1 /*
2  * Copyright 2013 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkMipMap.h"
9 #include "SkBitmap.h"
10 #include "SkColorPriv.h"
11 #include "SkMath.h"
12 #include "SkNx.h"
13 #include "SkTypes.h"
14 
15 //
16 // ColorTypeFilter is the "Type" we pass to some downsample template functions.
17 // It controls how we expand a pixel into a large type, with space between each component,
18 // so we can then perform our simple filter (either box or triangle) and store the intermediates
19 // in the expanded type.
20 //
21 
22 struct ColorTypeFilter_8888 {
23     typedef uint32_t Type;
24 #if defined(SKNX_IS_FAST)
ExpandColorTypeFilter_888825     static Sk4h Expand(uint32_t x) {
26         return SkNx_cast<uint16_t>(Sk4b::Load(&x));
27     }
CompactColorTypeFilter_888828     static uint32_t Compact(const Sk4h& x) {
29         uint32_t r;
30         SkNx_cast<uint8_t>(x).store(&r);
31         return r;
32     }
33 #else
ExpandColorTypeFilter_888834     static uint64_t Expand(uint32_t x) {
35         return (x & 0xFF00FF) | ((uint64_t)(x & 0xFF00FF00) << 24);
36     }
CompactColorTypeFilter_888837     static uint32_t Compact(uint64_t x) {
38         return (uint32_t)((x & 0xFF00FF) | ((x >> 24) & 0xFF00FF00));
39     }
40 #endif
41 };
42 
43 struct ColorTypeFilter_565 {
44     typedef uint16_t Type;
ExpandColorTypeFilter_56545     static uint32_t Expand(uint16_t x) {
46         return (x & ~SK_G16_MASK_IN_PLACE) | ((x & SK_G16_MASK_IN_PLACE) << 16);
47     }
CompactColorTypeFilter_56548     static uint16_t Compact(uint32_t x) {
49         return (x & ~SK_G16_MASK_IN_PLACE) | ((x >> 16) & SK_G16_MASK_IN_PLACE);
50     }
51 };
52 
53 struct ColorTypeFilter_4444 {
54     typedef uint16_t Type;
ExpandColorTypeFilter_444455     static uint32_t Expand(uint16_t x) {
56         return (x & 0xF0F) | ((x & ~0xF0F) << 12);
57     }
CompactColorTypeFilter_444458     static uint16_t Compact(uint32_t x) {
59         return (x & 0xF0F) | ((x >> 12) & ~0xF0F);
60     }
61 };
62 
63 struct ColorTypeFilter_8 {
64     typedef uint8_t Type;
ExpandColorTypeFilter_865     static unsigned Expand(unsigned x) {
66         return x;
67     }
CompactColorTypeFilter_868     static uint8_t Compact(unsigned x) {
69         return (uint8_t)x;
70     }
71 };
72 
add_121(const T & a,const T & b,const T & c)73 template <typename T> T add_121(const T& a, const T& b, const T& c) {
74     return a + b + b + c;
75 }
76 
77 //
78 //  To produce each mip level, we need to filter down by 1/2 (e.g. 100x100 -> 50,50)
79 //  If the starting dimension is odd, we floor the size of the lower level (e.g. 101 -> 50)
80 //  In those (odd) cases, we use a triangle filter, with 1-pixel overlap between samplings,
81 //  else for even cases, we just use a 2x box filter.
82 //
83 //  This produces 4 possible filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of src pixels
84 //  we need to sample in each dimension to produce 1 dst pixel.
85 //
86 
downsample_2_2(void * dst,const void * src,size_t srcRB,int count)87 template <typename F> void downsample_2_2(void* dst, const void* src, size_t srcRB, int count) {
88     auto p0 = static_cast<const typename F::Type*>(src);
89     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
90     auto d = static_cast<typename F::Type*>(dst);
91 
92     for (int i = 0; i < count; ++i) {
93         auto c00 = F::Expand(p0[0]);
94         auto c01 = F::Expand(p0[1]);
95         auto c10 = F::Expand(p1[0]);
96         auto c11 = F::Expand(p1[1]);
97 
98         auto c = c00 + c10 + c01 + c11;
99         d[i] = F::Compact(c >> 2);
100         p0 += 2;
101         p1 += 2;
102     }
103 }
104 
downsample_3_2(void * dst,const void * src,size_t srcRB,int count)105 template <typename F> void downsample_3_2(void* dst, const void* src, size_t srcRB, int count) {
106     SkASSERT(count > 0);
107     auto p0 = static_cast<const typename F::Type*>(src);
108     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
109     auto d = static_cast<typename F::Type*>(dst);
110 
111     auto c02 = F::Expand(p0[0]);
112     auto c12 = F::Expand(p1[0]);
113     for (int i = 0; i < count; ++i) {
114         auto c00 = c02;
115         auto c01 = F::Expand(p0[1]);
116              c02 = F::Expand(p0[2]);
117         auto c10 = c12;
118         auto c11 = F::Expand(p1[1]);
119              c12 = F::Expand(p1[2]);
120 
121         auto c = add_121(c00, c01, c02) + add_121(c10, c11, c12);
122         d[i] = F::Compact(c >> 3);
123         p0 += 2;
124         p1 += 2;
125     }
126 }
127 
downsample_2_3(void * dst,const void * src,size_t srcRB,int count)128 template <typename F> void downsample_2_3(void* dst, const void* src, size_t srcRB, int count) {
129     auto p0 = static_cast<const typename F::Type*>(src);
130     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
131     auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
132     auto d = static_cast<typename F::Type*>(dst);
133 
134     for (int i = 0; i < count; ++i) {
135         auto c00 = F::Expand(p0[0]);
136         auto c01 = F::Expand(p0[1]);
137         auto c10 = F::Expand(p1[0]);
138         auto c11 = F::Expand(p1[1]);
139         auto c20 = F::Expand(p2[0]);
140         auto c21 = F::Expand(p2[1]);
141 
142         auto c = add_121(c00, c10, c20) + add_121(c01, c11, c21);
143         d[i] = F::Compact(c >> 3);
144         p0 += 2;
145         p1 += 2;
146         p2 += 2;
147     }
148 }
149 
downsample_3_3(void * dst,const void * src,size_t srcRB,int count)150 template <typename F> void downsample_3_3(void* dst, const void* src, size_t srcRB, int count) {
151     auto p0 = static_cast<const typename F::Type*>(src);
152     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
153     auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
154     auto d = static_cast<typename F::Type*>(dst);
155 
156     auto c02 = F::Expand(p0[0]);
157     auto c12 = F::Expand(p1[0]);
158     auto c22 = F::Expand(p2[0]);
159     for (int i = 0; i < count; ++i) {
160         auto c00 = c02;
161         auto c01 = F::Expand(p0[1]);
162              c02 = F::Expand(p0[2]);
163         auto c10 = c12;
164         auto c11 = F::Expand(p1[1]);
165              c12 = F::Expand(p1[2]);
166         auto c20 = c22;
167         auto c21 = F::Expand(p2[1]);
168              c22 = F::Expand(p2[2]);
169 
170         auto c = add_121(c00, c01, c02) + (add_121(c10, c11, c12) << 1) + add_121(c20, c21, c22);
171         d[i] = F::Compact(c >> 4);
172         p0 += 2;
173         p1 += 2;
174         p2 += 2;
175     }
176 }
177 
178 ///////////////////////////////////////////////////////////////////////////////////////////////////
179 
AllocLevelsSize(int levelCount,size_t pixelSize)180 size_t SkMipMap::AllocLevelsSize(int levelCount, size_t pixelSize) {
181     if (levelCount < 0) {
182         return 0;
183     }
184     int64_t size = sk_64_mul(levelCount + 1, sizeof(Level)) + pixelSize;
185     if (!sk_64_isS32(size)) {
186         return 0;
187     }
188     return sk_64_asS32(size);
189 }
190 
Build(const SkPixmap & src,SkDiscardableFactoryProc fact)191 SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDiscardableFactoryProc fact) {
192     typedef void FilterProc(void*, const void* srcPtr, size_t srcRB, int count);
193 
194     FilterProc* proc_2_2 = nullptr;
195     FilterProc* proc_2_3 = nullptr;
196     FilterProc* proc_3_2 = nullptr;
197     FilterProc* proc_3_3 = nullptr;
198 
199     const SkColorType ct = src.colorType();
200     const SkAlphaType at = src.alphaType();
201     switch (ct) {
202         case kRGBA_8888_SkColorType:
203         case kBGRA_8888_SkColorType:
204             proc_2_2 = downsample_2_2<ColorTypeFilter_8888>;
205             proc_2_3 = downsample_2_3<ColorTypeFilter_8888>;
206             proc_3_2 = downsample_3_2<ColorTypeFilter_8888>;
207             proc_3_3 = downsample_3_3<ColorTypeFilter_8888>;
208             break;
209         case kRGB_565_SkColorType:
210             proc_2_2 = downsample_2_2<ColorTypeFilter_565>;
211             proc_2_3 = downsample_2_3<ColorTypeFilter_565>;
212             proc_3_2 = downsample_3_2<ColorTypeFilter_565>;
213             proc_3_3 = downsample_3_3<ColorTypeFilter_565>;
214             break;
215         case kARGB_4444_SkColorType:
216             proc_2_2 = downsample_2_2<ColorTypeFilter_4444>;
217             proc_2_3 = downsample_2_3<ColorTypeFilter_4444>;
218             proc_3_2 = downsample_3_2<ColorTypeFilter_4444>;
219             proc_3_3 = downsample_3_3<ColorTypeFilter_4444>;
220             break;
221         case kAlpha_8_SkColorType:
222         case kGray_8_SkColorType:
223             proc_2_2 = downsample_2_2<ColorTypeFilter_8>;
224             proc_2_3 = downsample_2_3<ColorTypeFilter_8>;
225             proc_3_2 = downsample_3_2<ColorTypeFilter_8>;
226             proc_3_3 = downsample_3_3<ColorTypeFilter_8>;
227             break;
228         default:
229             // TODO: We could build miplevels for kIndex8 if the levels were in 8888.
230             //       Means using more ram, but the quality would be fine.
231             return nullptr;
232     }
233 
234     // whip through our loop to compute the exact size needed
235     size_t  size = 0;
236     int     countLevels = 0;
237     {
238         int width = src.width();
239         int height = src.height();
240         for (;;) {
241             width >>= 1;
242             height >>= 1;
243             if (0 == width || 0 == height) {
244                 break;
245             }
246             size += SkColorTypeMinRowBytes(ct, width) * height;
247             countLevels += 1;
248         }
249     }
250     if (0 == countLevels) {
251         return nullptr;
252     }
253 
254     SkASSERT(countLevels == SkMipMap::ComputeLevelCount(src.width(), src.height()));
255 
256     size_t storageSize = SkMipMap::AllocLevelsSize(countLevels, size);
257     if (0 == storageSize) {
258         return nullptr;
259     }
260 
261     SkMipMap* mipmap;
262     if (fact) {
263         SkDiscardableMemory* dm = fact(storageSize);
264         if (nullptr == dm) {
265             return nullptr;
266         }
267         mipmap = new SkMipMap(storageSize, dm);
268     } else {
269         mipmap = new SkMipMap(sk_malloc_throw(storageSize), storageSize);
270     }
271 
272     // init
273     mipmap->fCount = countLevels;
274     mipmap->fLevels = (Level*)mipmap->writable_data();
275 
276     Level* levels = mipmap->fLevels;
277     uint8_t*    baseAddr = (uint8_t*)&levels[countLevels];
278     uint8_t*    addr = baseAddr;
279     int         width = src.width();
280     int         height = src.height();
281     uint32_t    rowBytes;
282     SkPixmap    srcPM(src);
283 
284     for (int i = 0; i < countLevels; ++i) {
285         FilterProc* proc;
286         if (height & 1) {        // src-height is 3
287             if (width & 1) {    // src-width is 3
288                 proc = proc_3_3;
289             } else {            // src-width is 2
290                 proc = proc_2_3;
291             }
292         } else {                // src-height is 2
293             if (width & 1) {    // src-width is 3
294                 proc = proc_3_2;
295             } else {            // src-width is 2
296                 proc = proc_2_2;
297             }
298         }
299         width >>= 1;
300         height >>= 1;
301         rowBytes = SkToU32(SkColorTypeMinRowBytes(ct, width));
302 
303         levels[i].fPixmap = SkPixmap(SkImageInfo::Make(width, height, ct, at), addr, rowBytes);
304         levels[i].fScale  = SkSize::Make(SkIntToScalar(width)  / src.width(),
305                                          SkIntToScalar(height) / src.height());
306 
307         const SkPixmap& dstPM = levels[i].fPixmap;
308         const void* srcBasePtr = srcPM.addr();
309         void* dstBasePtr = dstPM.writable_addr();
310 
311         const size_t srcRB = srcPM.rowBytes();
312         for (int y = 0; y < height; y++) {
313             proc(dstBasePtr, srcBasePtr, srcRB, width);
314             srcBasePtr = (char*)srcBasePtr + srcRB * 2; // jump two rows
315             dstBasePtr = (char*)dstBasePtr + dstPM.rowBytes();
316         }
317         srcPM = dstPM;
318         addr += height * rowBytes;
319     }
320     SkASSERT(addr == baseAddr + size);
321 
322     return mipmap;
323 }
324 
ComputeLevelCount(int baseWidth,int baseHeight)325 int SkMipMap::ComputeLevelCount(int baseWidth, int baseHeight) {
326     // OpenGL's spec requires that each mipmap level have height/width equal to
327     // max(1, floor(original_height / 2^i)
328     // (or original_width) where i is the mipmap level.
329     // Continue scaling down until both axes are size 1.
330     //
331     // This means it maintains isotropic space (both axes scaling down
332     // at the same rate) until one axis hits size 1.
333     // At that point, OpenGL continues to scale down into anisotropic space
334     // (where the scales are not the same between axes).
335     //
336     // Skia currently does not go into anisotropic space.
337     // Once an axis hits size 1 we stop.
338     // All this means is rather than use the largest axis we will use the
339     // smallest axis.
340 
341     const int smallestAxis = SkTMin(baseWidth, baseHeight);
342     if (smallestAxis < 2) {
343         // SkMipMap::Build requires a minimum size of 2.
344         return 0;
345     }
346     const int leadingZeros = SkCLZ(static_cast<uint32_t>(smallestAxis));
347     // If the value 00011010 has 3 leading 0s then it has 5 significant bits
348     // (the bits which are not leading zeros)
349     const int significantBits = (sizeof(uint32_t) * 8) - leadingZeros;
350     // This is making the assumption that the size of a byte is 8 bits
351     // and that sizeof(uint32_t)'s implementation-defined behavior is 4.
352     int mipLevelCount = significantBits;
353 
354     // SkMipMap does not include the base mip level.
355     // For example, it contains levels 1-x instead of 0-x.
356     // This is because the image used to create SkMipMap is the base level.
357     // So subtract 1 from the mip level count.
358     if (mipLevelCount > 0) {
359         --mipLevelCount;
360     }
361 
362     return mipLevelCount;
363 }
364 
365 ///////////////////////////////////////////////////////////////////////////////
366 
extractLevel(const SkSize & scaleSize,Level * levelPtr) const367 bool SkMipMap::extractLevel(const SkSize& scaleSize, Level* levelPtr) const {
368     if (nullptr == fLevels) {
369         return false;
370     }
371 
372     SkASSERT(scaleSize.width() >= 0 && scaleSize.height() >= 0);
373 
374 #ifndef SK_SUPPORT_LEGACY_ANISOTROPIC_MIPMAP_SCALE
375     // Use the smallest scale to match the GPU impl.
376     const SkScalar scale = SkTMin(scaleSize.width(), scaleSize.height());
377 #else
378     // Ideally we'd pick the smaller scale, to match Ganesh.  But ignoring one of the
379     // scales can produce some atrocious results, so for now we use the geometric mean.
380     // (https://bugs.chromium.org/p/skia/issues/detail?id=4863)
381     const SkScalar scale = SkScalarSqrt(scaleSize.width() * scaleSize.height());
382 #endif
383 
384     if (scale >= SK_Scalar1 || scale <= 0 || !SkScalarIsFinite(scale)) {
385         return false;
386     }
387 
388     SkScalar L = -SkScalarLog2(scale);
389     if (!SkScalarIsFinite(L)) {
390         return false;
391     }
392     SkASSERT(L >= 0);
393 //    int rndLevel = SkScalarRoundToInt(L);
394     int level = SkScalarFloorToInt(L);
395 //    SkDebugf("mipmap scale=%g L=%g level=%d rndLevel=%d\n", scale, L, level, rndLevel);
396 
397     SkASSERT(level >= 0);
398     if (level <= 0) {
399         return false;
400     }
401 
402     if (level > fCount) {
403         level = fCount;
404     }
405     if (levelPtr) {
406         *levelPtr = fLevels[level - 1];
407     }
408     return true;
409 }
410 
411 // Helper which extracts a pixmap from the src bitmap
412 //
Build(const SkBitmap & src,SkDiscardableFactoryProc fact)413 SkMipMap* SkMipMap::Build(const SkBitmap& src, SkDiscardableFactoryProc fact) {
414     SkAutoPixmapUnlock srcUnlocker;
415     if (!src.requestLock(&srcUnlocker)) {
416         return nullptr;
417     }
418     const SkPixmap& srcPixmap = srcUnlocker.pixmap();
419     // Try to catch where we might have returned nullptr for src crbug.com/492818
420     if (nullptr == srcPixmap.addr()) {
421         sk_throw();
422     }
423     return Build(srcPixmap, fact);
424 }
425 
countLevels() const426 int SkMipMap::countLevels() const {
427     return fCount;
428 }
429 
getLevel(int index,Level * levelPtr) const430 bool SkMipMap::getLevel(int index, Level* levelPtr) const {
431     if (NULL == fLevels) {
432         return false;
433     }
434     if (index < 0) {
435         return false;
436     }
437     if (index > fCount - 1) {
438         return false;
439     }
440     if (levelPtr) {
441         *levelPtr = fLevels[index];
442     }
443     return true;
444 }
445