1 /* Copyright (c) 2015, Google Inc.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 /* A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
16 *
17 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
18 * and Adam Langley's public domain 64-bit C implementation of curve25519. */
19
20 #include <openssl/base.h>
21
22 #if defined(OPENSSL_64_BIT) && !defined(OPENSSL_WINDOWS) && \
23 !defined(OPENSSL_SMALL)
24
25 #include <openssl/bn.h>
26 #include <openssl/ec.h>
27 #include <openssl/err.h>
28 #include <openssl/mem.h>
29 #include <openssl/obj.h>
30
31 #include <string.h>
32
33 #include "internal.h"
34
35
36 typedef uint8_t u8;
37 typedef uint64_t u64;
38 typedef int64_t s64;
39
40 /* Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
41 * using 64-bit coefficients called 'limbs', and sometimes (for multiplication
42 * results) as b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 +
43 * 2^336*b_6 using 128-bit coefficients called 'widelimbs'. A 4-limb
44 * representation is an 'felem'; a 7-widelimb representation is a 'widefelem'.
45 * Even within felems, bits of adjacent limbs overlap, and we don't always
46 * reduce the representations: we ensure that inputs to each felem
47 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60, and
48 * fit into a 128-bit word without overflow. The coefficients are then again
49 * partially reduced to obtain an felem satisfying a_i < 2^57. We only reduce
50 * to the unique minimal representation at the end of the computation. */
51
52 typedef uint64_t limb;
53 typedef __uint128_t widelimb;
54
55 typedef limb felem[4];
56 typedef widelimb widefelem[7];
57
58 /* Field element represented as a byte arrary. 28*8 = 224 bits is also the
59 * group order size for the elliptic curve, and we also use this type for
60 * scalars for point multiplication. */
61 typedef u8 felem_bytearray[28];
62
63 static const felem_bytearray nistp224_curve_params[5] = {
64 {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
65 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
66 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
67 {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
68 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
69 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
70 {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
71 0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA, 0x27, 0x0B,
72 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
73 {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
74 0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22, 0x34, 0x32,
75 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
76 {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
77 0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64, 0x44, 0xd5,
78 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}};
79
80 /* Precomputed multiples of the standard generator
81 * Points are given in coordinates (X, Y, Z) where Z normally is 1
82 * (0 for the point at infinity).
83 * For each field element, slice a_0 is word 0, etc.
84 *
85 * The table has 2 * 16 elements, starting with the following:
86 * index | bits | point
87 * ------+---------+------------------------------
88 * 0 | 0 0 0 0 | 0G
89 * 1 | 0 0 0 1 | 1G
90 * 2 | 0 0 1 0 | 2^56G
91 * 3 | 0 0 1 1 | (2^56 + 1)G
92 * 4 | 0 1 0 0 | 2^112G
93 * 5 | 0 1 0 1 | (2^112 + 1)G
94 * 6 | 0 1 1 0 | (2^112 + 2^56)G
95 * 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
96 * 8 | 1 0 0 0 | 2^168G
97 * 9 | 1 0 0 1 | (2^168 + 1)G
98 * 10 | 1 0 1 0 | (2^168 + 2^56)G
99 * 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
100 * 12 | 1 1 0 0 | (2^168 + 2^112)G
101 * 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
102 * 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
103 * 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
104 * followed by a copy of this with each element multiplied by 2^28.
105 *
106 * The reason for this is so that we can clock bits into four different
107 * locations when doing simple scalar multiplies against the base point,
108 * and then another four locations using the second 16 elements. */
109 static const felem g_pre_comp[2][16][3] = {
110 {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
111 {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
112 {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
113 {1, 0, 0, 0}},
114 {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
115 {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
116 {1, 0, 0, 0}},
117 {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
118 {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
119 {1, 0, 0, 0}},
120 {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
121 {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
122 {1, 0, 0, 0}},
123 {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
124 {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
125 {1, 0, 0, 0}},
126 {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
127 {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
128 {1, 0, 0, 0}},
129 {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
130 {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
131 {1, 0, 0, 0}},
132 {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
133 {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
134 {1, 0, 0, 0}},
135 {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
136 {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
137 {1, 0, 0, 0}},
138 {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
139 {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
140 {1, 0, 0, 0}},
141 {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
142 {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
143 {1, 0, 0, 0}},
144 {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
145 {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
146 {1, 0, 0, 0}},
147 {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
148 {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
149 {1, 0, 0, 0}},
150 {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
151 {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
152 {1, 0, 0, 0}},
153 {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
154 {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
155 {1, 0, 0, 0}}},
156 {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
157 {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
158 {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
159 {1, 0, 0, 0}},
160 {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
161 {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
162 {1, 0, 0, 0}},
163 {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
164 {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
165 {1, 0, 0, 0}},
166 {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
167 {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
168 {1, 0, 0, 0}},
169 {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
170 {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
171 {1, 0, 0, 0}},
172 {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
173 {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
174 {1, 0, 0, 0}},
175 {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
176 {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
177 {1, 0, 0, 0}},
178 {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
179 {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
180 {1, 0, 0, 0}},
181 {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
182 {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
183 {1, 0, 0, 0}},
184 {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
185 {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
186 {1, 0, 0, 0}},
187 {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
188 {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
189 {1, 0, 0, 0}},
190 {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
191 {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
192 {1, 0, 0, 0}},
193 {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
194 {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
195 {1, 0, 0, 0}},
196 {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
197 {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
198 {1, 0, 0, 0}},
199 {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
200 {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
201 {1, 0, 0, 0}}}};
202
203 /* Helper functions to convert field elements to/from internal representation */
bin28_to_felem(felem out,const u8 in[28])204 static void bin28_to_felem(felem out, const u8 in[28]) {
205 out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff;
206 out[1] = (*((const uint64_t *)(in + 7))) & 0x00ffffffffffffff;
207 out[2] = (*((const uint64_t *)(in + 14))) & 0x00ffffffffffffff;
208 out[3] = (*((const uint64_t *)(in + 20))) >> 8;
209 }
210
felem_to_bin28(u8 out[28],const felem in)211 static void felem_to_bin28(u8 out[28], const felem in) {
212 unsigned i;
213 for (i = 0; i < 7; ++i) {
214 out[i] = in[0] >> (8 * i);
215 out[i + 7] = in[1] >> (8 * i);
216 out[i + 14] = in[2] >> (8 * i);
217 out[i + 21] = in[3] >> (8 * i);
218 }
219 }
220
221 /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
flip_endian(u8 * out,const u8 * in,unsigned len)222 static void flip_endian(u8 *out, const u8 *in, unsigned len) {
223 unsigned i;
224 for (i = 0; i < len; ++i) {
225 out[i] = in[len - 1 - i];
226 }
227 }
228
229 /* From OpenSSL BIGNUM to internal representation */
BN_to_felem(felem out,const BIGNUM * bn)230 static int BN_to_felem(felem out, const BIGNUM *bn) {
231 /* BN_bn2bin eats leading zeroes */
232 felem_bytearray b_out;
233 memset(b_out, 0, sizeof(b_out));
234 unsigned num_bytes = BN_num_bytes(bn);
235 if (num_bytes > sizeof(b_out) ||
236 BN_is_negative(bn)) {
237 OPENSSL_PUT_ERROR(EC, EC_R_BIGNUM_OUT_OF_RANGE);
238 return 0;
239 }
240
241 felem_bytearray b_in;
242 num_bytes = BN_bn2bin(bn, b_in);
243 flip_endian(b_out, b_in, num_bytes);
244 bin28_to_felem(out, b_out);
245 return 1;
246 }
247
248 /* From internal representation to OpenSSL BIGNUM */
felem_to_BN(BIGNUM * out,const felem in)249 static BIGNUM *felem_to_BN(BIGNUM *out, const felem in) {
250 felem_bytearray b_in, b_out;
251 felem_to_bin28(b_in, in);
252 flip_endian(b_out, b_in, sizeof(b_out));
253 return BN_bin2bn(b_out, sizeof(b_out), out);
254 }
255
256 /* Field operations, using the internal representation of field elements.
257 * NB! These operations are specific to our point multiplication and cannot be
258 * expected to be correct in general - e.g., multiplication with a large scalar
259 * will cause an overflow. */
260
felem_one(felem out)261 static void felem_one(felem out) {
262 out[0] = 1;
263 out[1] = 0;
264 out[2] = 0;
265 out[3] = 0;
266 }
267
felem_assign(felem out,const felem in)268 static void felem_assign(felem out, const felem in) {
269 out[0] = in[0];
270 out[1] = in[1];
271 out[2] = in[2];
272 out[3] = in[3];
273 }
274
275 /* Sum two field elements: out += in */
felem_sum(felem out,const felem in)276 static void felem_sum(felem out, const felem in) {
277 out[0] += in[0];
278 out[1] += in[1];
279 out[2] += in[2];
280 out[3] += in[3];
281 }
282
283 /* Get negative value: out = -in */
284 /* Assumes in[i] < 2^57 */
felem_neg(felem out,const felem in)285 static void felem_neg(felem out, const felem in) {
286 static const limb two58p2 = (((limb)1) << 58) + (((limb)1) << 2);
287 static const limb two58m2 = (((limb)1) << 58) - (((limb)1) << 2);
288 static const limb two58m42m2 =
289 (((limb)1) << 58) - (((limb)1) << 42) - (((limb)1) << 2);
290
291 /* Set to 0 mod 2^224-2^96+1 to ensure out > in */
292 out[0] = two58p2 - in[0];
293 out[1] = two58m42m2 - in[1];
294 out[2] = two58m2 - in[2];
295 out[3] = two58m2 - in[3];
296 }
297
298 /* Subtract field elements: out -= in */
299 /* Assumes in[i] < 2^57 */
felem_diff(felem out,const felem in)300 static void felem_diff(felem out, const felem in) {
301 static const limb two58p2 = (((limb)1) << 58) + (((limb)1) << 2);
302 static const limb two58m2 = (((limb)1) << 58) - (((limb)1) << 2);
303 static const limb two58m42m2 =
304 (((limb)1) << 58) - (((limb)1) << 42) - (((limb)1) << 2);
305
306 /* Add 0 mod 2^224-2^96+1 to ensure out > in */
307 out[0] += two58p2;
308 out[1] += two58m42m2;
309 out[2] += two58m2;
310 out[3] += two58m2;
311
312 out[0] -= in[0];
313 out[1] -= in[1];
314 out[2] -= in[2];
315 out[3] -= in[3];
316 }
317
318 /* Subtract in unreduced 128-bit mode: out -= in */
319 /* Assumes in[i] < 2^119 */
widefelem_diff(widefelem out,const widefelem in)320 static void widefelem_diff(widefelem out, const widefelem in) {
321 static const widelimb two120 = ((widelimb)1) << 120;
322 static const widelimb two120m64 =
323 (((widelimb)1) << 120) - (((widelimb)1) << 64);
324 static const widelimb two120m104m64 =
325 (((widelimb)1) << 120) - (((widelimb)1) << 104) - (((widelimb)1) << 64);
326
327 /* Add 0 mod 2^224-2^96+1 to ensure out > in */
328 out[0] += two120;
329 out[1] += two120m64;
330 out[2] += two120m64;
331 out[3] += two120;
332 out[4] += two120m104m64;
333 out[5] += two120m64;
334 out[6] += two120m64;
335
336 out[0] -= in[0];
337 out[1] -= in[1];
338 out[2] -= in[2];
339 out[3] -= in[3];
340 out[4] -= in[4];
341 out[5] -= in[5];
342 out[6] -= in[6];
343 }
344
345 /* Subtract in mixed mode: out128 -= in64 */
346 /* in[i] < 2^63 */
felem_diff_128_64(widefelem out,const felem in)347 static void felem_diff_128_64(widefelem out, const felem in) {
348 static const widelimb two64p8 = (((widelimb)1) << 64) + (((widelimb)1) << 8);
349 static const widelimb two64m8 = (((widelimb)1) << 64) - (((widelimb)1) << 8);
350 static const widelimb two64m48m8 =
351 (((widelimb)1) << 64) - (((widelimb)1) << 48) - (((widelimb)1) << 8);
352
353 /* Add 0 mod 2^224-2^96+1 to ensure out > in */
354 out[0] += two64p8;
355 out[1] += two64m48m8;
356 out[2] += two64m8;
357 out[3] += two64m8;
358
359 out[0] -= in[0];
360 out[1] -= in[1];
361 out[2] -= in[2];
362 out[3] -= in[3];
363 }
364
365 /* Multiply a field element by a scalar: out = out * scalar
366 * The scalars we actually use are small, so results fit without overflow */
felem_scalar(felem out,const limb scalar)367 static void felem_scalar(felem out, const limb scalar) {
368 out[0] *= scalar;
369 out[1] *= scalar;
370 out[2] *= scalar;
371 out[3] *= scalar;
372 }
373
374 /* Multiply an unreduced field element by a scalar: out = out * scalar
375 * The scalars we actually use are small, so results fit without overflow */
widefelem_scalar(widefelem out,const widelimb scalar)376 static void widefelem_scalar(widefelem out, const widelimb scalar) {
377 out[0] *= scalar;
378 out[1] *= scalar;
379 out[2] *= scalar;
380 out[3] *= scalar;
381 out[4] *= scalar;
382 out[5] *= scalar;
383 out[6] *= scalar;
384 }
385
386 /* Square a field element: out = in^2 */
felem_square(widefelem out,const felem in)387 static void felem_square(widefelem out, const felem in) {
388 limb tmp0, tmp1, tmp2;
389 tmp0 = 2 * in[0];
390 tmp1 = 2 * in[1];
391 tmp2 = 2 * in[2];
392 out[0] = ((widelimb)in[0]) * in[0];
393 out[1] = ((widelimb)in[0]) * tmp1;
394 out[2] = ((widelimb)in[0]) * tmp2 + ((widelimb)in[1]) * in[1];
395 out[3] = ((widelimb)in[3]) * tmp0 + ((widelimb)in[1]) * tmp2;
396 out[4] = ((widelimb)in[3]) * tmp1 + ((widelimb)in[2]) * in[2];
397 out[5] = ((widelimb)in[3]) * tmp2;
398 out[6] = ((widelimb)in[3]) * in[3];
399 }
400
401 /* Multiply two field elements: out = in1 * in2 */
felem_mul(widefelem out,const felem in1,const felem in2)402 static void felem_mul(widefelem out, const felem in1, const felem in2) {
403 out[0] = ((widelimb)in1[0]) * in2[0];
404 out[1] = ((widelimb)in1[0]) * in2[1] + ((widelimb)in1[1]) * in2[0];
405 out[2] = ((widelimb)in1[0]) * in2[2] + ((widelimb)in1[1]) * in2[1] +
406 ((widelimb)in1[2]) * in2[0];
407 out[3] = ((widelimb)in1[0]) * in2[3] + ((widelimb)in1[1]) * in2[2] +
408 ((widelimb)in1[2]) * in2[1] + ((widelimb)in1[3]) * in2[0];
409 out[4] = ((widelimb)in1[1]) * in2[3] + ((widelimb)in1[2]) * in2[2] +
410 ((widelimb)in1[3]) * in2[1];
411 out[5] = ((widelimb)in1[2]) * in2[3] + ((widelimb)in1[3]) * in2[2];
412 out[6] = ((widelimb)in1[3]) * in2[3];
413 }
414
415 /* Reduce seven 128-bit coefficients to four 64-bit coefficients.
416 * Requires in[i] < 2^126,
417 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
felem_reduce(felem out,const widefelem in)418 static void felem_reduce(felem out, const widefelem in) {
419 static const widelimb two127p15 =
420 (((widelimb)1) << 127) + (((widelimb)1) << 15);
421 static const widelimb two127m71 =
422 (((widelimb)1) << 127) - (((widelimb)1) << 71);
423 static const widelimb two127m71m55 =
424 (((widelimb)1) << 127) - (((widelimb)1) << 71) - (((widelimb)1) << 55);
425 widelimb output[5];
426
427 /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
428 output[0] = in[0] + two127p15;
429 output[1] = in[1] + two127m71m55;
430 output[2] = in[2] + two127m71;
431 output[3] = in[3];
432 output[4] = in[4];
433
434 /* Eliminate in[4], in[5], in[6] */
435 output[4] += in[6] >> 16;
436 output[3] += (in[6] & 0xffff) << 40;
437 output[2] -= in[6];
438
439 output[3] += in[5] >> 16;
440 output[2] += (in[5] & 0xffff) << 40;
441 output[1] -= in[5];
442
443 output[2] += output[4] >> 16;
444 output[1] += (output[4] & 0xffff) << 40;
445 output[0] -= output[4];
446
447 /* Carry 2 -> 3 -> 4 */
448 output[3] += output[2] >> 56;
449 output[2] &= 0x00ffffffffffffff;
450
451 output[4] = output[3] >> 56;
452 output[3] &= 0x00ffffffffffffff;
453
454 /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
455
456 /* Eliminate output[4] */
457 output[2] += output[4] >> 16;
458 /* output[2] < 2^56 + 2^56 = 2^57 */
459 output[1] += (output[4] & 0xffff) << 40;
460 output[0] -= output[4];
461
462 /* Carry 0 -> 1 -> 2 -> 3 */
463 output[1] += output[0] >> 56;
464 out[0] = output[0] & 0x00ffffffffffffff;
465
466 output[2] += output[1] >> 56;
467 /* output[2] < 2^57 + 2^72 */
468 out[1] = output[1] & 0x00ffffffffffffff;
469 output[3] += output[2] >> 56;
470 /* output[3] <= 2^56 + 2^16 */
471 out[2] = output[2] & 0x00ffffffffffffff;
472
473 /* out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
474 * out[3] <= 2^56 + 2^16 (due to final carry),
475 * so out < 2*p */
476 out[3] = output[3];
477 }
478
felem_square_reduce(felem out,const felem in)479 static void felem_square_reduce(felem out, const felem in) {
480 widefelem tmp;
481 felem_square(tmp, in);
482 felem_reduce(out, tmp);
483 }
484
felem_mul_reduce(felem out,const felem in1,const felem in2)485 static void felem_mul_reduce(felem out, const felem in1, const felem in2) {
486 widefelem tmp;
487 felem_mul(tmp, in1, in2);
488 felem_reduce(out, tmp);
489 }
490
491 /* Reduce to unique minimal representation.
492 * Requires 0 <= in < 2*p (always call felem_reduce first) */
felem_contract(felem out,const felem in)493 static void felem_contract(felem out, const felem in) {
494 static const int64_t two56 = ((limb)1) << 56;
495 /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
496 /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
497 int64_t tmp[4], a;
498 tmp[0] = in[0];
499 tmp[1] = in[1];
500 tmp[2] = in[2];
501 tmp[3] = in[3];
502 /* Case 1: a = 1 iff in >= 2^224 */
503 a = (in[3] >> 56);
504 tmp[0] -= a;
505 tmp[1] += a << 40;
506 tmp[3] &= 0x00ffffffffffffff;
507 /* Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 and
508 * the lower part is non-zero */
509 a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
510 (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
511 a &= 0x00ffffffffffffff;
512 /* turn a into an all-one mask (if a = 0) or an all-zero mask */
513 a = (a - 1) >> 63;
514 /* subtract 2^224 - 2^96 + 1 if a is all-one */
515 tmp[3] &= a ^ 0xffffffffffffffff;
516 tmp[2] &= a ^ 0xffffffffffffffff;
517 tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
518 tmp[0] -= 1 & a;
519
520 /* eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
521 * be non-zero, so we only need one step */
522 a = tmp[0] >> 63;
523 tmp[0] += two56 & a;
524 tmp[1] -= 1 & a;
525
526 /* carry 1 -> 2 -> 3 */
527 tmp[2] += tmp[1] >> 56;
528 tmp[1] &= 0x00ffffffffffffff;
529
530 tmp[3] += tmp[2] >> 56;
531 tmp[2] &= 0x00ffffffffffffff;
532
533 /* Now 0 <= out < p */
534 out[0] = tmp[0];
535 out[1] = tmp[1];
536 out[2] = tmp[2];
537 out[3] = tmp[3];
538 }
539
540 /* Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
541 * elements are reduced to in < 2^225, so we only need to check three cases: 0,
542 * 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2 */
felem_is_zero(const felem in)543 static limb felem_is_zero(const felem in) {
544 limb zero = in[0] | in[1] | in[2] | in[3];
545 zero = (((int64_t)(zero)-1) >> 63) & 1;
546
547 limb two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) |
548 (in[2] ^ 0x00ffffffffffffff) |
549 (in[3] ^ 0x00ffffffffffffff);
550 two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1;
551 limb two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) |
552 (in[2] ^ 0x00ffffffffffffff) |
553 (in[3] ^ 0x01ffffffffffffff);
554 two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1;
555 return (zero | two224m96p1 | two225m97p2);
556 }
557
felem_is_zero_int(const felem in)558 static limb felem_is_zero_int(const felem in) {
559 return (int)(felem_is_zero(in) & ((limb)1));
560 }
561
562 /* Invert a field element */
563 /* Computation chain copied from djb's code */
felem_inv(felem out,const felem in)564 static void felem_inv(felem out, const felem in) {
565 felem ftmp, ftmp2, ftmp3, ftmp4;
566 widefelem tmp;
567 unsigned i;
568
569 felem_square(tmp, in);
570 felem_reduce(ftmp, tmp); /* 2 */
571 felem_mul(tmp, in, ftmp);
572 felem_reduce(ftmp, tmp); /* 2^2 - 1 */
573 felem_square(tmp, ftmp);
574 felem_reduce(ftmp, tmp); /* 2^3 - 2 */
575 felem_mul(tmp, in, ftmp);
576 felem_reduce(ftmp, tmp); /* 2^3 - 1 */
577 felem_square(tmp, ftmp);
578 felem_reduce(ftmp2, tmp); /* 2^4 - 2 */
579 felem_square(tmp, ftmp2);
580 felem_reduce(ftmp2, tmp); /* 2^5 - 4 */
581 felem_square(tmp, ftmp2);
582 felem_reduce(ftmp2, tmp); /* 2^6 - 8 */
583 felem_mul(tmp, ftmp2, ftmp);
584 felem_reduce(ftmp, tmp); /* 2^6 - 1 */
585 felem_square(tmp, ftmp);
586 felem_reduce(ftmp2, tmp); /* 2^7 - 2 */
587 for (i = 0; i < 5; ++i) { /* 2^12 - 2^6 */
588 felem_square(tmp, ftmp2);
589 felem_reduce(ftmp2, tmp);
590 }
591 felem_mul(tmp, ftmp2, ftmp);
592 felem_reduce(ftmp2, tmp); /* 2^12 - 1 */
593 felem_square(tmp, ftmp2);
594 felem_reduce(ftmp3, tmp); /* 2^13 - 2 */
595 for (i = 0; i < 11; ++i) {/* 2^24 - 2^12 */
596 felem_square(tmp, ftmp3);
597 felem_reduce(ftmp3, tmp);
598 }
599 felem_mul(tmp, ftmp3, ftmp2);
600 felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
601 felem_square(tmp, ftmp2);
602 felem_reduce(ftmp3, tmp); /* 2^25 - 2 */
603 for (i = 0; i < 23; ++i) {/* 2^48 - 2^24 */
604 felem_square(tmp, ftmp3);
605 felem_reduce(ftmp3, tmp);
606 }
607 felem_mul(tmp, ftmp3, ftmp2);
608 felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
609 felem_square(tmp, ftmp3);
610 felem_reduce(ftmp4, tmp); /* 2^49 - 2 */
611 for (i = 0; i < 47; ++i) {/* 2^96 - 2^48 */
612 felem_square(tmp, ftmp4);
613 felem_reduce(ftmp4, tmp);
614 }
615 felem_mul(tmp, ftmp3, ftmp4);
616 felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
617 felem_square(tmp, ftmp3);
618 felem_reduce(ftmp4, tmp); /* 2^97 - 2 */
619 for (i = 0; i < 23; ++i) {/* 2^120 - 2^24 */
620 felem_square(tmp, ftmp4);
621 felem_reduce(ftmp4, tmp);
622 }
623 felem_mul(tmp, ftmp2, ftmp4);
624 felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
625 for (i = 0; i < 6; ++i) { /* 2^126 - 2^6 */
626 felem_square(tmp, ftmp2);
627 felem_reduce(ftmp2, tmp);
628 }
629 felem_mul(tmp, ftmp2, ftmp);
630 felem_reduce(ftmp, tmp); /* 2^126 - 1 */
631 felem_square(tmp, ftmp);
632 felem_reduce(ftmp, tmp); /* 2^127 - 2 */
633 felem_mul(tmp, ftmp, in);
634 felem_reduce(ftmp, tmp); /* 2^127 - 1 */
635 for (i = 0; i < 97; ++i) {/* 2^224 - 2^97 */
636 felem_square(tmp, ftmp);
637 felem_reduce(ftmp, tmp);
638 }
639 felem_mul(tmp, ftmp, ftmp3);
640 felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */
641 }
642
643 /* Copy in constant time:
644 * if icopy == 1, copy in to out,
645 * if icopy == 0, copy out to itself. */
copy_conditional(felem out,const felem in,limb icopy)646 static void copy_conditional(felem out, const felem in, limb icopy) {
647 unsigned i;
648 /* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */
649 const limb copy = -icopy;
650 for (i = 0; i < 4; ++i) {
651 const limb tmp = copy & (in[i] ^ out[i]);
652 out[i] ^= tmp;
653 }
654 }
655
656 /* ELLIPTIC CURVE POINT OPERATIONS
657 *
658 * Points are represented in Jacobian projective coordinates:
659 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
660 * or to the point at infinity if Z == 0. */
661
662 /* Double an elliptic curve point:
663 * (X', Y', Z') = 2 * (X, Y, Z), where
664 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
665 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
666 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
667 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
668 * while x_out == y_in is not (maybe this works, but it's not tested). */
point_double(felem x_out,felem y_out,felem z_out,const felem x_in,const felem y_in,const felem z_in)669 static void point_double(felem x_out, felem y_out, felem z_out,
670 const felem x_in, const felem y_in, const felem z_in) {
671 widefelem tmp, tmp2;
672 felem delta, gamma, beta, alpha, ftmp, ftmp2;
673
674 felem_assign(ftmp, x_in);
675 felem_assign(ftmp2, x_in);
676
677 /* delta = z^2 */
678 felem_square(tmp, z_in);
679 felem_reduce(delta, tmp);
680
681 /* gamma = y^2 */
682 felem_square(tmp, y_in);
683 felem_reduce(gamma, tmp);
684
685 /* beta = x*gamma */
686 felem_mul(tmp, x_in, gamma);
687 felem_reduce(beta, tmp);
688
689 /* alpha = 3*(x-delta)*(x+delta) */
690 felem_diff(ftmp, delta);
691 /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
692 felem_sum(ftmp2, delta);
693 /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
694 felem_scalar(ftmp2, 3);
695 /* ftmp2[i] < 3 * 2^58 < 2^60 */
696 felem_mul(tmp, ftmp, ftmp2);
697 /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
698 felem_reduce(alpha, tmp);
699
700 /* x' = alpha^2 - 8*beta */
701 felem_square(tmp, alpha);
702 /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
703 felem_assign(ftmp, beta);
704 felem_scalar(ftmp, 8);
705 /* ftmp[i] < 8 * 2^57 = 2^60 */
706 felem_diff_128_64(tmp, ftmp);
707 /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
708 felem_reduce(x_out, tmp);
709
710 /* z' = (y + z)^2 - gamma - delta */
711 felem_sum(delta, gamma);
712 /* delta[i] < 2^57 + 2^57 = 2^58 */
713 felem_assign(ftmp, y_in);
714 felem_sum(ftmp, z_in);
715 /* ftmp[i] < 2^57 + 2^57 = 2^58 */
716 felem_square(tmp, ftmp);
717 /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
718 felem_diff_128_64(tmp, delta);
719 /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
720 felem_reduce(z_out, tmp);
721
722 /* y' = alpha*(4*beta - x') - 8*gamma^2 */
723 felem_scalar(beta, 4);
724 /* beta[i] < 4 * 2^57 = 2^59 */
725 felem_diff(beta, x_out);
726 /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
727 felem_mul(tmp, alpha, beta);
728 /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
729 felem_square(tmp2, gamma);
730 /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
731 widefelem_scalar(tmp2, 8);
732 /* tmp2[i] < 8 * 2^116 = 2^119 */
733 widefelem_diff(tmp, tmp2);
734 /* tmp[i] < 2^119 + 2^120 < 2^121 */
735 felem_reduce(y_out, tmp);
736 }
737
738 /* Add two elliptic curve points:
739 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
740 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
741 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
742 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 *
743 * X_1)^2 - X_3) -
744 * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
745 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
746 *
747 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0. */
748
749 /* This function is not entirely constant-time: it includes a branch for
750 * checking whether the two input points are equal, (while not equal to the
751 * point at infinity). This case never happens during single point
752 * multiplication, so there is no timing leak for ECDH or ECDSA signing. */
point_add(felem x3,felem y3,felem z3,const felem x1,const felem y1,const felem z1,const int mixed,const felem x2,const felem y2,const felem z2)753 static void point_add(felem x3, felem y3, felem z3, const felem x1,
754 const felem y1, const felem z1, const int mixed,
755 const felem x2, const felem y2, const felem z2) {
756 felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
757 widefelem tmp, tmp2;
758 limb z1_is_zero, z2_is_zero, x_equal, y_equal;
759
760 if (!mixed) {
761 /* ftmp2 = z2^2 */
762 felem_square(tmp, z2);
763 felem_reduce(ftmp2, tmp);
764
765 /* ftmp4 = z2^3 */
766 felem_mul(tmp, ftmp2, z2);
767 felem_reduce(ftmp4, tmp);
768
769 /* ftmp4 = z2^3*y1 */
770 felem_mul(tmp2, ftmp4, y1);
771 felem_reduce(ftmp4, tmp2);
772
773 /* ftmp2 = z2^2*x1 */
774 felem_mul(tmp2, ftmp2, x1);
775 felem_reduce(ftmp2, tmp2);
776 } else {
777 /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
778
779 /* ftmp4 = z2^3*y1 */
780 felem_assign(ftmp4, y1);
781
782 /* ftmp2 = z2^2*x1 */
783 felem_assign(ftmp2, x1);
784 }
785
786 /* ftmp = z1^2 */
787 felem_square(tmp, z1);
788 felem_reduce(ftmp, tmp);
789
790 /* ftmp3 = z1^3 */
791 felem_mul(tmp, ftmp, z1);
792 felem_reduce(ftmp3, tmp);
793
794 /* tmp = z1^3*y2 */
795 felem_mul(tmp, ftmp3, y2);
796 /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
797
798 /* ftmp3 = z1^3*y2 - z2^3*y1 */
799 felem_diff_128_64(tmp, ftmp4);
800 /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
801 felem_reduce(ftmp3, tmp);
802
803 /* tmp = z1^2*x2 */
804 felem_mul(tmp, ftmp, x2);
805 /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
806
807 /* ftmp = z1^2*x2 - z2^2*x1 */
808 felem_diff_128_64(tmp, ftmp2);
809 /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
810 felem_reduce(ftmp, tmp);
811
812 /* the formulae are incorrect if the points are equal
813 * so we check for this and do doubling if this happens */
814 x_equal = felem_is_zero(ftmp);
815 y_equal = felem_is_zero(ftmp3);
816 z1_is_zero = felem_is_zero(z1);
817 z2_is_zero = felem_is_zero(z2);
818 /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */
819 if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
820 point_double(x3, y3, z3, x1, y1, z1);
821 return;
822 }
823
824 /* ftmp5 = z1*z2 */
825 if (!mixed) {
826 felem_mul(tmp, z1, z2);
827 felem_reduce(ftmp5, tmp);
828 } else {
829 /* special case z2 = 0 is handled later */
830 felem_assign(ftmp5, z1);
831 }
832
833 /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
834 felem_mul(tmp, ftmp, ftmp5);
835 felem_reduce(z_out, tmp);
836
837 /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
838 felem_assign(ftmp5, ftmp);
839 felem_square(tmp, ftmp);
840 felem_reduce(ftmp, tmp);
841
842 /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
843 felem_mul(tmp, ftmp, ftmp5);
844 felem_reduce(ftmp5, tmp);
845
846 /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
847 felem_mul(tmp, ftmp2, ftmp);
848 felem_reduce(ftmp2, tmp);
849
850 /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
851 felem_mul(tmp, ftmp4, ftmp5);
852 /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
853
854 /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
855 felem_square(tmp2, ftmp3);
856 /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
857
858 /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
859 felem_diff_128_64(tmp2, ftmp5);
860 /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
861
862 /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
863 felem_assign(ftmp5, ftmp2);
864 felem_scalar(ftmp5, 2);
865 /* ftmp5[i] < 2 * 2^57 = 2^58 */
866
867 /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
868 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
869 felem_diff_128_64(tmp2, ftmp5);
870 /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
871 felem_reduce(x_out, tmp2);
872
873 /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
874 felem_diff(ftmp2, x_out);
875 /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
876
877 /* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */
878 felem_mul(tmp2, ftmp3, ftmp2);
879 /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
880
881 /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
882 z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
883 widefelem_diff(tmp2, tmp);
884 /* tmp2[i] < 2^118 + 2^120 < 2^121 */
885 felem_reduce(y_out, tmp2);
886
887 /* the result (x_out, y_out, z_out) is incorrect if one of the inputs is
888 * the point at infinity, so we need to check for this separately */
889
890 /* if point 1 is at infinity, copy point 2 to output, and vice versa */
891 copy_conditional(x_out, x2, z1_is_zero);
892 copy_conditional(x_out, x1, z2_is_zero);
893 copy_conditional(y_out, y2, z1_is_zero);
894 copy_conditional(y_out, y1, z2_is_zero);
895 copy_conditional(z_out, z2, z1_is_zero);
896 copy_conditional(z_out, z1, z2_is_zero);
897 felem_assign(x3, x_out);
898 felem_assign(y3, y_out);
899 felem_assign(z3, z_out);
900 }
901
902 /* select_point selects the |idx|th point from a precomputation table and
903 * copies it to out. */
select_point(const u64 idx,unsigned int size,const felem pre_comp[][3],felem out[3])904 static void select_point(const u64 idx, unsigned int size,
905 const felem pre_comp[/*size*/][3], felem out[3]) {
906 unsigned i, j;
907 limb *outlimbs = &out[0][0];
908 memset(outlimbs, 0, 3 * sizeof(felem));
909
910 for (i = 0; i < size; i++) {
911 const limb *inlimbs = &pre_comp[i][0][0];
912 u64 mask = i ^ idx;
913 mask |= mask >> 4;
914 mask |= mask >> 2;
915 mask |= mask >> 1;
916 mask &= 1;
917 mask--;
918 for (j = 0; j < 4 * 3; j++) {
919 outlimbs[j] |= inlimbs[j] & mask;
920 }
921 }
922 }
923
924 /* get_bit returns the |i|th bit in |in| */
get_bit(const felem_bytearray in,unsigned i)925 static char get_bit(const felem_bytearray in, unsigned i) {
926 if (i >= 224) {
927 return 0;
928 }
929 return (in[i >> 3] >> (i & 7)) & 1;
930 }
931
932 /* Interleaved point multiplication using precomputed point multiples:
933 * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[],
934 * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
935 * of the generator, using certain (large) precomputed multiples in g_pre_comp.
936 * Output point (X, Y, Z) is stored in x_out, y_out, z_out */
batch_mul(felem x_out,felem y_out,felem z_out,const felem_bytearray scalars[],const unsigned num_points,const u8 * g_scalar,const int mixed,const felem pre_comp[][17][3])937 static void batch_mul(felem x_out, felem y_out, felem z_out,
938 const felem_bytearray scalars[],
939 const unsigned num_points, const u8 *g_scalar,
940 const int mixed, const felem pre_comp[][17][3]) {
941 int i, skip;
942 unsigned num;
943 unsigned gen_mul = (g_scalar != NULL);
944 felem nq[3], tmp[4];
945 u64 bits;
946 u8 sign, digit;
947
948 /* set nq to the point at infinity */
949 memset(nq, 0, 3 * sizeof(felem));
950
951 /* Loop over all scalars msb-to-lsb, interleaving additions
952 * of multiples of the generator (two in each of the last 28 rounds)
953 * and additions of other points multiples (every 5th round). */
954 skip = 1; /* save two point operations in the first round */
955 for (i = (num_points ? 220 : 27); i >= 0; --i) {
956 /* double */
957 if (!skip) {
958 point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
959 }
960
961 /* add multiples of the generator */
962 if (gen_mul && (i <= 27)) {
963 /* first, look 28 bits upwards */
964 bits = get_bit(g_scalar, i + 196) << 3;
965 bits |= get_bit(g_scalar, i + 140) << 2;
966 bits |= get_bit(g_scalar, i + 84) << 1;
967 bits |= get_bit(g_scalar, i + 28);
968 /* select the point to add, in constant time */
969 select_point(bits, 16, g_pre_comp[1], tmp);
970
971 if (!skip) {
972 point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
973 tmp[0], tmp[1], tmp[2]);
974 } else {
975 memcpy(nq, tmp, 3 * sizeof(felem));
976 skip = 0;
977 }
978
979 /* second, look at the current position */
980 bits = get_bit(g_scalar, i + 168) << 3;
981 bits |= get_bit(g_scalar, i + 112) << 2;
982 bits |= get_bit(g_scalar, i + 56) << 1;
983 bits |= get_bit(g_scalar, i);
984 /* select the point to add, in constant time */
985 select_point(bits, 16, g_pre_comp[0], tmp);
986 point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, tmp[0],
987 tmp[1], tmp[2]);
988 }
989
990 /* do other additions every 5 doublings */
991 if (num_points && (i % 5 == 0)) {
992 /* loop over all scalars */
993 for (num = 0; num < num_points; ++num) {
994 bits = get_bit(scalars[num], i + 4) << 5;
995 bits |= get_bit(scalars[num], i + 3) << 4;
996 bits |= get_bit(scalars[num], i + 2) << 3;
997 bits |= get_bit(scalars[num], i + 1) << 2;
998 bits |= get_bit(scalars[num], i) << 1;
999 bits |= get_bit(scalars[num], i - 1);
1000 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1001
1002 /* select the point to add or subtract */
1003 select_point(digit, 17, pre_comp[num], tmp);
1004 felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */
1005 copy_conditional(tmp[1], tmp[3], sign);
1006
1007 if (!skip) {
1008 point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], mixed, tmp[0],
1009 tmp[1], tmp[2]);
1010 } else {
1011 memcpy(nq, tmp, 3 * sizeof(felem));
1012 skip = 0;
1013 }
1014 }
1015 }
1016 }
1017 felem_assign(x_out, nq[0]);
1018 felem_assign(y_out, nq[1]);
1019 felem_assign(z_out, nq[2]);
1020 }
1021
ec_GFp_nistp224_group_init(EC_GROUP * group)1022 int ec_GFp_nistp224_group_init(EC_GROUP *group) {
1023 int ret;
1024 ret = ec_GFp_simple_group_init(group);
1025 group->a_is_minus3 = 1;
1026 return ret;
1027 }
1028
ec_GFp_nistp224_group_set_curve(EC_GROUP * group,const BIGNUM * p,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)1029 int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1030 const BIGNUM *a, const BIGNUM *b,
1031 BN_CTX *ctx) {
1032 int ret = 0;
1033 BN_CTX *new_ctx = NULL;
1034 BIGNUM *curve_p, *curve_a, *curve_b;
1035
1036 if (ctx == NULL) {
1037 ctx = BN_CTX_new();
1038 new_ctx = ctx;
1039 if (ctx == NULL) {
1040 return 0;
1041 }
1042 }
1043 BN_CTX_start(ctx);
1044 if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
1045 ((curve_a = BN_CTX_get(ctx)) == NULL) ||
1046 ((curve_b = BN_CTX_get(ctx)) == NULL)) {
1047 goto err;
1048 }
1049 BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1050 BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1051 BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1052 if (BN_cmp(curve_p, p) ||
1053 BN_cmp(curve_a, a) ||
1054 BN_cmp(curve_b, b)) {
1055 OPENSSL_PUT_ERROR(EC, EC_R_WRONG_CURVE_PARAMETERS);
1056 goto err;
1057 }
1058 ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1059
1060 err:
1061 BN_CTX_end(ctx);
1062 BN_CTX_free(new_ctx);
1063 return ret;
1064 }
1065
1066 /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
1067 * (X', Y') = (X/Z^2, Y/Z^3) */
ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP * group,const EC_POINT * point,BIGNUM * x,BIGNUM * y,BN_CTX * ctx)1068 int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1069 const EC_POINT *point,
1070 BIGNUM *x, BIGNUM *y,
1071 BN_CTX *ctx) {
1072 felem z1, z2, x_in, y_in, x_out, y_out;
1073 widefelem tmp;
1074
1075 if (EC_POINT_is_at_infinity(group, point)) {
1076 OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
1077 return 0;
1078 }
1079
1080 if (!BN_to_felem(x_in, &point->X) ||
1081 !BN_to_felem(y_in, &point->Y) ||
1082 !BN_to_felem(z1, &point->Z)) {
1083 return 0;
1084 }
1085
1086 felem_inv(z2, z1);
1087 felem_square(tmp, z2);
1088 felem_reduce(z1, tmp);
1089 felem_mul(tmp, x_in, z1);
1090 felem_reduce(x_in, tmp);
1091 felem_contract(x_out, x_in);
1092 if (x != NULL && !felem_to_BN(x, x_out)) {
1093 OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
1094 return 0;
1095 }
1096
1097 felem_mul(tmp, z1, z2);
1098 felem_reduce(z1, tmp);
1099 felem_mul(tmp, y_in, z1);
1100 felem_reduce(y_in, tmp);
1101 felem_contract(y_out, y_in);
1102 if (y != NULL && !felem_to_BN(y, y_out)) {
1103 OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
1104 return 0;
1105 }
1106
1107 return 1;
1108 }
1109
make_points_affine(size_t num,felem points[][3],felem tmp_felems[])1110 static void make_points_affine(size_t num, felem points[/*num*/][3],
1111 felem tmp_felems[/*num+1*/]) {
1112 /* Runs in constant time, unless an input is the point at infinity
1113 * (which normally shouldn't happen). */
1114 ec_GFp_nistp_points_make_affine_internal(
1115 num, points, sizeof(felem), tmp_felems, (void (*)(void *))felem_one,
1116 (int (*)(const void *))felem_is_zero_int,
1117 (void (*)(void *, const void *))felem_assign,
1118 (void (*)(void *, const void *))felem_square_reduce,
1119 (void (*)(void *, const void *, const void *))felem_mul_reduce,
1120 (void (*)(void *, const void *))felem_inv,
1121 (void (*)(void *, const void *))felem_contract);
1122 }
1123
ec_GFp_nistp224_points_mul(const EC_GROUP * group,EC_POINT * r,const BIGNUM * g_scalar,const EC_POINT * p_,const BIGNUM * p_scalar_,BN_CTX * ctx)1124 int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1125 const BIGNUM *g_scalar, const EC_POINT *p_,
1126 const BIGNUM *p_scalar_, BN_CTX *ctx) {
1127 /* TODO: This function used to take |points| and |scalars| as arrays of
1128 * |num| elements. The code below should be simplified to work in terms of
1129 * |p_| and |p_scalar_|. */
1130 size_t num = p_ != NULL ? 1 : 0;
1131 const EC_POINT **points = p_ != NULL ? &p_ : NULL;
1132 BIGNUM const *const *scalars = p_ != NULL ? &p_scalar_ : NULL;
1133
1134 int ret = 0;
1135 int j;
1136 unsigned i;
1137 int mixed = 0;
1138 BN_CTX *new_ctx = NULL;
1139 BIGNUM *x, *y, *z, *tmp_scalar;
1140 felem_bytearray g_secret;
1141 felem_bytearray *secrets = NULL;
1142 felem(*pre_comp)[17][3] = NULL;
1143 felem *tmp_felems = NULL;
1144 felem_bytearray tmp;
1145 unsigned num_bytes;
1146 size_t num_points = num;
1147 felem x_in, y_in, z_in, x_out, y_out, z_out;
1148 const EC_POINT *p = NULL;
1149 const BIGNUM *p_scalar = NULL;
1150
1151 if (ctx == NULL) {
1152 ctx = BN_CTX_new();
1153 new_ctx = ctx;
1154 if (ctx == NULL) {
1155 return 0;
1156 }
1157 }
1158
1159 BN_CTX_start(ctx);
1160 if ((x = BN_CTX_get(ctx)) == NULL ||
1161 (y = BN_CTX_get(ctx)) == NULL ||
1162 (z = BN_CTX_get(ctx)) == NULL ||
1163 (tmp_scalar = BN_CTX_get(ctx)) == NULL) {
1164 goto err;
1165 }
1166
1167 if (num_points > 0) {
1168 if (num_points >= 3) {
1169 /* unless we precompute multiples for just one or two points,
1170 * converting those into affine form is time well spent */
1171 mixed = 1;
1172 }
1173 secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
1174 pre_comp = OPENSSL_malloc(num_points * sizeof(felem[17][3]));
1175 if (mixed) {
1176 tmp_felems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(felem));
1177 }
1178 if (secrets == NULL ||
1179 pre_comp == NULL ||
1180 (mixed && tmp_felems == NULL)) {
1181 OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
1182 goto err;
1183 }
1184
1185 /* we treat NULL scalars as 0, and NULL points as points at infinity,
1186 * i.e., they contribute nothing to the linear combination */
1187 memset(secrets, 0, num_points * sizeof(felem_bytearray));
1188 memset(pre_comp, 0, num_points * 17 * 3 * sizeof(felem));
1189 for (i = 0; i < num_points; ++i) {
1190 if (i == num) {
1191 /* the generator */
1192 p = EC_GROUP_get0_generator(group);
1193 p_scalar = g_scalar;
1194 } else {
1195 /* the i^th point */
1196 p = points[i];
1197 p_scalar = scalars[i];
1198 }
1199
1200 if (p_scalar != NULL && p != NULL) {
1201 /* reduce g_scalar to 0 <= g_scalar < 2^224 */
1202 if (BN_num_bits(p_scalar) > 224 || BN_is_negative(p_scalar)) {
1203 /* this is an unusual input, and we don't guarantee
1204 * constant-timeness */
1205 if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) {
1206 OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
1207 goto err;
1208 }
1209 num_bytes = BN_bn2bin(tmp_scalar, tmp);
1210 } else {
1211 num_bytes = BN_bn2bin(p_scalar, tmp);
1212 }
1213
1214 flip_endian(secrets[i], tmp, num_bytes);
1215 /* precompute multiples */
1216 if (!BN_to_felem(x_out, &p->X) ||
1217 !BN_to_felem(y_out, &p->Y) ||
1218 !BN_to_felem(z_out, &p->Z)) {
1219 goto err;
1220 }
1221
1222 felem_assign(pre_comp[i][1][0], x_out);
1223 felem_assign(pre_comp[i][1][1], y_out);
1224 felem_assign(pre_comp[i][1][2], z_out);
1225
1226 for (j = 2; j <= 16; ++j) {
1227 if (j & 1) {
1228 point_add(pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
1229 pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2],
1230 0, pre_comp[i][j - 1][0], pre_comp[i][j - 1][1],
1231 pre_comp[i][j - 1][2]);
1232 } else {
1233 point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1234 pre_comp[i][j][2], pre_comp[i][j / 2][0],
1235 pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]);
1236 }
1237 }
1238 }
1239 }
1240
1241 if (mixed) {
1242 make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1243 }
1244 }
1245
1246 if (g_scalar != NULL) {
1247 memset(g_secret, 0, sizeof(g_secret));
1248 /* reduce g_scalar to 0 <= g_scalar < 2^224 */
1249 if (BN_num_bits(g_scalar) > 224 || BN_is_negative(g_scalar)) {
1250 /* this is an unusual input, and we don't guarantee constant-timeness */
1251 if (!BN_nnmod(tmp_scalar, g_scalar, &group->order, ctx)) {
1252 OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
1253 goto err;
1254 }
1255 num_bytes = BN_bn2bin(tmp_scalar, tmp);
1256 } else {
1257 num_bytes = BN_bn2bin(g_scalar, tmp);
1258 }
1259
1260 flip_endian(g_secret, tmp, num_bytes);
1261 }
1262 batch_mul(x_out, y_out, z_out, (const felem_bytearray(*))secrets,
1263 num_points, g_scalar != NULL ? g_secret : NULL, mixed,
1264 (const felem(*)[17][3])pre_comp);
1265
1266 /* reduce the output to its unique minimal representation */
1267 felem_contract(x_in, x_out);
1268 felem_contract(y_in, y_out);
1269 felem_contract(z_in, z_out);
1270 if (!felem_to_BN(x, x_in) ||
1271 !felem_to_BN(y, y_in) ||
1272 !felem_to_BN(z, z_in)) {
1273 OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
1274 goto err;
1275 }
1276 ret = ec_point_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
1277
1278 err:
1279 BN_CTX_end(ctx);
1280 BN_CTX_free(new_ctx);
1281 OPENSSL_free(secrets);
1282 OPENSSL_free(pre_comp);
1283 OPENSSL_free(tmp_felems);
1284 return ret;
1285 }
1286
EC_GFp_nistp224_method(void)1287 const EC_METHOD *EC_GFp_nistp224_method(void) {
1288 static const EC_METHOD ret = {ec_GFp_nistp224_group_init,
1289 ec_GFp_simple_group_finish,
1290 ec_GFp_simple_group_clear_finish,
1291 ec_GFp_simple_group_copy,
1292 ec_GFp_nistp224_group_set_curve,
1293 ec_GFp_nistp224_point_get_affine_coordinates,
1294 ec_GFp_nistp224_points_mul,
1295 0 /* check_pub_key_order */,
1296 ec_GFp_simple_field_mul,
1297 ec_GFp_simple_field_sqr,
1298 0 /* field_encode */,
1299 0 /* field_decode */,
1300 0 /* field_set_to_one */};
1301
1302 return &ret;
1303 }
1304
1305 #endif /* 64_BIT && !WINDOWS && !SMALL */
1306