1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "precomp.hpp"
44 #include <map>
45
46 namespace cv {
47 namespace detail {
48
find(const std::vector<UMat> & src,const std::vector<Point> & corners,std::vector<UMat> & masks)49 void PairwiseSeamFinder::find(const std::vector<UMat> &src, const std::vector<Point> &corners,
50 std::vector<UMat> &masks)
51 {
52 LOGLN("Finding seams...");
53 if (src.size() == 0)
54 return;
55
56 #if ENABLE_LOG
57 int64 t = getTickCount();
58 #endif
59
60 images_ = src;
61 sizes_.resize(src.size());
62 for (size_t i = 0; i < src.size(); ++i)
63 sizes_[i] = src[i].size();
64 corners_ = corners;
65 masks_ = masks;
66 run();
67
68 LOGLN("Finding seams, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
69 }
70
71
run()72 void PairwiseSeamFinder::run()
73 {
74 for (size_t i = 0; i < sizes_.size() - 1; ++i)
75 {
76 for (size_t j = i + 1; j < sizes_.size(); ++j)
77 {
78 Rect roi;
79 if (overlapRoi(corners_[i], corners_[j], sizes_[i], sizes_[j], roi))
80 findInPair(i, j, roi);
81 }
82 }
83 }
84
find(const std::vector<UMat> & src,const std::vector<Point> & corners,std::vector<UMat> & masks)85 void VoronoiSeamFinder::find(const std::vector<UMat> &src, const std::vector<Point> &corners,
86 std::vector<UMat> &masks)
87 {
88 PairwiseSeamFinder::find(src, corners, masks);
89 }
90
find(const std::vector<Size> & sizes,const std::vector<Point> & corners,std::vector<UMat> & masks)91 void VoronoiSeamFinder::find(const std::vector<Size> &sizes, const std::vector<Point> &corners,
92 std::vector<UMat> &masks)
93 {
94 LOGLN("Finding seams...");
95 if (sizes.size() == 0)
96 return;
97
98 #if ENABLE_LOG
99 int64 t = getTickCount();
100 #endif
101
102 sizes_ = sizes;
103 corners_ = corners;
104 masks_ = masks;
105 run();
106
107 LOGLN("Finding seams, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
108 }
109
110
findInPair(size_t first,size_t second,Rect roi)111 void VoronoiSeamFinder::findInPair(size_t first, size_t second, Rect roi)
112 {
113 const int gap = 10;
114 Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
115 Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
116
117 Size img1 = sizes_[first], img2 = sizes_[second];
118 Mat mask1 = masks_[first].getMat(ACCESS_READ), mask2 = masks_[second].getMat(ACCESS_READ);
119 Point tl1 = corners_[first], tl2 = corners_[second];
120
121 // Cut submasks with some gap
122 for (int y = -gap; y < roi.height + gap; ++y)
123 {
124 for (int x = -gap; x < roi.width + gap; ++x)
125 {
126 int y1 = roi.y - tl1.y + y;
127 int x1 = roi.x - tl1.x + x;
128 if (y1 >= 0 && x1 >= 0 && y1 < img1.height && x1 < img1.width)
129 submask1.at<uchar>(y + gap, x + gap) = mask1.at<uchar>(y1, x1);
130 else
131 submask1.at<uchar>(y + gap, x + gap) = 0;
132
133 int y2 = roi.y - tl2.y + y;
134 int x2 = roi.x - tl2.x + x;
135 if (y2 >= 0 && x2 >= 0 && y2 < img2.height && x2 < img2.width)
136 submask2.at<uchar>(y + gap, x + gap) = mask2.at<uchar>(y2, x2);
137 else
138 submask2.at<uchar>(y + gap, x + gap) = 0;
139 }
140 }
141
142 Mat collision = (submask1 != 0) & (submask2 != 0);
143 Mat unique1 = submask1.clone(); unique1.setTo(0, collision);
144 Mat unique2 = submask2.clone(); unique2.setTo(0, collision);
145
146 Mat dist1, dist2;
147 distanceTransform(unique1 == 0, dist1, DIST_L1, 3);
148 distanceTransform(unique2 == 0, dist2, DIST_L1, 3);
149
150 Mat seam = dist1 < dist2;
151
152 for (int y = 0; y < roi.height; ++y)
153 {
154 for (int x = 0; x < roi.width; ++x)
155 {
156 if (seam.at<uchar>(y + gap, x + gap))
157 mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0;
158 else
159 mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0;
160 }
161 }
162 }
163
164
DpSeamFinder(CostFunction costFunc)165 DpSeamFinder::DpSeamFinder(CostFunction costFunc) : costFunc_(costFunc) {}
166
167
find(const std::vector<UMat> & src,const std::vector<Point> & corners,std::vector<UMat> & masks)168 void DpSeamFinder::find(const std::vector<UMat> &src, const std::vector<Point> &corners, std::vector<UMat> &masks)
169 {
170 LOGLN("Finding seams...");
171 #if ENABLE_LOG
172 int64 t = getTickCount();
173 #endif
174
175 if (src.size() == 0)
176 return;
177
178 std::vector<std::pair<size_t, size_t> > pairs;
179
180 for (size_t i = 0; i+1 < src.size(); ++i)
181 for (size_t j = i+1; j < src.size(); ++j)
182 pairs.push_back(std::make_pair(i, j));
183
184 {
185 std::vector<Mat> _src(src.size());
186 for (size_t i = 0; i < src.size(); ++i) _src[i] = src[i].getMat(ACCESS_READ);
187 sort(pairs.begin(), pairs.end(), ImagePairLess(_src, corners));
188 }
189 std::reverse(pairs.begin(), pairs.end());
190
191 for (size_t i = 0; i < pairs.size(); ++i)
192 {
193 size_t i0 = pairs[i].first, i1 = pairs[i].second;
194 Mat mask0 = masks[i0].getMat(ACCESS_RW), mask1 = masks[i1].getMat(ACCESS_RW);
195 process(src[i0].getMat(ACCESS_READ), src[i1].getMat(ACCESS_READ), corners[i0], corners[i1], mask0, mask1);
196 }
197
198 LOGLN("Finding seams, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
199 }
200
201
process(const Mat & image1,const Mat & image2,Point tl1,Point tl2,Mat & mask1,Mat & mask2)202 void DpSeamFinder::process(
203 const Mat &image1, const Mat &image2, Point tl1, Point tl2,
204 Mat &mask1, Mat &mask2)
205 {
206 CV_Assert(image1.size() == mask1.size());
207 CV_Assert(image2.size() == mask2.size());
208
209 Point intersectTl(std::max(tl1.x, tl2.x), std::max(tl1.y, tl2.y));
210
211 Point intersectBr(std::min(tl1.x + image1.cols, tl2.x + image2.cols),
212 std::min(tl1.y + image1.rows, tl2.y + image2.rows));
213
214 if (intersectTl.x >= intersectBr.x || intersectTl.y >= intersectBr.y)
215 return; // there are no conflicts
216
217 unionTl_ = Point(std::min(tl1.x, tl2.x), std::min(tl1.y, tl2.y));
218
219 unionBr_ = Point(std::max(tl1.x + image1.cols, tl2.x + image2.cols),
220 std::max(tl1.y + image1.rows, tl2.y + image2.rows));
221
222 unionSize_ = Size(unionBr_.x - unionTl_.x, unionBr_.y - unionTl_.y);
223
224 mask1_ = Mat::zeros(unionSize_, CV_8U);
225 mask2_ = Mat::zeros(unionSize_, CV_8U);
226
227 Mat tmp = mask1_(Rect(tl1.x - unionTl_.x, tl1.y - unionTl_.y, mask1.cols, mask1.rows));
228 mask1.copyTo(tmp);
229
230 tmp = mask2_(Rect(tl2.x - unionTl_.x, tl2.y - unionTl_.y, mask2.cols, mask2.rows));
231 mask2.copyTo(tmp);
232
233 // find both images contour masks
234
235 contour1mask_ = Mat::zeros(unionSize_, CV_8U);
236 contour2mask_ = Mat::zeros(unionSize_, CV_8U);
237
238 for (int y = 0; y < unionSize_.height; ++y)
239 {
240 for (int x = 0; x < unionSize_.width; ++x)
241 {
242 if (mask1_(y, x) &&
243 ((x == 0 || !mask1_(y, x-1)) || (x == unionSize_.width-1 || !mask1_(y, x+1)) ||
244 (y == 0 || !mask1_(y-1, x)) || (y == unionSize_.height-1 || !mask1_(y+1, x))))
245 {
246 contour1mask_(y, x) = 255;
247 }
248
249 if (mask2_(y, x) &&
250 ((x == 0 || !mask2_(y, x-1)) || (x == unionSize_.width-1 || !mask2_(y, x+1)) ||
251 (y == 0 || !mask2_(y-1, x)) || (y == unionSize_.height-1 || !mask2_(y+1, x))))
252 {
253 contour2mask_(y, x) = 255;
254 }
255 }
256 }
257
258 findComponents();
259
260 findEdges();
261
262 resolveConflicts(image1, image2, tl1, tl2, mask1, mask2);
263 }
264
265
findComponents()266 void DpSeamFinder::findComponents()
267 {
268 // label all connected components and get information about them
269
270 ncomps_ = 0;
271 labels_.create(unionSize_);
272 states_.clear();
273 tls_.clear();
274 brs_.clear();
275 contours_.clear();
276
277 for (int y = 0; y < unionSize_.height; ++y)
278 {
279 for (int x = 0; x < unionSize_.width; ++x)
280 {
281 if (mask1_(y, x) && mask2_(y, x))
282 labels_(y, x) = std::numeric_limits<int>::max();
283 else if (mask1_(y, x))
284 labels_(y, x) = std::numeric_limits<int>::max()-1;
285 else if (mask2_(y, x))
286 labels_(y, x) = std::numeric_limits<int>::max()-2;
287 else
288 labels_(y, x) = 0;
289 }
290 }
291
292 for (int y = 0; y < unionSize_.height; ++y)
293 {
294 for (int x = 0; x < unionSize_.width; ++x)
295 {
296 if (labels_(y, x) >= std::numeric_limits<int>::max()-2)
297 {
298 if (labels_(y, x) == std::numeric_limits<int>::max())
299 states_.push_back(INTERS);
300 else if (labels_(y, x) == std::numeric_limits<int>::max()-1)
301 states_.push_back(FIRST);
302 else if (labels_(y, x) == std::numeric_limits<int>::max()-2)
303 states_.push_back(SECOND);
304
305 floodFill(labels_, Point(x, y), ++ncomps_);
306 tls_.push_back(Point(x, y));
307 brs_.push_back(Point(x+1, y+1));
308 contours_.push_back(std::vector<Point>());
309 }
310
311 if (labels_(y, x))
312 {
313 int l = labels_(y, x);
314 int ci = l-1;
315
316 tls_[ci].x = std::min(tls_[ci].x, x);
317 tls_[ci].y = std::min(tls_[ci].y, y);
318 brs_[ci].x = std::max(brs_[ci].x, x+1);
319 brs_[ci].y = std::max(brs_[ci].y, y+1);
320
321 if ((x == 0 || labels_(y, x-1) != l) || (x == unionSize_.width-1 || labels_(y, x+1) != l) ||
322 (y == 0 || labels_(y-1, x) != l) || (y == unionSize_.height-1 || labels_(y+1, x) != l))
323 {
324 contours_[ci].push_back(Point(x, y));
325 }
326 }
327 }
328 }
329 }
330
331
findEdges()332 void DpSeamFinder::findEdges()
333 {
334 // find edges between components
335
336 std::map<std::pair<int, int>, int> wedges; // weighted edges
337
338 for (int ci = 0; ci < ncomps_-1; ++ci)
339 {
340 for (int cj = ci+1; cj < ncomps_; ++cj)
341 {
342 wedges[std::make_pair(ci, cj)] = 0;
343 wedges[std::make_pair(cj, ci)] = 0;
344 }
345 }
346
347 for (int ci = 0; ci < ncomps_; ++ci)
348 {
349 for (size_t i = 0; i < contours_[ci].size(); ++i)
350 {
351 int x = contours_[ci][i].x;
352 int y = contours_[ci][i].y;
353 int l = ci + 1;
354
355 if (x > 0 && labels_(y, x-1) && labels_(y, x-1) != l)
356 {
357 wedges[std::make_pair(ci, labels_(y, x-1)-1)]++;
358 wedges[std::make_pair(labels_(y, x-1)-1, ci)]++;
359 }
360
361 if (y > 0 && labels_(y-1, x) && labels_(y-1, x) != l)
362 {
363 wedges[std::make_pair(ci, labels_(y-1, x)-1)]++;
364 wedges[std::make_pair(labels_(y-1, x)-1, ci)]++;
365 }
366
367 if (x < unionSize_.width-1 && labels_(y, x+1) && labels_(y, x+1) != l)
368 {
369 wedges[std::make_pair(ci, labels_(y, x+1)-1)]++;
370 wedges[std::make_pair(labels_(y, x+1)-1, ci)]++;
371 }
372
373 if (y < unionSize_.height-1 && labels_(y+1, x) && labels_(y+1, x) != l)
374 {
375 wedges[std::make_pair(ci, labels_(y+1, x)-1)]++;
376 wedges[std::make_pair(labels_(y+1, x)-1, ci)]++;
377 }
378 }
379 }
380
381 edges_.clear();
382
383 for (int ci = 0; ci < ncomps_-1; ++ci)
384 {
385 for (int cj = ci+1; cj < ncomps_; ++cj)
386 {
387 std::map<std::pair<int, int>, int>::iterator itr = wedges.find(std::make_pair(ci, cj));
388 if (itr != wedges.end() && itr->second > 0)
389 edges_.insert(itr->first);
390
391 itr = wedges.find(std::make_pair(cj, ci));
392 if (itr != wedges.end() && itr->second > 0)
393 edges_.insert(itr->first);
394 }
395 }
396 }
397
398
resolveConflicts(const Mat & image1,const Mat & image2,Point tl1,Point tl2,Mat & mask1,Mat & mask2)399 void DpSeamFinder::resolveConflicts(
400 const Mat &image1, const Mat &image2, Point tl1, Point tl2, Mat &mask1, Mat &mask2)
401 {
402 if (costFunc_ == COLOR_GRAD)
403 computeGradients(image1, image2);
404
405 // resolve conflicts between components
406
407 bool hasConflict = true;
408 while (hasConflict)
409 {
410 int c1 = 0, c2 = 0;
411 hasConflict = false;
412
413 for (std::set<std::pair<int, int> >::iterator itr = edges_.begin(); itr != edges_.end(); ++itr)
414 {
415 c1 = itr->first;
416 c2 = itr->second;
417
418 if ((states_[c1] & INTERS) && (states_[c1] & (~INTERS)) != states_[c2])
419 {
420 hasConflict = true;
421 break;
422 }
423 }
424
425 if (hasConflict)
426 {
427 int l1 = c1+1, l2 = c2+1;
428
429 if (hasOnlyOneNeighbor(c1))
430 {
431 // if the first components has only one adjacent component
432
433 for (int y = tls_[c1].y; y < brs_[c1].y; ++y)
434 for (int x = tls_[c1].x; x < brs_[c1].x; ++x)
435 if (labels_(y, x) == l1)
436 labels_(y, x) = l2;
437
438 states_[c1] = states_[c2] == FIRST ? SECOND : FIRST;
439 }
440 else
441 {
442 // if the first component has more than one adjacent component
443
444 Point p1, p2;
445 if (getSeamTips(c1, c2, p1, p2))
446 {
447 std::vector<Point> seam;
448 bool isHorizontalSeam;
449
450 if (estimateSeam(image1, image2, tl1, tl2, c1, p1, p2, seam, isHorizontalSeam))
451 updateLabelsUsingSeam(c1, c2, seam, isHorizontalSeam);
452 }
453
454 states_[c1] = states_[c2] == FIRST ? INTERS_SECOND : INTERS_FIRST;
455 }
456
457 const int c[] = {c1, c2};
458 const int l[] = {l1, l2};
459
460 for (int i = 0; i < 2; ++i)
461 {
462 // update information about the (i+1)-th component
463
464 int x0 = tls_[c[i]].x, x1 = brs_[c[i]].x;
465 int y0 = tls_[c[i]].y, y1 = brs_[c[i]].y;
466
467 tls_[c[i]] = Point(std::numeric_limits<int>::max(), std::numeric_limits<int>::max());
468 brs_[c[i]] = Point(std::numeric_limits<int>::min(), std::numeric_limits<int>::min());
469 contours_[c[i]].clear();
470
471 for (int y = y0; y < y1; ++y)
472 {
473 for (int x = x0; x < x1; ++x)
474 {
475 if (labels_(y, x) == l[i])
476 {
477 tls_[c[i]].x = std::min(tls_[c[i]].x, x);
478 tls_[c[i]].y = std::min(tls_[c[i]].y, y);
479 brs_[c[i]].x = std::max(brs_[c[i]].x, x+1);
480 brs_[c[i]].y = std::max(brs_[c[i]].y, y+1);
481
482 if ((x == 0 || labels_(y, x-1) != l[i]) || (x == unionSize_.width-1 || labels_(y, x+1) != l[i]) ||
483 (y == 0 || labels_(y-1, x) != l[i]) || (y == unionSize_.height-1 || labels_(y+1, x) != l[i]))
484 {
485 contours_[c[i]].push_back(Point(x, y));
486 }
487 }
488 }
489 }
490 }
491
492 // remove edges
493
494 edges_.erase(std::make_pair(c1, c2));
495 edges_.erase(std::make_pair(c2, c1));
496 }
497 }
498
499 // update masks
500
501 int dx1 = unionTl_.x - tl1.x, dy1 = unionTl_.y - tl1.y;
502 int dx2 = unionTl_.x - tl2.x, dy2 = unionTl_.y - tl2.y;
503
504 for (int y = 0; y < mask2.rows; ++y)
505 {
506 for (int x = 0; x < mask2.cols; ++x)
507 {
508 int l = labels_(y - dy2, x - dx2);
509 if (l > 0 && (states_[l-1] & FIRST) && mask1.at<uchar>(y - dy2 + dy1, x - dx2 + dx1))
510 mask2.at<uchar>(y, x) = 0;
511 }
512 }
513
514 for (int y = 0; y < mask1.rows; ++y)
515 {
516 for (int x = 0; x < mask1.cols; ++x)
517 {
518 int l = labels_(y - dy1, x - dx1);
519 if (l > 0 && (states_[l-1] & SECOND) && mask2.at<uchar>(y - dy1 + dy2, x - dx1 + dx2))
520 mask1.at<uchar>(y, x) = 0;
521 }
522 }
523 }
524
525
computeGradients(const Mat & image1,const Mat & image2)526 void DpSeamFinder::computeGradients(const Mat &image1, const Mat &image2)
527 {
528 CV_Assert(image1.channels() == 3 || image1.channels() == 4);
529 CV_Assert(image2.channels() == 3 || image2.channels() == 4);
530 CV_Assert(costFunction() == COLOR_GRAD);
531
532 Mat gray;
533
534 if (image1.channels() == 3)
535 cvtColor(image1, gray, COLOR_BGR2GRAY);
536 else if (image1.channels() == 4)
537 cvtColor(image1, gray, COLOR_BGRA2GRAY);
538
539 Sobel(gray, gradx1_, CV_32F, 1, 0);
540 Sobel(gray, grady1_, CV_32F, 0, 1);
541
542 if (image2.channels() == 3)
543 cvtColor(image2, gray, COLOR_BGR2GRAY);
544 else if (image2.channels() == 4)
545 cvtColor(image2, gray, COLOR_BGRA2GRAY);
546
547 Sobel(gray, gradx2_, CV_32F, 1, 0);
548 Sobel(gray, grady2_, CV_32F, 0, 1);
549 }
550
551
hasOnlyOneNeighbor(int comp)552 bool DpSeamFinder::hasOnlyOneNeighbor(int comp)
553 {
554 std::set<std::pair<int, int> >::iterator begin, end;
555 begin = lower_bound(edges_.begin(), edges_.end(), std::make_pair(comp, std::numeric_limits<int>::min()));
556 end = upper_bound(edges_.begin(), edges_.end(), std::make_pair(comp, std::numeric_limits<int>::max()));
557 return ++begin == end;
558 }
559
560
closeToContour(int y,int x,const Mat_<uchar> & contourMask)561 bool DpSeamFinder::closeToContour(int y, int x, const Mat_<uchar> &contourMask)
562 {
563 const int rad = 2;
564
565 for (int dy = -rad; dy <= rad; ++dy)
566 {
567 if (y + dy >= 0 && y + dy < unionSize_.height)
568 {
569 for (int dx = -rad; dx <= rad; ++dx)
570 {
571 if (x + dx >= 0 && x + dx < unionSize_.width &&
572 contourMask(y + dy, x + dx))
573 {
574 return true;
575 }
576 }
577 }
578 }
579
580 return false;
581 }
582
583
getSeamTips(int comp1,int comp2,Point & p1,Point & p2)584 bool DpSeamFinder::getSeamTips(int comp1, int comp2, Point &p1, Point &p2)
585 {
586 CV_Assert(states_[comp1] & INTERS);
587
588 // find special points
589
590 std::vector<Point> specialPoints;
591 int l2 = comp2+1;
592
593 for (size_t i = 0; i < contours_[comp1].size(); ++i)
594 {
595 int x = contours_[comp1][i].x;
596 int y = contours_[comp1][i].y;
597
598 if (closeToContour(y, x, contour1mask_) &&
599 closeToContour(y, x, contour2mask_) &&
600 ((x > 0 && labels_(y, x-1) == l2) ||
601 (y > 0 && labels_(y-1, x) == l2) ||
602 (x < unionSize_.width-1 && labels_(y, x+1) == l2) ||
603 (y < unionSize_.height-1 && labels_(y+1, x) == l2)))
604 {
605 specialPoints.push_back(Point(x, y));
606 }
607 }
608
609 if (specialPoints.size() < 2)
610 return false;
611
612 // find clusters
613
614 std::vector<int> labels;
615 cv::partition(specialPoints, labels, ClosePoints(10));
616
617 int nlabels = *std::max_element(labels.begin(), labels.end()) + 1;
618 if (nlabels < 2)
619 return false;
620
621 std::vector<Point> sum(nlabels);
622 std::vector<std::vector<Point> > points(nlabels);
623
624 for (size_t i = 0; i < specialPoints.size(); ++i)
625 {
626 sum[labels[i]] += specialPoints[i];
627 points[labels[i]].push_back(specialPoints[i]);
628 }
629
630 // select two most distant clusters
631
632 int idx[2] = {-1,-1};
633 double maxDist = -std::numeric_limits<double>::max();
634
635 for (int i = 0; i < nlabels-1; ++i)
636 {
637 for (int j = i+1; j < nlabels; ++j)
638 {
639 double size1 = static_cast<double>(points[i].size()), size2 = static_cast<double>(points[j].size());
640 double cx1 = cvRound(sum[i].x / size1), cy1 = cvRound(sum[i].y / size1);
641 double cx2 = cvRound(sum[j].x / size2), cy2 = cvRound(sum[j].y / size1);
642
643 double dist = (cx1 - cx2) * (cx1 - cx2) + (cy1 - cy2) * (cy1 - cy2);
644 if (dist > maxDist)
645 {
646 maxDist = dist;
647 idx[0] = i;
648 idx[1] = j;
649 }
650 }
651 }
652
653 // select two points closest to the clusters' centers
654
655 Point p[2];
656
657 for (int i = 0; i < 2; ++i)
658 {
659 double size = static_cast<double>(points[idx[i]].size());
660 double cx = cvRound(sum[idx[i]].x / size);
661 double cy = cvRound(sum[idx[i]].y / size);
662
663 size_t closest = points[idx[i]].size();
664 double minDist = std::numeric_limits<double>::max();
665
666 for (size_t j = 0; j < points[idx[i]].size(); ++j)
667 {
668 double dist = (points[idx[i]][j].x - cx) * (points[idx[i]][j].x - cx) +
669 (points[idx[i]][j].y - cy) * (points[idx[i]][j].y - cy);
670 if (dist < minDist)
671 {
672 minDist = dist;
673 closest = j;
674 }
675 }
676
677 p[i] = points[idx[i]][closest];
678 }
679
680 p1 = p[0];
681 p2 = p[1];
682 return true;
683 }
684
685
686 namespace
687 {
688
689 template <typename T>
diffL2Square3(const Mat & image1,int y1,int x1,const Mat & image2,int y2,int x2)690 float diffL2Square3(const Mat &image1, int y1, int x1, const Mat &image2, int y2, int x2)
691 {
692 const T *r1 = image1.ptr<T>(y1);
693 const T *r2 = image2.ptr<T>(y2);
694 return static_cast<float>(sqr(r1[3*x1] - r2[3*x2]) + sqr(r1[3*x1+1] - r2[3*x2+1]) +
695 sqr(r1[3*x1+2] - r2[3*x2+2]));
696 }
697
698
699 template <typename T>
diffL2Square4(const Mat & image1,int y1,int x1,const Mat & image2,int y2,int x2)700 float diffL2Square4(const Mat &image1, int y1, int x1, const Mat &image2, int y2, int x2)
701 {
702 const T *r1 = image1.ptr<T>(y1);
703 const T *r2 = image2.ptr<T>(y2);
704 return static_cast<float>(sqr(r1[4*x1] - r2[4*x2]) + sqr(r1[4*x1+1] - r2[4*x2+1]) +
705 sqr(r1[4*x1+2] - r2[4*x2+2]));
706 }
707
708 } // namespace
709
710
computeCosts(const Mat & image1,const Mat & image2,Point tl1,Point tl2,int comp,Mat_<float> & costV,Mat_<float> & costH)711 void DpSeamFinder::computeCosts(
712 const Mat &image1, const Mat &image2, Point tl1, Point tl2,
713 int comp, Mat_<float> &costV, Mat_<float> &costH)
714 {
715 CV_Assert(states_[comp] & INTERS);
716
717 // compute costs
718
719 float (*diff)(const Mat&, int, int, const Mat&, int, int) = 0;
720 if (image1.type() == CV_32FC3 && image2.type() == CV_32FC3)
721 diff = diffL2Square3<float>;
722 else if (image1.type() == CV_8UC3 && image2.type() == CV_8UC3)
723 diff = diffL2Square3<uchar>;
724 else if (image1.type() == CV_32FC4 && image2.type() == CV_32FC4)
725 diff = diffL2Square4<float>;
726 else if (image1.type() == CV_8UC4 && image2.type() == CV_8UC4)
727 diff = diffL2Square4<uchar>;
728 else
729 CV_Error(Error::StsBadArg, "both images must have CV_32FC3(4) or CV_8UC3(4) type");
730
731 int l = comp+1;
732 Rect roi(tls_[comp], brs_[comp]);
733
734 int dx1 = unionTl_.x - tl1.x, dy1 = unionTl_.y - tl1.y;
735 int dx2 = unionTl_.x - tl2.x, dy2 = unionTl_.y - tl2.y;
736
737 const float badRegionCost = normL2(Point3f(255.f, 255.f, 255.f),
738 Point3f(0.f, 0.f, 0.f));
739
740 costV.create(roi.height, roi.width+1);
741
742 for (int y = roi.y; y < roi.br().y; ++y)
743 {
744 for (int x = roi.x; x < roi.br().x+1; ++x)
745 {
746 if (labels_(y, x) == l && x > 0 && labels_(y, x-1) == l)
747 {
748 float costColor = (diff(image1, y + dy1, x + dx1 - 1, image2, y + dy2, x + dx2) +
749 diff(image1, y + dy1, x + dx1, image2, y + dy2, x + dx2 - 1)) / 2;
750 if (costFunc_ == COLOR)
751 costV(y - roi.y, x - roi.x) = costColor;
752 else if (costFunc_ == COLOR_GRAD)
753 {
754 float costGrad = std::abs(gradx1_(y + dy1, x + dx1)) + std::abs(gradx1_(y + dy1, x + dx1 - 1)) +
755 std::abs(gradx2_(y + dy2, x + dx2)) + std::abs(gradx2_(y + dy2, x + dx2 - 1)) + 1.f;
756 costV(y - roi.y, x - roi.x) = costColor / costGrad;
757 }
758 }
759 else
760 costV(y - roi.y, x - roi.x) = badRegionCost;
761 }
762 }
763
764 costH.create(roi.height+1, roi.width);
765
766 for (int y = roi.y; y < roi.br().y+1; ++y)
767 {
768 for (int x = roi.x; x < roi.br().x; ++x)
769 {
770 if (labels_(y, x) == l && y > 0 && labels_(y-1, x) == l)
771 {
772 float costColor = (diff(image1, y + dy1 - 1, x + dx1, image2, y + dy2, x + dx2) +
773 diff(image1, y + dy1, x + dx1, image2, y + dy2 - 1, x + dx2)) / 2;
774 if (costFunc_ == COLOR)
775 costH(y - roi.y, x - roi.x) = costColor;
776 else if (costFunc_ == COLOR_GRAD)
777 {
778 float costGrad = std::abs(grady1_(y + dy1, x + dx1)) + std::abs(grady1_(y + dy1 - 1, x + dx1)) +
779 std::abs(grady2_(y + dy2, x + dx2)) + std::abs(grady2_(y + dy2 - 1, x + dx2)) + 1.f;
780 costH(y - roi.y, x - roi.x) = costColor / costGrad;
781 }
782 }
783 else
784 costH(y - roi.y, x - roi.x) = badRegionCost;
785 }
786 }
787 }
788
789
estimateSeam(const Mat & image1,const Mat & image2,Point tl1,Point tl2,int comp,Point p1,Point p2,std::vector<Point> & seam,bool & isHorizontal)790 bool DpSeamFinder::estimateSeam(
791 const Mat &image1, const Mat &image2, Point tl1, Point tl2, int comp,
792 Point p1, Point p2, std::vector<Point> &seam, bool &isHorizontal)
793 {
794 CV_Assert(states_[comp] & INTERS);
795
796 Mat_<float> costV, costH;
797 computeCosts(image1, image2, tl1, tl2, comp, costV, costH);
798
799 Rect roi(tls_[comp], brs_[comp]);
800 Point src = p1 - roi.tl();
801 Point dst = p2 - roi.tl();
802 int l = comp+1;
803
804 // estimate seam direction
805
806 bool swapped = false;
807 isHorizontal = std::abs(dst.x - src.x) > std::abs(dst.y - src.y);
808
809 if (isHorizontal)
810 {
811 if (src.x > dst.x)
812 {
813 std::swap(src, dst);
814 swapped = true;
815 }
816 }
817 else if (src.y > dst.y)
818 {
819 swapped = true;
820 std::swap(src, dst);
821 }
822
823 // find optimal control
824
825 Mat_<uchar> control = Mat::zeros(roi.size(), CV_8U);
826 Mat_<uchar> reachable = Mat::zeros(roi.size(), CV_8U);
827 Mat_<float> cost = Mat::zeros(roi.size(), CV_32F);
828
829 reachable(src) = 1;
830 cost(src) = 0.f;
831
832 int nsteps;
833 std::pair<float, int> steps[3];
834
835 if (isHorizontal)
836 {
837 for (int x = src.x+1; x <= dst.x; ++x)
838 {
839 for (int y = 0; y < roi.height; ++y)
840 {
841 // seam follows along upper side of pixels
842
843 nsteps = 0;
844
845 if (labels_(y + roi.y, x + roi.x) == l)
846 {
847 if (reachable(y, x-1))
848 steps[nsteps++] = std::make_pair(cost(y, x-1) + costH(y, x-1), 1);
849 if (y > 0 && reachable(y-1, x-1))
850 steps[nsteps++] = std::make_pair(cost(y-1, x-1) + costH(y-1, x-1) + costV(y-1, x), 2);
851 if (y < roi.height-1 && reachable(y+1, x-1))
852 steps[nsteps++] = std::make_pair(cost(y+1, x-1) + costH(y+1, x-1) + costV(y, x), 3);
853 }
854
855 if (nsteps)
856 {
857 std::pair<float, int> opt = *min_element(steps, steps + nsteps);
858 cost(y, x) = opt.first;
859 control(y, x) = (uchar)opt.second;
860 reachable(y, x) = 255;
861 }
862 }
863 }
864 }
865 else
866 {
867 for (int y = src.y+1; y <= dst.y; ++y)
868 {
869 for (int x = 0; x < roi.width; ++x)
870 {
871 // seam follows along left side of pixels
872
873 nsteps = 0;
874
875 if (labels_(y + roi.y, x + roi.x) == l)
876 {
877 if (reachable(y-1, x))
878 steps[nsteps++] = std::make_pair(cost(y-1, x) + costV(y-1, x), 1);
879 if (x > 0 && reachable(y-1, x-1))
880 steps[nsteps++] = std::make_pair(cost(y-1, x-1) + costV(y-1, x-1) + costH(y, x-1), 2);
881 if (x < roi.width-1 && reachable(y-1, x+1))
882 steps[nsteps++] = std::make_pair(cost(y-1, x+1) + costV(y-1, x+1) + costH(y, x), 3);
883 }
884
885 if (nsteps)
886 {
887 std::pair<float, int> opt = *min_element(steps, steps + nsteps);
888 cost(y, x) = opt.first;
889 control(y, x) = (uchar)opt.second;
890 reachable(y, x) = 255;
891 }
892 }
893 }
894 }
895
896 if (!reachable(dst))
897 return false;
898
899 // restore seam
900
901 Point p = dst;
902 seam.clear();
903 seam.push_back(p + roi.tl());
904
905 if (isHorizontal)
906 {
907 for (; p.x != src.x; seam.push_back(p + roi.tl()))
908 {
909 if (control(p) == 2) p.y--;
910 else if (control(p) == 3) p.y++;
911 p.x--;
912 }
913 }
914 else
915 {
916 for (; p.y != src.y; seam.push_back(p + roi.tl()))
917 {
918 if (control(p) == 2) p.x--;
919 else if (control(p) == 3) p.x++;
920 p.y--;
921 }
922 }
923
924 if (!swapped)
925 std::reverse(seam.begin(), seam.end());
926
927 CV_Assert(seam.front() == p1);
928 CV_Assert(seam.back() == p2);
929 return true;
930 }
931
932
updateLabelsUsingSeam(int comp1,int comp2,const std::vector<Point> & seam,bool isHorizontalSeam)933 void DpSeamFinder::updateLabelsUsingSeam(
934 int comp1, int comp2, const std::vector<Point> &seam, bool isHorizontalSeam)
935 {
936 Mat_<int> mask = Mat::zeros(brs_[comp1].y - tls_[comp1].y,
937 brs_[comp1].x - tls_[comp1].x, CV_32S);
938
939 for (size_t i = 0; i < contours_[comp1].size(); ++i)
940 mask(contours_[comp1][i] - tls_[comp1]) = 255;
941
942 for (size_t i = 0; i < seam.size(); ++i)
943 mask(seam[i] - tls_[comp1]) = 255;
944
945 // find connected components after seam carving
946
947 int l1 = comp1+1, l2 = comp2+1;
948
949 int ncomps = 0;
950
951 for (int y = 0; y < mask.rows; ++y)
952 for (int x = 0; x < mask.cols; ++x)
953 if (!mask(y, x) && labels_(y + tls_[comp1].y, x + tls_[comp1].x) == l1)
954 floodFill(mask, Point(x, y), ++ncomps);
955
956 for (size_t i = 0; i < contours_[comp1].size(); ++i)
957 {
958 int x = contours_[comp1][i].x - tls_[comp1].x;
959 int y = contours_[comp1][i].y - tls_[comp1].y;
960
961 bool ok = false;
962 static const int dx[] = {-1, +1, 0, 0, -1, +1, -1, +1};
963 static const int dy[] = {0, 0, -1, +1, -1, -1, +1, +1};
964
965 for (int j = 0; j < 8; ++j)
966 {
967 int c = x + dx[j];
968 int r = y + dy[j];
969
970 if (c >= 0 && c < mask.cols && r >= 0 && r < mask.rows &&
971 mask(r, c) && mask(r, c) != 255)
972 {
973 ok = true;
974 mask(y, x) = mask(r, c);
975 }
976 }
977
978 if (!ok)
979 mask(y, x) = 0;
980 }
981
982 if (isHorizontalSeam)
983 {
984 for (size_t i = 0; i < seam.size(); ++i)
985 {
986 int x = seam[i].x - tls_[comp1].x;
987 int y = seam[i].y - tls_[comp1].y;
988
989 if (y < mask.rows-1 && mask(y+1, x) && mask(y+1, x) != 255)
990 mask(y, x) = mask(y+1, x);
991 else
992 mask(y, x) = 0;
993 }
994 }
995 else
996 {
997 for (size_t i = 0; i < seam.size(); ++i)
998 {
999 int x = seam[i].x - tls_[comp1].x;
1000 int y = seam[i].y - tls_[comp1].y;
1001
1002 if (x < mask.cols-1 && mask(y, x+1) && mask(y, x+1) != 255)
1003 mask(y, x) = mask(y, x+1);
1004 else
1005 mask(y, x) = 0;
1006 }
1007 }
1008
1009 // find new components connected with the second component and
1010 // with other components except the ones we are working with
1011
1012 std::map<int, int> connect2;
1013 std::map<int, int> connectOther;
1014
1015 for (int i = 1; i <= ncomps; ++i)
1016 {
1017 connect2.insert(std::make_pair(i, 0));
1018 connectOther.insert(std::make_pair(i, 0));
1019 }
1020
1021 for (size_t i = 0; i < contours_[comp1].size(); ++i)
1022 {
1023 int x = contours_[comp1][i].x;
1024 int y = contours_[comp1][i].y;
1025
1026 if ((x > 0 && labels_(y, x-1) == l2) ||
1027 (y > 0 && labels_(y-1, x) == l2) ||
1028 (x < unionSize_.width-1 && labels_(y, x+1) == l2) ||
1029 (y < unionSize_.height-1 && labels_(y+1, x) == l2))
1030 {
1031 connect2[mask(y - tls_[comp1].y, x - tls_[comp1].x)]++;
1032 }
1033
1034 if ((x > 0 && labels_(y, x-1) != l1 && labels_(y, x-1) != l2) ||
1035 (y > 0 && labels_(y-1, x) != l1 && labels_(y-1, x) != l2) ||
1036 (x < unionSize_.width-1 && labels_(y, x+1) != l1 && labels_(y, x+1) != l2) ||
1037 (y < unionSize_.height-1 && labels_(y+1, x) != l1 && labels_(y+1, x) != l2))
1038 {
1039 connectOther[mask(y - tls_[comp1].y, x - tls_[comp1].x)]++;
1040 }
1041 }
1042
1043 std::vector<int> isAdjComp(ncomps + 1, 0);
1044
1045 for (std::map<int, int>::iterator itr = connect2.begin(); itr != connect2.end(); ++itr)
1046 {
1047 double len = static_cast<double>(contours_[comp1].size());
1048 isAdjComp[itr->first] = itr->second / len > 0.05 && connectOther.find(itr->first)->second / len < 0.1;
1049 }
1050
1051 // update labels
1052
1053 for (int y = 0; y < mask.rows; ++y)
1054 for (int x = 0; x < mask.cols; ++x)
1055 if (mask(y, x) && isAdjComp[mask(y, x)])
1056 labels_(y + tls_[comp1].y, x + tls_[comp1].x) = l2;
1057 }
1058
1059
1060 class GraphCutSeamFinder::Impl : public PairwiseSeamFinder
1061 {
1062 public:
Impl(int cost_type,float terminal_cost,float bad_region_penalty)1063 Impl(int cost_type, float terminal_cost, float bad_region_penalty)
1064 : cost_type_(cost_type), terminal_cost_(terminal_cost), bad_region_penalty_(bad_region_penalty) {}
1065
~Impl()1066 ~Impl() {}
1067
1068 void find(const std::vector<UMat> &src, const std::vector<Point> &corners, std::vector<UMat> &masks);
1069 void findInPair(size_t first, size_t second, Rect roi);
1070
1071 private:
1072 void setGraphWeightsColor(const Mat &img1, const Mat &img2,
1073 const Mat &mask1, const Mat &mask2, GCGraph<float> &graph);
1074 void setGraphWeightsColorGrad(const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2,
1075 const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2,
1076 GCGraph<float> &graph);
1077
1078 std::vector<Mat> dx_, dy_;
1079 int cost_type_;
1080 float terminal_cost_;
1081 float bad_region_penalty_;
1082 };
1083
1084
find(const std::vector<UMat> & src,const std::vector<Point> & corners,std::vector<UMat> & masks)1085 void GraphCutSeamFinder::Impl::find(const std::vector<UMat> &src, const std::vector<Point> &corners,
1086 std::vector<UMat> &masks)
1087 {
1088 // Compute gradients
1089 dx_.resize(src.size());
1090 dy_.resize(src.size());
1091 Mat dx, dy;
1092 for (size_t i = 0; i < src.size(); ++i)
1093 {
1094 CV_Assert(src[i].channels() == 3);
1095 Sobel(src[i], dx, CV_32F, 1, 0);
1096 Sobel(src[i], dy, CV_32F, 0, 1);
1097 dx_[i].create(src[i].size(), CV_32F);
1098 dy_[i].create(src[i].size(), CV_32F);
1099 for (int y = 0; y < src[i].rows; ++y)
1100 {
1101 const Point3f* dx_row = dx.ptr<Point3f>(y);
1102 const Point3f* dy_row = dy.ptr<Point3f>(y);
1103 float* dx_row_ = dx_[i].ptr<float>(y);
1104 float* dy_row_ = dy_[i].ptr<float>(y);
1105 for (int x = 0; x < src[i].cols; ++x)
1106 {
1107 dx_row_[x] = normL2(dx_row[x]);
1108 dy_row_[x] = normL2(dy_row[x]);
1109 }
1110 }
1111 }
1112 PairwiseSeamFinder::find(src, corners, masks);
1113 }
1114
1115
setGraphWeightsColor(const Mat & img1,const Mat & img2,const Mat & mask1,const Mat & mask2,GCGraph<float> & graph)1116 void GraphCutSeamFinder::Impl::setGraphWeightsColor(const Mat &img1, const Mat &img2,
1117 const Mat &mask1, const Mat &mask2, GCGraph<float> &graph)
1118 {
1119 const Size img_size = img1.size();
1120
1121 // Set terminal weights
1122 for (int y = 0; y < img_size.height; ++y)
1123 {
1124 for (int x = 0; x < img_size.width; ++x)
1125 {
1126 int v = graph.addVtx();
1127 graph.addTermWeights(v, mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f,
1128 mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f);
1129 }
1130 }
1131
1132 // Set regular edge weights
1133 const float weight_eps = 1.f;
1134 for (int y = 0; y < img_size.height; ++y)
1135 {
1136 for (int x = 0; x < img_size.width; ++x)
1137 {
1138 int v = y * img_size.width + x;
1139 if (x < img_size.width - 1)
1140 {
1141 float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
1142 normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1)) +
1143 weight_eps;
1144 if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) ||
1145 !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1))
1146 weight += bad_region_penalty_;
1147 graph.addEdges(v, v + 1, weight, weight);
1148 }
1149 if (y < img_size.height - 1)
1150 {
1151 float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
1152 normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x)) +
1153 weight_eps;
1154 if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) ||
1155 !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x))
1156 weight += bad_region_penalty_;
1157 graph.addEdges(v, v + img_size.width, weight, weight);
1158 }
1159 }
1160 }
1161 }
1162
1163
setGraphWeightsColorGrad(const Mat & img1,const Mat & img2,const Mat & dx1,const Mat & dx2,const Mat & dy1,const Mat & dy2,const Mat & mask1,const Mat & mask2,GCGraph<float> & graph)1164 void GraphCutSeamFinder::Impl::setGraphWeightsColorGrad(
1165 const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2,
1166 const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2,
1167 GCGraph<float> &graph)
1168 {
1169 const Size img_size = img1.size();
1170
1171 // Set terminal weights
1172 for (int y = 0; y < img_size.height; ++y)
1173 {
1174 for (int x = 0; x < img_size.width; ++x)
1175 {
1176 int v = graph.addVtx();
1177 graph.addTermWeights(v, mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f,
1178 mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f);
1179 }
1180 }
1181
1182 // Set regular edge weights
1183 const float weight_eps = 1.f;
1184 for (int y = 0; y < img_size.height; ++y)
1185 {
1186 for (int x = 0; x < img_size.width; ++x)
1187 {
1188 int v = y * img_size.width + x;
1189 if (x < img_size.width - 1)
1190 {
1191 float grad = dx1.at<float>(y, x) + dx1.at<float>(y, x + 1) +
1192 dx2.at<float>(y, x) + dx2.at<float>(y, x + 1) + weight_eps;
1193 float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
1194 normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1))) / grad +
1195 weight_eps;
1196 if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) ||
1197 !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1))
1198 weight += bad_region_penalty_;
1199 graph.addEdges(v, v + 1, weight, weight);
1200 }
1201 if (y < img_size.height - 1)
1202 {
1203 float grad = dy1.at<float>(y, x) + dy1.at<float>(y + 1, x) +
1204 dy2.at<float>(y, x) + dy2.at<float>(y + 1, x) + weight_eps;
1205 float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
1206 normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x))) / grad +
1207 weight_eps;
1208 if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) ||
1209 !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x))
1210 weight += bad_region_penalty_;
1211 graph.addEdges(v, v + img_size.width, weight, weight);
1212 }
1213 }
1214 }
1215 }
1216
1217
findInPair(size_t first,size_t second,Rect roi)1218 void GraphCutSeamFinder::Impl::findInPair(size_t first, size_t second, Rect roi)
1219 {
1220 Mat img1 = images_[first].getMat(ACCESS_READ), img2 = images_[second].getMat(ACCESS_READ);
1221 Mat dx1 = dx_[first], dx2 = dx_[second];
1222 Mat dy1 = dy_[first], dy2 = dy_[second];
1223 Mat mask1 = masks_[first].getMat(ACCESS_RW), mask2 = masks_[second].getMat(ACCESS_RW);
1224 Point tl1 = corners_[first], tl2 = corners_[second];
1225
1226 const int gap = 10;
1227 Mat subimg1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3);
1228 Mat subimg2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3);
1229 Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
1230 Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
1231 Mat subdx1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
1232 Mat subdy1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
1233 Mat subdx2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
1234 Mat subdy2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
1235
1236 // Cut subimages and submasks with some gap
1237 for (int y = -gap; y < roi.height + gap; ++y)
1238 {
1239 for (int x = -gap; x < roi.width + gap; ++x)
1240 {
1241 int y1 = roi.y - tl1.y + y;
1242 int x1 = roi.x - tl1.x + x;
1243 if (y1 >= 0 && x1 >= 0 && y1 < img1.rows && x1 < img1.cols)
1244 {
1245 subimg1.at<Point3f>(y + gap, x + gap) = img1.at<Point3f>(y1, x1);
1246 submask1.at<uchar>(y + gap, x + gap) = mask1.at<uchar>(y1, x1);
1247 subdx1.at<float>(y + gap, x + gap) = dx1.at<float>(y1, x1);
1248 subdy1.at<float>(y + gap, x + gap) = dy1.at<float>(y1, x1);
1249 }
1250 else
1251 {
1252 subimg1.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0);
1253 submask1.at<uchar>(y + gap, x + gap) = 0;
1254 subdx1.at<float>(y + gap, x + gap) = 0.f;
1255 subdy1.at<float>(y + gap, x + gap) = 0.f;
1256 }
1257
1258 int y2 = roi.y - tl2.y + y;
1259 int x2 = roi.x - tl2.x + x;
1260 if (y2 >= 0 && x2 >= 0 && y2 < img2.rows && x2 < img2.cols)
1261 {
1262 subimg2.at<Point3f>(y + gap, x + gap) = img2.at<Point3f>(y2, x2);
1263 submask2.at<uchar>(y + gap, x + gap) = mask2.at<uchar>(y2, x2);
1264 subdx2.at<float>(y + gap, x + gap) = dx2.at<float>(y2, x2);
1265 subdy2.at<float>(y + gap, x + gap) = dy2.at<float>(y2, x2);
1266 }
1267 else
1268 {
1269 subimg2.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0);
1270 submask2.at<uchar>(y + gap, x + gap) = 0;
1271 subdx2.at<float>(y + gap, x + gap) = 0.f;
1272 subdy2.at<float>(y + gap, x + gap) = 0.f;
1273 }
1274 }
1275 }
1276
1277 const int vertex_count = (roi.height + 2 * gap) * (roi.width + 2 * gap);
1278 const int edge_count = (roi.height - 1 + 2 * gap) * (roi.width + 2 * gap) +
1279 (roi.width - 1 + 2 * gap) * (roi.height + 2 * gap);
1280 GCGraph<float> graph(vertex_count, edge_count);
1281
1282 switch (cost_type_)
1283 {
1284 case GraphCutSeamFinder::COST_COLOR:
1285 setGraphWeightsColor(subimg1, subimg2, submask1, submask2, graph);
1286 break;
1287 case GraphCutSeamFinder::COST_COLOR_GRAD:
1288 setGraphWeightsColorGrad(subimg1, subimg2, subdx1, subdx2, subdy1, subdy2,
1289 submask1, submask2, graph);
1290 break;
1291 default:
1292 CV_Error(Error::StsBadArg, "unsupported pixel similarity measure");
1293 }
1294
1295 graph.maxFlow();
1296
1297 for (int y = 0; y < roi.height; ++y)
1298 {
1299 for (int x = 0; x < roi.width; ++x)
1300 {
1301 if (graph.inSourceSegment((y + gap) * (roi.width + 2 * gap) + x + gap))
1302 {
1303 if (mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x))
1304 mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0;
1305 }
1306 else
1307 {
1308 if (mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x))
1309 mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0;
1310 }
1311 }
1312 }
1313 }
1314
1315
GraphCutSeamFinder(int cost_type,float terminal_cost,float bad_region_penalty)1316 GraphCutSeamFinder::GraphCutSeamFinder(int cost_type, float terminal_cost, float bad_region_penalty)
1317 : impl_(new Impl(cost_type, terminal_cost, bad_region_penalty)) {}
1318
~GraphCutSeamFinder()1319 GraphCutSeamFinder::~GraphCutSeamFinder() {}
1320
1321
find(const std::vector<UMat> & src,const std::vector<Point> & corners,std::vector<UMat> & masks)1322 void GraphCutSeamFinder::find(const std::vector<UMat> &src, const std::vector<Point> &corners,
1323 std::vector<UMat> &masks)
1324 {
1325 impl_->find(src, corners, masks);
1326 }
1327
1328
1329 #ifdef HAVE_OPENCV_CUDALEGACY
find(const std::vector<UMat> & src,const std::vector<Point> & corners,std::vector<UMat> & masks)1330 void GraphCutSeamFinderGpu::find(const std::vector<UMat> &src, const std::vector<Point> &corners,
1331 std::vector<UMat> &masks)
1332 {
1333 // Compute gradients
1334 dx_.resize(src.size());
1335 dy_.resize(src.size());
1336 Mat dx, dy;
1337 for (size_t i = 0; i < src.size(); ++i)
1338 {
1339 CV_Assert(src[i].channels() == 3);
1340 Sobel(src[i], dx, CV_32F, 1, 0);
1341 Sobel(src[i], dy, CV_32F, 0, 1);
1342 dx_[i].create(src[i].size(), CV_32F);
1343 dy_[i].create(src[i].size(), CV_32F);
1344 for (int y = 0; y < src[i].rows; ++y)
1345 {
1346 const Point3f* dx_row = dx.ptr<Point3f>(y);
1347 const Point3f* dy_row = dy.ptr<Point3f>(y);
1348 float* dx_row_ = dx_[i].ptr<float>(y);
1349 float* dy_row_ = dy_[i].ptr<float>(y);
1350 for (int x = 0; x < src[i].cols; ++x)
1351 {
1352 dx_row_[x] = normL2(dx_row[x]);
1353 dy_row_[x] = normL2(dy_row[x]);
1354 }
1355 }
1356 }
1357 PairwiseSeamFinder::find(src, corners, masks);
1358 }
1359
1360
findInPair(size_t first,size_t second,Rect roi)1361 void GraphCutSeamFinderGpu::findInPair(size_t first, size_t second, Rect roi)
1362 {
1363 Mat img1 = images_[first].getMat(ACCESS_READ), img2 = images_[second].getMat(ACCESS_READ);
1364 Mat dx1 = dx_[first], dx2 = dx_[second];
1365 Mat dy1 = dy_[first], dy2 = dy_[second];
1366 Mat mask1 = masks_[first].getMat(ACCESS_READ), mask2 = masks_[second].getMat(ACCESS_READ);
1367 Point tl1 = corners_[first], tl2 = corners_[second];
1368
1369 const int gap = 10;
1370 Mat subimg1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3);
1371 Mat subimg2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32FC3);
1372 Mat submask1(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
1373 Mat submask2(roi.height + 2 * gap, roi.width + 2 * gap, CV_8U);
1374 Mat subdx1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
1375 Mat subdy1(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
1376 Mat subdx2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
1377 Mat subdy2(roi.height + 2 * gap, roi.width + 2 * gap, CV_32F);
1378
1379 // Cut subimages and submasks with some gap
1380 for (int y = -gap; y < roi.height + gap; ++y)
1381 {
1382 for (int x = -gap; x < roi.width + gap; ++x)
1383 {
1384 int y1 = roi.y - tl1.y + y;
1385 int x1 = roi.x - tl1.x + x;
1386 if (y1 >= 0 && x1 >= 0 && y1 < img1.rows && x1 < img1.cols)
1387 {
1388 subimg1.at<Point3f>(y + gap, x + gap) = img1.at<Point3f>(y1, x1);
1389 submask1.at<uchar>(y + gap, x + gap) = mask1.at<uchar>(y1, x1);
1390 subdx1.at<float>(y + gap, x + gap) = dx1.at<float>(y1, x1);
1391 subdy1.at<float>(y + gap, x + gap) = dy1.at<float>(y1, x1);
1392 }
1393 else
1394 {
1395 subimg1.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0);
1396 submask1.at<uchar>(y + gap, x + gap) = 0;
1397 subdx1.at<float>(y + gap, x + gap) = 0.f;
1398 subdy1.at<float>(y + gap, x + gap) = 0.f;
1399 }
1400
1401 int y2 = roi.y - tl2.y + y;
1402 int x2 = roi.x - tl2.x + x;
1403 if (y2 >= 0 && x2 >= 0 && y2 < img2.rows && x2 < img2.cols)
1404 {
1405 subimg2.at<Point3f>(y + gap, x + gap) = img2.at<Point3f>(y2, x2);
1406 submask2.at<uchar>(y + gap, x + gap) = mask2.at<uchar>(y2, x2);
1407 subdx2.at<float>(y + gap, x + gap) = dx2.at<float>(y2, x2);
1408 subdy2.at<float>(y + gap, x + gap) = dy2.at<float>(y2, x2);
1409 }
1410 else
1411 {
1412 subimg2.at<Point3f>(y + gap, x + gap) = Point3f(0, 0, 0);
1413 submask2.at<uchar>(y + gap, x + gap) = 0;
1414 subdx2.at<float>(y + gap, x + gap) = 0.f;
1415 subdy2.at<float>(y + gap, x + gap) = 0.f;
1416 }
1417 }
1418 }
1419
1420 Mat terminals, leftT, rightT, top, bottom;
1421
1422 switch (cost_type_)
1423 {
1424 case GraphCutSeamFinder::COST_COLOR:
1425 setGraphWeightsColor(subimg1, subimg2, submask1, submask2,
1426 terminals, leftT, rightT, top, bottom);
1427 break;
1428 case GraphCutSeamFinder::COST_COLOR_GRAD:
1429 setGraphWeightsColorGrad(subimg1, subimg2, subdx1, subdx2, subdy1, subdy2,
1430 submask1, submask2, terminals, leftT, rightT, top, bottom);
1431 break;
1432 default:
1433 CV_Error(Error::StsBadArg, "unsupported pixel similarity measure");
1434 }
1435
1436 cuda::GpuMat terminals_d(terminals);
1437 cuda::GpuMat leftT_d(leftT);
1438 cuda::GpuMat rightT_d(rightT);
1439 cuda::GpuMat top_d(top);
1440 cuda::GpuMat bottom_d(bottom);
1441 cuda::GpuMat labels_d, buf_d;
1442
1443 cuda::graphcut(terminals_d, leftT_d, rightT_d, top_d, bottom_d, labels_d, buf_d);
1444
1445 Mat_<uchar> labels = (Mat)labels_d;
1446 for (int y = 0; y < roi.height; ++y)
1447 {
1448 for (int x = 0; x < roi.width; ++x)
1449 {
1450 if (labels(y + gap, x + gap))
1451 {
1452 if (mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x))
1453 mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x) = 0;
1454 }
1455 else
1456 {
1457 if (mask2.at<uchar>(roi.y - tl2.y + y, roi.x - tl2.x + x))
1458 mask1.at<uchar>(roi.y - tl1.y + y, roi.x - tl1.x + x) = 0;
1459 }
1460 }
1461 }
1462 }
1463
1464
setGraphWeightsColor(const Mat & img1,const Mat & img2,const Mat & mask1,const Mat & mask2,Mat & terminals,Mat & leftT,Mat & rightT,Mat & top,Mat & bottom)1465 void GraphCutSeamFinderGpu::setGraphWeightsColor(const Mat &img1, const Mat &img2, const Mat &mask1, const Mat &mask2,
1466 Mat &terminals, Mat &leftT, Mat &rightT, Mat &top, Mat &bottom)
1467 {
1468 const Size img_size = img1.size();
1469
1470 terminals.create(img_size, CV_32S);
1471 leftT.create(Size(img_size.height, img_size.width), CV_32S);
1472 rightT.create(Size(img_size.height, img_size.width), CV_32S);
1473 top.create(img_size, CV_32S);
1474 bottom.create(img_size, CV_32S);
1475
1476 Mat_<int> terminals_(terminals);
1477 Mat_<int> leftT_(leftT);
1478 Mat_<int> rightT_(rightT);
1479 Mat_<int> top_(top);
1480 Mat_<int> bottom_(bottom);
1481
1482 // Set terminal weights
1483 for (int y = 0; y < img_size.height; ++y)
1484 {
1485 for (int x = 0; x < img_size.width; ++x)
1486 {
1487 float source = mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f;
1488 float sink = mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f;
1489 terminals_(y, x) = saturate_cast<int>((source - sink) * 255.f);
1490 }
1491 }
1492
1493 // Set regular edge weights
1494 const float weight_eps = 1.f;
1495 for (int y = 0; y < img_size.height; ++y)
1496 {
1497 for (int x = 0; x < img_size.width; ++x)
1498 {
1499 if (x > 0)
1500 {
1501 float weight = normL2(img1.at<Point3f>(y, x - 1), img2.at<Point3f>(y, x - 1)) +
1502 normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
1503 weight_eps;
1504 if (!mask1.at<uchar>(y, x - 1) || !mask1.at<uchar>(y, x) ||
1505 !mask2.at<uchar>(y, x - 1) || !mask2.at<uchar>(y, x))
1506 weight += bad_region_penalty_;
1507 leftT_(x, y) = saturate_cast<int>(weight * 255.f);
1508 }
1509 else
1510 leftT_(x, y) = 0;
1511
1512 if (x < img_size.width - 1)
1513 {
1514 float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
1515 normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1)) +
1516 weight_eps;
1517 if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) ||
1518 !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1))
1519 weight += bad_region_penalty_;
1520 rightT_(x, y) = saturate_cast<int>(weight * 255.f);
1521 }
1522 else
1523 rightT_(x, y) = 0;
1524
1525 if (y > 0)
1526 {
1527 float weight = normL2(img1.at<Point3f>(y - 1, x), img2.at<Point3f>(y - 1, x)) +
1528 normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
1529 weight_eps;
1530 if (!mask1.at<uchar>(y - 1, x) || !mask1.at<uchar>(y, x) ||
1531 !mask2.at<uchar>(y - 1, x) || !mask2.at<uchar>(y, x))
1532 weight += bad_region_penalty_;
1533 top_(y, x) = saturate_cast<int>(weight * 255.f);
1534 }
1535 else
1536 top_(y, x) = 0;
1537
1538 if (y < img_size.height - 1)
1539 {
1540 float weight = normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
1541 normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x)) +
1542 weight_eps;
1543 if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) ||
1544 !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x))
1545 weight += bad_region_penalty_;
1546 bottom_(y, x) = saturate_cast<int>(weight * 255.f);
1547 }
1548 else
1549 bottom_(y, x) = 0;
1550 }
1551 }
1552 }
1553
1554
setGraphWeightsColorGrad(const Mat & img1,const Mat & img2,const Mat & dx1,const Mat & dx2,const Mat & dy1,const Mat & dy2,const Mat & mask1,const Mat & mask2,Mat & terminals,Mat & leftT,Mat & rightT,Mat & top,Mat & bottom)1555 void GraphCutSeamFinderGpu::setGraphWeightsColorGrad(
1556 const Mat &img1, const Mat &img2, const Mat &dx1, const Mat &dx2,
1557 const Mat &dy1, const Mat &dy2, const Mat &mask1, const Mat &mask2,
1558 Mat &terminals, Mat &leftT, Mat &rightT, Mat &top, Mat &bottom)
1559 {
1560 const Size img_size = img1.size();
1561
1562 terminals.create(img_size, CV_32S);
1563 leftT.create(Size(img_size.height, img_size.width), CV_32S);
1564 rightT.create(Size(img_size.height, img_size.width), CV_32S);
1565 top.create(img_size, CV_32S);
1566 bottom.create(img_size, CV_32S);
1567
1568 Mat_<int> terminals_(terminals);
1569 Mat_<int> leftT_(leftT);
1570 Mat_<int> rightT_(rightT);
1571 Mat_<int> top_(top);
1572 Mat_<int> bottom_(bottom);
1573
1574 // Set terminal weights
1575 for (int y = 0; y < img_size.height; ++y)
1576 {
1577 for (int x = 0; x < img_size.width; ++x)
1578 {
1579 float source = mask1.at<uchar>(y, x) ? terminal_cost_ : 0.f;
1580 float sink = mask2.at<uchar>(y, x) ? terminal_cost_ : 0.f;
1581 terminals_(y, x) = saturate_cast<int>((source - sink) * 255.f);
1582 }
1583 }
1584
1585 // Set regular edge weights
1586 const float weight_eps = 1.f;
1587 for (int y = 0; y < img_size.height; ++y)
1588 {
1589 for (int x = 0; x < img_size.width; ++x)
1590 {
1591 if (x > 0)
1592 {
1593 float grad = dx1.at<float>(y, x - 1) + dx1.at<float>(y, x) +
1594 dx2.at<float>(y, x - 1) + dx2.at<float>(y, x) + weight_eps;
1595 float weight = (normL2(img1.at<Point3f>(y, x - 1), img2.at<Point3f>(y, x - 1)) +
1596 normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x))) / grad +
1597 weight_eps;
1598 if (!mask1.at<uchar>(y, x - 1) || !mask1.at<uchar>(y, x) ||
1599 !mask2.at<uchar>(y, x - 1) || !mask2.at<uchar>(y, x))
1600 weight += bad_region_penalty_;
1601 leftT_(x, y) = saturate_cast<int>(weight * 255.f);
1602 }
1603 else
1604 leftT_(x, y) = 0;
1605
1606 if (x < img_size.width - 1)
1607 {
1608 float grad = dx1.at<float>(y, x) + dx1.at<float>(y, x + 1) +
1609 dx2.at<float>(y, x) + dx2.at<float>(y, x + 1) + weight_eps;
1610 float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
1611 normL2(img1.at<Point3f>(y, x + 1), img2.at<Point3f>(y, x + 1))) / grad +
1612 weight_eps;
1613 if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y, x + 1) ||
1614 !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y, x + 1))
1615 weight += bad_region_penalty_;
1616 rightT_(x, y) = saturate_cast<int>(weight * 255.f);
1617 }
1618 else
1619 rightT_(x, y) = 0;
1620
1621 if (y > 0)
1622 {
1623 float grad = dy1.at<float>(y - 1, x) + dy1.at<float>(y, x) +
1624 dy2.at<float>(y - 1, x) + dy2.at<float>(y, x) + weight_eps;
1625 float weight = (normL2(img1.at<Point3f>(y - 1, x), img2.at<Point3f>(y - 1, x)) +
1626 normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x))) / grad +
1627 weight_eps;
1628 if (!mask1.at<uchar>(y - 1, x) || !mask1.at<uchar>(y, x) ||
1629 !mask2.at<uchar>(y - 1, x) || !mask2.at<uchar>(y, x))
1630 weight += bad_region_penalty_;
1631 top_(y, x) = saturate_cast<int>(weight * 255.f);
1632 }
1633 else
1634 top_(y, x) = 0;
1635
1636 if (y < img_size.height - 1)
1637 {
1638 float grad = dy1.at<float>(y, x) + dy1.at<float>(y + 1, x) +
1639 dy2.at<float>(y, x) + dy2.at<float>(y + 1, x) + weight_eps;
1640 float weight = (normL2(img1.at<Point3f>(y, x), img2.at<Point3f>(y, x)) +
1641 normL2(img1.at<Point3f>(y + 1, x), img2.at<Point3f>(y + 1, x))) / grad +
1642 weight_eps;
1643 if (!mask1.at<uchar>(y, x) || !mask1.at<uchar>(y + 1, x) ||
1644 !mask2.at<uchar>(y, x) || !mask2.at<uchar>(y + 1, x))
1645 weight += bad_region_penalty_;
1646 bottom_(y, x) = saturate_cast<int>(weight * 255.f);
1647 }
1648 else
1649 bottom_(y, x) = 0;
1650 }
1651 }
1652 }
1653 #endif
1654
1655 } // namespace detail
1656 } // namespace cv
1657