192 
193     /**
194      * Returns the mutation policy.
195      * @return mutation policy
196      */
getMutationPolicy()197     public MutationPolicy getMutationPolicy() {
198         return mutationPolicy;
199     }
200 
201     /**
202      * Returns the mutation rate.
203      * @return mutation rate
204      */
getMutationRate()205     public double getMutationRate() {
206         return mutationRate;
207     }
208 
209     /**
210      * Returns the selection policy.
211      * @return selection policy
212      */
getSelectionPolicy()213     public SelectionPolicy getSelectionPolicy() {
214         return selectionPolicy;
215     }
216 
217     /**
218      * Returns the number of generations evolved to
219      * reach {@link StoppingCondition} in the last run.
220      *
221      * @return number of generations evolved
222      * @since 2.1
223      */
getGenerationsEvolved()224     public int getGenerationsEvolved() {
225         return generationsEvolved;
226     }
227 
228 }
229