1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2012 the V8 project authors. All rights reserved.
36
37 #include "src/x87/assembler-x87.h"
38
39 #if V8_TARGET_ARCH_X87
40
41 #include "src/base/bits.h"
42 #include "src/base/cpu.h"
43 #include "src/disassembler.h"
44 #include "src/macro-assembler.h"
45 #include "src/v8.h"
46
47 namespace v8 {
48 namespace internal {
49
50 // -----------------------------------------------------------------------------
51 // Implementation of CpuFeatures
52
ProbeImpl(bool cross_compile)53 void CpuFeatures::ProbeImpl(bool cross_compile) {
54 base::CPU cpu;
55
56 // Only use statically determined features for cross compile (snapshot).
57 if (cross_compile) return;
58 }
59
60
PrintTarget()61 void CpuFeatures::PrintTarget() { }
PrintFeatures()62 void CpuFeatures::PrintFeatures() { }
63
64
65 // -----------------------------------------------------------------------------
66 // Implementation of Displacement
67
init(Label * L,Type type)68 void Displacement::init(Label* L, Type type) {
69 DCHECK(!L->is_bound());
70 int next = 0;
71 if (L->is_linked()) {
72 next = L->pos();
73 DCHECK(next > 0); // Displacements must be at positions > 0
74 }
75 // Ensure that we _never_ overflow the next field.
76 DCHECK(NextField::is_valid(Assembler::kMaximalBufferSize));
77 data_ = NextField::encode(next) | TypeField::encode(type);
78 }
79
80
81 // -----------------------------------------------------------------------------
82 // Implementation of RelocInfo
83
84
85 const int RelocInfo::kApplyMask =
86 RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY |
87 1 << RelocInfo::INTERNAL_REFERENCE | 1 << RelocInfo::CODE_AGE_SEQUENCE |
88 RelocInfo::kDebugBreakSlotMask;
89
90
IsCodedSpecially()91 bool RelocInfo::IsCodedSpecially() {
92 // The deserializer needs to know whether a pointer is specially coded. Being
93 // specially coded on IA32 means that it is a relative address, as used by
94 // branch instructions. These are also the ones that need changing when a
95 // code object moves.
96 return (1 << rmode_) & kApplyMask;
97 }
98
99
IsInConstantPool()100 bool RelocInfo::IsInConstantPool() {
101 return false;
102 }
103
104
105 // -----------------------------------------------------------------------------
106 // Implementation of Operand
107
Operand(Register base,int32_t disp,RelocInfo::Mode rmode)108 Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) {
109 // [base + disp/r]
110 if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
111 // [base]
112 set_modrm(0, base);
113 if (base.is(esp)) set_sib(times_1, esp, base);
114 } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
115 // [base + disp8]
116 set_modrm(1, base);
117 if (base.is(esp)) set_sib(times_1, esp, base);
118 set_disp8(disp);
119 } else {
120 // [base + disp/r]
121 set_modrm(2, base);
122 if (base.is(esp)) set_sib(times_1, esp, base);
123 set_dispr(disp, rmode);
124 }
125 }
126
127
Operand(Register base,Register index,ScaleFactor scale,int32_t disp,RelocInfo::Mode rmode)128 Operand::Operand(Register base,
129 Register index,
130 ScaleFactor scale,
131 int32_t disp,
132 RelocInfo::Mode rmode) {
133 DCHECK(!index.is(esp)); // illegal addressing mode
134 // [base + index*scale + disp/r]
135 if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
136 // [base + index*scale]
137 set_modrm(0, esp);
138 set_sib(scale, index, base);
139 } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
140 // [base + index*scale + disp8]
141 set_modrm(1, esp);
142 set_sib(scale, index, base);
143 set_disp8(disp);
144 } else {
145 // [base + index*scale + disp/r]
146 set_modrm(2, esp);
147 set_sib(scale, index, base);
148 set_dispr(disp, rmode);
149 }
150 }
151
152
Operand(Register index,ScaleFactor scale,int32_t disp,RelocInfo::Mode rmode)153 Operand::Operand(Register index,
154 ScaleFactor scale,
155 int32_t disp,
156 RelocInfo::Mode rmode) {
157 DCHECK(!index.is(esp)); // illegal addressing mode
158 // [index*scale + disp/r]
159 set_modrm(0, esp);
160 set_sib(scale, index, ebp);
161 set_dispr(disp, rmode);
162 }
163
164
is_reg(Register reg) const165 bool Operand::is_reg(Register reg) const {
166 return ((buf_[0] & 0xF8) == 0xC0) // addressing mode is register only.
167 && ((buf_[0] & 0x07) == reg.code()); // register codes match.
168 }
169
170
is_reg_only() const171 bool Operand::is_reg_only() const {
172 return (buf_[0] & 0xF8) == 0xC0; // Addressing mode is register only.
173 }
174
175
reg() const176 Register Operand::reg() const {
177 DCHECK(is_reg_only());
178 return Register::from_code(buf_[0] & 0x07);
179 }
180
181
182 // -----------------------------------------------------------------------------
183 // Implementation of Assembler.
184
185 // Emit a single byte. Must always be inlined.
186 #define EMIT(x) \
187 *pc_++ = (x)
188
189
190 #ifdef GENERATED_CODE_COVERAGE
191 static void InitCoverageLog();
192 #endif
193
Assembler(Isolate * isolate,void * buffer,int buffer_size)194 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
195 : AssemblerBase(isolate, buffer, buffer_size),
196 positions_recorder_(this) {
197 // Clear the buffer in debug mode unless it was provided by the
198 // caller in which case we can't be sure it's okay to overwrite
199 // existing code in it; see CodePatcher::CodePatcher(...).
200 #ifdef DEBUG
201 if (own_buffer_) {
202 memset(buffer_, 0xCC, buffer_size_); // int3
203 }
204 #endif
205
206 reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
207
208 #ifdef GENERATED_CODE_COVERAGE
209 InitCoverageLog();
210 #endif
211 }
212
213
GetCode(CodeDesc * desc)214 void Assembler::GetCode(CodeDesc* desc) {
215 // Finalize code (at this point overflow() may be true, but the gap ensures
216 // that we are still not overlapping instructions and relocation info).
217 reloc_info_writer.Finish();
218 DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap.
219 // Set up code descriptor.
220 desc->buffer = buffer_;
221 desc->buffer_size = buffer_size_;
222 desc->instr_size = pc_offset();
223 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
224 desc->origin = this;
225 desc->constant_pool_size = 0;
226 }
227
228
Align(int m)229 void Assembler::Align(int m) {
230 DCHECK(base::bits::IsPowerOfTwo32(m));
231 int mask = m - 1;
232 int addr = pc_offset();
233 Nop((m - (addr & mask)) & mask);
234 }
235
236
IsNop(Address addr)237 bool Assembler::IsNop(Address addr) {
238 Address a = addr;
239 while (*a == 0x66) a++;
240 if (*a == 0x90) return true;
241 if (a[0] == 0xf && a[1] == 0x1f) return true;
242 return false;
243 }
244
245
Nop(int bytes)246 void Assembler::Nop(int bytes) {
247 EnsureSpace ensure_space(this);
248
249 // Older CPUs that do not support SSE2 may not support multibyte NOP
250 // instructions.
251 for (; bytes > 0; bytes--) {
252 EMIT(0x90);
253 }
254 return;
255 }
256
257
CodeTargetAlign()258 void Assembler::CodeTargetAlign() {
259 Align(16); // Preferred alignment of jump targets on ia32.
260 }
261
262
cpuid()263 void Assembler::cpuid() {
264 EnsureSpace ensure_space(this);
265 EMIT(0x0F);
266 EMIT(0xA2);
267 }
268
269
pushad()270 void Assembler::pushad() {
271 EnsureSpace ensure_space(this);
272 EMIT(0x60);
273 }
274
275
popad()276 void Assembler::popad() {
277 EnsureSpace ensure_space(this);
278 EMIT(0x61);
279 }
280
281
pushfd()282 void Assembler::pushfd() {
283 EnsureSpace ensure_space(this);
284 EMIT(0x9C);
285 }
286
287
popfd()288 void Assembler::popfd() {
289 EnsureSpace ensure_space(this);
290 EMIT(0x9D);
291 }
292
293
push(const Immediate & x)294 void Assembler::push(const Immediate& x) {
295 EnsureSpace ensure_space(this);
296 if (x.is_int8()) {
297 EMIT(0x6a);
298 EMIT(x.x_);
299 } else {
300 EMIT(0x68);
301 emit(x);
302 }
303 }
304
305
push_imm32(int32_t imm32)306 void Assembler::push_imm32(int32_t imm32) {
307 EnsureSpace ensure_space(this);
308 EMIT(0x68);
309 emit(imm32);
310 }
311
312
push(Register src)313 void Assembler::push(Register src) {
314 EnsureSpace ensure_space(this);
315 EMIT(0x50 | src.code());
316 }
317
318
push(const Operand & src)319 void Assembler::push(const Operand& src) {
320 EnsureSpace ensure_space(this);
321 EMIT(0xFF);
322 emit_operand(esi, src);
323 }
324
325
pop(Register dst)326 void Assembler::pop(Register dst) {
327 DCHECK(reloc_info_writer.last_pc() != NULL);
328 EnsureSpace ensure_space(this);
329 EMIT(0x58 | dst.code());
330 }
331
332
pop(const Operand & dst)333 void Assembler::pop(const Operand& dst) {
334 EnsureSpace ensure_space(this);
335 EMIT(0x8F);
336 emit_operand(eax, dst);
337 }
338
339
enter(const Immediate & size)340 void Assembler::enter(const Immediate& size) {
341 EnsureSpace ensure_space(this);
342 EMIT(0xC8);
343 emit_w(size);
344 EMIT(0);
345 }
346
347
leave()348 void Assembler::leave() {
349 EnsureSpace ensure_space(this);
350 EMIT(0xC9);
351 }
352
353
mov_b(Register dst,const Operand & src)354 void Assembler::mov_b(Register dst, const Operand& src) {
355 CHECK(dst.is_byte_register());
356 EnsureSpace ensure_space(this);
357 EMIT(0x8A);
358 emit_operand(dst, src);
359 }
360
361
mov_b(const Operand & dst,const Immediate & src)362 void Assembler::mov_b(const Operand& dst, const Immediate& src) {
363 EnsureSpace ensure_space(this);
364 EMIT(0xC6);
365 emit_operand(eax, dst);
366 EMIT(static_cast<int8_t>(src.x_));
367 }
368
369
mov_b(const Operand & dst,int8_t imm8)370 void Assembler::mov_b(const Operand& dst, int8_t imm8) {
371 EnsureSpace ensure_space(this);
372 EMIT(0xC6);
373 emit_operand(eax, dst);
374 EMIT(imm8);
375 }
376
377
mov_b(const Operand & dst,Register src)378 void Assembler::mov_b(const Operand& dst, Register src) {
379 CHECK(src.is_byte_register());
380 EnsureSpace ensure_space(this);
381 EMIT(0x88);
382 emit_operand(src, dst);
383 }
384
385
mov_w(Register dst,const Operand & src)386 void Assembler::mov_w(Register dst, const Operand& src) {
387 EnsureSpace ensure_space(this);
388 EMIT(0x66);
389 EMIT(0x8B);
390 emit_operand(dst, src);
391 }
392
393
mov_w(const Operand & dst,Register src)394 void Assembler::mov_w(const Operand& dst, Register src) {
395 EnsureSpace ensure_space(this);
396 EMIT(0x66);
397 EMIT(0x89);
398 emit_operand(src, dst);
399 }
400
401
mov_w(const Operand & dst,int16_t imm16)402 void Assembler::mov_w(const Operand& dst, int16_t imm16) {
403 EnsureSpace ensure_space(this);
404 EMIT(0x66);
405 EMIT(0xC7);
406 emit_operand(eax, dst);
407 EMIT(static_cast<int8_t>(imm16 & 0xff));
408 EMIT(static_cast<int8_t>(imm16 >> 8));
409 }
410
411
mov_w(const Operand & dst,const Immediate & src)412 void Assembler::mov_w(const Operand& dst, const Immediate& src) {
413 EnsureSpace ensure_space(this);
414 EMIT(0x66);
415 EMIT(0xC7);
416 emit_operand(eax, dst);
417 EMIT(static_cast<int8_t>(src.x_ & 0xff));
418 EMIT(static_cast<int8_t>(src.x_ >> 8));
419 }
420
421
mov(Register dst,int32_t imm32)422 void Assembler::mov(Register dst, int32_t imm32) {
423 EnsureSpace ensure_space(this);
424 EMIT(0xB8 | dst.code());
425 emit(imm32);
426 }
427
428
mov(Register dst,const Immediate & x)429 void Assembler::mov(Register dst, const Immediate& x) {
430 EnsureSpace ensure_space(this);
431 EMIT(0xB8 | dst.code());
432 emit(x);
433 }
434
435
mov(Register dst,Handle<Object> handle)436 void Assembler::mov(Register dst, Handle<Object> handle) {
437 EnsureSpace ensure_space(this);
438 EMIT(0xB8 | dst.code());
439 emit(handle);
440 }
441
442
mov(Register dst,const Operand & src)443 void Assembler::mov(Register dst, const Operand& src) {
444 EnsureSpace ensure_space(this);
445 EMIT(0x8B);
446 emit_operand(dst, src);
447 }
448
449
mov(Register dst,Register src)450 void Assembler::mov(Register dst, Register src) {
451 EnsureSpace ensure_space(this);
452 EMIT(0x89);
453 EMIT(0xC0 | src.code() << 3 | dst.code());
454 }
455
456
mov(const Operand & dst,const Immediate & x)457 void Assembler::mov(const Operand& dst, const Immediate& x) {
458 EnsureSpace ensure_space(this);
459 EMIT(0xC7);
460 emit_operand(eax, dst);
461 emit(x);
462 }
463
464
mov(const Operand & dst,Handle<Object> handle)465 void Assembler::mov(const Operand& dst, Handle<Object> handle) {
466 EnsureSpace ensure_space(this);
467 EMIT(0xC7);
468 emit_operand(eax, dst);
469 emit(handle);
470 }
471
472
mov(const Operand & dst,Register src)473 void Assembler::mov(const Operand& dst, Register src) {
474 EnsureSpace ensure_space(this);
475 EMIT(0x89);
476 emit_operand(src, dst);
477 }
478
479
movsx_b(Register dst,const Operand & src)480 void Assembler::movsx_b(Register dst, const Operand& src) {
481 EnsureSpace ensure_space(this);
482 EMIT(0x0F);
483 EMIT(0xBE);
484 emit_operand(dst, src);
485 }
486
487
movsx_w(Register dst,const Operand & src)488 void Assembler::movsx_w(Register dst, const Operand& src) {
489 EnsureSpace ensure_space(this);
490 EMIT(0x0F);
491 EMIT(0xBF);
492 emit_operand(dst, src);
493 }
494
495
movzx_b(Register dst,const Operand & src)496 void Assembler::movzx_b(Register dst, const Operand& src) {
497 EnsureSpace ensure_space(this);
498 EMIT(0x0F);
499 EMIT(0xB6);
500 emit_operand(dst, src);
501 }
502
503
movzx_w(Register dst,const Operand & src)504 void Assembler::movzx_w(Register dst, const Operand& src) {
505 EnsureSpace ensure_space(this);
506 EMIT(0x0F);
507 EMIT(0xB7);
508 emit_operand(dst, src);
509 }
510
511
cld()512 void Assembler::cld() {
513 EnsureSpace ensure_space(this);
514 EMIT(0xFC);
515 }
516
517
rep_movs()518 void Assembler::rep_movs() {
519 EnsureSpace ensure_space(this);
520 EMIT(0xF3);
521 EMIT(0xA5);
522 }
523
524
rep_stos()525 void Assembler::rep_stos() {
526 EnsureSpace ensure_space(this);
527 EMIT(0xF3);
528 EMIT(0xAB);
529 }
530
531
stos()532 void Assembler::stos() {
533 EnsureSpace ensure_space(this);
534 EMIT(0xAB);
535 }
536
537
xchg(Register dst,Register src)538 void Assembler::xchg(Register dst, Register src) {
539 EnsureSpace ensure_space(this);
540 if (src.is(eax) || dst.is(eax)) { // Single-byte encoding.
541 EMIT(0x90 | (src.is(eax) ? dst.code() : src.code()));
542 } else {
543 EMIT(0x87);
544 EMIT(0xC0 | src.code() << 3 | dst.code());
545 }
546 }
547
548
xchg(Register dst,const Operand & src)549 void Assembler::xchg(Register dst, const Operand& src) {
550 EnsureSpace ensure_space(this);
551 EMIT(0x87);
552 emit_operand(dst, src);
553 }
554
555
adc(Register dst,int32_t imm32)556 void Assembler::adc(Register dst, int32_t imm32) {
557 EnsureSpace ensure_space(this);
558 emit_arith(2, Operand(dst), Immediate(imm32));
559 }
560
561
adc(Register dst,const Operand & src)562 void Assembler::adc(Register dst, const Operand& src) {
563 EnsureSpace ensure_space(this);
564 EMIT(0x13);
565 emit_operand(dst, src);
566 }
567
568
add(Register dst,const Operand & src)569 void Assembler::add(Register dst, const Operand& src) {
570 EnsureSpace ensure_space(this);
571 EMIT(0x03);
572 emit_operand(dst, src);
573 }
574
575
add(const Operand & dst,Register src)576 void Assembler::add(const Operand& dst, Register src) {
577 EnsureSpace ensure_space(this);
578 EMIT(0x01);
579 emit_operand(src, dst);
580 }
581
582
add(const Operand & dst,const Immediate & x)583 void Assembler::add(const Operand& dst, const Immediate& x) {
584 DCHECK(reloc_info_writer.last_pc() != NULL);
585 EnsureSpace ensure_space(this);
586 emit_arith(0, dst, x);
587 }
588
589
and_(Register dst,int32_t imm32)590 void Assembler::and_(Register dst, int32_t imm32) {
591 and_(dst, Immediate(imm32));
592 }
593
594
and_(Register dst,const Immediate & x)595 void Assembler::and_(Register dst, const Immediate& x) {
596 EnsureSpace ensure_space(this);
597 emit_arith(4, Operand(dst), x);
598 }
599
600
and_(Register dst,const Operand & src)601 void Assembler::and_(Register dst, const Operand& src) {
602 EnsureSpace ensure_space(this);
603 EMIT(0x23);
604 emit_operand(dst, src);
605 }
606
607
and_(const Operand & dst,const Immediate & x)608 void Assembler::and_(const Operand& dst, const Immediate& x) {
609 EnsureSpace ensure_space(this);
610 emit_arith(4, dst, x);
611 }
612
613
and_(const Operand & dst,Register src)614 void Assembler::and_(const Operand& dst, Register src) {
615 EnsureSpace ensure_space(this);
616 EMIT(0x21);
617 emit_operand(src, dst);
618 }
619
620
cmpb(const Operand & op,int8_t imm8)621 void Assembler::cmpb(const Operand& op, int8_t imm8) {
622 EnsureSpace ensure_space(this);
623 if (op.is_reg(eax)) {
624 EMIT(0x3C);
625 } else {
626 EMIT(0x80);
627 emit_operand(edi, op); // edi == 7
628 }
629 EMIT(imm8);
630 }
631
632
cmpb(const Operand & op,Register reg)633 void Assembler::cmpb(const Operand& op, Register reg) {
634 CHECK(reg.is_byte_register());
635 EnsureSpace ensure_space(this);
636 EMIT(0x38);
637 emit_operand(reg, op);
638 }
639
640
cmpb(Register reg,const Operand & op)641 void Assembler::cmpb(Register reg, const Operand& op) {
642 CHECK(reg.is_byte_register());
643 EnsureSpace ensure_space(this);
644 EMIT(0x3A);
645 emit_operand(reg, op);
646 }
647
648
cmpw(const Operand & op,Immediate imm16)649 void Assembler::cmpw(const Operand& op, Immediate imm16) {
650 DCHECK(imm16.is_int16());
651 EnsureSpace ensure_space(this);
652 EMIT(0x66);
653 EMIT(0x81);
654 emit_operand(edi, op);
655 emit_w(imm16);
656 }
657
658
cmp(Register reg,int32_t imm32)659 void Assembler::cmp(Register reg, int32_t imm32) {
660 EnsureSpace ensure_space(this);
661 emit_arith(7, Operand(reg), Immediate(imm32));
662 }
663
664
cmp(Register reg,Handle<Object> handle)665 void Assembler::cmp(Register reg, Handle<Object> handle) {
666 EnsureSpace ensure_space(this);
667 emit_arith(7, Operand(reg), Immediate(handle));
668 }
669
670
cmp(Register reg,const Operand & op)671 void Assembler::cmp(Register reg, const Operand& op) {
672 EnsureSpace ensure_space(this);
673 EMIT(0x3B);
674 emit_operand(reg, op);
675 }
676
677
cmp(const Operand & op,const Immediate & imm)678 void Assembler::cmp(const Operand& op, const Immediate& imm) {
679 EnsureSpace ensure_space(this);
680 emit_arith(7, op, imm);
681 }
682
683
cmp(const Operand & op,Handle<Object> handle)684 void Assembler::cmp(const Operand& op, Handle<Object> handle) {
685 EnsureSpace ensure_space(this);
686 emit_arith(7, op, Immediate(handle));
687 }
688
689
cmpb_al(const Operand & op)690 void Assembler::cmpb_al(const Operand& op) {
691 EnsureSpace ensure_space(this);
692 EMIT(0x38); // CMP r/m8, r8
693 emit_operand(eax, op); // eax has same code as register al.
694 }
695
696
cmpw_ax(const Operand & op)697 void Assembler::cmpw_ax(const Operand& op) {
698 EnsureSpace ensure_space(this);
699 EMIT(0x66);
700 EMIT(0x39); // CMP r/m16, r16
701 emit_operand(eax, op); // eax has same code as register ax.
702 }
703
704
dec_b(Register dst)705 void Assembler::dec_b(Register dst) {
706 CHECK(dst.is_byte_register());
707 EnsureSpace ensure_space(this);
708 EMIT(0xFE);
709 EMIT(0xC8 | dst.code());
710 }
711
712
dec_b(const Operand & dst)713 void Assembler::dec_b(const Operand& dst) {
714 EnsureSpace ensure_space(this);
715 EMIT(0xFE);
716 emit_operand(ecx, dst);
717 }
718
719
dec(Register dst)720 void Assembler::dec(Register dst) {
721 EnsureSpace ensure_space(this);
722 EMIT(0x48 | dst.code());
723 }
724
725
dec(const Operand & dst)726 void Assembler::dec(const Operand& dst) {
727 EnsureSpace ensure_space(this);
728 EMIT(0xFF);
729 emit_operand(ecx, dst);
730 }
731
732
cdq()733 void Assembler::cdq() {
734 EnsureSpace ensure_space(this);
735 EMIT(0x99);
736 }
737
738
idiv(const Operand & src)739 void Assembler::idiv(const Operand& src) {
740 EnsureSpace ensure_space(this);
741 EMIT(0xF7);
742 emit_operand(edi, src);
743 }
744
745
div(const Operand & src)746 void Assembler::div(const Operand& src) {
747 EnsureSpace ensure_space(this);
748 EMIT(0xF7);
749 emit_operand(esi, src);
750 }
751
752
imul(Register reg)753 void Assembler::imul(Register reg) {
754 EnsureSpace ensure_space(this);
755 EMIT(0xF7);
756 EMIT(0xE8 | reg.code());
757 }
758
759
imul(Register dst,const Operand & src)760 void Assembler::imul(Register dst, const Operand& src) {
761 EnsureSpace ensure_space(this);
762 EMIT(0x0F);
763 EMIT(0xAF);
764 emit_operand(dst, src);
765 }
766
767
imul(Register dst,Register src,int32_t imm32)768 void Assembler::imul(Register dst, Register src, int32_t imm32) {
769 imul(dst, Operand(src), imm32);
770 }
771
772
imul(Register dst,const Operand & src,int32_t imm32)773 void Assembler::imul(Register dst, const Operand& src, int32_t imm32) {
774 EnsureSpace ensure_space(this);
775 if (is_int8(imm32)) {
776 EMIT(0x6B);
777 emit_operand(dst, src);
778 EMIT(imm32);
779 } else {
780 EMIT(0x69);
781 emit_operand(dst, src);
782 emit(imm32);
783 }
784 }
785
786
inc(Register dst)787 void Assembler::inc(Register dst) {
788 EnsureSpace ensure_space(this);
789 EMIT(0x40 | dst.code());
790 }
791
792
inc(const Operand & dst)793 void Assembler::inc(const Operand& dst) {
794 EnsureSpace ensure_space(this);
795 EMIT(0xFF);
796 emit_operand(eax, dst);
797 }
798
799
lea(Register dst,const Operand & src)800 void Assembler::lea(Register dst, const Operand& src) {
801 EnsureSpace ensure_space(this);
802 EMIT(0x8D);
803 emit_operand(dst, src);
804 }
805
806
mul(Register src)807 void Assembler::mul(Register src) {
808 EnsureSpace ensure_space(this);
809 EMIT(0xF7);
810 EMIT(0xE0 | src.code());
811 }
812
813
neg(Register dst)814 void Assembler::neg(Register dst) {
815 EnsureSpace ensure_space(this);
816 EMIT(0xF7);
817 EMIT(0xD8 | dst.code());
818 }
819
820
neg(const Operand & dst)821 void Assembler::neg(const Operand& dst) {
822 EnsureSpace ensure_space(this);
823 EMIT(0xF7);
824 emit_operand(ebx, dst);
825 }
826
827
not_(Register dst)828 void Assembler::not_(Register dst) {
829 EnsureSpace ensure_space(this);
830 EMIT(0xF7);
831 EMIT(0xD0 | dst.code());
832 }
833
834
not_(const Operand & dst)835 void Assembler::not_(const Operand& dst) {
836 EnsureSpace ensure_space(this);
837 EMIT(0xF7);
838 emit_operand(edx, dst);
839 }
840
841
or_(Register dst,int32_t imm32)842 void Assembler::or_(Register dst, int32_t imm32) {
843 EnsureSpace ensure_space(this);
844 emit_arith(1, Operand(dst), Immediate(imm32));
845 }
846
847
or_(Register dst,const Operand & src)848 void Assembler::or_(Register dst, const Operand& src) {
849 EnsureSpace ensure_space(this);
850 EMIT(0x0B);
851 emit_operand(dst, src);
852 }
853
854
or_(const Operand & dst,const Immediate & x)855 void Assembler::or_(const Operand& dst, const Immediate& x) {
856 EnsureSpace ensure_space(this);
857 emit_arith(1, dst, x);
858 }
859
860
or_(const Operand & dst,Register src)861 void Assembler::or_(const Operand& dst, Register src) {
862 EnsureSpace ensure_space(this);
863 EMIT(0x09);
864 emit_operand(src, dst);
865 }
866
867
rcl(Register dst,uint8_t imm8)868 void Assembler::rcl(Register dst, uint8_t imm8) {
869 EnsureSpace ensure_space(this);
870 DCHECK(is_uint5(imm8)); // illegal shift count
871 if (imm8 == 1) {
872 EMIT(0xD1);
873 EMIT(0xD0 | dst.code());
874 } else {
875 EMIT(0xC1);
876 EMIT(0xD0 | dst.code());
877 EMIT(imm8);
878 }
879 }
880
881
rcr(Register dst,uint8_t imm8)882 void Assembler::rcr(Register dst, uint8_t imm8) {
883 EnsureSpace ensure_space(this);
884 DCHECK(is_uint5(imm8)); // illegal shift count
885 if (imm8 == 1) {
886 EMIT(0xD1);
887 EMIT(0xD8 | dst.code());
888 } else {
889 EMIT(0xC1);
890 EMIT(0xD8 | dst.code());
891 EMIT(imm8);
892 }
893 }
894
895
ror(const Operand & dst,uint8_t imm8)896 void Assembler::ror(const Operand& dst, uint8_t imm8) {
897 EnsureSpace ensure_space(this);
898 DCHECK(is_uint5(imm8)); // illegal shift count
899 if (imm8 == 1) {
900 EMIT(0xD1);
901 emit_operand(ecx, dst);
902 } else {
903 EMIT(0xC1);
904 emit_operand(ecx, dst);
905 EMIT(imm8);
906 }
907 }
908
909
ror_cl(const Operand & dst)910 void Assembler::ror_cl(const Operand& dst) {
911 EnsureSpace ensure_space(this);
912 EMIT(0xD3);
913 emit_operand(ecx, dst);
914 }
915
916
sar(const Operand & dst,uint8_t imm8)917 void Assembler::sar(const Operand& dst, uint8_t imm8) {
918 EnsureSpace ensure_space(this);
919 DCHECK(is_uint5(imm8)); // illegal shift count
920 if (imm8 == 1) {
921 EMIT(0xD1);
922 emit_operand(edi, dst);
923 } else {
924 EMIT(0xC1);
925 emit_operand(edi, dst);
926 EMIT(imm8);
927 }
928 }
929
930
sar_cl(const Operand & dst)931 void Assembler::sar_cl(const Operand& dst) {
932 EnsureSpace ensure_space(this);
933 EMIT(0xD3);
934 emit_operand(edi, dst);
935 }
936
937
sbb(Register dst,const Operand & src)938 void Assembler::sbb(Register dst, const Operand& src) {
939 EnsureSpace ensure_space(this);
940 EMIT(0x1B);
941 emit_operand(dst, src);
942 }
943
944
shld(Register dst,const Operand & src)945 void Assembler::shld(Register dst, const Operand& src) {
946 EnsureSpace ensure_space(this);
947 EMIT(0x0F);
948 EMIT(0xA5);
949 emit_operand(dst, src);
950 }
951
952
shl(const Operand & dst,uint8_t imm8)953 void Assembler::shl(const Operand& dst, uint8_t imm8) {
954 EnsureSpace ensure_space(this);
955 DCHECK(is_uint5(imm8)); // illegal shift count
956 if (imm8 == 1) {
957 EMIT(0xD1);
958 emit_operand(esp, dst);
959 } else {
960 EMIT(0xC1);
961 emit_operand(esp, dst);
962 EMIT(imm8);
963 }
964 }
965
966
shl_cl(const Operand & dst)967 void Assembler::shl_cl(const Operand& dst) {
968 EnsureSpace ensure_space(this);
969 EMIT(0xD3);
970 emit_operand(esp, dst);
971 }
972
973
shrd(Register dst,const Operand & src)974 void Assembler::shrd(Register dst, const Operand& src) {
975 EnsureSpace ensure_space(this);
976 EMIT(0x0F);
977 EMIT(0xAD);
978 emit_operand(dst, src);
979 }
980
981
shr(const Operand & dst,uint8_t imm8)982 void Assembler::shr(const Operand& dst, uint8_t imm8) {
983 EnsureSpace ensure_space(this);
984 DCHECK(is_uint5(imm8)); // illegal shift count
985 if (imm8 == 1) {
986 EMIT(0xD1);
987 emit_operand(ebp, dst);
988 } else {
989 EMIT(0xC1);
990 emit_operand(ebp, dst);
991 EMIT(imm8);
992 }
993 }
994
995
shr_cl(const Operand & dst)996 void Assembler::shr_cl(const Operand& dst) {
997 EnsureSpace ensure_space(this);
998 EMIT(0xD3);
999 emit_operand(ebp, dst);
1000 }
1001
1002
sub(const Operand & dst,const Immediate & x)1003 void Assembler::sub(const Operand& dst, const Immediate& x) {
1004 EnsureSpace ensure_space(this);
1005 emit_arith(5, dst, x);
1006 }
1007
1008
sub(Register dst,const Operand & src)1009 void Assembler::sub(Register dst, const Operand& src) {
1010 EnsureSpace ensure_space(this);
1011 EMIT(0x2B);
1012 emit_operand(dst, src);
1013 }
1014
1015
sub(const Operand & dst,Register src)1016 void Assembler::sub(const Operand& dst, Register src) {
1017 EnsureSpace ensure_space(this);
1018 EMIT(0x29);
1019 emit_operand(src, dst);
1020 }
1021
1022
test(Register reg,const Immediate & imm)1023 void Assembler::test(Register reg, const Immediate& imm) {
1024 if (RelocInfo::IsNone(imm.rmode_) && is_uint8(imm.x_)) {
1025 test_b(reg, imm.x_);
1026 return;
1027 }
1028
1029 EnsureSpace ensure_space(this);
1030 // This is not using emit_arith because test doesn't support
1031 // sign-extension of 8-bit operands.
1032 if (reg.is(eax)) {
1033 EMIT(0xA9);
1034 } else {
1035 EMIT(0xF7);
1036 EMIT(0xC0 | reg.code());
1037 }
1038 emit(imm);
1039 }
1040
1041
test(Register reg,const Operand & op)1042 void Assembler::test(Register reg, const Operand& op) {
1043 EnsureSpace ensure_space(this);
1044 EMIT(0x85);
1045 emit_operand(reg, op);
1046 }
1047
1048
test_b(Register reg,const Operand & op)1049 void Assembler::test_b(Register reg, const Operand& op) {
1050 CHECK(reg.is_byte_register());
1051 EnsureSpace ensure_space(this);
1052 EMIT(0x84);
1053 emit_operand(reg, op);
1054 }
1055
1056
test(const Operand & op,const Immediate & imm)1057 void Assembler::test(const Operand& op, const Immediate& imm) {
1058 if (op.is_reg_only()) {
1059 test(op.reg(), imm);
1060 return;
1061 }
1062 if (RelocInfo::IsNone(imm.rmode_) && is_uint8(imm.x_)) {
1063 return test_b(op, imm.x_);
1064 }
1065 EnsureSpace ensure_space(this);
1066 EMIT(0xF7);
1067 emit_operand(eax, op);
1068 emit(imm);
1069 }
1070
1071
test_b(Register reg,uint8_t imm8)1072 void Assembler::test_b(Register reg, uint8_t imm8) {
1073 EnsureSpace ensure_space(this);
1074 // Only use test against byte for registers that have a byte
1075 // variant: eax, ebx, ecx, and edx.
1076 if (reg.is(eax)) {
1077 EMIT(0xA8);
1078 EMIT(imm8);
1079 } else if (reg.is_byte_register()) {
1080 emit_arith_b(0xF6, 0xC0, reg, imm8);
1081 } else {
1082 EMIT(0xF7);
1083 EMIT(0xC0 | reg.code());
1084 emit(imm8);
1085 }
1086 }
1087
1088
test_b(const Operand & op,uint8_t imm8)1089 void Assembler::test_b(const Operand& op, uint8_t imm8) {
1090 if (op.is_reg_only()) {
1091 test_b(op.reg(), imm8);
1092 return;
1093 }
1094 EnsureSpace ensure_space(this);
1095 EMIT(0xF6);
1096 emit_operand(eax, op);
1097 EMIT(imm8);
1098 }
1099
1100
xor_(Register dst,int32_t imm32)1101 void Assembler::xor_(Register dst, int32_t imm32) {
1102 EnsureSpace ensure_space(this);
1103 emit_arith(6, Operand(dst), Immediate(imm32));
1104 }
1105
1106
xor_(Register dst,const Operand & src)1107 void Assembler::xor_(Register dst, const Operand& src) {
1108 EnsureSpace ensure_space(this);
1109 EMIT(0x33);
1110 emit_operand(dst, src);
1111 }
1112
1113
xor_(const Operand & dst,Register src)1114 void Assembler::xor_(const Operand& dst, Register src) {
1115 EnsureSpace ensure_space(this);
1116 EMIT(0x31);
1117 emit_operand(src, dst);
1118 }
1119
1120
xor_(const Operand & dst,const Immediate & x)1121 void Assembler::xor_(const Operand& dst, const Immediate& x) {
1122 EnsureSpace ensure_space(this);
1123 emit_arith(6, dst, x);
1124 }
1125
1126
bt(const Operand & dst,Register src)1127 void Assembler::bt(const Operand& dst, Register src) {
1128 EnsureSpace ensure_space(this);
1129 EMIT(0x0F);
1130 EMIT(0xA3);
1131 emit_operand(src, dst);
1132 }
1133
1134
bts(const Operand & dst,Register src)1135 void Assembler::bts(const Operand& dst, Register src) {
1136 EnsureSpace ensure_space(this);
1137 EMIT(0x0F);
1138 EMIT(0xAB);
1139 emit_operand(src, dst);
1140 }
1141
1142
bsr(Register dst,const Operand & src)1143 void Assembler::bsr(Register dst, const Operand& src) {
1144 EnsureSpace ensure_space(this);
1145 EMIT(0x0F);
1146 EMIT(0xBD);
1147 emit_operand(dst, src);
1148 }
1149
1150
bsf(Register dst,const Operand & src)1151 void Assembler::bsf(Register dst, const Operand& src) {
1152 EnsureSpace ensure_space(this);
1153 EMIT(0x0F);
1154 EMIT(0xBC);
1155 emit_operand(dst, src);
1156 }
1157
1158
hlt()1159 void Assembler::hlt() {
1160 EnsureSpace ensure_space(this);
1161 EMIT(0xF4);
1162 }
1163
1164
int3()1165 void Assembler::int3() {
1166 EnsureSpace ensure_space(this);
1167 EMIT(0xCC);
1168 }
1169
1170
nop()1171 void Assembler::nop() {
1172 EnsureSpace ensure_space(this);
1173 EMIT(0x90);
1174 }
1175
1176
ret(int imm16)1177 void Assembler::ret(int imm16) {
1178 EnsureSpace ensure_space(this);
1179 DCHECK(is_uint16(imm16));
1180 if (imm16 == 0) {
1181 EMIT(0xC3);
1182 } else {
1183 EMIT(0xC2);
1184 EMIT(imm16 & 0xFF);
1185 EMIT((imm16 >> 8) & 0xFF);
1186 }
1187 }
1188
1189
ud2()1190 void Assembler::ud2() {
1191 EnsureSpace ensure_space(this);
1192 EMIT(0x0F);
1193 EMIT(0x0B);
1194 }
1195
1196
1197 // Labels refer to positions in the (to be) generated code.
1198 // There are bound, linked, and unused labels.
1199 //
1200 // Bound labels refer to known positions in the already
1201 // generated code. pos() is the position the label refers to.
1202 //
1203 // Linked labels refer to unknown positions in the code
1204 // to be generated; pos() is the position of the 32bit
1205 // Displacement of the last instruction using the label.
1206
1207
print(Label * L)1208 void Assembler::print(Label* L) {
1209 if (L->is_unused()) {
1210 PrintF("unused label\n");
1211 } else if (L->is_bound()) {
1212 PrintF("bound label to %d\n", L->pos());
1213 } else if (L->is_linked()) {
1214 Label l = *L;
1215 PrintF("unbound label");
1216 while (l.is_linked()) {
1217 Displacement disp = disp_at(&l);
1218 PrintF("@ %d ", l.pos());
1219 disp.print();
1220 PrintF("\n");
1221 disp.next(&l);
1222 }
1223 } else {
1224 PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
1225 }
1226 }
1227
1228
bind_to(Label * L,int pos)1229 void Assembler::bind_to(Label* L, int pos) {
1230 EnsureSpace ensure_space(this);
1231 DCHECK(0 <= pos && pos <= pc_offset()); // must have a valid binding position
1232 while (L->is_linked()) {
1233 Displacement disp = disp_at(L);
1234 int fixup_pos = L->pos();
1235 if (disp.type() == Displacement::CODE_ABSOLUTE) {
1236 long_at_put(fixup_pos, reinterpret_cast<int>(buffer_ + pos));
1237 internal_reference_positions_.push_back(fixup_pos);
1238 } else if (disp.type() == Displacement::CODE_RELATIVE) {
1239 // Relative to Code* heap object pointer.
1240 long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag);
1241 } else {
1242 if (disp.type() == Displacement::UNCONDITIONAL_JUMP) {
1243 DCHECK(byte_at(fixup_pos - 1) == 0xE9); // jmp expected
1244 }
1245 // Relative address, relative to point after address.
1246 int imm32 = pos - (fixup_pos + sizeof(int32_t));
1247 long_at_put(fixup_pos, imm32);
1248 }
1249 disp.next(L);
1250 }
1251 while (L->is_near_linked()) {
1252 int fixup_pos = L->near_link_pos();
1253 int offset_to_next =
1254 static_cast<int>(*reinterpret_cast<int8_t*>(addr_at(fixup_pos)));
1255 DCHECK(offset_to_next <= 0);
1256 // Relative address, relative to point after address.
1257 int disp = pos - fixup_pos - sizeof(int8_t);
1258 CHECK(0 <= disp && disp <= 127);
1259 set_byte_at(fixup_pos, disp);
1260 if (offset_to_next < 0) {
1261 L->link_to(fixup_pos + offset_to_next, Label::kNear);
1262 } else {
1263 L->UnuseNear();
1264 }
1265 }
1266 L->bind_to(pos);
1267 }
1268
1269
bind(Label * L)1270 void Assembler::bind(Label* L) {
1271 EnsureSpace ensure_space(this);
1272 DCHECK(!L->is_bound()); // label can only be bound once
1273 bind_to(L, pc_offset());
1274 }
1275
1276
call(Label * L)1277 void Assembler::call(Label* L) {
1278 positions_recorder()->WriteRecordedPositions();
1279 EnsureSpace ensure_space(this);
1280 if (L->is_bound()) {
1281 const int long_size = 5;
1282 int offs = L->pos() - pc_offset();
1283 DCHECK(offs <= 0);
1284 // 1110 1000 #32-bit disp.
1285 EMIT(0xE8);
1286 emit(offs - long_size);
1287 } else {
1288 // 1110 1000 #32-bit disp.
1289 EMIT(0xE8);
1290 emit_disp(L, Displacement::OTHER);
1291 }
1292 }
1293
1294
call(byte * entry,RelocInfo::Mode rmode)1295 void Assembler::call(byte* entry, RelocInfo::Mode rmode) {
1296 positions_recorder()->WriteRecordedPositions();
1297 EnsureSpace ensure_space(this);
1298 DCHECK(!RelocInfo::IsCodeTarget(rmode));
1299 EMIT(0xE8);
1300 if (RelocInfo::IsRuntimeEntry(rmode)) {
1301 emit(reinterpret_cast<uint32_t>(entry), rmode);
1302 } else {
1303 emit(entry - (pc_ + sizeof(int32_t)), rmode);
1304 }
1305 }
1306
1307
CallSize(const Operand & adr)1308 int Assembler::CallSize(const Operand& adr) {
1309 // Call size is 1 (opcode) + adr.len_ (operand).
1310 return 1 + adr.len_;
1311 }
1312
1313
call(const Operand & adr)1314 void Assembler::call(const Operand& adr) {
1315 positions_recorder()->WriteRecordedPositions();
1316 EnsureSpace ensure_space(this);
1317 EMIT(0xFF);
1318 emit_operand(edx, adr);
1319 }
1320
1321
CallSize(Handle<Code> code,RelocInfo::Mode rmode)1322 int Assembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode) {
1323 return 1 /* EMIT */ + sizeof(uint32_t) /* emit */;
1324 }
1325
1326
call(Handle<Code> code,RelocInfo::Mode rmode,TypeFeedbackId ast_id)1327 void Assembler::call(Handle<Code> code,
1328 RelocInfo::Mode rmode,
1329 TypeFeedbackId ast_id) {
1330 positions_recorder()->WriteRecordedPositions();
1331 EnsureSpace ensure_space(this);
1332 DCHECK(RelocInfo::IsCodeTarget(rmode)
1333 || rmode == RelocInfo::CODE_AGE_SEQUENCE);
1334 EMIT(0xE8);
1335 emit(code, rmode, ast_id);
1336 }
1337
1338
jmp(Label * L,Label::Distance distance)1339 void Assembler::jmp(Label* L, Label::Distance distance) {
1340 EnsureSpace ensure_space(this);
1341 if (L->is_bound()) {
1342 const int short_size = 2;
1343 const int long_size = 5;
1344 int offs = L->pos() - pc_offset();
1345 DCHECK(offs <= 0);
1346 if (is_int8(offs - short_size)) {
1347 // 1110 1011 #8-bit disp.
1348 EMIT(0xEB);
1349 EMIT((offs - short_size) & 0xFF);
1350 } else {
1351 // 1110 1001 #32-bit disp.
1352 EMIT(0xE9);
1353 emit(offs - long_size);
1354 }
1355 } else if (distance == Label::kNear) {
1356 EMIT(0xEB);
1357 emit_near_disp(L);
1358 } else {
1359 // 1110 1001 #32-bit disp.
1360 EMIT(0xE9);
1361 emit_disp(L, Displacement::UNCONDITIONAL_JUMP);
1362 }
1363 }
1364
1365
jmp(byte * entry,RelocInfo::Mode rmode)1366 void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) {
1367 EnsureSpace ensure_space(this);
1368 DCHECK(!RelocInfo::IsCodeTarget(rmode));
1369 EMIT(0xE9);
1370 if (RelocInfo::IsRuntimeEntry(rmode)) {
1371 emit(reinterpret_cast<uint32_t>(entry), rmode);
1372 } else {
1373 emit(entry - (pc_ + sizeof(int32_t)), rmode);
1374 }
1375 }
1376
1377
jmp(const Operand & adr)1378 void Assembler::jmp(const Operand& adr) {
1379 EnsureSpace ensure_space(this);
1380 EMIT(0xFF);
1381 emit_operand(esp, adr);
1382 }
1383
1384
jmp(Handle<Code> code,RelocInfo::Mode rmode)1385 void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) {
1386 EnsureSpace ensure_space(this);
1387 DCHECK(RelocInfo::IsCodeTarget(rmode));
1388 EMIT(0xE9);
1389 emit(code, rmode);
1390 }
1391
1392
j(Condition cc,Label * L,Label::Distance distance)1393 void Assembler::j(Condition cc, Label* L, Label::Distance distance) {
1394 EnsureSpace ensure_space(this);
1395 DCHECK(0 <= cc && static_cast<int>(cc) < 16);
1396 if (L->is_bound()) {
1397 const int short_size = 2;
1398 const int long_size = 6;
1399 int offs = L->pos() - pc_offset();
1400 DCHECK(offs <= 0);
1401 if (is_int8(offs - short_size)) {
1402 // 0111 tttn #8-bit disp
1403 EMIT(0x70 | cc);
1404 EMIT((offs - short_size) & 0xFF);
1405 } else {
1406 // 0000 1111 1000 tttn #32-bit disp
1407 EMIT(0x0F);
1408 EMIT(0x80 | cc);
1409 emit(offs - long_size);
1410 }
1411 } else if (distance == Label::kNear) {
1412 EMIT(0x70 | cc);
1413 emit_near_disp(L);
1414 } else {
1415 // 0000 1111 1000 tttn #32-bit disp
1416 // Note: could eliminate cond. jumps to this jump if condition
1417 // is the same however, seems to be rather unlikely case.
1418 EMIT(0x0F);
1419 EMIT(0x80 | cc);
1420 emit_disp(L, Displacement::OTHER);
1421 }
1422 }
1423
1424
j(Condition cc,byte * entry,RelocInfo::Mode rmode)1425 void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode) {
1426 EnsureSpace ensure_space(this);
1427 DCHECK((0 <= cc) && (static_cast<int>(cc) < 16));
1428 // 0000 1111 1000 tttn #32-bit disp.
1429 EMIT(0x0F);
1430 EMIT(0x80 | cc);
1431 if (RelocInfo::IsRuntimeEntry(rmode)) {
1432 emit(reinterpret_cast<uint32_t>(entry), rmode);
1433 } else {
1434 emit(entry - (pc_ + sizeof(int32_t)), rmode);
1435 }
1436 }
1437
1438
j(Condition cc,Handle<Code> code,RelocInfo::Mode rmode)1439 void Assembler::j(Condition cc, Handle<Code> code, RelocInfo::Mode rmode) {
1440 EnsureSpace ensure_space(this);
1441 // 0000 1111 1000 tttn #32-bit disp
1442 EMIT(0x0F);
1443 EMIT(0x80 | cc);
1444 emit(code, rmode);
1445 }
1446
1447
1448 // FPU instructions.
1449
fld(int i)1450 void Assembler::fld(int i) {
1451 EnsureSpace ensure_space(this);
1452 emit_farith(0xD9, 0xC0, i);
1453 }
1454
1455
fstp(int i)1456 void Assembler::fstp(int i) {
1457 EnsureSpace ensure_space(this);
1458 emit_farith(0xDD, 0xD8, i);
1459 }
1460
1461
fld1()1462 void Assembler::fld1() {
1463 EnsureSpace ensure_space(this);
1464 EMIT(0xD9);
1465 EMIT(0xE8);
1466 }
1467
1468
fldpi()1469 void Assembler::fldpi() {
1470 EnsureSpace ensure_space(this);
1471 EMIT(0xD9);
1472 EMIT(0xEB);
1473 }
1474
1475
fldz()1476 void Assembler::fldz() {
1477 EnsureSpace ensure_space(this);
1478 EMIT(0xD9);
1479 EMIT(0xEE);
1480 }
1481
1482
fldln2()1483 void Assembler::fldln2() {
1484 EnsureSpace ensure_space(this);
1485 EMIT(0xD9);
1486 EMIT(0xED);
1487 }
1488
1489
fld_s(const Operand & adr)1490 void Assembler::fld_s(const Operand& adr) {
1491 EnsureSpace ensure_space(this);
1492 EMIT(0xD9);
1493 emit_operand(eax, adr);
1494 }
1495
1496
fld_d(const Operand & adr)1497 void Assembler::fld_d(const Operand& adr) {
1498 EnsureSpace ensure_space(this);
1499 EMIT(0xDD);
1500 emit_operand(eax, adr);
1501 }
1502
1503
fstp_s(const Operand & adr)1504 void Assembler::fstp_s(const Operand& adr) {
1505 EnsureSpace ensure_space(this);
1506 EMIT(0xD9);
1507 emit_operand(ebx, adr);
1508 }
1509
1510
fst_s(const Operand & adr)1511 void Assembler::fst_s(const Operand& adr) {
1512 EnsureSpace ensure_space(this);
1513 EMIT(0xD9);
1514 emit_operand(edx, adr);
1515 }
1516
1517
fldcw(const Operand & adr)1518 void Assembler::fldcw(const Operand& adr) {
1519 EnsureSpace ensure_space(this);
1520 EMIT(0xD9);
1521 emit_operand(ebp, adr);
1522 }
1523
1524
fnstcw(const Operand & adr)1525 void Assembler::fnstcw(const Operand& adr) {
1526 EnsureSpace ensure_space(this);
1527 EMIT(0xD9);
1528 emit_operand(edi, adr);
1529 }
1530
1531
fstp_d(const Operand & adr)1532 void Assembler::fstp_d(const Operand& adr) {
1533 EnsureSpace ensure_space(this);
1534 EMIT(0xDD);
1535 emit_operand(ebx, adr);
1536 }
1537
1538
fst_d(const Operand & adr)1539 void Assembler::fst_d(const Operand& adr) {
1540 EnsureSpace ensure_space(this);
1541 EMIT(0xDD);
1542 emit_operand(edx, adr);
1543 }
1544
1545
fild_s(const Operand & adr)1546 void Assembler::fild_s(const Operand& adr) {
1547 EnsureSpace ensure_space(this);
1548 EMIT(0xDB);
1549 emit_operand(eax, adr);
1550 }
1551
1552
fild_d(const Operand & adr)1553 void Assembler::fild_d(const Operand& adr) {
1554 EnsureSpace ensure_space(this);
1555 EMIT(0xDF);
1556 emit_operand(ebp, adr);
1557 }
1558
1559
fistp_s(const Operand & adr)1560 void Assembler::fistp_s(const Operand& adr) {
1561 EnsureSpace ensure_space(this);
1562 EMIT(0xDB);
1563 emit_operand(ebx, adr);
1564 }
1565
1566
fisttp_s(const Operand & adr)1567 void Assembler::fisttp_s(const Operand& adr) {
1568 DCHECK(IsEnabled(SSE3));
1569 EnsureSpace ensure_space(this);
1570 EMIT(0xDB);
1571 emit_operand(ecx, adr);
1572 }
1573
1574
fisttp_d(const Operand & adr)1575 void Assembler::fisttp_d(const Operand& adr) {
1576 DCHECK(IsEnabled(SSE3));
1577 EnsureSpace ensure_space(this);
1578 EMIT(0xDD);
1579 emit_operand(ecx, adr);
1580 }
1581
1582
fist_s(const Operand & adr)1583 void Assembler::fist_s(const Operand& adr) {
1584 EnsureSpace ensure_space(this);
1585 EMIT(0xDB);
1586 emit_operand(edx, adr);
1587 }
1588
1589
fistp_d(const Operand & adr)1590 void Assembler::fistp_d(const Operand& adr) {
1591 EnsureSpace ensure_space(this);
1592 EMIT(0xDF);
1593 emit_operand(edi, adr);
1594 }
1595
1596
fabs()1597 void Assembler::fabs() {
1598 EnsureSpace ensure_space(this);
1599 EMIT(0xD9);
1600 EMIT(0xE1);
1601 }
1602
1603
fchs()1604 void Assembler::fchs() {
1605 EnsureSpace ensure_space(this);
1606 EMIT(0xD9);
1607 EMIT(0xE0);
1608 }
1609
1610
fsqrt()1611 void Assembler::fsqrt() {
1612 EnsureSpace ensure_space(this);
1613 EMIT(0xD9);
1614 EMIT(0xFA);
1615 }
1616
1617
fcos()1618 void Assembler::fcos() {
1619 EnsureSpace ensure_space(this);
1620 EMIT(0xD9);
1621 EMIT(0xFF);
1622 }
1623
1624
fsin()1625 void Assembler::fsin() {
1626 EnsureSpace ensure_space(this);
1627 EMIT(0xD9);
1628 EMIT(0xFE);
1629 }
1630
1631
fptan()1632 void Assembler::fptan() {
1633 EnsureSpace ensure_space(this);
1634 EMIT(0xD9);
1635 EMIT(0xF2);
1636 }
1637
1638
fyl2x()1639 void Assembler::fyl2x() {
1640 EnsureSpace ensure_space(this);
1641 EMIT(0xD9);
1642 EMIT(0xF1);
1643 }
1644
1645
f2xm1()1646 void Assembler::f2xm1() {
1647 EnsureSpace ensure_space(this);
1648 EMIT(0xD9);
1649 EMIT(0xF0);
1650 }
1651
1652
fscale()1653 void Assembler::fscale() {
1654 EnsureSpace ensure_space(this);
1655 EMIT(0xD9);
1656 EMIT(0xFD);
1657 }
1658
1659
fninit()1660 void Assembler::fninit() {
1661 EnsureSpace ensure_space(this);
1662 EMIT(0xDB);
1663 EMIT(0xE3);
1664 }
1665
1666
fadd(int i)1667 void Assembler::fadd(int i) {
1668 EnsureSpace ensure_space(this);
1669 emit_farith(0xDC, 0xC0, i);
1670 }
1671
1672
fadd_i(int i)1673 void Assembler::fadd_i(int i) {
1674 EnsureSpace ensure_space(this);
1675 emit_farith(0xD8, 0xC0, i);
1676 }
1677
1678
fadd_d(const Operand & adr)1679 void Assembler::fadd_d(const Operand& adr) {
1680 EnsureSpace ensure_space(this);
1681 EMIT(0xDC);
1682 emit_operand(eax, adr);
1683 }
1684
1685
fsub(int i)1686 void Assembler::fsub(int i) {
1687 EnsureSpace ensure_space(this);
1688 emit_farith(0xDC, 0xE8, i);
1689 }
1690
1691
fsub_i(int i)1692 void Assembler::fsub_i(int i) {
1693 EnsureSpace ensure_space(this);
1694 emit_farith(0xD8, 0xE0, i);
1695 }
1696
1697
fsubr_d(const Operand & adr)1698 void Assembler::fsubr_d(const Operand& adr) {
1699 EnsureSpace ensure_space(this);
1700 EMIT(0xDC);
1701 emit_operand(ebp, adr);
1702 }
1703
1704
fsub_d(const Operand & adr)1705 void Assembler::fsub_d(const Operand& adr) {
1706 EnsureSpace ensure_space(this);
1707 EMIT(0xDC);
1708 emit_operand(esp, adr);
1709 }
1710
1711
fisub_s(const Operand & adr)1712 void Assembler::fisub_s(const Operand& adr) {
1713 EnsureSpace ensure_space(this);
1714 EMIT(0xDA);
1715 emit_operand(esp, adr);
1716 }
1717
1718
fmul_i(int i)1719 void Assembler::fmul_i(int i) {
1720 EnsureSpace ensure_space(this);
1721 emit_farith(0xD8, 0xC8, i);
1722 }
1723
1724
fmul(int i)1725 void Assembler::fmul(int i) {
1726 EnsureSpace ensure_space(this);
1727 emit_farith(0xDC, 0xC8, i);
1728 }
1729
1730
fmul_d(const Operand & adr)1731 void Assembler::fmul_d(const Operand& adr) {
1732 EnsureSpace ensure_space(this);
1733 EMIT(0xDC);
1734 emit_operand(ecx, adr);
1735 }
1736
1737
fdiv(int i)1738 void Assembler::fdiv(int i) {
1739 EnsureSpace ensure_space(this);
1740 emit_farith(0xDC, 0xF8, i);
1741 }
1742
1743
fdiv_d(const Operand & adr)1744 void Assembler::fdiv_d(const Operand& adr) {
1745 EnsureSpace ensure_space(this);
1746 EMIT(0xDC);
1747 emit_operand(esi, adr);
1748 }
1749
1750
fdivr_d(const Operand & adr)1751 void Assembler::fdivr_d(const Operand& adr) {
1752 EnsureSpace ensure_space(this);
1753 EMIT(0xDC);
1754 emit_operand(edi, adr);
1755 }
1756
1757
fdiv_i(int i)1758 void Assembler::fdiv_i(int i) {
1759 EnsureSpace ensure_space(this);
1760 emit_farith(0xD8, 0xF0, i);
1761 }
1762
1763
faddp(int i)1764 void Assembler::faddp(int i) {
1765 EnsureSpace ensure_space(this);
1766 emit_farith(0xDE, 0xC0, i);
1767 }
1768
1769
fsubp(int i)1770 void Assembler::fsubp(int i) {
1771 EnsureSpace ensure_space(this);
1772 emit_farith(0xDE, 0xE8, i);
1773 }
1774
1775
fsubrp(int i)1776 void Assembler::fsubrp(int i) {
1777 EnsureSpace ensure_space(this);
1778 emit_farith(0xDE, 0xE0, i);
1779 }
1780
1781
fmulp(int i)1782 void Assembler::fmulp(int i) {
1783 EnsureSpace ensure_space(this);
1784 emit_farith(0xDE, 0xC8, i);
1785 }
1786
1787
fdivp(int i)1788 void Assembler::fdivp(int i) {
1789 EnsureSpace ensure_space(this);
1790 emit_farith(0xDE, 0xF8, i);
1791 }
1792
1793
fprem()1794 void Assembler::fprem() {
1795 EnsureSpace ensure_space(this);
1796 EMIT(0xD9);
1797 EMIT(0xF8);
1798 }
1799
1800
fprem1()1801 void Assembler::fprem1() {
1802 EnsureSpace ensure_space(this);
1803 EMIT(0xD9);
1804 EMIT(0xF5);
1805 }
1806
1807
fxch(int i)1808 void Assembler::fxch(int i) {
1809 EnsureSpace ensure_space(this);
1810 emit_farith(0xD9, 0xC8, i);
1811 }
1812
1813
fincstp()1814 void Assembler::fincstp() {
1815 EnsureSpace ensure_space(this);
1816 EMIT(0xD9);
1817 EMIT(0xF7);
1818 }
1819
1820
ffree(int i)1821 void Assembler::ffree(int i) {
1822 EnsureSpace ensure_space(this);
1823 emit_farith(0xDD, 0xC0, i);
1824 }
1825
1826
ftst()1827 void Assembler::ftst() {
1828 EnsureSpace ensure_space(this);
1829 EMIT(0xD9);
1830 EMIT(0xE4);
1831 }
1832
1833
fxam()1834 void Assembler::fxam() {
1835 EnsureSpace ensure_space(this);
1836 EMIT(0xD9);
1837 EMIT(0xE5);
1838 }
1839
1840
fucomp(int i)1841 void Assembler::fucomp(int i) {
1842 EnsureSpace ensure_space(this);
1843 emit_farith(0xDD, 0xE8, i);
1844 }
1845
1846
fucompp()1847 void Assembler::fucompp() {
1848 EnsureSpace ensure_space(this);
1849 EMIT(0xDA);
1850 EMIT(0xE9);
1851 }
1852
1853
fucomi(int i)1854 void Assembler::fucomi(int i) {
1855 EnsureSpace ensure_space(this);
1856 EMIT(0xDB);
1857 EMIT(0xE8 + i);
1858 }
1859
1860
fucomip()1861 void Assembler::fucomip() {
1862 EnsureSpace ensure_space(this);
1863 EMIT(0xDF);
1864 EMIT(0xE9);
1865 }
1866
1867
fcompp()1868 void Assembler::fcompp() {
1869 EnsureSpace ensure_space(this);
1870 EMIT(0xDE);
1871 EMIT(0xD9);
1872 }
1873
1874
fnstsw_ax()1875 void Assembler::fnstsw_ax() {
1876 EnsureSpace ensure_space(this);
1877 EMIT(0xDF);
1878 EMIT(0xE0);
1879 }
1880
1881
fwait()1882 void Assembler::fwait() {
1883 EnsureSpace ensure_space(this);
1884 EMIT(0x9B);
1885 }
1886
1887
frndint()1888 void Assembler::frndint() {
1889 EnsureSpace ensure_space(this);
1890 EMIT(0xD9);
1891 EMIT(0xFC);
1892 }
1893
1894
fnclex()1895 void Assembler::fnclex() {
1896 EnsureSpace ensure_space(this);
1897 EMIT(0xDB);
1898 EMIT(0xE2);
1899 }
1900
1901
fnsave(const Operand & adr)1902 void Assembler::fnsave(const Operand& adr) {
1903 EnsureSpace ensure_space(this);
1904 EMIT(0xDD);
1905 emit_operand(esi, adr);
1906 }
1907
1908
frstor(const Operand & adr)1909 void Assembler::frstor(const Operand& adr) {
1910 EnsureSpace ensure_space(this);
1911 EMIT(0xDD);
1912 emit_operand(esp, adr);
1913 }
1914
1915
sahf()1916 void Assembler::sahf() {
1917 EnsureSpace ensure_space(this);
1918 EMIT(0x9E);
1919 }
1920
1921
setcc(Condition cc,Register reg)1922 void Assembler::setcc(Condition cc, Register reg) {
1923 DCHECK(reg.is_byte_register());
1924 EnsureSpace ensure_space(this);
1925 EMIT(0x0F);
1926 EMIT(0x90 | cc);
1927 EMIT(0xC0 | reg.code());
1928 }
1929
1930
GrowBuffer()1931 void Assembler::GrowBuffer() {
1932 DCHECK(buffer_overflow());
1933 if (!own_buffer_) FATAL("external code buffer is too small");
1934
1935 // Compute new buffer size.
1936 CodeDesc desc; // the new buffer
1937 desc.buffer_size = 2 * buffer_size_;
1938
1939 // Some internal data structures overflow for very large buffers,
1940 // they must ensure that kMaximalBufferSize is not too large.
1941 if ((desc.buffer_size > kMaximalBufferSize) ||
1942 (desc.buffer_size > isolate()->heap()->MaxOldGenerationSize())) {
1943 V8::FatalProcessOutOfMemory("Assembler::GrowBuffer");
1944 }
1945
1946 // Set up new buffer.
1947 desc.buffer = NewArray<byte>(desc.buffer_size);
1948 desc.origin = this;
1949 desc.instr_size = pc_offset();
1950 desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos());
1951
1952 // Clear the buffer in debug mode. Use 'int3' instructions to make
1953 // sure to get into problems if we ever run uninitialized code.
1954 #ifdef DEBUG
1955 memset(desc.buffer, 0xCC, desc.buffer_size);
1956 #endif
1957
1958 // Copy the data.
1959 int pc_delta = desc.buffer - buffer_;
1960 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
1961 MemMove(desc.buffer, buffer_, desc.instr_size);
1962 MemMove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(),
1963 desc.reloc_size);
1964
1965 DeleteArray(buffer_);
1966 buffer_ = desc.buffer;
1967 buffer_size_ = desc.buffer_size;
1968 pc_ += pc_delta;
1969 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
1970 reloc_info_writer.last_pc() + pc_delta);
1971
1972 // Relocate internal references.
1973 for (auto pos : internal_reference_positions_) {
1974 int32_t* p = reinterpret_cast<int32_t*>(buffer_ + pos);
1975 *p += pc_delta;
1976 }
1977
1978 DCHECK(!buffer_overflow());
1979 }
1980
1981
emit_arith_b(int op1,int op2,Register dst,int imm8)1982 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
1983 DCHECK(is_uint8(op1) && is_uint8(op2)); // wrong opcode
1984 DCHECK(is_uint8(imm8));
1985 DCHECK((op1 & 0x01) == 0); // should be 8bit operation
1986 EMIT(op1);
1987 EMIT(op2 | dst.code());
1988 EMIT(imm8);
1989 }
1990
1991
emit_arith(int sel,Operand dst,const Immediate & x)1992 void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) {
1993 DCHECK((0 <= sel) && (sel <= 7));
1994 Register ireg = { sel };
1995 if (x.is_int8()) {
1996 EMIT(0x83); // using a sign-extended 8-bit immediate.
1997 emit_operand(ireg, dst);
1998 EMIT(x.x_ & 0xFF);
1999 } else if (dst.is_reg(eax)) {
2000 EMIT((sel << 3) | 0x05); // short form if the destination is eax.
2001 emit(x);
2002 } else {
2003 EMIT(0x81); // using a literal 32-bit immediate.
2004 emit_operand(ireg, dst);
2005 emit(x);
2006 }
2007 }
2008
2009
emit_operand(Register reg,const Operand & adr)2010 void Assembler::emit_operand(Register reg, const Operand& adr) {
2011 const unsigned length = adr.len_;
2012 DCHECK(length > 0);
2013
2014 // Emit updated ModRM byte containing the given register.
2015 pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3);
2016
2017 // Emit the rest of the encoded operand.
2018 for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i];
2019 pc_ += length;
2020
2021 // Emit relocation information if necessary.
2022 if (length >= sizeof(int32_t) && !RelocInfo::IsNone(adr.rmode_)) {
2023 pc_ -= sizeof(int32_t); // pc_ must be *at* disp32
2024 RecordRelocInfo(adr.rmode_);
2025 if (adr.rmode_ == RelocInfo::INTERNAL_REFERENCE) { // Fixup for labels
2026 emit_label(*reinterpret_cast<Label**>(pc_));
2027 } else {
2028 pc_ += sizeof(int32_t);
2029 }
2030 }
2031 }
2032
2033
emit_label(Label * label)2034 void Assembler::emit_label(Label* label) {
2035 if (label->is_bound()) {
2036 internal_reference_positions_.push_back(pc_offset());
2037 emit(reinterpret_cast<uint32_t>(buffer_ + label->pos()));
2038 } else {
2039 emit_disp(label, Displacement::CODE_ABSOLUTE);
2040 }
2041 }
2042
2043
emit_farith(int b1,int b2,int i)2044 void Assembler::emit_farith(int b1, int b2, int i) {
2045 DCHECK(is_uint8(b1) && is_uint8(b2)); // wrong opcode
2046 DCHECK(0 <= i && i < 8); // illegal stack offset
2047 EMIT(b1);
2048 EMIT(b2 + i);
2049 }
2050
2051
db(uint8_t data)2052 void Assembler::db(uint8_t data) {
2053 EnsureSpace ensure_space(this);
2054 EMIT(data);
2055 }
2056
2057
dd(uint32_t data)2058 void Assembler::dd(uint32_t data) {
2059 EnsureSpace ensure_space(this);
2060 emit(data);
2061 }
2062
2063
dq(uint64_t data)2064 void Assembler::dq(uint64_t data) {
2065 EnsureSpace ensure_space(this);
2066 emit_q(data);
2067 }
2068
2069
dd(Label * label)2070 void Assembler::dd(Label* label) {
2071 EnsureSpace ensure_space(this);
2072 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
2073 emit_label(label);
2074 }
2075
2076
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)2077 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2078 DCHECK(!RelocInfo::IsNone(rmode));
2079 // Don't record external references unless the heap will be serialized.
2080 if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
2081 !serializer_enabled() && !emit_debug_code()) {
2082 return;
2083 }
2084 RelocInfo rinfo(isolate(), pc_, rmode, data, NULL);
2085 reloc_info_writer.Write(&rinfo);
2086 }
2087
2088
2089 #ifdef GENERATED_CODE_COVERAGE
2090 static FILE* coverage_log = NULL;
2091
2092
InitCoverageLog()2093 static void InitCoverageLog() {
2094 char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
2095 if (file_name != NULL) {
2096 coverage_log = fopen(file_name, "aw+");
2097 }
2098 }
2099
2100
LogGeneratedCodeCoverage(const char * file_line)2101 void LogGeneratedCodeCoverage(const char* file_line) {
2102 const char* return_address = (&file_line)[-1];
2103 char* push_insn = const_cast<char*>(return_address - 12);
2104 push_insn[0] = 0xeb; // Relative branch insn.
2105 push_insn[1] = 13; // Skip over coverage insns.
2106 if (coverage_log != NULL) {
2107 fprintf(coverage_log, "%s\n", file_line);
2108 fflush(coverage_log);
2109 }
2110 }
2111
2112 #endif
2113
2114 } // namespace internal
2115 } // namespace v8
2116
2117 #endif // V8_TARGET_ARCH_X87
2118