1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30
31 #include "ceres/dogleg_strategy.h"
32
33 #include <cmath>
34 #include "Eigen/Dense"
35 #include "ceres/array_utils.h"
36 #include "ceres/internal/eigen.h"
37 #include "ceres/linear_least_squares_problems.h"
38 #include "ceres/linear_solver.h"
39 #include "ceres/polynomial.h"
40 #include "ceres/sparse_matrix.h"
41 #include "ceres/trust_region_strategy.h"
42 #include "ceres/types.h"
43 #include "glog/logging.h"
44
45 namespace ceres {
46 namespace internal {
47 namespace {
48 const double kMaxMu = 1.0;
49 const double kMinMu = 1e-8;
50 }
51
DoglegStrategy(const TrustRegionStrategy::Options & options)52 DoglegStrategy::DoglegStrategy(const TrustRegionStrategy::Options& options)
53 : linear_solver_(options.linear_solver),
54 radius_(options.initial_radius),
55 max_radius_(options.max_radius),
56 min_diagonal_(options.min_lm_diagonal),
57 max_diagonal_(options.max_lm_diagonal),
58 mu_(kMinMu),
59 min_mu_(kMinMu),
60 max_mu_(kMaxMu),
61 mu_increase_factor_(10.0),
62 increase_threshold_(0.75),
63 decrease_threshold_(0.25),
64 dogleg_step_norm_(0.0),
65 reuse_(false),
66 dogleg_type_(options.dogleg_type) {
67 CHECK_NOTNULL(linear_solver_);
68 CHECK_GT(min_diagonal_, 0.0);
69 CHECK_LE(min_diagonal_, max_diagonal_);
70 CHECK_GT(max_radius_, 0.0);
71 }
72
73 // If the reuse_ flag is not set, then the Cauchy point (scaled
74 // gradient) and the new Gauss-Newton step are computed from
75 // scratch. The Dogleg step is then computed as interpolation of these
76 // two vectors.
ComputeStep(const TrustRegionStrategy::PerSolveOptions & per_solve_options,SparseMatrix * jacobian,const double * residuals,double * step)77 TrustRegionStrategy::Summary DoglegStrategy::ComputeStep(
78 const TrustRegionStrategy::PerSolveOptions& per_solve_options,
79 SparseMatrix* jacobian,
80 const double* residuals,
81 double* step) {
82 CHECK_NOTNULL(jacobian);
83 CHECK_NOTNULL(residuals);
84 CHECK_NOTNULL(step);
85
86 const int n = jacobian->num_cols();
87 if (reuse_) {
88 // Gauss-Newton and gradient vectors are always available, only a
89 // new interpolant need to be computed. For the subspace case,
90 // the subspace and the two-dimensional model are also still valid.
91 switch (dogleg_type_) {
92 case TRADITIONAL_DOGLEG:
93 ComputeTraditionalDoglegStep(step);
94 break;
95
96 case SUBSPACE_DOGLEG:
97 ComputeSubspaceDoglegStep(step);
98 break;
99 }
100 TrustRegionStrategy::Summary summary;
101 summary.num_iterations = 0;
102 summary.termination_type = LINEAR_SOLVER_SUCCESS;
103 return summary;
104 }
105
106 reuse_ = true;
107 // Check that we have the storage needed to hold the various
108 // temporary vectors.
109 if (diagonal_.rows() != n) {
110 diagonal_.resize(n, 1);
111 gradient_.resize(n, 1);
112 gauss_newton_step_.resize(n, 1);
113 }
114
115 // Vector used to form the diagonal matrix that is used to
116 // regularize the Gauss-Newton solve and that defines the
117 // elliptical trust region
118 //
119 // || D * step || <= radius_ .
120 //
121 jacobian->SquaredColumnNorm(diagonal_.data());
122 for (int i = 0; i < n; ++i) {
123 diagonal_[i] = min(max(diagonal_[i], min_diagonal_), max_diagonal_);
124 }
125 diagonal_ = diagonal_.array().sqrt();
126
127 ComputeGradient(jacobian, residuals);
128 ComputeCauchyPoint(jacobian);
129
130 LinearSolver::Summary linear_solver_summary =
131 ComputeGaussNewtonStep(per_solve_options, jacobian, residuals);
132
133 TrustRegionStrategy::Summary summary;
134 summary.residual_norm = linear_solver_summary.residual_norm;
135 summary.num_iterations = linear_solver_summary.num_iterations;
136 summary.termination_type = linear_solver_summary.termination_type;
137
138 if (linear_solver_summary.termination_type == LINEAR_SOLVER_FATAL_ERROR) {
139 return summary;
140 }
141
142 if (linear_solver_summary.termination_type != LINEAR_SOLVER_FAILURE) {
143 switch (dogleg_type_) {
144 // Interpolate the Cauchy point and the Gauss-Newton step.
145 case TRADITIONAL_DOGLEG:
146 ComputeTraditionalDoglegStep(step);
147 break;
148
149 // Find the minimum in the subspace defined by the
150 // Cauchy point and the (Gauss-)Newton step.
151 case SUBSPACE_DOGLEG:
152 if (!ComputeSubspaceModel(jacobian)) {
153 summary.termination_type = LINEAR_SOLVER_FAILURE;
154 break;
155 }
156 ComputeSubspaceDoglegStep(step);
157 break;
158 }
159 }
160
161 return summary;
162 }
163
164 // The trust region is assumed to be elliptical with the
165 // diagonal scaling matrix D defined by sqrt(diagonal_).
166 // It is implemented by substituting step' = D * step.
167 // The trust region for step' is spherical.
168 // The gradient, the Gauss-Newton step, the Cauchy point,
169 // and all calculations involving the Jacobian have to
170 // be adjusted accordingly.
ComputeGradient(SparseMatrix * jacobian,const double * residuals)171 void DoglegStrategy::ComputeGradient(
172 SparseMatrix* jacobian,
173 const double* residuals) {
174 gradient_.setZero();
175 jacobian->LeftMultiply(residuals, gradient_.data());
176 gradient_.array() /= diagonal_.array();
177 }
178
179 // The Cauchy point is the global minimizer of the quadratic model
180 // along the one-dimensional subspace spanned by the gradient.
ComputeCauchyPoint(SparseMatrix * jacobian)181 void DoglegStrategy::ComputeCauchyPoint(SparseMatrix* jacobian) {
182 // alpha * -gradient is the Cauchy point.
183 Vector Jg(jacobian->num_rows());
184 Jg.setZero();
185 // The Jacobian is scaled implicitly by computing J * (D^-1 * (D^-1 * g))
186 // instead of (J * D^-1) * (D^-1 * g).
187 Vector scaled_gradient =
188 (gradient_.array() / diagonal_.array()).matrix();
189 jacobian->RightMultiply(scaled_gradient.data(), Jg.data());
190 alpha_ = gradient_.squaredNorm() / Jg.squaredNorm();
191 }
192
193 // The dogleg step is defined as the intersection of the trust region
194 // boundary with the piecewise linear path from the origin to the Cauchy
195 // point and then from there to the Gauss-Newton point (global minimizer
196 // of the model function). The Gauss-Newton point is taken if it lies
197 // within the trust region.
ComputeTraditionalDoglegStep(double * dogleg)198 void DoglegStrategy::ComputeTraditionalDoglegStep(double* dogleg) {
199 VectorRef dogleg_step(dogleg, gradient_.rows());
200
201 // Case 1. The Gauss-Newton step lies inside the trust region, and
202 // is therefore the optimal solution to the trust-region problem.
203 const double gradient_norm = gradient_.norm();
204 const double gauss_newton_norm = gauss_newton_step_.norm();
205 if (gauss_newton_norm <= radius_) {
206 dogleg_step = gauss_newton_step_;
207 dogleg_step_norm_ = gauss_newton_norm;
208 dogleg_step.array() /= diagonal_.array();
209 VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_
210 << " radius: " << radius_;
211 return;
212 }
213
214 // Case 2. The Cauchy point and the Gauss-Newton steps lie outside
215 // the trust region. Rescale the Cauchy point to the trust region
216 // and return.
217 if (gradient_norm * alpha_ >= radius_) {
218 dogleg_step = -(radius_ / gradient_norm) * gradient_;
219 dogleg_step_norm_ = radius_;
220 dogleg_step.array() /= diagonal_.array();
221 VLOG(3) << "Cauchy step size: " << dogleg_step_norm_
222 << " radius: " << radius_;
223 return;
224 }
225
226 // Case 3. The Cauchy point is inside the trust region and the
227 // Gauss-Newton step is outside. Compute the line joining the two
228 // points and the point on it which intersects the trust region
229 // boundary.
230
231 // a = alpha * -gradient
232 // b = gauss_newton_step
233 const double b_dot_a = -alpha_ * gradient_.dot(gauss_newton_step_);
234 const double a_squared_norm = pow(alpha_ * gradient_norm, 2.0);
235 const double b_minus_a_squared_norm =
236 a_squared_norm - 2 * b_dot_a + pow(gauss_newton_norm, 2);
237
238 // c = a' (b - a)
239 // = alpha * -gradient' gauss_newton_step - alpha^2 |gradient|^2
240 const double c = b_dot_a - a_squared_norm;
241 const double d = sqrt(c * c + b_minus_a_squared_norm *
242 (pow(radius_, 2.0) - a_squared_norm));
243
244 double beta =
245 (c <= 0)
246 ? (d - c) / b_minus_a_squared_norm
247 : (radius_ * radius_ - a_squared_norm) / (d + c);
248 dogleg_step = (-alpha_ * (1.0 - beta)) * gradient_
249 + beta * gauss_newton_step_;
250 dogleg_step_norm_ = dogleg_step.norm();
251 dogleg_step.array() /= diagonal_.array();
252 VLOG(3) << "Dogleg step size: " << dogleg_step_norm_
253 << " radius: " << radius_;
254 }
255
256 // The subspace method finds the minimum of the two-dimensional problem
257 //
258 // min. 1/2 x' B' H B x + g' B x
259 // s.t. || B x ||^2 <= r^2
260 //
261 // where r is the trust region radius and B is the matrix with unit columns
262 // spanning the subspace defined by the steepest descent and Newton direction.
263 // This subspace by definition includes the Gauss-Newton point, which is
264 // therefore taken if it lies within the trust region.
ComputeSubspaceDoglegStep(double * dogleg)265 void DoglegStrategy::ComputeSubspaceDoglegStep(double* dogleg) {
266 VectorRef dogleg_step(dogleg, gradient_.rows());
267
268 // The Gauss-Newton point is inside the trust region if |GN| <= radius_.
269 // This test is valid even though radius_ is a length in the two-dimensional
270 // subspace while gauss_newton_step_ is expressed in the (scaled)
271 // higher dimensional original space. This is because
272 //
273 // 1. gauss_newton_step_ by definition lies in the subspace, and
274 // 2. the subspace basis is orthonormal.
275 //
276 // As a consequence, the norm of the gauss_newton_step_ in the subspace is
277 // the same as its norm in the original space.
278 const double gauss_newton_norm = gauss_newton_step_.norm();
279 if (gauss_newton_norm <= radius_) {
280 dogleg_step = gauss_newton_step_;
281 dogleg_step_norm_ = gauss_newton_norm;
282 dogleg_step.array() /= diagonal_.array();
283 VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_
284 << " radius: " << radius_;
285 return;
286 }
287
288 // The optimum lies on the boundary of the trust region. The above problem
289 // therefore becomes
290 //
291 // min. 1/2 x^T B^T H B x + g^T B x
292 // s.t. || B x ||^2 = r^2
293 //
294 // Notice the equality in the constraint.
295 //
296 // This can be solved by forming the Lagrangian, solving for x(y), where
297 // y is the Lagrange multiplier, using the gradient of the objective, and
298 // putting x(y) back into the constraint. This results in a fourth order
299 // polynomial in y, which can be solved using e.g. the companion matrix.
300 // See the description of MakePolynomialForBoundaryConstrainedProblem for
301 // details. The result is up to four real roots y*, not all of which
302 // correspond to feasible points. The feasible points x(y*) have to be
303 // tested for optimality.
304
305 if (subspace_is_one_dimensional_) {
306 // The subspace is one-dimensional, so both the gradient and
307 // the Gauss-Newton step point towards the same direction.
308 // In this case, we move along the gradient until we reach the trust
309 // region boundary.
310 dogleg_step = -(radius_ / gradient_.norm()) * gradient_;
311 dogleg_step_norm_ = radius_;
312 dogleg_step.array() /= diagonal_.array();
313 VLOG(3) << "Dogleg subspace step size (1D): " << dogleg_step_norm_
314 << " radius: " << radius_;
315 return;
316 }
317
318 Vector2d minimum(0.0, 0.0);
319 if (!FindMinimumOnTrustRegionBoundary(&minimum)) {
320 // For the positive semi-definite case, a traditional dogleg step
321 // is taken in this case.
322 LOG(WARNING) << "Failed to compute polynomial roots. "
323 << "Taking traditional dogleg step instead.";
324 ComputeTraditionalDoglegStep(dogleg);
325 return;
326 }
327
328 // Test first order optimality at the minimum.
329 // The first order KKT conditions state that the minimum x*
330 // has to satisfy either || x* ||^2 < r^2 (i.e. has to lie within
331 // the trust region), or
332 //
333 // (B x* + g) + y x* = 0
334 //
335 // for some positive scalar y.
336 // Here, as it is already known that the minimum lies on the boundary, the
337 // latter condition is tested. To allow for small imprecisions, we test if
338 // the angle between (B x* + g) and -x* is smaller than acos(0.99).
339 // The exact value of the cosine is arbitrary but should be close to 1.
340 //
341 // This condition should not be violated. If it is, the minimum was not
342 // correctly determined.
343 const double kCosineThreshold = 0.99;
344 const Vector2d grad_minimum = subspace_B_ * minimum + subspace_g_;
345 const double cosine_angle = -minimum.dot(grad_minimum) /
346 (minimum.norm() * grad_minimum.norm());
347 if (cosine_angle < kCosineThreshold) {
348 LOG(WARNING) << "First order optimality seems to be violated "
349 << "in the subspace method!\n"
350 << "Cosine of angle between x and B x + g is "
351 << cosine_angle << ".\n"
352 << "Taking a regular dogleg step instead.\n"
353 << "Please consider filing a bug report if this "
354 << "happens frequently or consistently.\n";
355 ComputeTraditionalDoglegStep(dogleg);
356 return;
357 }
358
359 // Create the full step from the optimal 2d solution.
360 dogleg_step = subspace_basis_ * minimum;
361 dogleg_step_norm_ = radius_;
362 dogleg_step.array() /= diagonal_.array();
363 VLOG(3) << "Dogleg subspace step size: " << dogleg_step_norm_
364 << " radius: " << radius_;
365 }
366
367 // Build the polynomial that defines the optimal Lagrange multipliers.
368 // Let the Lagrangian be
369 //
370 // L(x, y) = 0.5 x^T B x + x^T g + y (0.5 x^T x - 0.5 r^2). (1)
371 //
372 // Stationary points of the Lagrangian are given by
373 //
374 // 0 = d L(x, y) / dx = Bx + g + y x (2)
375 // 0 = d L(x, y) / dy = 0.5 x^T x - 0.5 r^2 (3)
376 //
377 // For any given y, we can solve (2) for x as
378 //
379 // x(y) = -(B + y I)^-1 g . (4)
380 //
381 // As B + y I is 2x2, we form the inverse explicitly:
382 //
383 // (B + y I)^-1 = (1 / det(B + y I)) adj(B + y I) (5)
384 //
385 // where adj() denotes adjugation. This should be safe, as B is positive
386 // semi-definite and y is necessarily positive, so (B + y I) is indeed
387 // invertible.
388 // Plugging (5) into (4) and the result into (3), then dividing by 0.5 we
389 // obtain
390 //
391 // 0 = (1 / det(B + y I))^2 g^T adj(B + y I)^T adj(B + y I) g - r^2
392 // (6)
393 //
394 // or
395 //
396 // det(B + y I)^2 r^2 = g^T adj(B + y I)^T adj(B + y I) g (7a)
397 // = g^T adj(B)^T adj(B) g
398 // + 2 y g^T adj(B)^T g + y^2 g^T g (7b)
399 //
400 // as
401 //
402 // adj(B + y I) = adj(B) + y I = adj(B)^T + y I . (8)
403 //
404 // The left hand side can be expressed explicitly using
405 //
406 // det(B + y I) = det(B) + y tr(B) + y^2 . (9)
407 //
408 // So (7) is a polynomial in y of degree four.
409 // Bringing everything back to the left hand side, the coefficients can
410 // be read off as
411 //
412 // y^4 r^2
413 // + y^3 2 r^2 tr(B)
414 // + y^2 (r^2 tr(B)^2 + 2 r^2 det(B) - g^T g)
415 // + y^1 (2 r^2 det(B) tr(B) - 2 g^T adj(B)^T g)
416 // + y^0 (r^2 det(B)^2 - g^T adj(B)^T adj(B) g)
417 //
MakePolynomialForBoundaryConstrainedProblem() const418 Vector DoglegStrategy::MakePolynomialForBoundaryConstrainedProblem() const {
419 const double detB = subspace_B_.determinant();
420 const double trB = subspace_B_.trace();
421 const double r2 = radius_ * radius_;
422 Matrix2d B_adj;
423 B_adj << subspace_B_(1, 1) , -subspace_B_(0, 1),
424 -subspace_B_(1, 0) , subspace_B_(0, 0);
425
426 Vector polynomial(5);
427 polynomial(0) = r2;
428 polynomial(1) = 2.0 * r2 * trB;
429 polynomial(2) = r2 * (trB * trB + 2.0 * detB) - subspace_g_.squaredNorm();
430 polynomial(3) = -2.0 * (subspace_g_.transpose() * B_adj * subspace_g_
431 - r2 * detB * trB);
432 polynomial(4) = r2 * detB * detB - (B_adj * subspace_g_).squaredNorm();
433
434 return polynomial;
435 }
436
437 // Given a Lagrange multiplier y that corresponds to a stationary point
438 // of the Lagrangian L(x, y), compute the corresponding x from the
439 // equation
440 //
441 // 0 = d L(x, y) / dx
442 // = B * x + g + y * x
443 // = (B + y * I) * x + g
444 //
ComputeSubspaceStepFromRoot(double y) const445 DoglegStrategy::Vector2d DoglegStrategy::ComputeSubspaceStepFromRoot(
446 double y) const {
447 const Matrix2d B_i = subspace_B_ + y * Matrix2d::Identity();
448 return -B_i.partialPivLu().solve(subspace_g_);
449 }
450
451 // This function evaluates the quadratic model at a point x in the
452 // subspace spanned by subspace_basis_.
EvaluateSubspaceModel(const Vector2d & x) const453 double DoglegStrategy::EvaluateSubspaceModel(const Vector2d& x) const {
454 return 0.5 * x.dot(subspace_B_ * x) + subspace_g_.dot(x);
455 }
456
457 // This function attempts to solve the boundary-constrained subspace problem
458 //
459 // min. 1/2 x^T B^T H B x + g^T B x
460 // s.t. || B x ||^2 = r^2
461 //
462 // where B is an orthonormal subspace basis and r is the trust-region radius.
463 //
464 // This is done by finding the roots of a fourth degree polynomial. If the
465 // root finding fails, the function returns false and minimum will be set
466 // to (0, 0). If it succeeds, true is returned.
467 //
468 // In the failure case, another step should be taken, such as the traditional
469 // dogleg step.
FindMinimumOnTrustRegionBoundary(Vector2d * minimum) const470 bool DoglegStrategy::FindMinimumOnTrustRegionBoundary(Vector2d* minimum) const {
471 CHECK_NOTNULL(minimum);
472
473 // Return (0, 0) in all error cases.
474 minimum->setZero();
475
476 // Create the fourth-degree polynomial that is a necessary condition for
477 // optimality.
478 const Vector polynomial = MakePolynomialForBoundaryConstrainedProblem();
479
480 // Find the real parts y_i of its roots (not only the real roots).
481 Vector roots_real;
482 if (!FindPolynomialRoots(polynomial, &roots_real, NULL)) {
483 // Failed to find the roots of the polynomial, i.e. the candidate
484 // solutions of the constrained problem. Report this back to the caller.
485 return false;
486 }
487
488 // For each root y, compute B x(y) and check for feasibility.
489 // Notice that there should always be four roots, as the leading term of
490 // the polynomial is r^2 and therefore non-zero. However, as some roots
491 // may be complex, the real parts are not necessarily unique.
492 double minimum_value = std::numeric_limits<double>::max();
493 bool valid_root_found = false;
494 for (int i = 0; i < roots_real.size(); ++i) {
495 const Vector2d x_i = ComputeSubspaceStepFromRoot(roots_real(i));
496
497 // Not all roots correspond to points on the trust region boundary.
498 // There are at most four candidate solutions. As we are interested
499 // in the minimum, it is safe to consider all of them after projecting
500 // them onto the trust region boundary.
501 if (x_i.norm() > 0) {
502 const double f_i = EvaluateSubspaceModel((radius_ / x_i.norm()) * x_i);
503 valid_root_found = true;
504 if (f_i < minimum_value) {
505 minimum_value = f_i;
506 *minimum = x_i;
507 }
508 }
509 }
510
511 return valid_root_found;
512 }
513
ComputeGaussNewtonStep(const PerSolveOptions & per_solve_options,SparseMatrix * jacobian,const double * residuals)514 LinearSolver::Summary DoglegStrategy::ComputeGaussNewtonStep(
515 const PerSolveOptions& per_solve_options,
516 SparseMatrix* jacobian,
517 const double* residuals) {
518 const int n = jacobian->num_cols();
519 LinearSolver::Summary linear_solver_summary;
520 linear_solver_summary.termination_type = LINEAR_SOLVER_FAILURE;
521
522 // The Jacobian matrix is often quite poorly conditioned. Thus it is
523 // necessary to add a diagonal matrix at the bottom to prevent the
524 // linear solver from failing.
525 //
526 // We do this by computing the same diagonal matrix as the one used
527 // by Levenberg-Marquardt (other choices are possible), and scaling
528 // it by a small constant (independent of the trust region radius).
529 //
530 // If the solve fails, the multiplier to the diagonal is increased
531 // up to max_mu_ by a factor of mu_increase_factor_ every time. If
532 // the linear solver is still not successful, the strategy returns
533 // with LINEAR_SOLVER_FAILURE.
534 //
535 // Next time when a new Gauss-Newton step is requested, the
536 // multiplier starts out from the last successful solve.
537 //
538 // When a step is declared successful, the multiplier is decreased
539 // by half of mu_increase_factor_.
540
541 while (mu_ < max_mu_) {
542 // Dogleg, as far as I (sameeragarwal) understand it, requires a
543 // reasonably good estimate of the Gauss-Newton step. This means
544 // that we need to solve the normal equations more or less
545 // exactly. This is reflected in the values of the tolerances set
546 // below.
547 //
548 // For now, this strategy should only be used with exact
549 // factorization based solvers, for which these tolerances are
550 // automatically satisfied.
551 //
552 // The right way to combine inexact solves with trust region
553 // methods is to use Stiehaug's method.
554 LinearSolver::PerSolveOptions solve_options;
555 solve_options.q_tolerance = 0.0;
556 solve_options.r_tolerance = 0.0;
557
558 lm_diagonal_ = diagonal_ * std::sqrt(mu_);
559 solve_options.D = lm_diagonal_.data();
560
561 // As in the LevenbergMarquardtStrategy, solve Jy = r instead
562 // of Jx = -r and later set x = -y to avoid having to modify
563 // either jacobian or residuals.
564 InvalidateArray(n, gauss_newton_step_.data());
565 linear_solver_summary = linear_solver_->Solve(jacobian,
566 residuals,
567 solve_options,
568 gauss_newton_step_.data());
569
570 if (per_solve_options.dump_format_type == CONSOLE ||
571 (per_solve_options.dump_format_type != CONSOLE &&
572 !per_solve_options.dump_filename_base.empty())) {
573 if (!DumpLinearLeastSquaresProblem(per_solve_options.dump_filename_base,
574 per_solve_options.dump_format_type,
575 jacobian,
576 solve_options.D,
577 residuals,
578 gauss_newton_step_.data(),
579 0)) {
580 LOG(ERROR) << "Unable to dump trust region problem."
581 << " Filename base: "
582 << per_solve_options.dump_filename_base;
583 }
584 }
585
586 if (linear_solver_summary.termination_type == LINEAR_SOLVER_FATAL_ERROR) {
587 return linear_solver_summary;
588 }
589
590 if (linear_solver_summary.termination_type == LINEAR_SOLVER_FAILURE ||
591 !IsArrayValid(n, gauss_newton_step_.data())) {
592 mu_ *= mu_increase_factor_;
593 VLOG(2) << "Increasing mu " << mu_;
594 linear_solver_summary.termination_type = LINEAR_SOLVER_FAILURE;
595 continue;
596 }
597 break;
598 }
599
600 if (linear_solver_summary.termination_type != LINEAR_SOLVER_FAILURE) {
601 // The scaled Gauss-Newton step is D * GN:
602 //
603 // - (D^-1 J^T J D^-1)^-1 (D^-1 g)
604 // = - D (J^T J)^-1 D D^-1 g
605 // = D -(J^T J)^-1 g
606 //
607 gauss_newton_step_.array() *= -diagonal_.array();
608 }
609
610 return linear_solver_summary;
611 }
612
StepAccepted(double step_quality)613 void DoglegStrategy::StepAccepted(double step_quality) {
614 CHECK_GT(step_quality, 0.0);
615
616 if (step_quality < decrease_threshold_) {
617 radius_ *= 0.5;
618 }
619
620 if (step_quality > increase_threshold_) {
621 radius_ = max(radius_, 3.0 * dogleg_step_norm_);
622 }
623
624 // Reduce the regularization multiplier, in the hope that whatever
625 // was causing the rank deficiency has gone away and we can return
626 // to doing a pure Gauss-Newton solve.
627 mu_ = max(min_mu_, 2.0 * mu_ / mu_increase_factor_);
628 reuse_ = false;
629 }
630
StepRejected(double step_quality)631 void DoglegStrategy::StepRejected(double step_quality) {
632 radius_ *= 0.5;
633 reuse_ = true;
634 }
635
StepIsInvalid()636 void DoglegStrategy::StepIsInvalid() {
637 mu_ *= mu_increase_factor_;
638 reuse_ = false;
639 }
640
Radius() const641 double DoglegStrategy::Radius() const {
642 return radius_;
643 }
644
ComputeSubspaceModel(SparseMatrix * jacobian)645 bool DoglegStrategy::ComputeSubspaceModel(SparseMatrix* jacobian) {
646 // Compute an orthogonal basis for the subspace using QR decomposition.
647 Matrix basis_vectors(jacobian->num_cols(), 2);
648 basis_vectors.col(0) = gradient_;
649 basis_vectors.col(1) = gauss_newton_step_;
650 Eigen::ColPivHouseholderQR<Matrix> basis_qr(basis_vectors);
651
652 switch (basis_qr.rank()) {
653 case 0:
654 // This should never happen, as it implies that both the gradient
655 // and the Gauss-Newton step are zero. In this case, the minimizer should
656 // have stopped due to the gradient being too small.
657 LOG(ERROR) << "Rank of subspace basis is 0. "
658 << "This means that the gradient at the current iterate is "
659 << "zero but the optimization has not been terminated. "
660 << "You may have found a bug in Ceres.";
661 return false;
662
663 case 1:
664 // Gradient and Gauss-Newton step coincide, so we lie on one of the
665 // major axes of the quadratic problem. In this case, we simply move
666 // along the gradient until we reach the trust region boundary.
667 subspace_is_one_dimensional_ = true;
668 return true;
669
670 case 2:
671 subspace_is_one_dimensional_ = false;
672 break;
673
674 default:
675 LOG(ERROR) << "Rank of the subspace basis matrix is reported to be "
676 << "greater than 2. As the matrix contains only two "
677 << "columns this cannot be true and is indicative of "
678 << "a bug.";
679 return false;
680 }
681
682 // The subspace is two-dimensional, so compute the subspace model.
683 // Given the basis U, this is
684 //
685 // subspace_g_ = g_scaled^T U
686 //
687 // and
688 //
689 // subspace_B_ = U^T (J_scaled^T J_scaled) U
690 //
691 // As J_scaled = J * D^-1, the latter becomes
692 //
693 // subspace_B_ = ((U^T D^-1) J^T) (J (D^-1 U))
694 // = (J (D^-1 U))^T (J (D^-1 U))
695
696 subspace_basis_ =
697 basis_qr.householderQ() * Matrix::Identity(jacobian->num_cols(), 2);
698
699 subspace_g_ = subspace_basis_.transpose() * gradient_;
700
701 Eigen::Matrix<double, 2, Eigen::Dynamic, Eigen::RowMajor>
702 Jb(2, jacobian->num_rows());
703 Jb.setZero();
704
705 Vector tmp;
706 tmp = (subspace_basis_.col(0).array() / diagonal_.array()).matrix();
707 jacobian->RightMultiply(tmp.data(), Jb.row(0).data());
708 tmp = (subspace_basis_.col(1).array() / diagonal_.array()).matrix();
709 jacobian->RightMultiply(tmp.data(), Jb.row(1).data());
710
711 subspace_B_ = Jb * Jb.transpose();
712
713 return true;
714 }
715
716 } // namespace internal
717 } // namespace ceres
718