1 /*
2 ******************************************************************************
3 * Copyright (C) 1997-2015, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 ******************************************************************************
6 * file name: nfrule.cpp
7 * encoding: US-ASCII
8 * tab size: 8 (not used)
9 * indentation:4
10 *
11 * Modification history
12 * Date Name Comments
13 * 10/11/2001 Doug Ported from ICU4J
14 */
15
16 #include "nfrule.h"
17
18 #if U_HAVE_RBNF
19
20 #include "unicode/localpointer.h"
21 #include "unicode/rbnf.h"
22 #include "unicode/tblcoll.h"
23 #include "unicode/plurfmt.h"
24 #include "unicode/upluralrules.h"
25 #include "unicode/coleitr.h"
26 #include "unicode/uchar.h"
27 #include "nfrs.h"
28 #include "nfrlist.h"
29 #include "nfsubs.h"
30 #include "patternprops.h"
31
32 U_NAMESPACE_BEGIN
33
NFRule(const RuleBasedNumberFormat * _rbnf,const UnicodeString & _ruleText,UErrorCode & status)34 NFRule::NFRule(const RuleBasedNumberFormat* _rbnf, const UnicodeString &_ruleText, UErrorCode &status)
35 : baseValue((int32_t)0)
36 , radix(10)
37 , exponent(0)
38 , decimalPoint(0)
39 , ruleText(_ruleText)
40 , sub1(NULL)
41 , sub2(NULL)
42 , formatter(_rbnf)
43 , rulePatternFormat(NULL)
44 {
45 if (!ruleText.isEmpty()) {
46 parseRuleDescriptor(ruleText, status);
47 }
48 }
49
~NFRule()50 NFRule::~NFRule()
51 {
52 if (sub1 != sub2) {
53 delete sub2;
54 sub2 = NULL;
55 }
56 delete sub1;
57 sub1 = NULL;
58 delete rulePatternFormat;
59 rulePatternFormat = NULL;
60 }
61
62 static const UChar gLeftBracket = 0x005b;
63 static const UChar gRightBracket = 0x005d;
64 static const UChar gColon = 0x003a;
65 static const UChar gZero = 0x0030;
66 static const UChar gNine = 0x0039;
67 static const UChar gSpace = 0x0020;
68 static const UChar gSlash = 0x002f;
69 static const UChar gGreaterThan = 0x003e;
70 static const UChar gLessThan = 0x003c;
71 static const UChar gComma = 0x002c;
72 static const UChar gDot = 0x002e;
73 static const UChar gTick = 0x0027;
74 //static const UChar gMinus = 0x002d;
75 static const UChar gSemicolon = 0x003b;
76 static const UChar gX = 0x0078;
77
78 static const UChar gMinusX[] = {0x2D, 0x78, 0}; /* "-x" */
79 static const UChar gInf[] = {0x49, 0x6E, 0x66, 0}; /* "Inf" */
80 static const UChar gNaN[] = {0x4E, 0x61, 0x4E, 0}; /* "NaN" */
81
82 static const UChar gDollarOpenParenthesis[] = {0x24, 0x28, 0}; /* "$(" */
83 static const UChar gClosedParenthesisDollar[] = {0x29, 0x24, 0}; /* ")$" */
84
85 static const UChar gLessLess[] = {0x3C, 0x3C, 0}; /* "<<" */
86 static const UChar gLessPercent[] = {0x3C, 0x25, 0}; /* "<%" */
87 static const UChar gLessHash[] = {0x3C, 0x23, 0}; /* "<#" */
88 static const UChar gLessZero[] = {0x3C, 0x30, 0}; /* "<0" */
89 static const UChar gGreaterGreater[] = {0x3E, 0x3E, 0}; /* ">>" */
90 static const UChar gGreaterPercent[] = {0x3E, 0x25, 0}; /* ">%" */
91 static const UChar gGreaterHash[] = {0x3E, 0x23, 0}; /* ">#" */
92 static const UChar gGreaterZero[] = {0x3E, 0x30, 0}; /* ">0" */
93 static const UChar gEqualPercent[] = {0x3D, 0x25, 0}; /* "=%" */
94 static const UChar gEqualHash[] = {0x3D, 0x23, 0}; /* "=#" */
95 static const UChar gEqualZero[] = {0x3D, 0x30, 0}; /* "=0" */
96 static const UChar gGreaterGreaterGreater[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
97
98 static const UChar * const RULE_PREFIXES[] = {
99 gLessLess, gLessPercent, gLessHash, gLessZero,
100 gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
101 gEqualPercent, gEqualHash, gEqualZero, NULL
102 };
103
104 void
makeRules(UnicodeString & description,NFRuleSet * owner,const NFRule * predecessor,const RuleBasedNumberFormat * rbnf,NFRuleList & rules,UErrorCode & status)105 NFRule::makeRules(UnicodeString& description,
106 NFRuleSet *owner,
107 const NFRule *predecessor,
108 const RuleBasedNumberFormat *rbnf,
109 NFRuleList& rules,
110 UErrorCode& status)
111 {
112 // we know we're making at least one rule, so go ahead and
113 // new it up and initialize its basevalue and divisor
114 // (this also strips the rule descriptor, if any, off the
115 // descripton string)
116 NFRule* rule1 = new NFRule(rbnf, description, status);
117 /* test for NULL */
118 if (rule1 == 0) {
119 status = U_MEMORY_ALLOCATION_ERROR;
120 return;
121 }
122 description = rule1->ruleText;
123
124 // check the description to see whether there's text enclosed
125 // in brackets
126 int32_t brack1 = description.indexOf(gLeftBracket);
127 int32_t brack2 = brack1 < 0 ? -1 : description.indexOf(gRightBracket);
128
129 // if the description doesn't contain a matched pair of brackets,
130 // or if it's of a type that doesn't recognize bracketed text,
131 // then leave the description alone, initialize the rule's
132 // rule text and substitutions, and return that rule
133 if (brack2 < 0 || brack1 > brack2
134 || rule1->getType() == kProperFractionRule
135 || rule1->getType() == kNegativeNumberRule
136 || rule1->getType() == kInfinityRule
137 || rule1->getType() == kNaNRule)
138 {
139 rule1->extractSubstitutions(owner, description, predecessor, status);
140 }
141 else {
142 // if the description does contain a matched pair of brackets,
143 // then it's really shorthand for two rules (with one exception)
144 NFRule* rule2 = NULL;
145 UnicodeString sbuf;
146
147 // we'll actually only split the rule into two rules if its
148 // base value is an even multiple of its divisor (or it's one
149 // of the special rules)
150 if ((rule1->baseValue > 0
151 && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
152 || rule1->getType() == kImproperFractionRule
153 || rule1->getType() == kMasterRule) {
154
155 // if it passes that test, new up the second rule. If the
156 // rule set both rules will belong to is a fraction rule
157 // set, they both have the same base value; otherwise,
158 // increment the original rule's base value ("rule1" actually
159 // goes SECOND in the rule set's rule list)
160 rule2 = new NFRule(rbnf, UnicodeString(), status);
161 /* test for NULL */
162 if (rule2 == 0) {
163 status = U_MEMORY_ALLOCATION_ERROR;
164 return;
165 }
166 if (rule1->baseValue >= 0) {
167 rule2->baseValue = rule1->baseValue;
168 if (!owner->isFractionRuleSet()) {
169 ++rule1->baseValue;
170 }
171 }
172
173 // if the description began with "x.x" and contains bracketed
174 // text, it describes both the improper fraction rule and
175 // the proper fraction rule
176 else if (rule1->getType() == kImproperFractionRule) {
177 rule2->setType(kProperFractionRule);
178 }
179
180 // if the description began with "x.0" and contains bracketed
181 // text, it describes both the master rule and the
182 // improper fraction rule
183 else if (rule1->getType() == kMasterRule) {
184 rule2->baseValue = rule1->baseValue;
185 rule1->setType(kImproperFractionRule);
186 }
187
188 // both rules have the same radix and exponent (i.e., the
189 // same divisor)
190 rule2->radix = rule1->radix;
191 rule2->exponent = rule1->exponent;
192
193 // rule2's rule text omits the stuff in brackets: initalize
194 // its rule text and substitutions accordingly
195 sbuf.append(description, 0, brack1);
196 if (brack2 + 1 < description.length()) {
197 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
198 }
199 rule2->extractSubstitutions(owner, sbuf, predecessor, status);
200 }
201
202 // rule1's text includes the text in the brackets but omits
203 // the brackets themselves: initialize _its_ rule text and
204 // substitutions accordingly
205 sbuf.setTo(description, 0, brack1);
206 sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
207 if (brack2 + 1 < description.length()) {
208 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
209 }
210 rule1->extractSubstitutions(owner, sbuf, predecessor, status);
211
212 // if we only have one rule, return it; if we have two, return
213 // a two-element array containing them (notice that rule2 goes
214 // BEFORE rule1 in the list: in all cases, rule2 OMITS the
215 // material in the brackets and rule1 INCLUDES the material
216 // in the brackets)
217 if (rule2 != NULL) {
218 if (rule2->baseValue >= kNoBase) {
219 rules.add(rule2);
220 }
221 else {
222 owner->setNonNumericalRule(rule2);
223 }
224 }
225 }
226 if (rule1->baseValue >= kNoBase) {
227 rules.add(rule1);
228 }
229 else {
230 owner->setNonNumericalRule(rule1);
231 }
232 }
233
234 /**
235 * This function parses the rule's rule descriptor (i.e., the base
236 * value and/or other tokens that precede the rule's rule text
237 * in the description) and sets the rule's base value, radix, and
238 * exponent according to the descriptor. (If the description doesn't
239 * include a rule descriptor, then this function sets everything to
240 * default values and the rule set sets the rule's real base value).
241 * @param description The rule's description
242 * @return If "description" included a rule descriptor, this is
243 * "description" with the descriptor and any trailing whitespace
244 * stripped off. Otherwise; it's "descriptor" unchangd.
245 */
246 void
parseRuleDescriptor(UnicodeString & description,UErrorCode & status)247 NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
248 {
249 // the description consists of a rule descriptor and a rule body,
250 // separated by a colon. The rule descriptor is optional. If
251 // it's omitted, just set the base value to 0.
252 int32_t p = description.indexOf(gColon);
253 if (p != -1) {
254 // copy the descriptor out into its own string and strip it,
255 // along with any trailing whitespace, out of the original
256 // description
257 UnicodeString descriptor;
258 descriptor.setTo(description, 0, p);
259
260 ++p;
261 while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) {
262 ++p;
263 }
264 description.removeBetween(0, p);
265
266 // check first to see if the rule descriptor matches the token
267 // for one of the special rules. If it does, set the base
268 // value to the correct identifier value
269 int descriptorLength = descriptor.length();
270 UChar firstChar = descriptor.charAt(0);
271 UChar lastChar = descriptor.charAt(descriptorLength - 1);
272 if (firstChar >= gZero && firstChar <= gNine && lastChar != gX) {
273 // if the rule descriptor begins with a digit, it's a descriptor
274 // for a normal rule
275 // since we don't have Long.parseLong, and this isn't much work anyway,
276 // just build up the value as we encounter the digits.
277 int64_t val = 0;
278 p = 0;
279 UChar c = gSpace;
280
281 // begin parsing the descriptor: copy digits
282 // into "tempValue", skip periods, commas, and spaces,
283 // stop on a slash or > sign (or at the end of the string),
284 // and throw an exception on any other character
285 int64_t ll_10 = 10;
286 while (p < descriptorLength) {
287 c = descriptor.charAt(p);
288 if (c >= gZero && c <= gNine) {
289 val = val * ll_10 + (int32_t)(c - gZero);
290 }
291 else if (c == gSlash || c == gGreaterThan) {
292 break;
293 }
294 else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
295 }
296 else {
297 // throw new IllegalArgumentException("Illegal character in rule descriptor");
298 status = U_PARSE_ERROR;
299 return;
300 }
301 ++p;
302 }
303
304 // we have the base value, so set it
305 setBaseValue(val, status);
306
307 // if we stopped the previous loop on a slash, we're
308 // now parsing the rule's radix. Again, accumulate digits
309 // in tempValue, skip punctuation, stop on a > mark, and
310 // throw an exception on anything else
311 if (c == gSlash) {
312 val = 0;
313 ++p;
314 int64_t ll_10 = 10;
315 while (p < descriptorLength) {
316 c = descriptor.charAt(p);
317 if (c >= gZero && c <= gNine) {
318 val = val * ll_10 + (int32_t)(c - gZero);
319 }
320 else if (c == gGreaterThan) {
321 break;
322 }
323 else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
324 }
325 else {
326 // throw new IllegalArgumentException("Illegal character is rule descriptor");
327 status = U_PARSE_ERROR;
328 return;
329 }
330 ++p;
331 }
332
333 // tempValue now contain's the rule's radix. Set it
334 // accordingly, and recalculate the rule's exponent
335 radix = (int32_t)val;
336 if (radix == 0) {
337 // throw new IllegalArgumentException("Rule can't have radix of 0");
338 status = U_PARSE_ERROR;
339 }
340
341 exponent = expectedExponent();
342 }
343
344 // if we stopped the previous loop on a > sign, then continue
345 // for as long as we still see > signs. For each one,
346 // decrement the exponent (unless the exponent is already 0).
347 // If we see another character before reaching the end of
348 // the descriptor, that's also a syntax error.
349 if (c == gGreaterThan) {
350 while (p < descriptor.length()) {
351 c = descriptor.charAt(p);
352 if (c == gGreaterThan && exponent > 0) {
353 --exponent;
354 } else {
355 // throw new IllegalArgumentException("Illegal character in rule descriptor");
356 status = U_PARSE_ERROR;
357 return;
358 }
359 ++p;
360 }
361 }
362 }
363 else if (0 == descriptor.compare(gMinusX, 2)) {
364 setType(kNegativeNumberRule);
365 }
366 else if (descriptorLength == 3) {
367 if (firstChar == gZero && lastChar == gX) {
368 setBaseValue(kProperFractionRule, status);
369 decimalPoint = descriptor.charAt(1);
370 }
371 else if (firstChar == gX && lastChar == gX) {
372 setBaseValue(kImproperFractionRule, status);
373 decimalPoint = descriptor.charAt(1);
374 }
375 else if (firstChar == gX && lastChar == gZero) {
376 setBaseValue(kMasterRule, status);
377 decimalPoint = descriptor.charAt(1);
378 }
379 else if (descriptor.compare(gNaN, 3) == 0) {
380 setBaseValue(kNaNRule, status);
381 }
382 else if (descriptor.compare(gInf, 3) == 0) {
383 setBaseValue(kInfinityRule, status);
384 }
385 }
386 }
387 // else use the default base value for now.
388
389 // finally, if the rule body begins with an apostrophe, strip it off
390 // (this is generally used to put whitespace at the beginning of
391 // a rule's rule text)
392 if (description.length() > 0 && description.charAt(0) == gTick) {
393 description.removeBetween(0, 1);
394 }
395
396 // return the description with all the stuff we've just waded through
397 // stripped off the front. It now contains just the rule body.
398 // return description;
399 }
400
401 /**
402 * Searches the rule's rule text for the substitution tokens,
403 * creates the substitutions, and removes the substitution tokens
404 * from the rule's rule text.
405 * @param owner The rule set containing this rule
406 * @param predecessor The rule preseding this one in "owners" rule list
407 * @param ownersOwner The RuleBasedFormat that owns this rule
408 */
409 void
extractSubstitutions(const NFRuleSet * ruleSet,const UnicodeString & ruleText,const NFRule * predecessor,UErrorCode & status)410 NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
411 const UnicodeString &ruleText,
412 const NFRule* predecessor,
413 UErrorCode& status)
414 {
415 if (U_FAILURE(status)) {
416 return;
417 }
418 this->ruleText = ruleText;
419 sub1 = extractSubstitution(ruleSet, predecessor, status);
420 if (sub1 == NULL) {
421 // Small optimization. There is no need to create a redundant NullSubstitution.
422 sub2 = NULL;
423 }
424 else {
425 sub2 = extractSubstitution(ruleSet, predecessor, status);
426 }
427 int32_t pluralRuleStart = this->ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
428 int32_t pluralRuleEnd = (pluralRuleStart >= 0 ? this->ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) : -1);
429 if (pluralRuleEnd >= 0) {
430 int32_t endType = this->ruleText.indexOf(gComma, pluralRuleStart);
431 if (endType < 0) {
432 status = U_PARSE_ERROR;
433 return;
434 }
435 UnicodeString type(this->ruleText.tempSubString(pluralRuleStart + 2, endType - pluralRuleStart - 2));
436 UPluralType pluralType;
437 if (type.startsWith(UNICODE_STRING_SIMPLE("cardinal"))) {
438 pluralType = UPLURAL_TYPE_CARDINAL;
439 }
440 else if (type.startsWith(UNICODE_STRING_SIMPLE("ordinal"))) {
441 pluralType = UPLURAL_TYPE_ORDINAL;
442 }
443 else {
444 status = U_ILLEGAL_ARGUMENT_ERROR;
445 return;
446 }
447 rulePatternFormat = formatter->createPluralFormat(pluralType,
448 this->ruleText.tempSubString(endType + 1, pluralRuleEnd - endType - 1), status);
449 }
450 }
451
452 /**
453 * Searches the rule's rule text for the first substitution token,
454 * creates a substitution based on it, and removes the token from
455 * the rule's rule text.
456 * @param owner The rule set containing this rule
457 * @param predecessor The rule preceding this one in the rule set's
458 * rule list
459 * @param ownersOwner The RuleBasedNumberFormat that owns this rule
460 * @return The newly-created substitution. This is never null; if
461 * the rule text doesn't contain any substitution tokens, this will
462 * be a NullSubstitution.
463 */
464 NFSubstitution *
extractSubstitution(const NFRuleSet * ruleSet,const NFRule * predecessor,UErrorCode & status)465 NFRule::extractSubstitution(const NFRuleSet* ruleSet,
466 const NFRule* predecessor,
467 UErrorCode& status)
468 {
469 NFSubstitution* result = NULL;
470
471 // search the rule's rule text for the first two characters of
472 // a substitution token
473 int32_t subStart = indexOfAnyRulePrefix();
474 int32_t subEnd = subStart;
475
476 // if we didn't find one, create a null substitution positioned
477 // at the end of the rule text
478 if (subStart == -1) {
479 return NULL;
480 }
481
482 // special-case the ">>>" token, since searching for the > at the
483 // end will actually find the > in the middle
484 if (ruleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) {
485 subEnd = subStart + 2;
486
487 // otherwise the substitution token ends with the same character
488 // it began with
489 } else {
490 UChar c = ruleText.charAt(subStart);
491 subEnd = ruleText.indexOf(c, subStart + 1);
492 // special case for '<%foo<<'
493 if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) {
494 // ordinals use "=#,##0==%abbrev=" as their rule. Notice that the '==' in the middle
495 // occurs because of the juxtaposition of two different rules. The check for '<' is a hack
496 // to get around this. Having the duplicate at the front would cause problems with
497 // rules like "<<%" to format, say, percents...
498 ++subEnd;
499 }
500 }
501
502 // if we don't find the end of the token (i.e., if we're on a single,
503 // unmatched token character), create a null substitution positioned
504 // at the end of the rule
505 if (subEnd == -1) {
506 return NULL;
507 }
508
509 // if we get here, we have a real substitution token (or at least
510 // some text bounded by substitution token characters). Use
511 // makeSubstitution() to create the right kind of substitution
512 UnicodeString subToken;
513 subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
514 result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
515 this->formatter, subToken, status);
516
517 // remove the substitution from the rule text
518 ruleText.removeBetween(subStart, subEnd+1);
519
520 return result;
521 }
522
523 /**
524 * Sets the rule's base value, and causes the radix and exponent
525 * to be recalculated. This is used during construction when we
526 * don't know the rule's base value until after it's been
527 * constructed. It should be used at any other time.
528 * @param The new base value for the rule.
529 */
530 void
setBaseValue(int64_t newBaseValue,UErrorCode & status)531 NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
532 {
533 // set the base value
534 baseValue = newBaseValue;
535 radix = 10;
536
537 // if this isn't a special rule, recalculate the radix and exponent
538 // (the radix always defaults to 10; if it's supposed to be something
539 // else, it's cleaned up by the caller and the exponent is
540 // recalculated again-- the only function that does this is
541 // NFRule.parseRuleDescriptor() )
542 if (baseValue >= 1) {
543 exponent = expectedExponent();
544
545 // this function gets called on a fully-constructed rule whose
546 // description didn't specify a base value. This means it
547 // has substitutions, and some substitutions hold on to copies
548 // of the rule's divisor. Fix their copies of the divisor.
549 if (sub1 != NULL) {
550 sub1->setDivisor(radix, exponent, status);
551 }
552 if (sub2 != NULL) {
553 sub2->setDivisor(radix, exponent, status);
554 }
555
556 // if this is a special rule, its radix and exponent are basically
557 // ignored. Set them to "safe" default values
558 } else {
559 exponent = 0;
560 }
561 }
562
563 /**
564 * This calculates the rule's exponent based on its radix and base
565 * value. This will be the highest power the radix can be raised to
566 * and still produce a result less than or equal to the base value.
567 */
568 int16_t
expectedExponent() const569 NFRule::expectedExponent() const
570 {
571 // since the log of 0, or the log base 0 of something, causes an
572 // error, declare the exponent in these cases to be 0 (we also
573 // deal with the special-rule identifiers here)
574 if (radix == 0 || baseValue < 1) {
575 return 0;
576 }
577
578 // we get rounding error in some cases-- for example, log 1000 / log 10
579 // gives us 1.9999999996 instead of 2. The extra logic here is to take
580 // that into account
581 int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
582 int64_t temp = util64_pow(radix, tempResult + 1);
583 if (temp <= baseValue) {
584 tempResult += 1;
585 }
586 return tempResult;
587 }
588
589 /**
590 * Searches the rule's rule text for any of the specified strings.
591 * @return The index of the first match in the rule's rule text
592 * (i.e., the first substring in the rule's rule text that matches
593 * _any_ of the strings in "strings"). If none of the strings in
594 * "strings" is found in the rule's rule text, returns -1.
595 */
596 int32_t
indexOfAnyRulePrefix() const597 NFRule::indexOfAnyRulePrefix() const
598 {
599 int result = -1;
600 for (int i = 0; RULE_PREFIXES[i]; i++) {
601 int32_t pos = ruleText.indexOf(*RULE_PREFIXES[i]);
602 if (pos != -1 && (result == -1 || pos < result)) {
603 result = pos;
604 }
605 }
606 return result;
607 }
608
609 //-----------------------------------------------------------------------
610 // boilerplate
611 //-----------------------------------------------------------------------
612
613 static UBool
util_equalSubstitutions(const NFSubstitution * sub1,const NFSubstitution * sub2)614 util_equalSubstitutions(const NFSubstitution* sub1, const NFSubstitution* sub2)
615 {
616 if (sub1) {
617 if (sub2) {
618 return *sub1 == *sub2;
619 }
620 } else if (!sub2) {
621 return TRUE;
622 }
623 return FALSE;
624 }
625
626 /**
627 * Tests two rules for equality.
628 * @param that The rule to compare this one against
629 * @return True is the two rules are functionally equivalent
630 */
631 UBool
operator ==(const NFRule & rhs) const632 NFRule::operator==(const NFRule& rhs) const
633 {
634 return baseValue == rhs.baseValue
635 && radix == rhs.radix
636 && exponent == rhs.exponent
637 && ruleText == rhs.ruleText
638 && util_equalSubstitutions(sub1, rhs.sub1)
639 && util_equalSubstitutions(sub2, rhs.sub2);
640 }
641
642 /**
643 * Returns a textual representation of the rule. This won't
644 * necessarily be the same as the description that this rule
645 * was created with, but it will produce the same result.
646 * @return A textual description of the rule
647 */
util_append64(UnicodeString & result,int64_t n)648 static void util_append64(UnicodeString& result, int64_t n)
649 {
650 UChar buffer[256];
651 int32_t len = util64_tou(n, buffer, sizeof(buffer));
652 UnicodeString temp(buffer, len);
653 result.append(temp);
654 }
655
656 void
_appendRuleText(UnicodeString & result) const657 NFRule::_appendRuleText(UnicodeString& result) const
658 {
659 switch (getType()) {
660 case kNegativeNumberRule: result.append(gMinusX, 2); break;
661 case kImproperFractionRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break;
662 case kProperFractionRule: result.append(gZero).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break;
663 case kMasterRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gZero); break;
664 case kInfinityRule: result.append(gInf, 3); break;
665 case kNaNRule: result.append(gNaN, 3); break;
666 default:
667 // for a normal rule, write out its base value, and if the radix is
668 // something other than 10, write out the radix (with the preceding
669 // slash, of course). Then calculate the expected exponent and if
670 // if isn't the same as the actual exponent, write an appropriate
671 // number of > signs. Finally, terminate the whole thing with
672 // a colon.
673 util_append64(result, baseValue);
674 if (radix != 10) {
675 result.append(gSlash);
676 util_append64(result, radix);
677 }
678 int numCarets = expectedExponent() - exponent;
679 for (int i = 0; i < numCarets; i++) {
680 result.append(gGreaterThan);
681 }
682 break;
683 }
684 result.append(gColon);
685 result.append(gSpace);
686
687 // if the rule text begins with a space, write an apostrophe
688 // (whitespace after the rule descriptor is ignored; the
689 // apostrophe is used to make the whitespace significant)
690 if (ruleText.charAt(0) == gSpace && (sub1 == NULL || sub1->getPos() != 0)) {
691 result.append(gTick);
692 }
693
694 // now, write the rule's rule text, inserting appropriate
695 // substitution tokens in the appropriate places
696 UnicodeString ruleTextCopy;
697 ruleTextCopy.setTo(ruleText);
698
699 UnicodeString temp;
700 if (sub2 != NULL) {
701 sub2->toString(temp);
702 ruleTextCopy.insert(sub2->getPos(), temp);
703 }
704 if (sub1 != NULL) {
705 sub1->toString(temp);
706 ruleTextCopy.insert(sub1->getPos(), temp);
707 }
708
709 result.append(ruleTextCopy);
710
711 // and finally, top the whole thing off with a semicolon and
712 // return the result
713 result.append(gSemicolon);
714 }
715
716 //-----------------------------------------------------------------------
717 // formatting
718 //-----------------------------------------------------------------------
719
720 /**
721 * Formats the number, and inserts the resulting text into
722 * toInsertInto.
723 * @param number The number being formatted
724 * @param toInsertInto The string where the resultant text should
725 * be inserted
726 * @param pos The position in toInsertInto where the resultant text
727 * should be inserted
728 */
729 void
doFormat(int64_t number,UnicodeString & toInsertInto,int32_t pos,int32_t recursionCount,UErrorCode & status) const730 NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const
731 {
732 // first, insert the rule's rule text into toInsertInto at the
733 // specified position, then insert the results of the substitutions
734 // into the right places in toInsertInto (notice we do the
735 // substitutions in reverse order so that the offsets don't get
736 // messed up)
737 int32_t pluralRuleStart = ruleText.length();
738 int32_t lengthOffset = 0;
739 if (!rulePatternFormat) {
740 toInsertInto.insert(pos, ruleText);
741 }
742 else {
743 pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
744 int pluralRuleEnd = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
745 int initialLength = toInsertInto.length();
746 if (pluralRuleEnd < ruleText.length() - 1) {
747 toInsertInto.insert(pos, ruleText.tempSubString(pluralRuleEnd + 2));
748 }
749 toInsertInto.insert(pos,
750 rulePatternFormat->format((int32_t)(number/uprv_pow(radix, exponent)), status));
751 if (pluralRuleStart > 0) {
752 toInsertInto.insert(pos, ruleText.tempSubString(0, pluralRuleStart));
753 }
754 lengthOffset = ruleText.length() - (toInsertInto.length() - initialLength);
755 }
756
757 if (sub2 != NULL) {
758 sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
759 }
760 if (sub1 != NULL) {
761 sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
762 }
763 }
764
765 /**
766 * Formats the number, and inserts the resulting text into
767 * toInsertInto.
768 * @param number The number being formatted
769 * @param toInsertInto The string where the resultant text should
770 * be inserted
771 * @param pos The position in toInsertInto where the resultant text
772 * should be inserted
773 */
774 void
doFormat(double number,UnicodeString & toInsertInto,int32_t pos,int32_t recursionCount,UErrorCode & status) const775 NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const
776 {
777 // first, insert the rule's rule text into toInsertInto at the
778 // specified position, then insert the results of the substitutions
779 // into the right places in toInsertInto
780 // [again, we have two copies of this routine that do the same thing
781 // so that we don't sacrifice precision in a long by casting it
782 // to a double]
783 int32_t pluralRuleStart = ruleText.length();
784 int32_t lengthOffset = 0;
785 if (!rulePatternFormat) {
786 toInsertInto.insert(pos, ruleText);
787 }
788 else {
789 pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
790 int pluralRuleEnd = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
791 int initialLength = toInsertInto.length();
792 if (pluralRuleEnd < ruleText.length() - 1) {
793 toInsertInto.insert(pos, ruleText.tempSubString(pluralRuleEnd + 2));
794 }
795 double pluralVal = number;
796 if (0 <= pluralVal && pluralVal < 1) {
797 // We're in a fractional rule, and we have to match the NumeratorSubstitution behavior.
798 // 2.3 can become 0.2999999999999998 for the fraction due to rounding errors.
799 pluralVal = uprv_round(pluralVal * uprv_pow(radix, exponent));
800 }
801 else {
802 pluralVal = pluralVal / uprv_pow(radix, exponent);
803 }
804 toInsertInto.insert(pos, rulePatternFormat->format((int32_t)(pluralVal), status));
805 if (pluralRuleStart > 0) {
806 toInsertInto.insert(pos, ruleText.tempSubString(0, pluralRuleStart));
807 }
808 lengthOffset = ruleText.length() - (toInsertInto.length() - initialLength);
809 }
810
811 if (sub2 != NULL) {
812 sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
813 }
814 if (sub1 != NULL) {
815 sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
816 }
817 }
818
819 /**
820 * Used by the owning rule set to determine whether to invoke the
821 * rollback rule (i.e., whether this rule or the one that precedes
822 * it in the rule set's list should be used to format the number)
823 * @param The number being formatted
824 * @return True if the rule set should use the rule that precedes
825 * this one in its list; false if it should use this rule
826 */
827 UBool
shouldRollBack(double number) const828 NFRule::shouldRollBack(double number) const
829 {
830 // we roll back if the rule contains a modulus substitution,
831 // the number being formatted is an even multiple of the rule's
832 // divisor, and the rule's base value is NOT an even multiple
833 // of its divisor
834 // In other words, if the original description had
835 // 100: << hundred[ >>];
836 // that expands into
837 // 100: << hundred;
838 // 101: << hundred >>;
839 // internally. But when we're formatting 200, if we use the rule
840 // at 101, which would normally apply, we get "two hundred zero".
841 // To prevent this, we roll back and use the rule at 100 instead.
842 // This is the logic that makes this happen: the rule at 101 has
843 // a modulus substitution, its base value isn't an even multiple
844 // of 100, and the value we're trying to format _is_ an even
845 // multiple of 100. This is called the "rollback rule."
846 if ((sub1 != NULL && sub1->isModulusSubstitution()) || (sub2 != NULL && sub2->isModulusSubstitution())) {
847 int64_t re = util64_pow(radix, exponent);
848 return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0;
849 }
850 return FALSE;
851 }
852
853 //-----------------------------------------------------------------------
854 // parsing
855 //-----------------------------------------------------------------------
856
857 /**
858 * Attempts to parse the string with this rule.
859 * @param text The string being parsed
860 * @param parsePosition On entry, the value is ignored and assumed to
861 * be 0. On exit, this has been updated with the position of the first
862 * character not consumed by matching the text against this rule
863 * (if this rule doesn't match the text at all, the parse position
864 * if left unchanged (presumably at 0) and the function returns
865 * new Long(0)).
866 * @param isFractionRule True if this rule is contained within a
867 * fraction rule set. This is only used if the rule has no
868 * substitutions.
869 * @return If this rule matched the text, this is the rule's base value
870 * combined appropriately with the results of parsing the substitutions.
871 * If nothing matched, this is new Long(0) and the parse position is
872 * left unchanged. The result will be an instance of Long if the
873 * result is an integer and Double otherwise. The result is never null.
874 */
875 #ifdef RBNF_DEBUG
876 #include <stdio.h>
877
dumpUS(FILE * f,const UnicodeString & us)878 static void dumpUS(FILE* f, const UnicodeString& us) {
879 int len = us.length();
880 char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
881 if (buf != NULL) {
882 us.extract(0, len, buf);
883 buf[len] = 0;
884 fprintf(f, "%s", buf);
885 uprv_free(buf); //delete[] buf;
886 }
887 }
888 #endif
889 UBool
doParse(const UnicodeString & text,ParsePosition & parsePosition,UBool isFractionRule,double upperBound,Formattable & resVal) const890 NFRule::doParse(const UnicodeString& text,
891 ParsePosition& parsePosition,
892 UBool isFractionRule,
893 double upperBound,
894 Formattable& resVal) const
895 {
896 // internally we operate on a copy of the string being parsed
897 // (because we're going to change it) and use our own ParsePosition
898 ParsePosition pp;
899 UnicodeString workText(text);
900
901 int32_t sub1Pos = sub1 != NULL ? sub1->getPos() : ruleText.length();
902 int32_t sub2Pos = sub2 != NULL ? sub2->getPos() : ruleText.length();
903
904 // check to see whether the text before the first substitution
905 // matches the text at the beginning of the string being
906 // parsed. If it does, strip that off the front of workText;
907 // otherwise, dump out with a mismatch
908 UnicodeString prefix;
909 prefix.setTo(ruleText, 0, sub1Pos);
910
911 #ifdef RBNF_DEBUG
912 fprintf(stderr, "doParse %p ", this);
913 {
914 UnicodeString rt;
915 _appendRuleText(rt);
916 dumpUS(stderr, rt);
917 }
918
919 fprintf(stderr, " text: '");
920 dumpUS(stderr, text);
921 fprintf(stderr, "' prefix: '");
922 dumpUS(stderr, prefix);
923 #endif
924 stripPrefix(workText, prefix, pp);
925 int32_t prefixLength = text.length() - workText.length();
926
927 #ifdef RBNF_DEBUG
928 fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1Pos);
929 #endif
930
931 if (pp.getIndex() == 0 && sub1Pos != 0) {
932 // commented out because ParsePosition doesn't have error index in 1.1.x
933 // restored for ICU4C port
934 parsePosition.setErrorIndex(pp.getErrorIndex());
935 resVal.setLong(0);
936 return TRUE;
937 }
938 if (baseValue == kInfinityRule) {
939 // If you match this, don't try to perform any calculations on it.
940 parsePosition.setIndex(pp.getIndex());
941 resVal.setDouble(uprv_getInfinity());
942 return TRUE;
943 }
944 if (baseValue == kNaNRule) {
945 // If you match this, don't try to perform any calculations on it.
946 parsePosition.setIndex(pp.getIndex());
947 resVal.setDouble(uprv_getNaN());
948 return TRUE;
949 }
950
951 // this is the fun part. The basic guts of the rule-matching
952 // logic is matchToDelimiter(), which is called twice. The first
953 // time it searches the input string for the rule text BETWEEN
954 // the substitutions and tries to match the intervening text
955 // in the input string with the first substitution. If that
956 // succeeds, it then calls it again, this time to look for the
957 // rule text after the second substitution and to match the
958 // intervening input text against the second substitution.
959 //
960 // For example, say we have a rule that looks like this:
961 // first << middle >> last;
962 // and input text that looks like this:
963 // first one middle two last
964 // First we use stripPrefix() to match "first " in both places and
965 // strip it off the front, leaving
966 // one middle two last
967 // Then we use matchToDelimiter() to match " middle " and try to
968 // match "one" against a substitution. If it's successful, we now
969 // have
970 // two last
971 // We use matchToDelimiter() a second time to match " last" and
972 // try to match "two" against a substitution. If "two" matches
973 // the substitution, we have a successful parse.
974 //
975 // Since it's possible in many cases to find multiple instances
976 // of each of these pieces of rule text in the input string,
977 // we need to try all the possible combinations of these
978 // locations. This prevents us from prematurely declaring a mismatch,
979 // and makes sure we match as much input text as we can.
980 int highWaterMark = 0;
981 double result = 0;
982 int start = 0;
983 double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
984
985 UnicodeString temp;
986 do {
987 // our partial parse result starts out as this rule's base
988 // value. If it finds a successful match, matchToDelimiter()
989 // will compose this in some way with what it gets back from
990 // the substitution, giving us a new partial parse result
991 pp.setIndex(0);
992
993 temp.setTo(ruleText, sub1Pos, sub2Pos - sub1Pos);
994 double partialResult = matchToDelimiter(workText, start, tempBaseValue,
995 temp, pp, sub1,
996 upperBound);
997
998 // if we got a successful match (or were trying to match a
999 // null substitution), pp is now pointing at the first unmatched
1000 // character. Take note of that, and try matchToDelimiter()
1001 // on the input text again
1002 if (pp.getIndex() != 0 || sub1 == NULL) {
1003 start = pp.getIndex();
1004
1005 UnicodeString workText2;
1006 workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
1007 ParsePosition pp2;
1008
1009 // the second matchToDelimiter() will compose our previous
1010 // partial result with whatever it gets back from its
1011 // substitution if there's a successful match, giving us
1012 // a real result
1013 temp.setTo(ruleText, sub2Pos, ruleText.length() - sub2Pos);
1014 partialResult = matchToDelimiter(workText2, 0, partialResult,
1015 temp, pp2, sub2,
1016 upperBound);
1017
1018 // if we got a successful match on this second
1019 // matchToDelimiter() call, update the high-water mark
1020 // and result (if necessary)
1021 if (pp2.getIndex() != 0 || sub2 == NULL) {
1022 if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
1023 highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
1024 result = partialResult;
1025 }
1026 }
1027 else {
1028 // commented out because ParsePosition doesn't have error index in 1.1.x
1029 // restored for ICU4C port
1030 int32_t temp = pp2.getErrorIndex() + sub1Pos + pp.getIndex();
1031 if (temp> parsePosition.getErrorIndex()) {
1032 parsePosition.setErrorIndex(temp);
1033 }
1034 }
1035 }
1036 else {
1037 // commented out because ParsePosition doesn't have error index in 1.1.x
1038 // restored for ICU4C port
1039 int32_t temp = sub1Pos + pp.getErrorIndex();
1040 if (temp > parsePosition.getErrorIndex()) {
1041 parsePosition.setErrorIndex(temp);
1042 }
1043 }
1044 // keep trying to match things until the outer matchToDelimiter()
1045 // call fails to make a match (each time, it picks up where it
1046 // left off the previous time)
1047 } while (sub1Pos != sub2Pos
1048 && pp.getIndex() > 0
1049 && pp.getIndex() < workText.length()
1050 && pp.getIndex() != start);
1051
1052 // update the caller's ParsePosition with our high-water mark
1053 // (i.e., it now points at the first character this function
1054 // didn't match-- the ParsePosition is therefore unchanged if
1055 // we didn't match anything)
1056 parsePosition.setIndex(highWaterMark);
1057 // commented out because ParsePosition doesn't have error index in 1.1.x
1058 // restored for ICU4C port
1059 if (highWaterMark > 0) {
1060 parsePosition.setErrorIndex(0);
1061 }
1062
1063 // this is a hack for one unusual condition: Normally, whether this
1064 // rule belong to a fraction rule set or not is handled by its
1065 // substitutions. But if that rule HAS NO substitutions, then
1066 // we have to account for it here. By definition, if the matching
1067 // rule in a fraction rule set has no substitutions, its numerator
1068 // is 1, and so the result is the reciprocal of its base value.
1069 if (isFractionRule && highWaterMark > 0 && sub1 == NULL) {
1070 result = 1 / result;
1071 }
1072
1073 resVal.setDouble(result);
1074 return TRUE; // ??? do we need to worry if it is a long or a double?
1075 }
1076
1077 /**
1078 * This function is used by parse() to match the text being parsed
1079 * against a possible prefix string. This function
1080 * matches characters from the beginning of the string being parsed
1081 * to characters from the prospective prefix. If they match, pp is
1082 * updated to the first character not matched, and the result is
1083 * the unparsed part of the string. If they don't match, the whole
1084 * string is returned, and pp is left unchanged.
1085 * @param text The string being parsed
1086 * @param prefix The text to match against
1087 * @param pp On entry, ignored and assumed to be 0. On exit, points
1088 * to the first unmatched character (assuming the whole prefix matched),
1089 * or is unchanged (if the whole prefix didn't match).
1090 * @return If things match, this is the unparsed part of "text";
1091 * if they didn't match, this is "text".
1092 */
1093 void
stripPrefix(UnicodeString & text,const UnicodeString & prefix,ParsePosition & pp) const1094 NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
1095 {
1096 // if the prefix text is empty, dump out without doing anything
1097 if (prefix.length() != 0) {
1098 UErrorCode status = U_ZERO_ERROR;
1099 // use prefixLength() to match the beginning of
1100 // "text" against "prefix". This function returns the
1101 // number of characters from "text" that matched (or 0 if
1102 // we didn't match the whole prefix)
1103 int32_t pfl = prefixLength(text, prefix, status);
1104 if (U_FAILURE(status)) { // Memory allocation error.
1105 return;
1106 }
1107 if (pfl != 0) {
1108 // if we got a successful match, update the parse position
1109 // and strip the prefix off of "text"
1110 pp.setIndex(pp.getIndex() + pfl);
1111 text.remove(0, pfl);
1112 }
1113 }
1114 }
1115
1116 /**
1117 * Used by parse() to match a substitution and any following text.
1118 * "text" is searched for instances of "delimiter". For each instance
1119 * of delimiter, the intervening text is tested to see whether it
1120 * matches the substitution. The longest match wins.
1121 * @param text The string being parsed
1122 * @param startPos The position in "text" where we should start looking
1123 * for "delimiter".
1124 * @param baseValue A partial parse result (often the rule's base value),
1125 * which is combined with the result from matching the substitution
1126 * @param delimiter The string to search "text" for.
1127 * @param pp Ignored and presumed to be 0 on entry. If there's a match,
1128 * on exit this will point to the first unmatched character.
1129 * @param sub If we find "delimiter" in "text", this substitution is used
1130 * to match the text between the beginning of the string and the
1131 * position of "delimiter." (If "delimiter" is the empty string, then
1132 * this function just matches against this substitution and updates
1133 * everything accordingly.)
1134 * @param upperBound When matching the substitution, it will only
1135 * consider rules with base values lower than this value.
1136 * @return If there's a match, this is the result of composing
1137 * baseValue with the result of matching the substitution. Otherwise,
1138 * this is new Long(0). It's never null. If the result is an integer,
1139 * this will be an instance of Long; otherwise, it's an instance of
1140 * Double.
1141 *
1142 * !!! note {dlf} in point of fact, in the java code the caller always converts
1143 * the result to a double, so we might as well return one.
1144 */
1145 double
matchToDelimiter(const UnicodeString & text,int32_t startPos,double _baseValue,const UnicodeString & delimiter,ParsePosition & pp,const NFSubstitution * sub,double upperBound) const1146 NFRule::matchToDelimiter(const UnicodeString& text,
1147 int32_t startPos,
1148 double _baseValue,
1149 const UnicodeString& delimiter,
1150 ParsePosition& pp,
1151 const NFSubstitution* sub,
1152 double upperBound) const
1153 {
1154 UErrorCode status = U_ZERO_ERROR;
1155 // if "delimiter" contains real (i.e., non-ignorable) text, search
1156 // it for "delimiter" beginning at "start". If that succeeds, then
1157 // use "sub"'s doParse() method to match the text before the
1158 // instance of "delimiter" we just found.
1159 if (!allIgnorable(delimiter, status)) {
1160 if (U_FAILURE(status)) { //Memory allocation error.
1161 return 0;
1162 }
1163 ParsePosition tempPP;
1164 Formattable result;
1165
1166 // use findText() to search for "delimiter". It returns a two-
1167 // element array: element 0 is the position of the match, and
1168 // element 1 is the number of characters that matched
1169 // "delimiter".
1170 int32_t dLen;
1171 int32_t dPos = findText(text, delimiter, startPos, &dLen);
1172
1173 // if findText() succeeded, isolate the text preceding the
1174 // match, and use "sub" to match that text
1175 while (dPos >= 0) {
1176 UnicodeString subText;
1177 subText.setTo(text, 0, dPos);
1178 if (subText.length() > 0) {
1179 UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
1180 #if UCONFIG_NO_COLLATION
1181 FALSE,
1182 #else
1183 formatter->isLenient(),
1184 #endif
1185 result);
1186
1187 // if the substitution could match all the text up to
1188 // where we found "delimiter", then this function has
1189 // a successful match. Bump the caller's parse position
1190 // to point to the first character after the text
1191 // that matches "delimiter", and return the result
1192 // we got from parsing the substitution.
1193 if (success && tempPP.getIndex() == dPos) {
1194 pp.setIndex(dPos + dLen);
1195 return result.getDouble();
1196 }
1197 else {
1198 // commented out because ParsePosition doesn't have error index in 1.1.x
1199 // restored for ICU4C port
1200 if (tempPP.getErrorIndex() > 0) {
1201 pp.setErrorIndex(tempPP.getErrorIndex());
1202 } else {
1203 pp.setErrorIndex(tempPP.getIndex());
1204 }
1205 }
1206 }
1207
1208 // if we didn't match the substitution, search for another
1209 // copy of "delimiter" in "text" and repeat the loop if
1210 // we find it
1211 tempPP.setIndex(0);
1212 dPos = findText(text, delimiter, dPos + dLen, &dLen);
1213 }
1214 // if we make it here, this was an unsuccessful match, and we
1215 // leave pp unchanged and return 0
1216 pp.setIndex(0);
1217 return 0;
1218
1219 // if "delimiter" is empty, or consists only of ignorable characters
1220 // (i.e., is semantically empty), thwe we obviously can't search
1221 // for "delimiter". Instead, just use "sub" to parse as much of
1222 // "text" as possible.
1223 }
1224 else if (sub == NULL) {
1225 return _baseValue;
1226 }
1227 else {
1228 ParsePosition tempPP;
1229 Formattable result;
1230
1231 // try to match the whole string against the substitution
1232 UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
1233 #if UCONFIG_NO_COLLATION
1234 FALSE,
1235 #else
1236 formatter->isLenient(),
1237 #endif
1238 result);
1239 if (success && (tempPP.getIndex() != 0)) {
1240 // if there's a successful match (or it's a null
1241 // substitution), update pp to point to the first
1242 // character we didn't match, and pass the result from
1243 // sub.doParse() on through to the caller
1244 pp.setIndex(tempPP.getIndex());
1245 return result.getDouble();
1246 }
1247 else {
1248 // commented out because ParsePosition doesn't have error index in 1.1.x
1249 // restored for ICU4C port
1250 pp.setErrorIndex(tempPP.getErrorIndex());
1251 }
1252
1253 // and if we get to here, then nothing matched, so we return
1254 // 0 and leave pp alone
1255 return 0;
1256 }
1257 }
1258
1259 /**
1260 * Used by stripPrefix() to match characters. If lenient parse mode
1261 * is off, this just calls startsWith(). If lenient parse mode is on,
1262 * this function uses CollationElementIterators to match characters in
1263 * the strings (only primary-order differences are significant in
1264 * determining whether there's a match).
1265 * @param str The string being tested
1266 * @param prefix The text we're hoping to see at the beginning
1267 * of "str"
1268 * @return If "prefix" is found at the beginning of "str", this
1269 * is the number of characters in "str" that were matched (this
1270 * isn't necessarily the same as the length of "prefix" when matching
1271 * text with a collator). If there's no match, this is 0.
1272 */
1273 int32_t
prefixLength(const UnicodeString & str,const UnicodeString & prefix,UErrorCode & status) const1274 NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
1275 {
1276 // if we're looking for an empty prefix, it obviously matches
1277 // zero characters. Just go ahead and return 0.
1278 if (prefix.length() == 0) {
1279 return 0;
1280 }
1281
1282 #if !UCONFIG_NO_COLLATION
1283 // go through all this grief if we're in lenient-parse mode
1284 if (formatter->isLenient()) {
1285 // get the formatter's collator and use it to create two
1286 // collation element iterators, one over the target string
1287 // and another over the prefix (right now, we'll throw an
1288 // exception if the collator we get back from the formatter
1289 // isn't a RuleBasedCollator, because RuleBasedCollator defines
1290 // the CollationElementIterator protocol. Hopefully, this
1291 // will change someday.)
1292 const RuleBasedCollator* collator = formatter->getCollator();
1293 if (collator == NULL) {
1294 status = U_MEMORY_ALLOCATION_ERROR;
1295 return 0;
1296 }
1297 LocalPointer<CollationElementIterator> strIter(collator->createCollationElementIterator(str));
1298 LocalPointer<CollationElementIterator> prefixIter(collator->createCollationElementIterator(prefix));
1299 // Check for memory allocation error.
1300 if (strIter.isNull() || prefixIter.isNull()) {
1301 status = U_MEMORY_ALLOCATION_ERROR;
1302 return 0;
1303 }
1304
1305 UErrorCode err = U_ZERO_ERROR;
1306
1307 // The original code was problematic. Consider this match:
1308 // prefix = "fifty-"
1309 // string = " fifty-7"
1310 // The intent is to match string up to the '7', by matching 'fifty-' at position 1
1311 // in the string. Unfortunately, we were getting a match, and then computing where
1312 // the match terminated by rematching the string. The rematch code was using as an
1313 // initial guess the substring of string between 0 and prefix.length. Because of
1314 // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
1315 // the position before the hyphen in the string. Recursing down, we then parsed the
1316 // remaining string '-7' as numeric. The resulting number turned out as 43 (50 - 7).
1317 // This was not pretty, especially since the string "fifty-7" parsed just fine.
1318 //
1319 // We have newer APIs now, so we can use calls on the iterator to determine what we
1320 // matched up to. If we terminate because we hit the last element in the string,
1321 // our match terminates at this length. If we terminate because we hit the last element
1322 // in the target, our match terminates at one before the element iterator position.
1323
1324 // match collation elements between the strings
1325 int32_t oStr = strIter->next(err);
1326 int32_t oPrefix = prefixIter->next(err);
1327
1328 while (oPrefix != CollationElementIterator::NULLORDER) {
1329 // skip over ignorable characters in the target string
1330 while (CollationElementIterator::primaryOrder(oStr) == 0
1331 && oStr != CollationElementIterator::NULLORDER) {
1332 oStr = strIter->next(err);
1333 }
1334
1335 // skip over ignorable characters in the prefix
1336 while (CollationElementIterator::primaryOrder(oPrefix) == 0
1337 && oPrefix != CollationElementIterator::NULLORDER) {
1338 oPrefix = prefixIter->next(err);
1339 }
1340
1341 // dlf: move this above following test, if we consume the
1342 // entire target, aren't we ok even if the source was also
1343 // entirely consumed?
1344
1345 // if skipping over ignorables brought to the end of
1346 // the prefix, we DID match: drop out of the loop
1347 if (oPrefix == CollationElementIterator::NULLORDER) {
1348 break;
1349 }
1350
1351 // if skipping over ignorables brought us to the end
1352 // of the target string, we didn't match and return 0
1353 if (oStr == CollationElementIterator::NULLORDER) {
1354 return 0;
1355 }
1356
1357 // match collation elements from the two strings
1358 // (considering only primary differences). If we
1359 // get a mismatch, dump out and return 0
1360 if (CollationElementIterator::primaryOrder(oStr)
1361 != CollationElementIterator::primaryOrder(oPrefix)) {
1362 return 0;
1363
1364 // otherwise, advance to the next character in each string
1365 // and loop (we drop out of the loop when we exhaust
1366 // collation elements in the prefix)
1367 } else {
1368 oStr = strIter->next(err);
1369 oPrefix = prefixIter->next(err);
1370 }
1371 }
1372
1373 int32_t result = strIter->getOffset();
1374 if (oStr != CollationElementIterator::NULLORDER) {
1375 --result; // back over character that we don't want to consume;
1376 }
1377
1378 #ifdef RBNF_DEBUG
1379 fprintf(stderr, "prefix length: %d\n", result);
1380 #endif
1381 return result;
1382 #if 0
1383 //----------------------------------------------------------------
1384 // JDK 1.2-specific API call
1385 // return strIter.getOffset();
1386 //----------------------------------------------------------------
1387 // JDK 1.1 HACK (take out for 1.2-specific code)
1388
1389 // if we make it to here, we have a successful match. Now we
1390 // have to find out HOW MANY characters from the target string
1391 // matched the prefix (there isn't necessarily a one-to-one
1392 // mapping between collation elements and characters).
1393 // In JDK 1.2, there's a simple getOffset() call we can use.
1394 // In JDK 1.1, on the other hand, we have to go through some
1395 // ugly contortions. First, use the collator to compare the
1396 // same number of characters from the prefix and target string.
1397 // If they're equal, we're done.
1398 collator->setStrength(Collator::PRIMARY);
1399 if (str.length() >= prefix.length()) {
1400 UnicodeString temp;
1401 temp.setTo(str, 0, prefix.length());
1402 if (collator->equals(temp, prefix)) {
1403 #ifdef RBNF_DEBUG
1404 fprintf(stderr, "returning: %d\n", prefix.length());
1405 #endif
1406 return prefix.length();
1407 }
1408 }
1409
1410 // if they're not equal, then we have to compare successively
1411 // larger and larger substrings of the target string until we
1412 // get to one that matches the prefix. At that point, we know
1413 // how many characters matched the prefix, and we can return.
1414 int32_t p = 1;
1415 while (p <= str.length()) {
1416 UnicodeString temp;
1417 temp.setTo(str, 0, p);
1418 if (collator->equals(temp, prefix)) {
1419 return p;
1420 } else {
1421 ++p;
1422 }
1423 }
1424
1425 // SHOULD NEVER GET HERE!!!
1426 return 0;
1427 //----------------------------------------------------------------
1428 #endif
1429
1430 // If lenient parsing is turned off, forget all that crap above.
1431 // Just use String.startsWith() and be done with it.
1432 } else
1433 #endif
1434 {
1435 if (str.startsWith(prefix)) {
1436 return prefix.length();
1437 } else {
1438 return 0;
1439 }
1440 }
1441 }
1442
1443 /**
1444 * Searches a string for another string. If lenient parsing is off,
1445 * this just calls indexOf(). If lenient parsing is on, this function
1446 * uses CollationElementIterator to match characters, and only
1447 * primary-order differences are significant in determining whether
1448 * there's a match.
1449 * @param str The string to search
1450 * @param key The string to search "str" for
1451 * @param startingAt The index into "str" where the search is to
1452 * begin
1453 * @return A two-element array of ints. Element 0 is the position
1454 * of the match, or -1 if there was no match. Element 1 is the
1455 * number of characters in "str" that matched (which isn't necessarily
1456 * the same as the length of "key")
1457 */
1458 int32_t
findText(const UnicodeString & str,const UnicodeString & key,int32_t startingAt,int32_t * length) const1459 NFRule::findText(const UnicodeString& str,
1460 const UnicodeString& key,
1461 int32_t startingAt,
1462 int32_t* length) const
1463 {
1464 if (rulePatternFormat) {
1465 Formattable result;
1466 FieldPosition position(UNUM_INTEGER_FIELD);
1467 position.setBeginIndex(startingAt);
1468 rulePatternFormat->parseType(str, this, result, position);
1469 int start = position.getBeginIndex();
1470 if (start >= 0) {
1471 int32_t pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
1472 int32_t pluralRuleSuffix = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) + 2;
1473 int32_t matchLen = position.getEndIndex() - start;
1474 UnicodeString prefix(ruleText.tempSubString(0, pluralRuleStart));
1475 UnicodeString suffix(ruleText.tempSubString(pluralRuleSuffix));
1476 if (str.compare(start - prefix.length(), prefix.length(), prefix, 0, prefix.length()) == 0
1477 && str.compare(start + matchLen, suffix.length(), suffix, 0, suffix.length()) == 0)
1478 {
1479 *length = matchLen + prefix.length() + suffix.length();
1480 return start - prefix.length();
1481 }
1482 }
1483 *length = 0;
1484 return -1;
1485 }
1486 if (!formatter->isLenient()) {
1487 // if lenient parsing is turned off, this is easy: just call
1488 // String.indexOf() and we're done
1489 *length = key.length();
1490 return str.indexOf(key, startingAt);
1491 }
1492 else {
1493 // but if lenient parsing is turned ON, we've got some work
1494 // ahead of us
1495 return findTextLenient(str, key, startingAt, length);
1496 }
1497 }
1498
1499 int32_t
findTextLenient(const UnicodeString & str,const UnicodeString & key,int32_t startingAt,int32_t * length) const1500 NFRule::findTextLenient(const UnicodeString& str,
1501 const UnicodeString& key,
1502 int32_t startingAt,
1503 int32_t* length) const
1504 {
1505 //----------------------------------------------------------------
1506 // JDK 1.1 HACK (take out of 1.2-specific code)
1507
1508 // in JDK 1.2, CollationElementIterator provides us with an
1509 // API to map between character offsets and collation elements
1510 // and we can do this by marching through the string comparing
1511 // collation elements. We can't do that in JDK 1.1. Insted,
1512 // we have to go through this horrible slow mess:
1513 int32_t p = startingAt;
1514 int32_t keyLen = 0;
1515
1516 // basically just isolate smaller and smaller substrings of
1517 // the target string (each running to the end of the string,
1518 // and with the first one running from startingAt to the end)
1519 // and then use prefixLength() to see if the search key is at
1520 // the beginning of each substring. This is excruciatingly
1521 // slow, but it will locate the key and tell use how long the
1522 // matching text was.
1523 UnicodeString temp;
1524 UErrorCode status = U_ZERO_ERROR;
1525 while (p < str.length() && keyLen == 0) {
1526 temp.setTo(str, p, str.length() - p);
1527 keyLen = prefixLength(temp, key, status);
1528 if (U_FAILURE(status)) {
1529 break;
1530 }
1531 if (keyLen != 0) {
1532 *length = keyLen;
1533 return p;
1534 }
1535 ++p;
1536 }
1537 // if we make it to here, we didn't find it. Return -1 for the
1538 // location. The length should be ignored, but set it to 0,
1539 // which should be "safe"
1540 *length = 0;
1541 return -1;
1542 }
1543
1544 /**
1545 * Checks to see whether a string consists entirely of ignorable
1546 * characters.
1547 * @param str The string to test.
1548 * @return true if the string is empty of consists entirely of
1549 * characters that the number formatter's collator says are
1550 * ignorable at the primary-order level. false otherwise.
1551 */
1552 UBool
allIgnorable(const UnicodeString & str,UErrorCode & status) const1553 NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
1554 {
1555 // if the string is empty, we can just return true
1556 if (str.length() == 0) {
1557 return TRUE;
1558 }
1559
1560 #if !UCONFIG_NO_COLLATION
1561 // if lenient parsing is turned on, walk through the string with
1562 // a collation element iterator and make sure each collation
1563 // element is 0 (ignorable) at the primary level
1564 if (formatter->isLenient()) {
1565 const RuleBasedCollator* collator = formatter->getCollator();
1566 if (collator == NULL) {
1567 status = U_MEMORY_ALLOCATION_ERROR;
1568 return FALSE;
1569 }
1570 LocalPointer<CollationElementIterator> iter(collator->createCollationElementIterator(str));
1571
1572 // Memory allocation error check.
1573 if (iter.isNull()) {
1574 status = U_MEMORY_ALLOCATION_ERROR;
1575 return FALSE;
1576 }
1577
1578 UErrorCode err = U_ZERO_ERROR;
1579 int32_t o = iter->next(err);
1580 while (o != CollationElementIterator::NULLORDER
1581 && CollationElementIterator::primaryOrder(o) == 0) {
1582 o = iter->next(err);
1583 }
1584
1585 return o == CollationElementIterator::NULLORDER;
1586 }
1587 #endif
1588
1589 // if lenient parsing is turned off, there is no such thing as
1590 // an ignorable character: return true only if the string is empty
1591 return FALSE;
1592 }
1593
1594 void
setDecimalFormatSymbols(const DecimalFormatSymbols & newSymbols,UErrorCode & status)1595 NFRule::setDecimalFormatSymbols(const DecimalFormatSymbols& newSymbols, UErrorCode& status) {
1596 if (sub1 != NULL) {
1597 sub1->setDecimalFormatSymbols(newSymbols, status);
1598 }
1599 if (sub2 != NULL) {
1600 sub2->setDecimalFormatSymbols(newSymbols, status);
1601 }
1602 }
1603
1604 U_NAMESPACE_END
1605
1606 /* U_HAVE_RBNF */
1607 #endif
1608