1 //===-- llvm/ADT/APSInt.h - Arbitrary Precision Signed Int -----*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the APSInt class, which is a simple class that
11 // represents an arbitrary sized integer that knows its signedness.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ADT_APSINT_H
16 #define LLVM_ADT_APSINT_H
17 
18 #include "llvm/ADT/APInt.h"
19 
20 namespace llvm {
21 
22 class APSInt : public APInt {
23   bool IsUnsigned;
24 
25 public:
26   /// Default constructor that creates an uninitialized APInt.
APSInt()27   explicit APSInt() : IsUnsigned(false) {}
28 
29   /// APSInt ctor - Create an APSInt with the specified width, default to
30   /// unsigned.
31   explicit APSInt(uint32_t BitWidth, bool isUnsigned = true)
32    : APInt(BitWidth, 0), IsUnsigned(isUnsigned) {}
33 
34   explicit APSInt(APInt I, bool isUnsigned = true)
APInt(std::move (I))35    : APInt(std::move(I)), IsUnsigned(isUnsigned) {}
36 
37   /// Construct an APSInt from a string representation.
38   ///
39   /// This constructor interprets the string \p Str using the radix of 10.
40   /// The interpretation stops at the end of the string. The bit width of the
41   /// constructed APSInt is determined automatically.
42   ///
43   /// \param Str the string to be interpreted.
44   explicit APSInt(StringRef Str);
45 
46   APSInt &operator=(APInt RHS) {
47     // Retain our current sign.
48     APInt::operator=(std::move(RHS));
49     return *this;
50   }
51 
52   APSInt &operator=(uint64_t RHS) {
53     // Retain our current sign.
54     APInt::operator=(RHS);
55     return *this;
56   }
57 
58   // Query sign information.
isSigned()59   bool isSigned() const { return !IsUnsigned; }
isUnsigned()60   bool isUnsigned() const { return IsUnsigned; }
setIsUnsigned(bool Val)61   void setIsUnsigned(bool Val) { IsUnsigned = Val; }
setIsSigned(bool Val)62   void setIsSigned(bool Val) { IsUnsigned = !Val; }
63 
64   /// toString - Append this APSInt to the specified SmallString.
65   void toString(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
66     APInt::toString(Str, Radix, isSigned());
67   }
68   /// toString - Converts an APInt to a std::string.  This is an inefficient
69   /// method; you should prefer passing in a SmallString instead.
toString(unsigned Radix)70   std::string toString(unsigned Radix) const {
71     return APInt::toString(Radix, isSigned());
72   }
73   using APInt::toString;
74 
75   /// \brief Get the correctly-extended \c int64_t value.
getExtValue()76   int64_t getExtValue() const {
77     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
78     return isSigned() ? getSExtValue() : getZExtValue();
79   }
80 
trunc(uint32_t width)81   APSInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(uint32_t width) const {
82     return APSInt(APInt::trunc(width), IsUnsigned);
83   }
84 
extend(uint32_t width)85   APSInt LLVM_ATTRIBUTE_UNUSED_RESULT extend(uint32_t width) const {
86     if (IsUnsigned)
87       return APSInt(zext(width), IsUnsigned);
88     else
89       return APSInt(sext(width), IsUnsigned);
90   }
91 
extOrTrunc(uint32_t width)92   APSInt LLVM_ATTRIBUTE_UNUSED_RESULT extOrTrunc(uint32_t width) const {
93       if (IsUnsigned)
94         return APSInt(zextOrTrunc(width), IsUnsigned);
95       else
96         return APSInt(sextOrTrunc(width), IsUnsigned);
97   }
98 
99   const APSInt &operator%=(const APSInt &RHS) {
100     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
101     if (IsUnsigned)
102       *this = urem(RHS);
103     else
104       *this = srem(RHS);
105     return *this;
106   }
107   const APSInt &operator/=(const APSInt &RHS) {
108     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
109     if (IsUnsigned)
110       *this = udiv(RHS);
111     else
112       *this = sdiv(RHS);
113     return *this;
114   }
115   APSInt operator%(const APSInt &RHS) const {
116     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
117     return IsUnsigned ? APSInt(urem(RHS), true) : APSInt(srem(RHS), false);
118   }
119   APSInt operator/(const APSInt &RHS) const {
120     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
121     return IsUnsigned ? APSInt(udiv(RHS), true) : APSInt(sdiv(RHS), false);
122   }
123 
124   APSInt operator>>(unsigned Amt) const {
125     return IsUnsigned ? APSInt(lshr(Amt), true) : APSInt(ashr(Amt), false);
126   }
127   APSInt& operator>>=(unsigned Amt) {
128     *this = *this >> Amt;
129     return *this;
130   }
131 
132   inline bool operator<(const APSInt& RHS) const {
133     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
134     return IsUnsigned ? ult(RHS) : slt(RHS);
135   }
136   inline bool operator>(const APSInt& RHS) const {
137     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
138     return IsUnsigned ? ugt(RHS) : sgt(RHS);
139   }
140   inline bool operator<=(const APSInt& RHS) const {
141     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
142     return IsUnsigned ? ule(RHS) : sle(RHS);
143   }
144   inline bool operator>=(const APSInt& RHS) const {
145     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
146     return IsUnsigned ? uge(RHS) : sge(RHS);
147   }
148   inline bool operator==(const APSInt& RHS) const {
149     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
150     return eq(RHS);
151   }
152   inline bool operator!=(const APSInt& RHS) const {
153     return !((*this) == RHS);
154   }
155 
156   bool operator==(int64_t RHS) const {
157     return compareValues(*this, get(RHS)) == 0;
158   }
159   bool operator!=(int64_t RHS) const {
160     return compareValues(*this, get(RHS)) != 0;
161   }
162   bool operator<=(int64_t RHS) const {
163     return compareValues(*this, get(RHS)) <= 0;
164   }
165   bool operator>=(int64_t RHS) const {
166     return compareValues(*this, get(RHS)) >= 0;
167   }
168   bool operator<(int64_t RHS) const {
169     return compareValues(*this, get(RHS)) < 0;
170   }
171   bool operator>(int64_t RHS) const {
172     return compareValues(*this, get(RHS)) > 0;
173   }
174 
175   // The remaining operators just wrap the logic of APInt, but retain the
176   // signedness information.
177 
178   APSInt operator<<(unsigned Bits) const {
179     return APSInt(static_cast<const APInt&>(*this) << Bits, IsUnsigned);
180   }
181   APSInt& operator<<=(unsigned Amt) {
182     *this = *this << Amt;
183     return *this;
184   }
185 
186   APSInt& operator++() {
187     ++(static_cast<APInt&>(*this));
188     return *this;
189   }
190   APSInt& operator--() {
191     --(static_cast<APInt&>(*this));
192     return *this;
193   }
194   APSInt operator++(int) {
195     return APSInt(++static_cast<APInt&>(*this), IsUnsigned);
196   }
197   APSInt operator--(int) {
198     return APSInt(--static_cast<APInt&>(*this), IsUnsigned);
199   }
200   APSInt operator-() const {
201     return APSInt(-static_cast<const APInt&>(*this), IsUnsigned);
202   }
203   APSInt& operator+=(const APSInt& RHS) {
204     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
205     static_cast<APInt&>(*this) += RHS;
206     return *this;
207   }
208   APSInt& operator-=(const APSInt& RHS) {
209     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
210     static_cast<APInt&>(*this) -= RHS;
211     return *this;
212   }
213   APSInt& operator*=(const APSInt& RHS) {
214     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
215     static_cast<APInt&>(*this) *= RHS;
216     return *this;
217   }
218   APSInt& operator&=(const APSInt& RHS) {
219     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
220     static_cast<APInt&>(*this) &= RHS;
221     return *this;
222   }
223   APSInt& operator|=(const APSInt& RHS) {
224     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
225     static_cast<APInt&>(*this) |= RHS;
226     return *this;
227   }
228   APSInt& operator^=(const APSInt& RHS) {
229     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
230     static_cast<APInt&>(*this) ^= RHS;
231     return *this;
232   }
233 
234   APSInt operator&(const APSInt& RHS) const {
235     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
236     return APSInt(static_cast<const APInt&>(*this) & RHS, IsUnsigned);
237   }
And(const APSInt & RHS)238   APSInt LLVM_ATTRIBUTE_UNUSED_RESULT And(const APSInt& RHS) const {
239     return this->operator&(RHS);
240   }
241 
242   APSInt operator|(const APSInt& RHS) const {
243     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
244     return APSInt(static_cast<const APInt&>(*this) | RHS, IsUnsigned);
245   }
Or(const APSInt & RHS)246   APSInt LLVM_ATTRIBUTE_UNUSED_RESULT Or(const APSInt& RHS) const {
247     return this->operator|(RHS);
248   }
249 
250   APSInt operator^(const APSInt &RHS) const {
251     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
252     return APSInt(static_cast<const APInt&>(*this) ^ RHS, IsUnsigned);
253   }
Xor(const APSInt & RHS)254   APSInt LLVM_ATTRIBUTE_UNUSED_RESULT Xor(const APSInt& RHS) const {
255     return this->operator^(RHS);
256   }
257 
258   APSInt operator*(const APSInt& RHS) const {
259     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
260     return APSInt(static_cast<const APInt&>(*this) * RHS, IsUnsigned);
261   }
262   APSInt operator+(const APSInt& RHS) const {
263     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
264     return APSInt(static_cast<const APInt&>(*this) + RHS, IsUnsigned);
265   }
266   APSInt operator-(const APSInt& RHS) const {
267     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
268     return APSInt(static_cast<const APInt&>(*this) - RHS, IsUnsigned);
269   }
270   APSInt operator~() const {
271     return APSInt(~static_cast<const APInt&>(*this), IsUnsigned);
272   }
273 
274   /// getMaxValue - Return the APSInt representing the maximum integer value
275   ///  with the given bit width and signedness.
getMaxValue(uint32_t numBits,bool Unsigned)276   static APSInt getMaxValue(uint32_t numBits, bool Unsigned) {
277     return APSInt(Unsigned ? APInt::getMaxValue(numBits)
278                            : APInt::getSignedMaxValue(numBits), Unsigned);
279   }
280 
281   /// getMinValue - Return the APSInt representing the minimum integer value
282   ///  with the given bit width and signedness.
getMinValue(uint32_t numBits,bool Unsigned)283   static APSInt getMinValue(uint32_t numBits, bool Unsigned) {
284     return APSInt(Unsigned ? APInt::getMinValue(numBits)
285                            : APInt::getSignedMinValue(numBits), Unsigned);
286   }
287 
288   /// \brief Determine if two APSInts have the same value, zero- or
289   /// sign-extending as needed.
isSameValue(const APSInt & I1,const APSInt & I2)290   static bool isSameValue(const APSInt &I1, const APSInt &I2) {
291     return !compareValues(I1, I2);
292   }
293 
294   /// \brief Compare underlying values of two numbers.
compareValues(const APSInt & I1,const APSInt & I2)295   static int compareValues(const APSInt &I1, const APSInt &I2) {
296     if (I1.getBitWidth() == I2.getBitWidth() && I1.isSigned() == I2.isSigned())
297       return I1 == I2 ? 0 : I1 > I2 ? 1 : -1;
298 
299     // Check for a bit-width mismatch.
300     if (I1.getBitWidth() > I2.getBitWidth())
301       return compareValues(I1, I2.extend(I1.getBitWidth()));
302     else if (I2.getBitWidth() > I1.getBitWidth())
303       return compareValues(I1.extend(I2.getBitWidth()), I2);
304 
305     // We have a signedness mismatch. Check for negative values and do an
306     // unsigned compare if both are positive.
307     if (I1.isSigned()) {
308       assert(!I2.isSigned() && "Expected signed mismatch");
309       if (I1.isNegative())
310         return -1;
311     } else {
312       assert(I2.isSigned() && "Expected signed mismatch");
313       if (I2.isNegative())
314         return 1;
315     }
316 
317     return I1.eq(I2) ? 0 : I1.ugt(I2) ? 1 : -1;
318   }
319 
get(int64_t X)320   static APSInt get(int64_t X) { return APSInt(APInt(64, X), false); }
getUnsigned(uint64_t X)321   static APSInt getUnsigned(uint64_t X) { return APSInt(APInt(64, X), true); }
322 
323   /// Profile - Used to insert APSInt objects, or objects that contain APSInt
324   ///  objects, into FoldingSets.
325   void Profile(FoldingSetNodeID& ID) const;
326 };
327 
328 inline bool operator==(int64_t V1, const APSInt &V2) { return V2 == V1; }
329 inline bool operator!=(int64_t V1, const APSInt &V2) { return V2 != V1; }
330 inline bool operator<=(int64_t V1, const APSInt &V2) { return V2 >= V1; }
331 inline bool operator>=(int64_t V1, const APSInt &V2) { return V2 <= V1; }
332 inline bool operator<(int64_t V1, const APSInt &V2) { return V2 > V1; }
333 inline bool operator>(int64_t V1, const APSInt &V2) { return V2 < V1; }
334 
335 inline raw_ostream &operator<<(raw_ostream &OS, const APSInt &I) {
336   I.print(OS, I.isSigned());
337   return OS;
338 }
339 
340 } // end namespace llvm
341 
342 #endif
343