1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2012 the V8 project authors. All rights reserved.
36 
37 #include "src/x87/assembler-x87.h"
38 
39 #if V8_TARGET_ARCH_X87
40 
41 #include "src/base/bits.h"
42 #include "src/base/cpu.h"
43 #include "src/disassembler.h"
44 #include "src/macro-assembler.h"
45 #include "src/v8.h"
46 
47 namespace v8 {
48 namespace internal {
49 
50 // -----------------------------------------------------------------------------
51 // Implementation of CpuFeatures
52 
ProbeImpl(bool cross_compile)53 void CpuFeatures::ProbeImpl(bool cross_compile) {
54   base::CPU cpu;
55 
56   // Only use statically determined features for cross compile (snapshot).
57   if (cross_compile) return;
58 }
59 
60 
PrintTarget()61 void CpuFeatures::PrintTarget() { }
PrintFeatures()62 void CpuFeatures::PrintFeatures() { }
63 
64 
65 // -----------------------------------------------------------------------------
66 // Implementation of Displacement
67 
init(Label * L,Type type)68 void Displacement::init(Label* L, Type type) {
69   DCHECK(!L->is_bound());
70   int next = 0;
71   if (L->is_linked()) {
72     next = L->pos();
73     DCHECK(next > 0);  // Displacements must be at positions > 0
74   }
75   // Ensure that we _never_ overflow the next field.
76   DCHECK(NextField::is_valid(Assembler::kMaximalBufferSize));
77   data_ = NextField::encode(next) | TypeField::encode(type);
78 }
79 
80 
81 // -----------------------------------------------------------------------------
82 // Implementation of RelocInfo
83 
84 
85 const int RelocInfo::kApplyMask =
86     RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY |
87     1 << RelocInfo::INTERNAL_REFERENCE | 1 << RelocInfo::CODE_AGE_SEQUENCE |
88     RelocInfo::kDebugBreakSlotMask;
89 
90 
IsCodedSpecially()91 bool RelocInfo::IsCodedSpecially() {
92   // The deserializer needs to know whether a pointer is specially coded.  Being
93   // specially coded on IA32 means that it is a relative address, as used by
94   // branch instructions.  These are also the ones that need changing when a
95   // code object moves.
96   return (1 << rmode_) & kApplyMask;
97 }
98 
99 
IsInConstantPool()100 bool RelocInfo::IsInConstantPool() {
101   return false;
102 }
103 
104 
105 // -----------------------------------------------------------------------------
106 // Implementation of Operand
107 
Operand(Register base,int32_t disp,RelocInfo::Mode rmode)108 Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) {
109   // [base + disp/r]
110   if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
111     // [base]
112     set_modrm(0, base);
113     if (base.is(esp)) set_sib(times_1, esp, base);
114   } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
115     // [base + disp8]
116     set_modrm(1, base);
117     if (base.is(esp)) set_sib(times_1, esp, base);
118     set_disp8(disp);
119   } else {
120     // [base + disp/r]
121     set_modrm(2, base);
122     if (base.is(esp)) set_sib(times_1, esp, base);
123     set_dispr(disp, rmode);
124   }
125 }
126 
127 
Operand(Register base,Register index,ScaleFactor scale,int32_t disp,RelocInfo::Mode rmode)128 Operand::Operand(Register base,
129                  Register index,
130                  ScaleFactor scale,
131                  int32_t disp,
132                  RelocInfo::Mode rmode) {
133   DCHECK(!index.is(esp));  // illegal addressing mode
134   // [base + index*scale + disp/r]
135   if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
136     // [base + index*scale]
137     set_modrm(0, esp);
138     set_sib(scale, index, base);
139   } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
140     // [base + index*scale + disp8]
141     set_modrm(1, esp);
142     set_sib(scale, index, base);
143     set_disp8(disp);
144   } else {
145     // [base + index*scale + disp/r]
146     set_modrm(2, esp);
147     set_sib(scale, index, base);
148     set_dispr(disp, rmode);
149   }
150 }
151 
152 
Operand(Register index,ScaleFactor scale,int32_t disp,RelocInfo::Mode rmode)153 Operand::Operand(Register index,
154                  ScaleFactor scale,
155                  int32_t disp,
156                  RelocInfo::Mode rmode) {
157   DCHECK(!index.is(esp));  // illegal addressing mode
158   // [index*scale + disp/r]
159   set_modrm(0, esp);
160   set_sib(scale, index, ebp);
161   set_dispr(disp, rmode);
162 }
163 
164 
is_reg(Register reg) const165 bool Operand::is_reg(Register reg) const {
166   return ((buf_[0] & 0xF8) == 0xC0)  // addressing mode is register only.
167       && ((buf_[0] & 0x07) == reg.code());  // register codes match.
168 }
169 
170 
is_reg_only() const171 bool Operand::is_reg_only() const {
172   return (buf_[0] & 0xF8) == 0xC0;  // Addressing mode is register only.
173 }
174 
175 
reg() const176 Register Operand::reg() const {
177   DCHECK(is_reg_only());
178   return Register::from_code(buf_[0] & 0x07);
179 }
180 
181 
182 // -----------------------------------------------------------------------------
183 // Implementation of Assembler.
184 
185 // Emit a single byte. Must always be inlined.
186 #define EMIT(x)                                 \
187   *pc_++ = (x)
188 
189 
190 #ifdef GENERATED_CODE_COVERAGE
191 static void InitCoverageLog();
192 #endif
193 
Assembler(Isolate * isolate,void * buffer,int buffer_size)194 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
195     : AssemblerBase(isolate, buffer, buffer_size),
196       positions_recorder_(this) {
197   // Clear the buffer in debug mode unless it was provided by the
198   // caller in which case we can't be sure it's okay to overwrite
199   // existing code in it; see CodePatcher::CodePatcher(...).
200 #ifdef DEBUG
201   if (own_buffer_) {
202     memset(buffer_, 0xCC, buffer_size_);  // int3
203   }
204 #endif
205 
206   reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
207 
208 #ifdef GENERATED_CODE_COVERAGE
209   InitCoverageLog();
210 #endif
211 }
212 
213 
GetCode(CodeDesc * desc)214 void Assembler::GetCode(CodeDesc* desc) {
215   // Finalize code (at this point overflow() may be true, but the gap ensures
216   // that we are still not overlapping instructions and relocation info).
217   reloc_info_writer.Finish();
218   DCHECK(pc_ <= reloc_info_writer.pos());  // No overlap.
219   // Set up code descriptor.
220   desc->buffer = buffer_;
221   desc->buffer_size = buffer_size_;
222   desc->instr_size = pc_offset();
223   desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
224   desc->origin = this;
225   desc->constant_pool_size = 0;
226 }
227 
228 
Align(int m)229 void Assembler::Align(int m) {
230   DCHECK(base::bits::IsPowerOfTwo32(m));
231   int mask = m - 1;
232   int addr = pc_offset();
233   Nop((m - (addr & mask)) & mask);
234 }
235 
236 
IsNop(Address addr)237 bool Assembler::IsNop(Address addr) {
238   Address a = addr;
239   while (*a == 0x66) a++;
240   if (*a == 0x90) return true;
241   if (a[0] == 0xf && a[1] == 0x1f) return true;
242   return false;
243 }
244 
245 
Nop(int bytes)246 void Assembler::Nop(int bytes) {
247   EnsureSpace ensure_space(this);
248 
249   // Older CPUs that do not support SSE2 may not support multibyte NOP
250   // instructions.
251   for (; bytes > 0; bytes--) {
252     EMIT(0x90);
253   }
254   return;
255 }
256 
257 
CodeTargetAlign()258 void Assembler::CodeTargetAlign() {
259   Align(16);  // Preferred alignment of jump targets on ia32.
260 }
261 
262 
cpuid()263 void Assembler::cpuid() {
264   EnsureSpace ensure_space(this);
265   EMIT(0x0F);
266   EMIT(0xA2);
267 }
268 
269 
pushad()270 void Assembler::pushad() {
271   EnsureSpace ensure_space(this);
272   EMIT(0x60);
273 }
274 
275 
popad()276 void Assembler::popad() {
277   EnsureSpace ensure_space(this);
278   EMIT(0x61);
279 }
280 
281 
pushfd()282 void Assembler::pushfd() {
283   EnsureSpace ensure_space(this);
284   EMIT(0x9C);
285 }
286 
287 
popfd()288 void Assembler::popfd() {
289   EnsureSpace ensure_space(this);
290   EMIT(0x9D);
291 }
292 
293 
push(const Immediate & x)294 void Assembler::push(const Immediate& x) {
295   EnsureSpace ensure_space(this);
296   if (x.is_int8()) {
297     EMIT(0x6a);
298     EMIT(x.x_);
299   } else {
300     EMIT(0x68);
301     emit(x);
302   }
303 }
304 
305 
push_imm32(int32_t imm32)306 void Assembler::push_imm32(int32_t imm32) {
307   EnsureSpace ensure_space(this);
308   EMIT(0x68);
309   emit(imm32);
310 }
311 
312 
push(Register src)313 void Assembler::push(Register src) {
314   EnsureSpace ensure_space(this);
315   EMIT(0x50 | src.code());
316 }
317 
318 
push(const Operand & src)319 void Assembler::push(const Operand& src) {
320   EnsureSpace ensure_space(this);
321   EMIT(0xFF);
322   emit_operand(esi, src);
323 }
324 
325 
pop(Register dst)326 void Assembler::pop(Register dst) {
327   DCHECK(reloc_info_writer.last_pc() != NULL);
328   EnsureSpace ensure_space(this);
329   EMIT(0x58 | dst.code());
330 }
331 
332 
pop(const Operand & dst)333 void Assembler::pop(const Operand& dst) {
334   EnsureSpace ensure_space(this);
335   EMIT(0x8F);
336   emit_operand(eax, dst);
337 }
338 
339 
enter(const Immediate & size)340 void Assembler::enter(const Immediate& size) {
341   EnsureSpace ensure_space(this);
342   EMIT(0xC8);
343   emit_w(size);
344   EMIT(0);
345 }
346 
347 
leave()348 void Assembler::leave() {
349   EnsureSpace ensure_space(this);
350   EMIT(0xC9);
351 }
352 
353 
mov_b(Register dst,const Operand & src)354 void Assembler::mov_b(Register dst, const Operand& src) {
355   CHECK(dst.is_byte_register());
356   EnsureSpace ensure_space(this);
357   EMIT(0x8A);
358   emit_operand(dst, src);
359 }
360 
361 
mov_b(const Operand & dst,const Immediate & src)362 void Assembler::mov_b(const Operand& dst, const Immediate& src) {
363   EnsureSpace ensure_space(this);
364   EMIT(0xC6);
365   emit_operand(eax, dst);
366   EMIT(static_cast<int8_t>(src.x_));
367 }
368 
369 
mov_b(const Operand & dst,int8_t imm8)370 void Assembler::mov_b(const Operand& dst, int8_t imm8) {
371   EnsureSpace ensure_space(this);
372   EMIT(0xC6);
373   emit_operand(eax, dst);
374   EMIT(imm8);
375 }
376 
377 
mov_b(const Operand & dst,Register src)378 void Assembler::mov_b(const Operand& dst, Register src) {
379   CHECK(src.is_byte_register());
380   EnsureSpace ensure_space(this);
381   EMIT(0x88);
382   emit_operand(src, dst);
383 }
384 
385 
mov_w(Register dst,const Operand & src)386 void Assembler::mov_w(Register dst, const Operand& src) {
387   EnsureSpace ensure_space(this);
388   EMIT(0x66);
389   EMIT(0x8B);
390   emit_operand(dst, src);
391 }
392 
393 
mov_w(const Operand & dst,Register src)394 void Assembler::mov_w(const Operand& dst, Register src) {
395   EnsureSpace ensure_space(this);
396   EMIT(0x66);
397   EMIT(0x89);
398   emit_operand(src, dst);
399 }
400 
401 
mov_w(const Operand & dst,int16_t imm16)402 void Assembler::mov_w(const Operand& dst, int16_t imm16) {
403   EnsureSpace ensure_space(this);
404   EMIT(0x66);
405   EMIT(0xC7);
406   emit_operand(eax, dst);
407   EMIT(static_cast<int8_t>(imm16 & 0xff));
408   EMIT(static_cast<int8_t>(imm16 >> 8));
409 }
410 
411 
mov_w(const Operand & dst,const Immediate & src)412 void Assembler::mov_w(const Operand& dst, const Immediate& src) {
413   EnsureSpace ensure_space(this);
414   EMIT(0x66);
415   EMIT(0xC7);
416   emit_operand(eax, dst);
417   EMIT(static_cast<int8_t>(src.x_ & 0xff));
418   EMIT(static_cast<int8_t>(src.x_ >> 8));
419 }
420 
421 
mov(Register dst,int32_t imm32)422 void Assembler::mov(Register dst, int32_t imm32) {
423   EnsureSpace ensure_space(this);
424   EMIT(0xB8 | dst.code());
425   emit(imm32);
426 }
427 
428 
mov(Register dst,const Immediate & x)429 void Assembler::mov(Register dst, const Immediate& x) {
430   EnsureSpace ensure_space(this);
431   EMIT(0xB8 | dst.code());
432   emit(x);
433 }
434 
435 
mov(Register dst,Handle<Object> handle)436 void Assembler::mov(Register dst, Handle<Object> handle) {
437   EnsureSpace ensure_space(this);
438   EMIT(0xB8 | dst.code());
439   emit(handle);
440 }
441 
442 
mov(Register dst,const Operand & src)443 void Assembler::mov(Register dst, const Operand& src) {
444   EnsureSpace ensure_space(this);
445   EMIT(0x8B);
446   emit_operand(dst, src);
447 }
448 
449 
mov(Register dst,Register src)450 void Assembler::mov(Register dst, Register src) {
451   EnsureSpace ensure_space(this);
452   EMIT(0x89);
453   EMIT(0xC0 | src.code() << 3 | dst.code());
454 }
455 
456 
mov(const Operand & dst,const Immediate & x)457 void Assembler::mov(const Operand& dst, const Immediate& x) {
458   EnsureSpace ensure_space(this);
459   EMIT(0xC7);
460   emit_operand(eax, dst);
461   emit(x);
462 }
463 
464 
mov(const Operand & dst,Handle<Object> handle)465 void Assembler::mov(const Operand& dst, Handle<Object> handle) {
466   EnsureSpace ensure_space(this);
467   EMIT(0xC7);
468   emit_operand(eax, dst);
469   emit(handle);
470 }
471 
472 
mov(const Operand & dst,Register src)473 void Assembler::mov(const Operand& dst, Register src) {
474   EnsureSpace ensure_space(this);
475   EMIT(0x89);
476   emit_operand(src, dst);
477 }
478 
479 
movsx_b(Register dst,const Operand & src)480 void Assembler::movsx_b(Register dst, const Operand& src) {
481   EnsureSpace ensure_space(this);
482   EMIT(0x0F);
483   EMIT(0xBE);
484   emit_operand(dst, src);
485 }
486 
487 
movsx_w(Register dst,const Operand & src)488 void Assembler::movsx_w(Register dst, const Operand& src) {
489   EnsureSpace ensure_space(this);
490   EMIT(0x0F);
491   EMIT(0xBF);
492   emit_operand(dst, src);
493 }
494 
495 
movzx_b(Register dst,const Operand & src)496 void Assembler::movzx_b(Register dst, const Operand& src) {
497   EnsureSpace ensure_space(this);
498   EMIT(0x0F);
499   EMIT(0xB6);
500   emit_operand(dst, src);
501 }
502 
503 
movzx_w(Register dst,const Operand & src)504 void Assembler::movzx_w(Register dst, const Operand& src) {
505   EnsureSpace ensure_space(this);
506   EMIT(0x0F);
507   EMIT(0xB7);
508   emit_operand(dst, src);
509 }
510 
511 
cld()512 void Assembler::cld() {
513   EnsureSpace ensure_space(this);
514   EMIT(0xFC);
515 }
516 
517 
rep_movs()518 void Assembler::rep_movs() {
519   EnsureSpace ensure_space(this);
520   EMIT(0xF3);
521   EMIT(0xA5);
522 }
523 
524 
rep_stos()525 void Assembler::rep_stos() {
526   EnsureSpace ensure_space(this);
527   EMIT(0xF3);
528   EMIT(0xAB);
529 }
530 
531 
stos()532 void Assembler::stos() {
533   EnsureSpace ensure_space(this);
534   EMIT(0xAB);
535 }
536 
537 
xchg(Register dst,Register src)538 void Assembler::xchg(Register dst, Register src) {
539   EnsureSpace ensure_space(this);
540   if (src.is(eax) || dst.is(eax)) {  // Single-byte encoding.
541     EMIT(0x90 | (src.is(eax) ? dst.code() : src.code()));
542   } else {
543     EMIT(0x87);
544     EMIT(0xC0 | src.code() << 3 | dst.code());
545   }
546 }
547 
548 
xchg(Register dst,const Operand & src)549 void Assembler::xchg(Register dst, const Operand& src) {
550   EnsureSpace ensure_space(this);
551   EMIT(0x87);
552   emit_operand(dst, src);
553 }
554 
555 
adc(Register dst,int32_t imm32)556 void Assembler::adc(Register dst, int32_t imm32) {
557   EnsureSpace ensure_space(this);
558   emit_arith(2, Operand(dst), Immediate(imm32));
559 }
560 
561 
adc(Register dst,const Operand & src)562 void Assembler::adc(Register dst, const Operand& src) {
563   EnsureSpace ensure_space(this);
564   EMIT(0x13);
565   emit_operand(dst, src);
566 }
567 
568 
add(Register dst,const Operand & src)569 void Assembler::add(Register dst, const Operand& src) {
570   EnsureSpace ensure_space(this);
571   EMIT(0x03);
572   emit_operand(dst, src);
573 }
574 
575 
add(const Operand & dst,Register src)576 void Assembler::add(const Operand& dst, Register src) {
577   EnsureSpace ensure_space(this);
578   EMIT(0x01);
579   emit_operand(src, dst);
580 }
581 
582 
add(const Operand & dst,const Immediate & x)583 void Assembler::add(const Operand& dst, const Immediate& x) {
584   DCHECK(reloc_info_writer.last_pc() != NULL);
585   EnsureSpace ensure_space(this);
586   emit_arith(0, dst, x);
587 }
588 
589 
and_(Register dst,int32_t imm32)590 void Assembler::and_(Register dst, int32_t imm32) {
591   and_(dst, Immediate(imm32));
592 }
593 
594 
and_(Register dst,const Immediate & x)595 void Assembler::and_(Register dst, const Immediate& x) {
596   EnsureSpace ensure_space(this);
597   emit_arith(4, Operand(dst), x);
598 }
599 
600 
and_(Register dst,const Operand & src)601 void Assembler::and_(Register dst, const Operand& src) {
602   EnsureSpace ensure_space(this);
603   EMIT(0x23);
604   emit_operand(dst, src);
605 }
606 
607 
and_(const Operand & dst,const Immediate & x)608 void Assembler::and_(const Operand& dst, const Immediate& x) {
609   EnsureSpace ensure_space(this);
610   emit_arith(4, dst, x);
611 }
612 
613 
and_(const Operand & dst,Register src)614 void Assembler::and_(const Operand& dst, Register src) {
615   EnsureSpace ensure_space(this);
616   EMIT(0x21);
617   emit_operand(src, dst);
618 }
619 
620 
cmpb(const Operand & op,int8_t imm8)621 void Assembler::cmpb(const Operand& op, int8_t imm8) {
622   EnsureSpace ensure_space(this);
623   if (op.is_reg(eax)) {
624     EMIT(0x3C);
625   } else {
626     EMIT(0x80);
627     emit_operand(edi, op);  // edi == 7
628   }
629   EMIT(imm8);
630 }
631 
632 
cmpb(const Operand & op,Register reg)633 void Assembler::cmpb(const Operand& op, Register reg) {
634   CHECK(reg.is_byte_register());
635   EnsureSpace ensure_space(this);
636   EMIT(0x38);
637   emit_operand(reg, op);
638 }
639 
640 
cmpb(Register reg,const Operand & op)641 void Assembler::cmpb(Register reg, const Operand& op) {
642   CHECK(reg.is_byte_register());
643   EnsureSpace ensure_space(this);
644   EMIT(0x3A);
645   emit_operand(reg, op);
646 }
647 
648 
cmpw(const Operand & op,Immediate imm16)649 void Assembler::cmpw(const Operand& op, Immediate imm16) {
650   DCHECK(imm16.is_int16());
651   EnsureSpace ensure_space(this);
652   EMIT(0x66);
653   EMIT(0x81);
654   emit_operand(edi, op);
655   emit_w(imm16);
656 }
657 
658 
cmp(Register reg,int32_t imm32)659 void Assembler::cmp(Register reg, int32_t imm32) {
660   EnsureSpace ensure_space(this);
661   emit_arith(7, Operand(reg), Immediate(imm32));
662 }
663 
664 
cmp(Register reg,Handle<Object> handle)665 void Assembler::cmp(Register reg, Handle<Object> handle) {
666   EnsureSpace ensure_space(this);
667   emit_arith(7, Operand(reg), Immediate(handle));
668 }
669 
670 
cmp(Register reg,const Operand & op)671 void Assembler::cmp(Register reg, const Operand& op) {
672   EnsureSpace ensure_space(this);
673   EMIT(0x3B);
674   emit_operand(reg, op);
675 }
676 
677 
cmp(const Operand & op,const Immediate & imm)678 void Assembler::cmp(const Operand& op, const Immediate& imm) {
679   EnsureSpace ensure_space(this);
680   emit_arith(7, op, imm);
681 }
682 
683 
cmp(const Operand & op,Handle<Object> handle)684 void Assembler::cmp(const Operand& op, Handle<Object> handle) {
685   EnsureSpace ensure_space(this);
686   emit_arith(7, op, Immediate(handle));
687 }
688 
689 
cmpb_al(const Operand & op)690 void Assembler::cmpb_al(const Operand& op) {
691   EnsureSpace ensure_space(this);
692   EMIT(0x38);  // CMP r/m8, r8
693   emit_operand(eax, op);  // eax has same code as register al.
694 }
695 
696 
cmpw_ax(const Operand & op)697 void Assembler::cmpw_ax(const Operand& op) {
698   EnsureSpace ensure_space(this);
699   EMIT(0x66);
700   EMIT(0x39);  // CMP r/m16, r16
701   emit_operand(eax, op);  // eax has same code as register ax.
702 }
703 
704 
dec_b(Register dst)705 void Assembler::dec_b(Register dst) {
706   CHECK(dst.is_byte_register());
707   EnsureSpace ensure_space(this);
708   EMIT(0xFE);
709   EMIT(0xC8 | dst.code());
710 }
711 
712 
dec_b(const Operand & dst)713 void Assembler::dec_b(const Operand& dst) {
714   EnsureSpace ensure_space(this);
715   EMIT(0xFE);
716   emit_operand(ecx, dst);
717 }
718 
719 
dec(Register dst)720 void Assembler::dec(Register dst) {
721   EnsureSpace ensure_space(this);
722   EMIT(0x48 | dst.code());
723 }
724 
725 
dec(const Operand & dst)726 void Assembler::dec(const Operand& dst) {
727   EnsureSpace ensure_space(this);
728   EMIT(0xFF);
729   emit_operand(ecx, dst);
730 }
731 
732 
cdq()733 void Assembler::cdq() {
734   EnsureSpace ensure_space(this);
735   EMIT(0x99);
736 }
737 
738 
idiv(const Operand & src)739 void Assembler::idiv(const Operand& src) {
740   EnsureSpace ensure_space(this);
741   EMIT(0xF7);
742   emit_operand(edi, src);
743 }
744 
745 
div(const Operand & src)746 void Assembler::div(const Operand& src) {
747   EnsureSpace ensure_space(this);
748   EMIT(0xF7);
749   emit_operand(esi, src);
750 }
751 
752 
imul(Register reg)753 void Assembler::imul(Register reg) {
754   EnsureSpace ensure_space(this);
755   EMIT(0xF7);
756   EMIT(0xE8 | reg.code());
757 }
758 
759 
imul(Register dst,const Operand & src)760 void Assembler::imul(Register dst, const Operand& src) {
761   EnsureSpace ensure_space(this);
762   EMIT(0x0F);
763   EMIT(0xAF);
764   emit_operand(dst, src);
765 }
766 
767 
imul(Register dst,Register src,int32_t imm32)768 void Assembler::imul(Register dst, Register src, int32_t imm32) {
769   imul(dst, Operand(src), imm32);
770 }
771 
772 
imul(Register dst,const Operand & src,int32_t imm32)773 void Assembler::imul(Register dst, const Operand& src, int32_t imm32) {
774   EnsureSpace ensure_space(this);
775   if (is_int8(imm32)) {
776     EMIT(0x6B);
777     emit_operand(dst, src);
778     EMIT(imm32);
779   } else {
780     EMIT(0x69);
781     emit_operand(dst, src);
782     emit(imm32);
783   }
784 }
785 
786 
inc(Register dst)787 void Assembler::inc(Register dst) {
788   EnsureSpace ensure_space(this);
789   EMIT(0x40 | dst.code());
790 }
791 
792 
inc(const Operand & dst)793 void Assembler::inc(const Operand& dst) {
794   EnsureSpace ensure_space(this);
795   EMIT(0xFF);
796   emit_operand(eax, dst);
797 }
798 
799 
lea(Register dst,const Operand & src)800 void Assembler::lea(Register dst, const Operand& src) {
801   EnsureSpace ensure_space(this);
802   EMIT(0x8D);
803   emit_operand(dst, src);
804 }
805 
806 
mul(Register src)807 void Assembler::mul(Register src) {
808   EnsureSpace ensure_space(this);
809   EMIT(0xF7);
810   EMIT(0xE0 | src.code());
811 }
812 
813 
neg(Register dst)814 void Assembler::neg(Register dst) {
815   EnsureSpace ensure_space(this);
816   EMIT(0xF7);
817   EMIT(0xD8 | dst.code());
818 }
819 
820 
neg(const Operand & dst)821 void Assembler::neg(const Operand& dst) {
822   EnsureSpace ensure_space(this);
823   EMIT(0xF7);
824   emit_operand(ebx, dst);
825 }
826 
827 
not_(Register dst)828 void Assembler::not_(Register dst) {
829   EnsureSpace ensure_space(this);
830   EMIT(0xF7);
831   EMIT(0xD0 | dst.code());
832 }
833 
834 
not_(const Operand & dst)835 void Assembler::not_(const Operand& dst) {
836   EnsureSpace ensure_space(this);
837   EMIT(0xF7);
838   emit_operand(edx, dst);
839 }
840 
841 
or_(Register dst,int32_t imm32)842 void Assembler::or_(Register dst, int32_t imm32) {
843   EnsureSpace ensure_space(this);
844   emit_arith(1, Operand(dst), Immediate(imm32));
845 }
846 
847 
or_(Register dst,const Operand & src)848 void Assembler::or_(Register dst, const Operand& src) {
849   EnsureSpace ensure_space(this);
850   EMIT(0x0B);
851   emit_operand(dst, src);
852 }
853 
854 
or_(const Operand & dst,const Immediate & x)855 void Assembler::or_(const Operand& dst, const Immediate& x) {
856   EnsureSpace ensure_space(this);
857   emit_arith(1, dst, x);
858 }
859 
860 
or_(const Operand & dst,Register src)861 void Assembler::or_(const Operand& dst, Register src) {
862   EnsureSpace ensure_space(this);
863   EMIT(0x09);
864   emit_operand(src, dst);
865 }
866 
867 
rcl(Register dst,uint8_t imm8)868 void Assembler::rcl(Register dst, uint8_t imm8) {
869   EnsureSpace ensure_space(this);
870   DCHECK(is_uint5(imm8));  // illegal shift count
871   if (imm8 == 1) {
872     EMIT(0xD1);
873     EMIT(0xD0 | dst.code());
874   } else {
875     EMIT(0xC1);
876     EMIT(0xD0 | dst.code());
877     EMIT(imm8);
878   }
879 }
880 
881 
rcr(Register dst,uint8_t imm8)882 void Assembler::rcr(Register dst, uint8_t imm8) {
883   EnsureSpace ensure_space(this);
884   DCHECK(is_uint5(imm8));  // illegal shift count
885   if (imm8 == 1) {
886     EMIT(0xD1);
887     EMIT(0xD8 | dst.code());
888   } else {
889     EMIT(0xC1);
890     EMIT(0xD8 | dst.code());
891     EMIT(imm8);
892   }
893 }
894 
895 
ror(const Operand & dst,uint8_t imm8)896 void Assembler::ror(const Operand& dst, uint8_t imm8) {
897   EnsureSpace ensure_space(this);
898   DCHECK(is_uint5(imm8));  // illegal shift count
899   if (imm8 == 1) {
900     EMIT(0xD1);
901     emit_operand(ecx, dst);
902   } else {
903     EMIT(0xC1);
904     emit_operand(ecx, dst);
905     EMIT(imm8);
906   }
907 }
908 
909 
ror_cl(const Operand & dst)910 void Assembler::ror_cl(const Operand& dst) {
911   EnsureSpace ensure_space(this);
912   EMIT(0xD3);
913   emit_operand(ecx, dst);
914 }
915 
916 
sar(const Operand & dst,uint8_t imm8)917 void Assembler::sar(const Operand& dst, uint8_t imm8) {
918   EnsureSpace ensure_space(this);
919   DCHECK(is_uint5(imm8));  // illegal shift count
920   if (imm8 == 1) {
921     EMIT(0xD1);
922     emit_operand(edi, dst);
923   } else {
924     EMIT(0xC1);
925     emit_operand(edi, dst);
926     EMIT(imm8);
927   }
928 }
929 
930 
sar_cl(const Operand & dst)931 void Assembler::sar_cl(const Operand& dst) {
932   EnsureSpace ensure_space(this);
933   EMIT(0xD3);
934   emit_operand(edi, dst);
935 }
936 
937 
sbb(Register dst,const Operand & src)938 void Assembler::sbb(Register dst, const Operand& src) {
939   EnsureSpace ensure_space(this);
940   EMIT(0x1B);
941   emit_operand(dst, src);
942 }
943 
944 
shld(Register dst,const Operand & src)945 void Assembler::shld(Register dst, const Operand& src) {
946   EnsureSpace ensure_space(this);
947   EMIT(0x0F);
948   EMIT(0xA5);
949   emit_operand(dst, src);
950 }
951 
952 
shl(const Operand & dst,uint8_t imm8)953 void Assembler::shl(const Operand& dst, uint8_t imm8) {
954   EnsureSpace ensure_space(this);
955   DCHECK(is_uint5(imm8));  // illegal shift count
956   if (imm8 == 1) {
957     EMIT(0xD1);
958     emit_operand(esp, dst);
959   } else {
960     EMIT(0xC1);
961     emit_operand(esp, dst);
962     EMIT(imm8);
963   }
964 }
965 
966 
shl_cl(const Operand & dst)967 void Assembler::shl_cl(const Operand& dst) {
968   EnsureSpace ensure_space(this);
969   EMIT(0xD3);
970   emit_operand(esp, dst);
971 }
972 
973 
shrd(Register dst,const Operand & src)974 void Assembler::shrd(Register dst, const Operand& src) {
975   EnsureSpace ensure_space(this);
976   EMIT(0x0F);
977   EMIT(0xAD);
978   emit_operand(dst, src);
979 }
980 
981 
shr(const Operand & dst,uint8_t imm8)982 void Assembler::shr(const Operand& dst, uint8_t imm8) {
983   EnsureSpace ensure_space(this);
984   DCHECK(is_uint5(imm8));  // illegal shift count
985   if (imm8 == 1) {
986     EMIT(0xD1);
987     emit_operand(ebp, dst);
988   } else {
989     EMIT(0xC1);
990     emit_operand(ebp, dst);
991     EMIT(imm8);
992   }
993 }
994 
995 
shr_cl(const Operand & dst)996 void Assembler::shr_cl(const Operand& dst) {
997   EnsureSpace ensure_space(this);
998   EMIT(0xD3);
999   emit_operand(ebp, dst);
1000 }
1001 
1002 
sub(const Operand & dst,const Immediate & x)1003 void Assembler::sub(const Operand& dst, const Immediate& x) {
1004   EnsureSpace ensure_space(this);
1005   emit_arith(5, dst, x);
1006 }
1007 
1008 
sub(Register dst,const Operand & src)1009 void Assembler::sub(Register dst, const Operand& src) {
1010   EnsureSpace ensure_space(this);
1011   EMIT(0x2B);
1012   emit_operand(dst, src);
1013 }
1014 
1015 
sub(const Operand & dst,Register src)1016 void Assembler::sub(const Operand& dst, Register src) {
1017   EnsureSpace ensure_space(this);
1018   EMIT(0x29);
1019   emit_operand(src, dst);
1020 }
1021 
1022 
test(Register reg,const Immediate & imm)1023 void Assembler::test(Register reg, const Immediate& imm) {
1024   if (RelocInfo::IsNone(imm.rmode_) && is_uint8(imm.x_)) {
1025     test_b(reg, imm.x_);
1026     return;
1027   }
1028 
1029   EnsureSpace ensure_space(this);
1030   // This is not using emit_arith because test doesn't support
1031   // sign-extension of 8-bit operands.
1032   if (reg.is(eax)) {
1033     EMIT(0xA9);
1034   } else {
1035     EMIT(0xF7);
1036     EMIT(0xC0 | reg.code());
1037   }
1038   emit(imm);
1039 }
1040 
1041 
test(Register reg,const Operand & op)1042 void Assembler::test(Register reg, const Operand& op) {
1043   EnsureSpace ensure_space(this);
1044   EMIT(0x85);
1045   emit_operand(reg, op);
1046 }
1047 
1048 
test_b(Register reg,const Operand & op)1049 void Assembler::test_b(Register reg, const Operand& op) {
1050   CHECK(reg.is_byte_register());
1051   EnsureSpace ensure_space(this);
1052   EMIT(0x84);
1053   emit_operand(reg, op);
1054 }
1055 
1056 
test(const Operand & op,const Immediate & imm)1057 void Assembler::test(const Operand& op, const Immediate& imm) {
1058   if (op.is_reg_only()) {
1059     test(op.reg(), imm);
1060     return;
1061   }
1062   if (RelocInfo::IsNone(imm.rmode_) && is_uint8(imm.x_)) {
1063     return test_b(op, imm.x_);
1064   }
1065   EnsureSpace ensure_space(this);
1066   EMIT(0xF7);
1067   emit_operand(eax, op);
1068   emit(imm);
1069 }
1070 
1071 
test_b(Register reg,uint8_t imm8)1072 void Assembler::test_b(Register reg, uint8_t imm8) {
1073   EnsureSpace ensure_space(this);
1074   // Only use test against byte for registers that have a byte
1075   // variant: eax, ebx, ecx, and edx.
1076   if (reg.is(eax)) {
1077     EMIT(0xA8);
1078     EMIT(imm8);
1079   } else if (reg.is_byte_register()) {
1080     emit_arith_b(0xF6, 0xC0, reg, imm8);
1081   } else {
1082     EMIT(0xF7);
1083     EMIT(0xC0 | reg.code());
1084     emit(imm8);
1085   }
1086 }
1087 
1088 
test_b(const Operand & op,uint8_t imm8)1089 void Assembler::test_b(const Operand& op, uint8_t imm8) {
1090   if (op.is_reg_only()) {
1091     test_b(op.reg(), imm8);
1092     return;
1093   }
1094   EnsureSpace ensure_space(this);
1095   EMIT(0xF6);
1096   emit_operand(eax, op);
1097   EMIT(imm8);
1098 }
1099 
1100 
xor_(Register dst,int32_t imm32)1101 void Assembler::xor_(Register dst, int32_t imm32) {
1102   EnsureSpace ensure_space(this);
1103   emit_arith(6, Operand(dst), Immediate(imm32));
1104 }
1105 
1106 
xor_(Register dst,const Operand & src)1107 void Assembler::xor_(Register dst, const Operand& src) {
1108   EnsureSpace ensure_space(this);
1109   EMIT(0x33);
1110   emit_operand(dst, src);
1111 }
1112 
1113 
xor_(const Operand & dst,Register src)1114 void Assembler::xor_(const Operand& dst, Register src) {
1115   EnsureSpace ensure_space(this);
1116   EMIT(0x31);
1117   emit_operand(src, dst);
1118 }
1119 
1120 
xor_(const Operand & dst,const Immediate & x)1121 void Assembler::xor_(const Operand& dst, const Immediate& x) {
1122   EnsureSpace ensure_space(this);
1123   emit_arith(6, dst, x);
1124 }
1125 
1126 
bt(const Operand & dst,Register src)1127 void Assembler::bt(const Operand& dst, Register src) {
1128   EnsureSpace ensure_space(this);
1129   EMIT(0x0F);
1130   EMIT(0xA3);
1131   emit_operand(src, dst);
1132 }
1133 
1134 
bts(const Operand & dst,Register src)1135 void Assembler::bts(const Operand& dst, Register src) {
1136   EnsureSpace ensure_space(this);
1137   EMIT(0x0F);
1138   EMIT(0xAB);
1139   emit_operand(src, dst);
1140 }
1141 
1142 
bsr(Register dst,const Operand & src)1143 void Assembler::bsr(Register dst, const Operand& src) {
1144   EnsureSpace ensure_space(this);
1145   EMIT(0x0F);
1146   EMIT(0xBD);
1147   emit_operand(dst, src);
1148 }
1149 
1150 
bsf(Register dst,const Operand & src)1151 void Assembler::bsf(Register dst, const Operand& src) {
1152   EnsureSpace ensure_space(this);
1153   EMIT(0x0F);
1154   EMIT(0xBC);
1155   emit_operand(dst, src);
1156 }
1157 
1158 
hlt()1159 void Assembler::hlt() {
1160   EnsureSpace ensure_space(this);
1161   EMIT(0xF4);
1162 }
1163 
1164 
int3()1165 void Assembler::int3() {
1166   EnsureSpace ensure_space(this);
1167   EMIT(0xCC);
1168 }
1169 
1170 
nop()1171 void Assembler::nop() {
1172   EnsureSpace ensure_space(this);
1173   EMIT(0x90);
1174 }
1175 
1176 
ret(int imm16)1177 void Assembler::ret(int imm16) {
1178   EnsureSpace ensure_space(this);
1179   DCHECK(is_uint16(imm16));
1180   if (imm16 == 0) {
1181     EMIT(0xC3);
1182   } else {
1183     EMIT(0xC2);
1184     EMIT(imm16 & 0xFF);
1185     EMIT((imm16 >> 8) & 0xFF);
1186   }
1187 }
1188 
1189 
ud2()1190 void Assembler::ud2() {
1191   EnsureSpace ensure_space(this);
1192   EMIT(0x0F);
1193   EMIT(0x0B);
1194 }
1195 
1196 
1197 // Labels refer to positions in the (to be) generated code.
1198 // There are bound, linked, and unused labels.
1199 //
1200 // Bound labels refer to known positions in the already
1201 // generated code. pos() is the position the label refers to.
1202 //
1203 // Linked labels refer to unknown positions in the code
1204 // to be generated; pos() is the position of the 32bit
1205 // Displacement of the last instruction using the label.
1206 
1207 
print(Label * L)1208 void Assembler::print(Label* L) {
1209   if (L->is_unused()) {
1210     PrintF("unused label\n");
1211   } else if (L->is_bound()) {
1212     PrintF("bound label to %d\n", L->pos());
1213   } else if (L->is_linked()) {
1214     Label l = *L;
1215     PrintF("unbound label");
1216     while (l.is_linked()) {
1217       Displacement disp = disp_at(&l);
1218       PrintF("@ %d ", l.pos());
1219       disp.print();
1220       PrintF("\n");
1221       disp.next(&l);
1222     }
1223   } else {
1224     PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
1225   }
1226 }
1227 
1228 
bind_to(Label * L,int pos)1229 void Assembler::bind_to(Label* L, int pos) {
1230   EnsureSpace ensure_space(this);
1231   DCHECK(0 <= pos && pos <= pc_offset());  // must have a valid binding position
1232   while (L->is_linked()) {
1233     Displacement disp = disp_at(L);
1234     int fixup_pos = L->pos();
1235     if (disp.type() == Displacement::CODE_ABSOLUTE) {
1236       long_at_put(fixup_pos, reinterpret_cast<int>(buffer_ + pos));
1237       internal_reference_positions_.push_back(fixup_pos);
1238     } else if (disp.type() == Displacement::CODE_RELATIVE) {
1239       // Relative to Code* heap object pointer.
1240       long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag);
1241     } else {
1242       if (disp.type() == Displacement::UNCONDITIONAL_JUMP) {
1243         DCHECK(byte_at(fixup_pos - 1) == 0xE9);  // jmp expected
1244       }
1245       // Relative address, relative to point after address.
1246       int imm32 = pos - (fixup_pos + sizeof(int32_t));
1247       long_at_put(fixup_pos, imm32);
1248     }
1249     disp.next(L);
1250   }
1251   while (L->is_near_linked()) {
1252     int fixup_pos = L->near_link_pos();
1253     int offset_to_next =
1254         static_cast<int>(*reinterpret_cast<int8_t*>(addr_at(fixup_pos)));
1255     DCHECK(offset_to_next <= 0);
1256     // Relative address, relative to point after address.
1257     int disp = pos - fixup_pos - sizeof(int8_t);
1258     CHECK(0 <= disp && disp <= 127);
1259     set_byte_at(fixup_pos, disp);
1260     if (offset_to_next < 0) {
1261       L->link_to(fixup_pos + offset_to_next, Label::kNear);
1262     } else {
1263       L->UnuseNear();
1264     }
1265   }
1266   L->bind_to(pos);
1267 }
1268 
1269 
bind(Label * L)1270 void Assembler::bind(Label* L) {
1271   EnsureSpace ensure_space(this);
1272   DCHECK(!L->is_bound());  // label can only be bound once
1273   bind_to(L, pc_offset());
1274 }
1275 
1276 
call(Label * L)1277 void Assembler::call(Label* L) {
1278   positions_recorder()->WriteRecordedPositions();
1279   EnsureSpace ensure_space(this);
1280   if (L->is_bound()) {
1281     const int long_size = 5;
1282     int offs = L->pos() - pc_offset();
1283     DCHECK(offs <= 0);
1284     // 1110 1000 #32-bit disp.
1285     EMIT(0xE8);
1286     emit(offs - long_size);
1287   } else {
1288     // 1110 1000 #32-bit disp.
1289     EMIT(0xE8);
1290     emit_disp(L, Displacement::OTHER);
1291   }
1292 }
1293 
1294 
call(byte * entry,RelocInfo::Mode rmode)1295 void Assembler::call(byte* entry, RelocInfo::Mode rmode) {
1296   positions_recorder()->WriteRecordedPositions();
1297   EnsureSpace ensure_space(this);
1298   DCHECK(!RelocInfo::IsCodeTarget(rmode));
1299   EMIT(0xE8);
1300   if (RelocInfo::IsRuntimeEntry(rmode)) {
1301     emit(reinterpret_cast<uint32_t>(entry), rmode);
1302   } else {
1303     emit(entry - (pc_ + sizeof(int32_t)), rmode);
1304   }
1305 }
1306 
1307 
CallSize(const Operand & adr)1308 int Assembler::CallSize(const Operand& adr) {
1309   // Call size is 1 (opcode) + adr.len_ (operand).
1310   return 1 + adr.len_;
1311 }
1312 
1313 
call(const Operand & adr)1314 void Assembler::call(const Operand& adr) {
1315   positions_recorder()->WriteRecordedPositions();
1316   EnsureSpace ensure_space(this);
1317   EMIT(0xFF);
1318   emit_operand(edx, adr);
1319 }
1320 
1321 
CallSize(Handle<Code> code,RelocInfo::Mode rmode)1322 int Assembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode) {
1323   return 1 /* EMIT */ + sizeof(uint32_t) /* emit */;
1324 }
1325 
1326 
call(Handle<Code> code,RelocInfo::Mode rmode,TypeFeedbackId ast_id)1327 void Assembler::call(Handle<Code> code,
1328                      RelocInfo::Mode rmode,
1329                      TypeFeedbackId ast_id) {
1330   positions_recorder()->WriteRecordedPositions();
1331   EnsureSpace ensure_space(this);
1332   DCHECK(RelocInfo::IsCodeTarget(rmode)
1333       || rmode == RelocInfo::CODE_AGE_SEQUENCE);
1334   EMIT(0xE8);
1335   emit(code, rmode, ast_id);
1336 }
1337 
1338 
jmp(Label * L,Label::Distance distance)1339 void Assembler::jmp(Label* L, Label::Distance distance) {
1340   EnsureSpace ensure_space(this);
1341   if (L->is_bound()) {
1342     const int short_size = 2;
1343     const int long_size  = 5;
1344     int offs = L->pos() - pc_offset();
1345     DCHECK(offs <= 0);
1346     if (is_int8(offs - short_size)) {
1347       // 1110 1011 #8-bit disp.
1348       EMIT(0xEB);
1349       EMIT((offs - short_size) & 0xFF);
1350     } else {
1351       // 1110 1001 #32-bit disp.
1352       EMIT(0xE9);
1353       emit(offs - long_size);
1354     }
1355   } else if (distance == Label::kNear) {
1356     EMIT(0xEB);
1357     emit_near_disp(L);
1358   } else {
1359     // 1110 1001 #32-bit disp.
1360     EMIT(0xE9);
1361     emit_disp(L, Displacement::UNCONDITIONAL_JUMP);
1362   }
1363 }
1364 
1365 
jmp(byte * entry,RelocInfo::Mode rmode)1366 void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) {
1367   EnsureSpace ensure_space(this);
1368   DCHECK(!RelocInfo::IsCodeTarget(rmode));
1369   EMIT(0xE9);
1370   if (RelocInfo::IsRuntimeEntry(rmode)) {
1371     emit(reinterpret_cast<uint32_t>(entry), rmode);
1372   } else {
1373     emit(entry - (pc_ + sizeof(int32_t)), rmode);
1374   }
1375 }
1376 
1377 
jmp(const Operand & adr)1378 void Assembler::jmp(const Operand& adr) {
1379   EnsureSpace ensure_space(this);
1380   EMIT(0xFF);
1381   emit_operand(esp, adr);
1382 }
1383 
1384 
jmp(Handle<Code> code,RelocInfo::Mode rmode)1385 void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) {
1386   EnsureSpace ensure_space(this);
1387   DCHECK(RelocInfo::IsCodeTarget(rmode));
1388   EMIT(0xE9);
1389   emit(code, rmode);
1390 }
1391 
1392 
j(Condition cc,Label * L,Label::Distance distance)1393 void Assembler::j(Condition cc, Label* L, Label::Distance distance) {
1394   EnsureSpace ensure_space(this);
1395   DCHECK(0 <= cc && static_cast<int>(cc) < 16);
1396   if (L->is_bound()) {
1397     const int short_size = 2;
1398     const int long_size  = 6;
1399     int offs = L->pos() - pc_offset();
1400     DCHECK(offs <= 0);
1401     if (is_int8(offs - short_size)) {
1402       // 0111 tttn #8-bit disp
1403       EMIT(0x70 | cc);
1404       EMIT((offs - short_size) & 0xFF);
1405     } else {
1406       // 0000 1111 1000 tttn #32-bit disp
1407       EMIT(0x0F);
1408       EMIT(0x80 | cc);
1409       emit(offs - long_size);
1410     }
1411   } else if (distance == Label::kNear) {
1412     EMIT(0x70 | cc);
1413     emit_near_disp(L);
1414   } else {
1415     // 0000 1111 1000 tttn #32-bit disp
1416     // Note: could eliminate cond. jumps to this jump if condition
1417     //       is the same however, seems to be rather unlikely case.
1418     EMIT(0x0F);
1419     EMIT(0x80 | cc);
1420     emit_disp(L, Displacement::OTHER);
1421   }
1422 }
1423 
1424 
j(Condition cc,byte * entry,RelocInfo::Mode rmode)1425 void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode) {
1426   EnsureSpace ensure_space(this);
1427   DCHECK((0 <= cc) && (static_cast<int>(cc) < 16));
1428   // 0000 1111 1000 tttn #32-bit disp.
1429   EMIT(0x0F);
1430   EMIT(0x80 | cc);
1431   if (RelocInfo::IsRuntimeEntry(rmode)) {
1432     emit(reinterpret_cast<uint32_t>(entry), rmode);
1433   } else {
1434     emit(entry - (pc_ + sizeof(int32_t)), rmode);
1435   }
1436 }
1437 
1438 
j(Condition cc,Handle<Code> code,RelocInfo::Mode rmode)1439 void Assembler::j(Condition cc, Handle<Code> code, RelocInfo::Mode rmode) {
1440   EnsureSpace ensure_space(this);
1441   // 0000 1111 1000 tttn #32-bit disp
1442   EMIT(0x0F);
1443   EMIT(0x80 | cc);
1444   emit(code, rmode);
1445 }
1446 
1447 
1448 // FPU instructions.
1449 
fld(int i)1450 void Assembler::fld(int i) {
1451   EnsureSpace ensure_space(this);
1452   emit_farith(0xD9, 0xC0, i);
1453 }
1454 
1455 
fstp(int i)1456 void Assembler::fstp(int i) {
1457   EnsureSpace ensure_space(this);
1458   emit_farith(0xDD, 0xD8, i);
1459 }
1460 
1461 
fld1()1462 void Assembler::fld1() {
1463   EnsureSpace ensure_space(this);
1464   EMIT(0xD9);
1465   EMIT(0xE8);
1466 }
1467 
1468 
fldpi()1469 void Assembler::fldpi() {
1470   EnsureSpace ensure_space(this);
1471   EMIT(0xD9);
1472   EMIT(0xEB);
1473 }
1474 
1475 
fldz()1476 void Assembler::fldz() {
1477   EnsureSpace ensure_space(this);
1478   EMIT(0xD9);
1479   EMIT(0xEE);
1480 }
1481 
1482 
fldln2()1483 void Assembler::fldln2() {
1484   EnsureSpace ensure_space(this);
1485   EMIT(0xD9);
1486   EMIT(0xED);
1487 }
1488 
1489 
fld_s(const Operand & adr)1490 void Assembler::fld_s(const Operand& adr) {
1491   EnsureSpace ensure_space(this);
1492   EMIT(0xD9);
1493   emit_operand(eax, adr);
1494 }
1495 
1496 
fld_d(const Operand & adr)1497 void Assembler::fld_d(const Operand& adr) {
1498   EnsureSpace ensure_space(this);
1499   EMIT(0xDD);
1500   emit_operand(eax, adr);
1501 }
1502 
1503 
fstp_s(const Operand & adr)1504 void Assembler::fstp_s(const Operand& adr) {
1505   EnsureSpace ensure_space(this);
1506   EMIT(0xD9);
1507   emit_operand(ebx, adr);
1508 }
1509 
1510 
fst_s(const Operand & adr)1511 void Assembler::fst_s(const Operand& adr) {
1512   EnsureSpace ensure_space(this);
1513   EMIT(0xD9);
1514   emit_operand(edx, adr);
1515 }
1516 
1517 
fldcw(const Operand & adr)1518 void Assembler::fldcw(const Operand& adr) {
1519   EnsureSpace ensure_space(this);
1520   EMIT(0xD9);
1521   emit_operand(ebp, adr);
1522 }
1523 
1524 
fnstcw(const Operand & adr)1525 void Assembler::fnstcw(const Operand& adr) {
1526   EnsureSpace ensure_space(this);
1527   EMIT(0xD9);
1528   emit_operand(edi, adr);
1529 }
1530 
1531 
fstp_d(const Operand & adr)1532 void Assembler::fstp_d(const Operand& adr) {
1533   EnsureSpace ensure_space(this);
1534   EMIT(0xDD);
1535   emit_operand(ebx, adr);
1536 }
1537 
1538 
fst_d(const Operand & adr)1539 void Assembler::fst_d(const Operand& adr) {
1540   EnsureSpace ensure_space(this);
1541   EMIT(0xDD);
1542   emit_operand(edx, adr);
1543 }
1544 
1545 
fild_s(const Operand & adr)1546 void Assembler::fild_s(const Operand& adr) {
1547   EnsureSpace ensure_space(this);
1548   EMIT(0xDB);
1549   emit_operand(eax, adr);
1550 }
1551 
1552 
fild_d(const Operand & adr)1553 void Assembler::fild_d(const Operand& adr) {
1554   EnsureSpace ensure_space(this);
1555   EMIT(0xDF);
1556   emit_operand(ebp, adr);
1557 }
1558 
1559 
fistp_s(const Operand & adr)1560 void Assembler::fistp_s(const Operand& adr) {
1561   EnsureSpace ensure_space(this);
1562   EMIT(0xDB);
1563   emit_operand(ebx, adr);
1564 }
1565 
1566 
fisttp_s(const Operand & adr)1567 void Assembler::fisttp_s(const Operand& adr) {
1568   DCHECK(IsEnabled(SSE3));
1569   EnsureSpace ensure_space(this);
1570   EMIT(0xDB);
1571   emit_operand(ecx, adr);
1572 }
1573 
1574 
fisttp_d(const Operand & adr)1575 void Assembler::fisttp_d(const Operand& adr) {
1576   DCHECK(IsEnabled(SSE3));
1577   EnsureSpace ensure_space(this);
1578   EMIT(0xDD);
1579   emit_operand(ecx, adr);
1580 }
1581 
1582 
fist_s(const Operand & adr)1583 void Assembler::fist_s(const Operand& adr) {
1584   EnsureSpace ensure_space(this);
1585   EMIT(0xDB);
1586   emit_operand(edx, adr);
1587 }
1588 
1589 
fistp_d(const Operand & adr)1590 void Assembler::fistp_d(const Operand& adr) {
1591   EnsureSpace ensure_space(this);
1592   EMIT(0xDF);
1593   emit_operand(edi, adr);
1594 }
1595 
1596 
fabs()1597 void Assembler::fabs() {
1598   EnsureSpace ensure_space(this);
1599   EMIT(0xD9);
1600   EMIT(0xE1);
1601 }
1602 
1603 
fchs()1604 void Assembler::fchs() {
1605   EnsureSpace ensure_space(this);
1606   EMIT(0xD9);
1607   EMIT(0xE0);
1608 }
1609 
1610 
fsqrt()1611 void Assembler::fsqrt() {
1612   EnsureSpace ensure_space(this);
1613   EMIT(0xD9);
1614   EMIT(0xFA);
1615 }
1616 
1617 
fcos()1618 void Assembler::fcos() {
1619   EnsureSpace ensure_space(this);
1620   EMIT(0xD9);
1621   EMIT(0xFF);
1622 }
1623 
1624 
fsin()1625 void Assembler::fsin() {
1626   EnsureSpace ensure_space(this);
1627   EMIT(0xD9);
1628   EMIT(0xFE);
1629 }
1630 
1631 
fptan()1632 void Assembler::fptan() {
1633   EnsureSpace ensure_space(this);
1634   EMIT(0xD9);
1635   EMIT(0xF2);
1636 }
1637 
1638 
fyl2x()1639 void Assembler::fyl2x() {
1640   EnsureSpace ensure_space(this);
1641   EMIT(0xD9);
1642   EMIT(0xF1);
1643 }
1644 
1645 
f2xm1()1646 void Assembler::f2xm1() {
1647   EnsureSpace ensure_space(this);
1648   EMIT(0xD9);
1649   EMIT(0xF0);
1650 }
1651 
1652 
fscale()1653 void Assembler::fscale() {
1654   EnsureSpace ensure_space(this);
1655   EMIT(0xD9);
1656   EMIT(0xFD);
1657 }
1658 
1659 
fninit()1660 void Assembler::fninit() {
1661   EnsureSpace ensure_space(this);
1662   EMIT(0xDB);
1663   EMIT(0xE3);
1664 }
1665 
1666 
fadd(int i)1667 void Assembler::fadd(int i) {
1668   EnsureSpace ensure_space(this);
1669   emit_farith(0xDC, 0xC0, i);
1670 }
1671 
1672 
fadd_i(int i)1673 void Assembler::fadd_i(int i) {
1674   EnsureSpace ensure_space(this);
1675   emit_farith(0xD8, 0xC0, i);
1676 }
1677 
1678 
fadd_d(const Operand & adr)1679 void Assembler::fadd_d(const Operand& adr) {
1680   EnsureSpace ensure_space(this);
1681   EMIT(0xDC);
1682   emit_operand(eax, adr);
1683 }
1684 
1685 
fsub(int i)1686 void Assembler::fsub(int i) {
1687   EnsureSpace ensure_space(this);
1688   emit_farith(0xDC, 0xE8, i);
1689 }
1690 
1691 
fsub_i(int i)1692 void Assembler::fsub_i(int i) {
1693   EnsureSpace ensure_space(this);
1694   emit_farith(0xD8, 0xE0, i);
1695 }
1696 
1697 
fsubr_d(const Operand & adr)1698 void Assembler::fsubr_d(const Operand& adr) {
1699   EnsureSpace ensure_space(this);
1700   EMIT(0xDC);
1701   emit_operand(ebp, adr);
1702 }
1703 
1704 
fsub_d(const Operand & adr)1705 void Assembler::fsub_d(const Operand& adr) {
1706   EnsureSpace ensure_space(this);
1707   EMIT(0xDC);
1708   emit_operand(esp, adr);
1709 }
1710 
1711 
fisub_s(const Operand & adr)1712 void Assembler::fisub_s(const Operand& adr) {
1713   EnsureSpace ensure_space(this);
1714   EMIT(0xDA);
1715   emit_operand(esp, adr);
1716 }
1717 
1718 
fmul_i(int i)1719 void Assembler::fmul_i(int i) {
1720   EnsureSpace ensure_space(this);
1721   emit_farith(0xD8, 0xC8, i);
1722 }
1723 
1724 
fmul(int i)1725 void Assembler::fmul(int i) {
1726   EnsureSpace ensure_space(this);
1727   emit_farith(0xDC, 0xC8, i);
1728 }
1729 
1730 
fmul_d(const Operand & adr)1731 void Assembler::fmul_d(const Operand& adr) {
1732   EnsureSpace ensure_space(this);
1733   EMIT(0xDC);
1734   emit_operand(ecx, adr);
1735 }
1736 
1737 
fdiv(int i)1738 void Assembler::fdiv(int i) {
1739   EnsureSpace ensure_space(this);
1740   emit_farith(0xDC, 0xF8, i);
1741 }
1742 
1743 
fdiv_d(const Operand & adr)1744 void Assembler::fdiv_d(const Operand& adr) {
1745   EnsureSpace ensure_space(this);
1746   EMIT(0xDC);
1747   emit_operand(esi, adr);
1748 }
1749 
1750 
fdivr_d(const Operand & adr)1751 void Assembler::fdivr_d(const Operand& adr) {
1752   EnsureSpace ensure_space(this);
1753   EMIT(0xDC);
1754   emit_operand(edi, adr);
1755 }
1756 
1757 
fdiv_i(int i)1758 void Assembler::fdiv_i(int i) {
1759   EnsureSpace ensure_space(this);
1760   emit_farith(0xD8, 0xF0, i);
1761 }
1762 
1763 
faddp(int i)1764 void Assembler::faddp(int i) {
1765   EnsureSpace ensure_space(this);
1766   emit_farith(0xDE, 0xC0, i);
1767 }
1768 
1769 
fsubp(int i)1770 void Assembler::fsubp(int i) {
1771   EnsureSpace ensure_space(this);
1772   emit_farith(0xDE, 0xE8, i);
1773 }
1774 
1775 
fsubrp(int i)1776 void Assembler::fsubrp(int i) {
1777   EnsureSpace ensure_space(this);
1778   emit_farith(0xDE, 0xE0, i);
1779 }
1780 
1781 
fmulp(int i)1782 void Assembler::fmulp(int i) {
1783   EnsureSpace ensure_space(this);
1784   emit_farith(0xDE, 0xC8, i);
1785 }
1786 
1787 
fdivp(int i)1788 void Assembler::fdivp(int i) {
1789   EnsureSpace ensure_space(this);
1790   emit_farith(0xDE, 0xF8, i);
1791 }
1792 
1793 
fprem()1794 void Assembler::fprem() {
1795   EnsureSpace ensure_space(this);
1796   EMIT(0xD9);
1797   EMIT(0xF8);
1798 }
1799 
1800 
fprem1()1801 void Assembler::fprem1() {
1802   EnsureSpace ensure_space(this);
1803   EMIT(0xD9);
1804   EMIT(0xF5);
1805 }
1806 
1807 
fxch(int i)1808 void Assembler::fxch(int i) {
1809   EnsureSpace ensure_space(this);
1810   emit_farith(0xD9, 0xC8, i);
1811 }
1812 
1813 
fincstp()1814 void Assembler::fincstp() {
1815   EnsureSpace ensure_space(this);
1816   EMIT(0xD9);
1817   EMIT(0xF7);
1818 }
1819 
1820 
ffree(int i)1821 void Assembler::ffree(int i) {
1822   EnsureSpace ensure_space(this);
1823   emit_farith(0xDD, 0xC0, i);
1824 }
1825 
1826 
ftst()1827 void Assembler::ftst() {
1828   EnsureSpace ensure_space(this);
1829   EMIT(0xD9);
1830   EMIT(0xE4);
1831 }
1832 
1833 
fxam()1834 void Assembler::fxam() {
1835   EnsureSpace ensure_space(this);
1836   EMIT(0xD9);
1837   EMIT(0xE5);
1838 }
1839 
1840 
fucomp(int i)1841 void Assembler::fucomp(int i) {
1842   EnsureSpace ensure_space(this);
1843   emit_farith(0xDD, 0xE8, i);
1844 }
1845 
1846 
fucompp()1847 void Assembler::fucompp() {
1848   EnsureSpace ensure_space(this);
1849   EMIT(0xDA);
1850   EMIT(0xE9);
1851 }
1852 
1853 
fucomi(int i)1854 void Assembler::fucomi(int i) {
1855   EnsureSpace ensure_space(this);
1856   EMIT(0xDB);
1857   EMIT(0xE8 + i);
1858 }
1859 
1860 
fucomip()1861 void Assembler::fucomip() {
1862   EnsureSpace ensure_space(this);
1863   EMIT(0xDF);
1864   EMIT(0xE9);
1865 }
1866 
1867 
fcompp()1868 void Assembler::fcompp() {
1869   EnsureSpace ensure_space(this);
1870   EMIT(0xDE);
1871   EMIT(0xD9);
1872 }
1873 
1874 
fnstsw_ax()1875 void Assembler::fnstsw_ax() {
1876   EnsureSpace ensure_space(this);
1877   EMIT(0xDF);
1878   EMIT(0xE0);
1879 }
1880 
1881 
fwait()1882 void Assembler::fwait() {
1883   EnsureSpace ensure_space(this);
1884   EMIT(0x9B);
1885 }
1886 
1887 
frndint()1888 void Assembler::frndint() {
1889   EnsureSpace ensure_space(this);
1890   EMIT(0xD9);
1891   EMIT(0xFC);
1892 }
1893 
1894 
fnclex()1895 void Assembler::fnclex() {
1896   EnsureSpace ensure_space(this);
1897   EMIT(0xDB);
1898   EMIT(0xE2);
1899 }
1900 
1901 
fnsave(const Operand & adr)1902 void Assembler::fnsave(const Operand& adr) {
1903   EnsureSpace ensure_space(this);
1904   EMIT(0xDD);
1905   emit_operand(esi, adr);
1906 }
1907 
1908 
frstor(const Operand & adr)1909 void Assembler::frstor(const Operand& adr) {
1910   EnsureSpace ensure_space(this);
1911   EMIT(0xDD);
1912   emit_operand(esp, adr);
1913 }
1914 
1915 
sahf()1916 void Assembler::sahf() {
1917   EnsureSpace ensure_space(this);
1918   EMIT(0x9E);
1919 }
1920 
1921 
setcc(Condition cc,Register reg)1922 void Assembler::setcc(Condition cc, Register reg) {
1923   DCHECK(reg.is_byte_register());
1924   EnsureSpace ensure_space(this);
1925   EMIT(0x0F);
1926   EMIT(0x90 | cc);
1927   EMIT(0xC0 | reg.code());
1928 }
1929 
1930 
GrowBuffer()1931 void Assembler::GrowBuffer() {
1932   DCHECK(buffer_overflow());
1933   if (!own_buffer_) FATAL("external code buffer is too small");
1934 
1935   // Compute new buffer size.
1936   CodeDesc desc;  // the new buffer
1937   desc.buffer_size = 2 * buffer_size_;
1938 
1939   // Some internal data structures overflow for very large buffers,
1940   // they must ensure that kMaximalBufferSize is not too large.
1941   if ((desc.buffer_size > kMaximalBufferSize) ||
1942       (desc.buffer_size > isolate()->heap()->MaxOldGenerationSize())) {
1943     V8::FatalProcessOutOfMemory("Assembler::GrowBuffer");
1944   }
1945 
1946   // Set up new buffer.
1947   desc.buffer = NewArray<byte>(desc.buffer_size);
1948   desc.origin = this;
1949   desc.instr_size = pc_offset();
1950   desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos());
1951 
1952   // Clear the buffer in debug mode. Use 'int3' instructions to make
1953   // sure to get into problems if we ever run uninitialized code.
1954 #ifdef DEBUG
1955   memset(desc.buffer, 0xCC, desc.buffer_size);
1956 #endif
1957 
1958   // Copy the data.
1959   int pc_delta = desc.buffer - buffer_;
1960   int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
1961   MemMove(desc.buffer, buffer_, desc.instr_size);
1962   MemMove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(),
1963           desc.reloc_size);
1964 
1965   DeleteArray(buffer_);
1966   buffer_ = desc.buffer;
1967   buffer_size_ = desc.buffer_size;
1968   pc_ += pc_delta;
1969   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
1970                                reloc_info_writer.last_pc() + pc_delta);
1971 
1972   // Relocate internal references.
1973   for (auto pos : internal_reference_positions_) {
1974     int32_t* p = reinterpret_cast<int32_t*>(buffer_ + pos);
1975     *p += pc_delta;
1976   }
1977 
1978   DCHECK(!buffer_overflow());
1979 }
1980 
1981 
emit_arith_b(int op1,int op2,Register dst,int imm8)1982 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
1983   DCHECK(is_uint8(op1) && is_uint8(op2));  // wrong opcode
1984   DCHECK(is_uint8(imm8));
1985   DCHECK((op1 & 0x01) == 0);  // should be 8bit operation
1986   EMIT(op1);
1987   EMIT(op2 | dst.code());
1988   EMIT(imm8);
1989 }
1990 
1991 
emit_arith(int sel,Operand dst,const Immediate & x)1992 void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) {
1993   DCHECK((0 <= sel) && (sel <= 7));
1994   Register ireg = { sel };
1995   if (x.is_int8()) {
1996     EMIT(0x83);  // using a sign-extended 8-bit immediate.
1997     emit_operand(ireg, dst);
1998     EMIT(x.x_ & 0xFF);
1999   } else if (dst.is_reg(eax)) {
2000     EMIT((sel << 3) | 0x05);  // short form if the destination is eax.
2001     emit(x);
2002   } else {
2003     EMIT(0x81);  // using a literal 32-bit immediate.
2004     emit_operand(ireg, dst);
2005     emit(x);
2006   }
2007 }
2008 
2009 
emit_operand(Register reg,const Operand & adr)2010 void Assembler::emit_operand(Register reg, const Operand& adr) {
2011   const unsigned length = adr.len_;
2012   DCHECK(length > 0);
2013 
2014   // Emit updated ModRM byte containing the given register.
2015   pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3);
2016 
2017   // Emit the rest of the encoded operand.
2018   for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i];
2019   pc_ += length;
2020 
2021   // Emit relocation information if necessary.
2022   if (length >= sizeof(int32_t) && !RelocInfo::IsNone(adr.rmode_)) {
2023     pc_ -= sizeof(int32_t);  // pc_ must be *at* disp32
2024     RecordRelocInfo(adr.rmode_);
2025     if (adr.rmode_ == RelocInfo::INTERNAL_REFERENCE) {  // Fixup for labels
2026       emit_label(*reinterpret_cast<Label**>(pc_));
2027     } else {
2028       pc_ += sizeof(int32_t);
2029     }
2030   }
2031 }
2032 
2033 
emit_label(Label * label)2034 void Assembler::emit_label(Label* label) {
2035   if (label->is_bound()) {
2036     internal_reference_positions_.push_back(pc_offset());
2037     emit(reinterpret_cast<uint32_t>(buffer_ + label->pos()));
2038   } else {
2039     emit_disp(label, Displacement::CODE_ABSOLUTE);
2040   }
2041 }
2042 
2043 
emit_farith(int b1,int b2,int i)2044 void Assembler::emit_farith(int b1, int b2, int i) {
2045   DCHECK(is_uint8(b1) && is_uint8(b2));  // wrong opcode
2046   DCHECK(0 <= i &&  i < 8);  // illegal stack offset
2047   EMIT(b1);
2048   EMIT(b2 + i);
2049 }
2050 
2051 
db(uint8_t data)2052 void Assembler::db(uint8_t data) {
2053   EnsureSpace ensure_space(this);
2054   EMIT(data);
2055 }
2056 
2057 
dd(uint32_t data)2058 void Assembler::dd(uint32_t data) {
2059   EnsureSpace ensure_space(this);
2060   emit(data);
2061 }
2062 
2063 
dq(uint64_t data)2064 void Assembler::dq(uint64_t data) {
2065   EnsureSpace ensure_space(this);
2066   emit_q(data);
2067 }
2068 
2069 
dd(Label * label)2070 void Assembler::dd(Label* label) {
2071   EnsureSpace ensure_space(this);
2072   RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
2073   emit_label(label);
2074 }
2075 
2076 
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)2077 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2078   DCHECK(!RelocInfo::IsNone(rmode));
2079   // Don't record external references unless the heap will be serialized.
2080   if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
2081       !serializer_enabled() && !emit_debug_code()) {
2082       return;
2083   }
2084   RelocInfo rinfo(isolate(), pc_, rmode, data, NULL);
2085   reloc_info_writer.Write(&rinfo);
2086 }
2087 
2088 
2089 #ifdef GENERATED_CODE_COVERAGE
2090 static FILE* coverage_log = NULL;
2091 
2092 
InitCoverageLog()2093 static void InitCoverageLog() {
2094   char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
2095   if (file_name != NULL) {
2096     coverage_log = fopen(file_name, "aw+");
2097   }
2098 }
2099 
2100 
LogGeneratedCodeCoverage(const char * file_line)2101 void LogGeneratedCodeCoverage(const char* file_line) {
2102   const char* return_address = (&file_line)[-1];
2103   char* push_insn = const_cast<char*>(return_address - 12);
2104   push_insn[0] = 0xeb;  // Relative branch insn.
2105   push_insn[1] = 13;    // Skip over coverage insns.
2106   if (coverage_log != NULL) {
2107     fprintf(coverage_log, "%s\n", file_line);
2108     fflush(coverage_log);
2109   }
2110 }
2111 
2112 #endif
2113 
2114 }  // namespace internal
2115 }  // namespace v8
2116 
2117 #endif  // V8_TARGET_ARCH_X87
2118