1 /*
2 * Copyright © 2008, 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file list.h
26 * \brief Doubly-linked list abstract container type.
27 *
28 * Each doubly-linked list has a sentinel head and tail node. These nodes
29 * contain no data. The head sentinel can be identified by its \c prev
30 * pointer being \c NULL. The tail sentinel can be identified by its
31 * \c next pointer being \c NULL.
32 *
33 * A list is empty if either the head sentinel's \c next pointer points to the
34 * tail sentinel or the tail sentinel's \c prev poiner points to the head
35 * sentinel.
36 *
37 * Instead of tracking two separate \c node structures and a \c list structure
38 * that points to them, the sentinel nodes are in a single structure. Noting
39 * that each sentinel node always has one \c NULL pointer, the \c NULL
40 * pointers occupy the same memory location. In the \c list structure
41 * contains a the following:
42 *
43 * - A \c head pointer that represents the \c next pointer of the
44 * head sentinel node.
45 * - A \c tail pointer that represents the \c prev pointer of the head
46 * sentinel node and the \c next pointer of the tail sentinel node. This
47 * pointer is \b always \c NULL.
48 * - A \c tail_prev pointer that represents the \c prev pointer of the
49 * tail sentinel node.
50 *
51 * Therefore, if \c head->next is \c NULL or \c tail_prev->prev is \c NULL,
52 * the list is empty.
53 *
54 * To anyone familiar with "exec lists" on the Amiga, this structure should
55 * be immediately recognizable. See the following link for the original Amiga
56 * operating system documentation on the subject.
57 *
58 * http://www.natami.net/dev/Libraries_Manual_guide/node02D7.html
59 *
60 * \author Ian Romanick <ian.d.romanick@intel.com>
61 */
62
63 #pragma once
64 #ifndef LIST_CONTAINER_H
65 #define LIST_CONTAINER_H
66
67 #ifndef __cplusplus
68 #include <stddef.h>
69 #endif
70 #include <assert.h>
71
72 #include "ralloc.h"
73
74 struct exec_node {
75 struct exec_node *next;
76 struct exec_node *prev;
77
78 #ifdef __cplusplus
79 /* Callers of this ralloc-based new need not call delete. It's
80 * easier to just ralloc_free 'ctx' (or any of its ancestors). */
newexec_node81 static void* operator new(size_t size, void *ctx)
82 {
83 void *node;
84
85 node = ralloc_size(ctx, size);
86 assert(node != NULL);
87
88 return node;
89 }
90
91 /* If the user *does* call delete, that's OK, we will just
92 * ralloc_free in that case. */
deleteexec_node93 static void operator delete(void *node)
94 {
95 ralloc_free(node);
96 }
97
exec_nodeexec_node98 exec_node() : next(NULL), prev(NULL)
99 {
100 /* empty */
101 }
102
get_nextexec_node103 const exec_node *get_next() const
104 {
105 return next;
106 }
107
get_nextexec_node108 exec_node *get_next()
109 {
110 return next;
111 }
112
get_prevexec_node113 const exec_node *get_prev() const
114 {
115 return prev;
116 }
117
get_prevexec_node118 exec_node *get_prev()
119 {
120 return prev;
121 }
122
removeexec_node123 void remove()
124 {
125 next->prev = prev;
126 prev->next = next;
127 next = NULL;
128 prev = NULL;
129 }
130
131 /**
132 * Link a node with itself
133 *
134 * This creates a sort of degenerate list that is occasionally useful.
135 */
self_linkexec_node136 void self_link()
137 {
138 next = this;
139 prev = this;
140 }
141
142 /**
143 * Insert a node in the list after the current node
144 */
insert_afterexec_node145 void insert_after(exec_node *after)
146 {
147 after->next = this->next;
148 after->prev = this;
149
150 this->next->prev = after;
151 this->next = after;
152 }
153 /**
154 * Insert a node in the list before the current node
155 */
insert_beforeexec_node156 void insert_before(exec_node *before)
157 {
158 before->next = this;
159 before->prev = this->prev;
160
161 this->prev->next = before;
162 this->prev = before;
163 }
164
165 /**
166 * Insert another list in the list before the current node
167 */
168 void insert_before(struct exec_list *before);
169
170 /**
171 * Replace the current node with the given node.
172 */
replace_withexec_node173 void replace_with(exec_node *replacement)
174 {
175 replacement->prev = this->prev;
176 replacement->next = this->next;
177
178 this->prev->next = replacement;
179 this->next->prev = replacement;
180 }
181
182 /**
183 * Is this the sentinel at the tail of the list?
184 */
is_tail_sentinelexec_node185 bool is_tail_sentinel() const
186 {
187 return this->next == NULL;
188 }
189
190 /**
191 * Is this the sentinel at the head of the list?
192 */
is_head_sentinelexec_node193 bool is_head_sentinel() const
194 {
195 return this->prev == NULL;
196 }
197 #endif
198 };
199
200
201 #ifdef __cplusplus
202 /* This macro will not work correctly if `t' uses virtual inheritance. If you
203 * are using virtual inheritance, you deserve a slow and painful death. Enjoy!
204 */
205 #define exec_list_offsetof(t, f, p) \
206 (((char *) &((t *) p)->f) - ((char *) p))
207 #else
208 #define exec_list_offsetof(t, f, p) offsetof(t, f)
209 #endif
210
211 /**
212 * Get a pointer to the structure containing an exec_node
213 *
214 * Given a pointer to an \c exec_node embedded in a structure, get a pointer to
215 * the containing structure.
216 *
217 * \param type Base type of the structure containing the node
218 * \param node Pointer to the \c exec_node
219 * \param field Name of the field in \c type that is the embedded \c exec_node
220 */
221 #define exec_node_data(type, node, field) \
222 ((type *) (((char *) node) - exec_list_offsetof(type, field, node)))
223
224 #ifdef __cplusplus
225 struct exec_node;
226
227 class iterator {
228 public:
next()229 void next()
230 {
231 }
232
get()233 void *get()
234 {
235 return NULL;
236 }
237
has_next()238 bool has_next() const
239 {
240 return false;
241 }
242 };
243
244 class exec_list_iterator : public iterator {
245 public:
exec_list_iterator(exec_node * n)246 exec_list_iterator(exec_node *n) : node(n), _next(n->next)
247 {
248 /* empty */
249 }
250
next()251 void next()
252 {
253 node = _next;
254 _next = node->next;
255 }
256
remove()257 void remove()
258 {
259 node->remove();
260 }
261
get()262 exec_node *get()
263 {
264 return node;
265 }
266
has_next()267 bool has_next() const
268 {
269 return _next != NULL;
270 }
271
272 private:
273 exec_node *node;
274 exec_node *_next;
275 };
276
277 #define foreach_iter(iter_type, iter, container) \
278 for (iter_type iter = (container) . iterator(); iter.has_next(); iter.next())
279 #endif
280
281
282 struct exec_list {
283 struct exec_node *head;
284 struct exec_node *tail;
285 struct exec_node *tail_pred;
286
287 #ifdef __cplusplus
288 /* Callers of this ralloc-based new need not call delete. It's
289 * easier to just ralloc_free 'ctx' (or any of its ancestors). */
newexec_list290 static void* operator new(size_t size, void *ctx)
291 {
292 void *node;
293
294 node = ralloc_size(ctx, size);
295 assert(node != NULL);
296
297 return node;
298 }
299
300 /* If the user *does* call delete, that's OK, we will just
301 * ralloc_free in that case. */
deleteexec_list302 static void operator delete(void *node)
303 {
304 ralloc_free(node);
305 }
306
exec_listexec_list307 exec_list()
308 {
309 make_empty();
310 }
311
make_emptyexec_list312 void make_empty()
313 {
314 head = (exec_node *) & tail;
315 tail = NULL;
316 tail_pred = (exec_node *) & head;
317 }
318
is_emptyexec_list319 bool is_empty() const
320 {
321 /* There are three ways to test whether a list is empty or not.
322 *
323 * - Check to see if the \c head points to the \c tail.
324 * - Check to see if the \c tail_pred points to the \c head.
325 * - Check to see if the \c head is the sentinel node by test whether its
326 * \c next pointer is \c NULL.
327 *
328 * The first two methods tend to generate better code on modern systems
329 * because they save a pointer dereference.
330 */
331 return head == (exec_node *) &tail;
332 }
333
get_headexec_list334 const exec_node *get_head() const
335 {
336 return !is_empty() ? head : NULL;
337 }
338
get_headexec_list339 exec_node *get_head()
340 {
341 return !is_empty() ? head : NULL;
342 }
343
get_tailexec_list344 const exec_node *get_tail() const
345 {
346 return !is_empty() ? tail_pred : NULL;
347 }
348
get_tailexec_list349 exec_node *get_tail()
350 {
351 return !is_empty() ? tail_pred : NULL;
352 }
353
push_headexec_list354 void push_head(exec_node *n)
355 {
356 n->next = head;
357 n->prev = (exec_node *) &head;
358
359 n->next->prev = n;
360 head = n;
361 }
362
push_tailexec_list363 void push_tail(exec_node *n)
364 {
365 n->next = (exec_node *) &tail;
366 n->prev = tail_pred;
367
368 n->prev->next = n;
369 tail_pred = n;
370 }
371
push_degenerate_list_at_headexec_list372 void push_degenerate_list_at_head(exec_node *n)
373 {
374 assert(n->prev->next == n);
375
376 n->prev->next = head;
377 head->prev = n->prev;
378 n->prev = (exec_node *) &head;
379 head = n;
380 }
381
382 /**
383 * Remove the first node from a list and return it
384 *
385 * \return
386 * The first node in the list or \c NULL if the list is empty.
387 *
388 * \sa exec_list::get_head
389 */
pop_headexec_list390 exec_node *pop_head()
391 {
392 exec_node *const n = this->get_head();
393 if (n != NULL)
394 n->remove();
395
396 return n;
397 }
398
399 /**
400 * Move all of the nodes from this list to the target list
401 */
move_nodes_toexec_list402 void move_nodes_to(exec_list *target)
403 {
404 if (is_empty()) {
405 target->make_empty();
406 } else {
407 target->head = head;
408 target->tail = NULL;
409 target->tail_pred = tail_pred;
410
411 target->head->prev = (exec_node *) &target->head;
412 target->tail_pred->next = (exec_node *) &target->tail;
413
414 make_empty();
415 }
416 }
417
418 /**
419 * Append all nodes from the source list to the target list
420 */
421 void
append_listexec_list422 append_list(exec_list *source)
423 {
424 if (source->is_empty())
425 return;
426
427 /* Link the first node of the source with the last node of the target list.
428 */
429 this->tail_pred->next = source->head;
430 source->head->prev = this->tail_pred;
431
432 /* Make the tail of the source list be the tail of the target list.
433 */
434 this->tail_pred = source->tail_pred;
435 this->tail_pred->next = (exec_node *) &this->tail;
436
437 /* Make the source list empty for good measure.
438 */
439 source->make_empty();
440 }
441
iteratorexec_list442 exec_list_iterator iterator()
443 {
444 return exec_list_iterator(head);
445 }
446
iteratorexec_list447 exec_list_iterator iterator() const
448 {
449 return exec_list_iterator((exec_node *) head);
450 }
451 #endif
452 };
453
454
455 #ifdef __cplusplus
insert_before(exec_list * before)456 inline void exec_node::insert_before(exec_list *before)
457 {
458 if (before->is_empty())
459 return;
460
461 before->tail_pred->next = this;
462 before->head->prev = this->prev;
463
464 this->prev->next = before->head;
465 this->prev = before->tail_pred;
466
467 before->make_empty();
468 }
469 #endif
470
471 /**
472 * This version is safe even if the current node is removed.
473 */
474 #define foreach_list_safe(__node, __list) \
475 for (exec_node * __node = (__list)->head, * __next = __node->next \
476 ; __next != NULL \
477 ; __node = __next, __next = __next->next)
478
479 #define foreach_list(__node, __list) \
480 for (exec_node * __node = (__list)->head \
481 ; (__node)->next != NULL \
482 ; (__node) = (__node)->next)
483
484 #define foreach_list_const(__node, __list) \
485 for (const exec_node * __node = (__list)->head \
486 ; (__node)->next != NULL \
487 ; (__node) = (__node)->next)
488
489 #define foreach_list_typed(__type, __node, __field, __list) \
490 for (__type * __node = \
491 exec_node_data(__type, (__list)->head, __field); \
492 (__node)->__field.next != NULL; \
493 (__node) = exec_node_data(__type, (__node)->__field.next, __field))
494
495 #define foreach_list_typed_const(__type, __node, __field, __list) \
496 for (const __type * __node = \
497 exec_node_data(__type, (__list)->head, __field); \
498 (__node)->__field.next != NULL; \
499 (__node) = exec_node_data(__type, (__node)->__field.next, __field))
500
501 #endif /* LIST_CONTAINER_H */
502