1 // merge.cc -- handle section merging for gold
2 
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cstdlib>
26 #include <algorithm>
27 
28 #include "merge.h"
29 #include "compressed_output.h"
30 
31 namespace gold
32 {
33 
34 // Class Object_merge_map.
35 
36 // Destructor.
37 
~Object_merge_map()38 Object_merge_map::~Object_merge_map()
39 {
40   for (Section_merge_maps::iterator p = this->section_merge_maps_.begin();
41        p != this->section_merge_maps_.end();
42        ++p)
43     delete p->second;
44 }
45 
46 // Get the Input_merge_map to use for an input section, or NULL.
47 
48 Object_merge_map::Input_merge_map*
get_input_merge_map(unsigned int shndx)49 Object_merge_map::get_input_merge_map(unsigned int shndx)
50 {
51   gold_assert(shndx != -1U);
52   if (shndx == this->first_shnum_)
53     return &this->first_map_;
54   if (shndx == this->second_shnum_)
55     return &this->second_map_;
56   Section_merge_maps::const_iterator p = this->section_merge_maps_.find(shndx);
57   if (p != this->section_merge_maps_.end())
58     return p->second;
59   return NULL;
60 }
61 
62 // Get or create the Input_merge_map to use for an input section.
63 
64 Object_merge_map::Input_merge_map*
get_or_make_input_merge_map(const Merge_map * merge_map,unsigned int shndx)65 Object_merge_map::get_or_make_input_merge_map(const Merge_map* merge_map,
66 					      unsigned int shndx)
67 {
68   Input_merge_map* map = this->get_input_merge_map(shndx);
69   if (map != NULL)
70     {
71       // For a given input section in a given object, every mapping
72       // must be done with the same Merge_map.
73       gold_assert(map->merge_map == merge_map);
74       return map;
75     }
76 
77   // We need to create a new entry.
78   if (this->first_shnum_ == -1U)
79     {
80       this->first_shnum_ = shndx;
81       this->first_map_.merge_map = merge_map;
82       return &this->first_map_;
83     }
84   if (this->second_shnum_ == -1U)
85     {
86       this->second_shnum_ = shndx;
87       this->second_map_.merge_map = merge_map;
88       return &this->second_map_;
89     }
90 
91   Input_merge_map* new_map = new Input_merge_map;
92   new_map->merge_map = merge_map;
93   this->section_merge_maps_[shndx] = new_map;
94   return new_map;
95 }
96 
97 // Add a mapping.
98 
99 void
add_mapping(const Merge_map * merge_map,unsigned int shndx,section_offset_type input_offset,section_size_type length,section_offset_type output_offset)100 Object_merge_map::add_mapping(const Merge_map* merge_map, unsigned int shndx,
101 			      section_offset_type input_offset,
102 			      section_size_type length,
103 			      section_offset_type output_offset)
104 {
105   Input_merge_map* map = this->get_or_make_input_merge_map(merge_map, shndx);
106 
107   // Try to merge the new entry in the last one we saw.
108   if (!map->entries.empty())
109     {
110       Input_merge_entry& entry(map->entries.back());
111 
112       // Use section_size_type to avoid signed/unsigned warnings.
113       section_size_type input_offset_u = input_offset;
114       section_size_type output_offset_u = output_offset;
115 
116       // If this entry is not in order, we need to sort the vector
117       // before looking anything up.
118       if (input_offset_u < entry.input_offset + entry.length)
119 	{
120 	  gold_assert(input_offset < entry.input_offset);
121 	  gold_assert(input_offset_u + length
122 		      <= static_cast<section_size_type>(entry.input_offset));
123 	  map->sorted = false;
124 	}
125       else if (entry.input_offset + entry.length == input_offset_u
126 	       && (output_offset == -1
127 		   ? entry.output_offset == -1
128 		   : entry.output_offset + entry.length == output_offset_u))
129 	{
130 	  entry.length += length;
131 	  return;
132 	}
133     }
134 
135   Input_merge_entry entry;
136   entry.input_offset = input_offset;
137   entry.length = length;
138   entry.output_offset = output_offset;
139   map->entries.push_back(entry);
140 }
141 
142 // Get the output offset for an input address.
143 
144 bool
get_output_offset(const Merge_map * merge_map,unsigned int shndx,section_offset_type input_offset,section_offset_type * output_offset)145 Object_merge_map::get_output_offset(const Merge_map* merge_map,
146 				    unsigned int shndx,
147 				    section_offset_type input_offset,
148 				    section_offset_type* output_offset)
149 {
150   Input_merge_map* map = this->get_input_merge_map(shndx);
151   if (map == NULL
152       || (merge_map != NULL && map->merge_map != merge_map))
153     return false;
154 
155   if (!map->sorted)
156     {
157       std::sort(map->entries.begin(), map->entries.end(),
158 		Input_merge_compare());
159       map->sorted = true;
160     }
161 
162   Input_merge_entry entry;
163   entry.input_offset = input_offset;
164   std::vector<Input_merge_entry>::const_iterator p =
165     std::upper_bound(map->entries.begin(), map->entries.end(),
166 		     entry, Input_merge_compare());
167   if (p == map->entries.begin())
168     return false;
169   --p;
170   gold_assert(p->input_offset <= input_offset);
171 
172   if (input_offset - p->input_offset
173       >= static_cast<section_offset_type>(p->length))
174     return false;
175 
176   *output_offset = p->output_offset;
177   if (*output_offset != -1)
178     *output_offset += (input_offset - p->input_offset);
179   return true;
180 }
181 
182 // Return whether this is the merge map for section SHNDX.
183 
184 inline bool
is_merge_section_for(const Merge_map * merge_map,unsigned int shndx)185 Object_merge_map::is_merge_section_for(const Merge_map* merge_map,
186 				       unsigned int shndx)
187 {
188   Input_merge_map* map = this->get_input_merge_map(shndx);
189   return map != NULL && map->merge_map == merge_map;
190 }
191 
192 // Initialize a mapping from input offsets to output addresses.
193 
194 template<int size>
195 void
initialize_input_to_output_map(unsigned int shndx,typename elfcpp::Elf_types<size>::Elf_Addr starting_address,Unordered_map<section_offset_type,typename elfcpp::Elf_types<size>::Elf_Addr> * initialize_map)196 Object_merge_map::initialize_input_to_output_map(
197     unsigned int shndx,
198     typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
199     Unordered_map<section_offset_type,
200 		  typename elfcpp::Elf_types<size>::Elf_Addr>* initialize_map)
201 {
202   Input_merge_map* map = this->get_input_merge_map(shndx);
203   gold_assert(map != NULL);
204 
205   gold_assert(initialize_map->empty());
206   // We know how many entries we are going to add.
207   // reserve_unordered_map takes an expected count of buckets, not a
208   // count of elements, so double it to try to reduce collisions.
209   reserve_unordered_map(initialize_map, map->entries.size() * 2);
210 
211   for (Input_merge_map::Entries::const_iterator p = map->entries.begin();
212        p != map->entries.end();
213        ++p)
214     {
215       section_offset_type output_offset = p->output_offset;
216       if (output_offset != -1)
217 	output_offset += starting_address;
218       else
219 	{
220 	  // If we see a relocation against an address we have chosen
221 	  // to discard, we relocate to zero.  FIXME: We could also
222 	  // issue a warning in this case; that would require
223 	  // reporting this somehow and checking it in the routines in
224 	  // reloc.h.
225 	  output_offset = 0;
226 	}
227       initialize_map->insert(std::make_pair(p->input_offset, output_offset));
228     }
229 }
230 
231 // Class Merge_map.
232 
233 // Add a mapping for the bytes from OFFSET to OFFSET + LENGTH in input
234 // section SHNDX in object OBJECT to an OUTPUT_OFFSET in merged data
235 // in an output section.
236 
237 void
add_mapping(Relobj * object,unsigned int shndx,section_offset_type offset,section_size_type length,section_offset_type output_offset)238 Merge_map::add_mapping(Relobj* object, unsigned int shndx,
239 		       section_offset_type offset, section_size_type length,
240 		       section_offset_type output_offset)
241 {
242   gold_assert(object != NULL);
243   Object_merge_map* object_merge_map = object->merge_map();
244   if (object_merge_map == NULL)
245     {
246       object_merge_map = new Object_merge_map();
247       object->set_merge_map(object_merge_map);
248     }
249 
250   object_merge_map->add_mapping(this, shndx, offset, length, output_offset);
251 }
252 
253 // Return the output offset for an input address.  The input address
254 // is at offset OFFSET in section SHNDX in OBJECT.  This sets
255 // *OUTPUT_OFFSET to the offset in the merged data in the output
256 // section.  This returns true if the mapping is known, false
257 // otherwise.
258 
259 bool
get_output_offset(const Relobj * object,unsigned int shndx,section_offset_type offset,section_offset_type * output_offset) const260 Merge_map::get_output_offset(const Relobj* object, unsigned int shndx,
261 			     section_offset_type offset,
262 			     section_offset_type* output_offset) const
263 {
264   Object_merge_map* object_merge_map = object->merge_map();
265   if (object_merge_map == NULL)
266     return false;
267   return object_merge_map->get_output_offset(this, shndx, offset,
268 					     output_offset);
269 }
270 
271 // Return whether this is the merge section for SHNDX in OBJECT.
272 
273 bool
is_merge_section_for(const Relobj * object,unsigned int shndx) const274 Merge_map::is_merge_section_for(const Relobj* object, unsigned int shndx) const
275 {
276   Object_merge_map* object_merge_map = object->merge_map();
277   if (object_merge_map == NULL)
278     return false;
279   return object_merge_map->is_merge_section_for(this, shndx);
280 }
281 
282 // Class Output_merge_base.
283 
284 // Return the output offset for an input offset.  The input address is
285 // at offset OFFSET in section SHNDX in OBJECT.  If we know the
286 // offset, set *POUTPUT and return true.  Otherwise return false.
287 
288 bool
do_output_offset(const Relobj * object,unsigned int shndx,section_offset_type offset,section_offset_type * poutput) const289 Output_merge_base::do_output_offset(const Relobj* object,
290 				    unsigned int shndx,
291 				    section_offset_type offset,
292 				    section_offset_type* poutput) const
293 {
294   return this->merge_map_.get_output_offset(object, shndx, offset, poutput);
295 }
296 
297 // Return whether this is the merge section for SHNDX in OBJECT.
298 
299 bool
do_is_merge_section_for(const Relobj * object,unsigned int shndx) const300 Output_merge_base::do_is_merge_section_for(const Relobj* object,
301 					   unsigned int shndx) const
302 {
303   return this->merge_map_.is_merge_section_for(object, shndx);
304 }
305 
306 // Record a merged input section for script processing.
307 
308 void
record_input_section(Relobj * relobj,unsigned int shndx)309 Output_merge_base::record_input_section(Relobj* relobj, unsigned int shndx)
310 {
311   gold_assert(this->keeps_input_sections_ && relobj != NULL);
312   // If this is the first input section, record it.  We need do this because
313   // this->input_sections_ is unordered.
314   if (this->first_relobj_ == NULL)
315     {
316       this->first_relobj_ = relobj;
317       this->first_shndx_ = shndx;
318     }
319 
320   std::pair<Input_sections::iterator, bool> result =
321     this->input_sections_.insert(Section_id(relobj, shndx));
322   // We should insert a merge section once only.
323   gold_assert(result.second);
324 }
325 
326 // Class Output_merge_data.
327 
328 // Compute the hash code for a fixed-size constant.
329 
330 size_t
operator ()(Merge_data_key k) const331 Output_merge_data::Merge_data_hash::operator()(Merge_data_key k) const
332 {
333   const unsigned char* p = this->pomd_->constant(k);
334   section_size_type entsize =
335     convert_to_section_size_type(this->pomd_->entsize());
336 
337   // Fowler/Noll/Vo (FNV) hash (type FNV-1a).
338   if (sizeof(size_t) == 8)
339     {
340       size_t result = static_cast<size_t>(14695981039346656037ULL);
341       for (section_size_type i = 0; i < entsize; ++i)
342 	{
343 	  result &= (size_t) *p++;
344 	  result *= 1099511628211ULL;
345 	}
346       return result;
347     }
348   else
349     {
350       size_t result = 2166136261UL;
351       for (section_size_type i = 0; i < entsize; ++i)
352 	{
353 	  result ^= (size_t) *p++;
354 	  result *= 16777619UL;
355 	}
356       return result;
357     }
358 }
359 
360 // Return whether one hash table key equals another.
361 
362 bool
operator ()(Merge_data_key k1,Merge_data_key k2) const363 Output_merge_data::Merge_data_eq::operator()(Merge_data_key k1,
364 					     Merge_data_key k2) const
365 {
366   const unsigned char* p1 = this->pomd_->constant(k1);
367   const unsigned char* p2 = this->pomd_->constant(k2);
368   return memcmp(p1, p2, this->pomd_->entsize()) == 0;
369 }
370 
371 // Add a constant to the end of the section contents.
372 
373 void
add_constant(const unsigned char * p)374 Output_merge_data::add_constant(const unsigned char* p)
375 {
376   section_size_type entsize = convert_to_section_size_type(this->entsize());
377   section_size_type addralign =
378     convert_to_section_size_type(this->addralign());
379   section_size_type addsize = std::max(entsize, addralign);
380   if (this->len_ + addsize > this->alc_)
381     {
382       if (this->alc_ == 0)
383 	this->alc_ = 128 * addsize;
384       else
385 	this->alc_ *= 2;
386       this->p_ = static_cast<unsigned char*>(realloc(this->p_, this->alc_));
387       if (this->p_ == NULL)
388 	gold_nomem();
389     }
390 
391   memcpy(this->p_ + this->len_, p, entsize);
392   if (addsize > entsize)
393     memset(this->p_ + this->len_ + entsize, 0, addsize - entsize);
394   this->len_ += addsize;
395 }
396 
397 // Add the input section SHNDX in OBJECT to a merged output section
398 // which holds fixed length constants.  Return whether we were able to
399 // handle the section; if not, it will be linked as usual without
400 // constant merging.
401 
402 bool
do_add_input_section(Relobj * object,unsigned int shndx)403 Output_merge_data::do_add_input_section(Relobj* object, unsigned int shndx)
404 {
405   section_size_type len;
406   bool is_new;
407   const unsigned char* p = object->decompressed_section_contents(shndx, &len,
408 								 &is_new);
409 
410   section_size_type entsize = convert_to_section_size_type(this->entsize());
411 
412   if (len % entsize != 0)
413     {
414       if (is_new)
415 	delete[] p;
416       return false;
417     }
418 
419   this->input_count_ += len / entsize;
420 
421   for (section_size_type i = 0; i < len; i += entsize, p += entsize)
422     {
423       // Add the constant to the section contents.  If we find that it
424       // is already in the hash table, we will remove it again.
425       Merge_data_key k = this->len_;
426       this->add_constant(p);
427 
428       std::pair<Merge_data_hashtable::iterator, bool> ins =
429 	this->hashtable_.insert(k);
430 
431       if (!ins.second)
432 	{
433 	  // Key was already present.  Remove the copy we just added.
434 	  this->len_ -= entsize;
435 	  k = *ins.first;
436 	}
437 
438       // Record the offset of this constant in the output section.
439       this->add_mapping(object, shndx, i, entsize, k);
440     }
441 
442   // For script processing, we keep the input sections.
443   if (this->keeps_input_sections())
444     record_input_section(object, shndx);
445 
446   if (is_new)
447     delete[] p;
448 
449   return true;
450 }
451 
452 // Set the final data size in a merged output section with fixed size
453 // constants.
454 
455 void
set_final_data_size()456 Output_merge_data::set_final_data_size()
457 {
458   // Release the memory we don't need.
459   this->p_ = static_cast<unsigned char*>(realloc(this->p_, this->len_));
460   // An Output_merge_data object may be empty and realloc is allowed
461   // to return a NULL pointer in this case.  An Output_merge_data is empty
462   // if all its input sections have sizes that are not multiples of entsize.
463   gold_assert(this->p_ != NULL || this->len_ == 0);
464   this->set_data_size(this->len_);
465 }
466 
467 // Write the data of a merged output section with fixed size constants
468 // to the file.
469 
470 void
do_write(Output_file * of)471 Output_merge_data::do_write(Output_file* of)
472 {
473   of->write(this->offset(), this->p_, this->len_);
474 }
475 
476 // Write the data to a buffer.
477 
478 void
do_write_to_buffer(unsigned char * buffer)479 Output_merge_data::do_write_to_buffer(unsigned char* buffer)
480 {
481   memcpy(buffer, this->p_, this->len_);
482 }
483 
484 // Print merge stats to stderr.
485 
486 void
do_print_merge_stats(const char * section_name)487 Output_merge_data::do_print_merge_stats(const char* section_name)
488 {
489   fprintf(stderr,
490 	  _("%s: %s merged constants size: %lu; input: %zu; output: %zu\n"),
491 	  program_name, section_name,
492 	  static_cast<unsigned long>(this->entsize()),
493 	  this->input_count_, this->hashtable_.size());
494 }
495 
496 // Class Output_merge_string.
497 
498 // Add an input section to a merged string section.
499 
500 template<typename Char_type>
501 bool
do_add_input_section(Relobj * object,unsigned int shndx)502 Output_merge_string<Char_type>::do_add_input_section(Relobj* object,
503 						     unsigned int shndx)
504 {
505   section_size_type sec_len;
506   bool is_new;
507   const unsigned char* pdata = object->decompressed_section_contents(shndx,
508 								     &sec_len,
509 								     &is_new);
510 
511   const Char_type* p = reinterpret_cast<const Char_type*>(pdata);
512   const Char_type* pend = p + sec_len / sizeof(Char_type);
513   const Char_type* pend0 = pend;
514 
515   if (sec_len % sizeof(Char_type) != 0)
516     {
517       object->error(_("mergeable string section length not multiple of "
518 		      "character size"));
519       if (is_new)
520 	delete[] pdata;
521       return false;
522     }
523 
524   if (pend[-1] != 0)
525     {
526       gold_warning(_("%s: last entry in mergeable string section '%s' "
527 		     "not null terminated"),
528 		   object->name().c_str(),
529 		   object->section_name(shndx).c_str());
530       // Find the end of the last NULL-terminated string in the buffer.
531       while (pend0 > p && pend0[-1] != 0)
532 	--pend0;
533     }
534 
535   Merged_strings_list* merged_strings_list =
536       new Merged_strings_list(object, shndx);
537   this->merged_strings_lists_.push_back(merged_strings_list);
538   Merged_strings& merged_strings = merged_strings_list->merged_strings;
539 
540   // Count the number of non-null strings in the section and size the list.
541   size_t count = 0;
542   const Char_type* pt = p;
543   while (pt < pend0)
544     {
545       size_t len = string_length(pt);
546       if (len != 0)
547 	++count;
548       pt += len + 1;
549     }
550   if (pend0 < pend)
551     ++count;
552   merged_strings.reserve(count + 1);
553 
554   // The index I is in bytes, not characters.
555   section_size_type i = 0;
556 
557   // We assume here that the beginning of the section is correctly
558   // aligned, so each string within the section must retain the same
559   // modulo.
560   uintptr_t init_align_modulo = (reinterpret_cast<uintptr_t>(pdata)
561 				 & (this->addralign() - 1));
562   bool has_misaligned_strings = false;
563 
564   while (p < pend)
565     {
566       size_t len = p < pend0 ? string_length(p) : pend - p;
567 
568       // Within merge input section each string must be aligned.
569       if (len != 0
570 	  && ((reinterpret_cast<uintptr_t>(p) & (this->addralign() - 1))
571 	      != init_align_modulo))
572 	  has_misaligned_strings = true;
573 
574       Stringpool::Key key;
575       this->stringpool_.add_with_length(p, len, true, &key);
576 
577       merged_strings.push_back(Merged_string(i, key));
578       p += len + 1;
579       i += (len + 1) * sizeof(Char_type);
580     }
581 
582   // Record the last offset in the input section so that we can
583   // compute the length of the last string.
584   merged_strings.push_back(Merged_string(i, 0));
585 
586   this->input_count_ += count;
587   this->input_size_ += i;
588 
589   if (has_misaligned_strings)
590     gold_warning(_("%s: section %s contains incorrectly aligned strings;"
591 		   " the alignment of those strings won't be preserved"),
592 		 object->name().c_str(),
593 		 object->section_name(shndx).c_str());
594 
595   // For script processing, we keep the input sections.
596   if (this->keeps_input_sections())
597     record_input_section(object, shndx);
598 
599   if (is_new)
600     delete[] pdata;
601 
602   return true;
603 }
604 
605 // Finalize the mappings from the input sections to the output
606 // section, and return the final data size.
607 
608 template<typename Char_type>
609 section_size_type
finalize_merged_data()610 Output_merge_string<Char_type>::finalize_merged_data()
611 {
612   this->stringpool_.set_string_offsets();
613 
614   for (typename Merged_strings_lists::const_iterator l =
615 	 this->merged_strings_lists_.begin();
616        l != this->merged_strings_lists_.end();
617        ++l)
618     {
619       section_offset_type last_input_offset = 0;
620       section_offset_type last_output_offset = 0;
621       for (typename Merged_strings::const_iterator p =
622 	     (*l)->merged_strings.begin();
623 	   p != (*l)->merged_strings.end();
624 	   ++p)
625 	{
626 	  section_size_type length = p->offset - last_input_offset;
627 	  if (length > 0)
628 	    this->add_mapping((*l)->object, (*l)->shndx, last_input_offset,
629 	    		      length, last_output_offset);
630 	  last_input_offset = p->offset;
631 	  if (p->stringpool_key != 0)
632 	    last_output_offset =
633 	        this->stringpool_.get_offset_from_key(p->stringpool_key);
634 	}
635       delete *l;
636     }
637 
638   // Save some memory.  This also ensures that this function will work
639   // if called twice, as may happen if Layout::set_segment_offsets
640   // finds a better alignment.
641   this->merged_strings_lists_.clear();
642 
643   return this->stringpool_.get_strtab_size();
644 }
645 
646 template<typename Char_type>
647 void
set_final_data_size()648 Output_merge_string<Char_type>::set_final_data_size()
649 {
650   const off_t final_data_size = this->finalize_merged_data();
651   this->set_data_size(final_data_size);
652 }
653 
654 // Write out a merged string section.
655 
656 template<typename Char_type>
657 void
do_write(Output_file * of)658 Output_merge_string<Char_type>::do_write(Output_file* of)
659 {
660   this->stringpool_.write(of, this->offset());
661 }
662 
663 // Write a merged string section to a buffer.
664 
665 template<typename Char_type>
666 void
do_write_to_buffer(unsigned char * buffer)667 Output_merge_string<Char_type>::do_write_to_buffer(unsigned char* buffer)
668 {
669   this->stringpool_.write_to_buffer(buffer, this->data_size());
670 }
671 
672 // Return the name of the types of string to use with
673 // do_print_merge_stats.
674 
675 template<typename Char_type>
676 const char*
string_name()677 Output_merge_string<Char_type>::string_name()
678 {
679   gold_unreachable();
680   return NULL;
681 }
682 
683 template<>
684 const char*
string_name()685 Output_merge_string<char>::string_name()
686 {
687   return "strings";
688 }
689 
690 template<>
691 const char*
string_name()692 Output_merge_string<uint16_t>::string_name()
693 {
694   return "16-bit strings";
695 }
696 
697 template<>
698 const char*
string_name()699 Output_merge_string<uint32_t>::string_name()
700 {
701   return "32-bit strings";
702 }
703 
704 // Print merge stats to stderr.
705 
706 template<typename Char_type>
707 void
do_print_merge_stats(const char * section_name)708 Output_merge_string<Char_type>::do_print_merge_stats(const char* section_name)
709 {
710   char buf[200];
711   snprintf(buf, sizeof buf, "%s merged %s", section_name, this->string_name());
712   fprintf(stderr, _("%s: %s input bytes: %zu\n"),
713 	  program_name, buf, this->input_size_);
714   fprintf(stderr, _("%s: %s input strings: %zu\n"),
715 	  program_name, buf, this->input_count_);
716   this->stringpool_.print_stats(buf);
717 }
718 
719 // Instantiate the templates we need.
720 
721 template
722 class Output_merge_string<char>;
723 
724 template
725 class Output_merge_string<uint16_t>;
726 
727 template
728 class Output_merge_string<uint32_t>;
729 
730 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
731 template
732 void
733 Object_merge_map::initialize_input_to_output_map<32>(
734     unsigned int shndx,
735     elfcpp::Elf_types<32>::Elf_Addr starting_address,
736     Unordered_map<section_offset_type, elfcpp::Elf_types<32>::Elf_Addr>*);
737 #endif
738 
739 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
740 template
741 void
742 Object_merge_map::initialize_input_to_output_map<64>(
743     unsigned int shndx,
744     elfcpp::Elf_types<64>::Elf_Addr starting_address,
745     Unordered_map<section_offset_type, elfcpp::Elf_types<64>::Elf_Addr>*);
746 #endif
747 
748 } // End namespace gold.
749