1 // object.cc -- support for an object file for linking in gold
2 
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30 
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 
45 namespace gold
46 {
47 
48 // Struct Read_symbols_data.
49 
50 // Destroy any remaining File_view objects and buffers of decompressed
51 // sections.
52 
~Read_symbols_data()53 Read_symbols_data::~Read_symbols_data()
54 {
55   if (this->section_headers != NULL)
56     delete this->section_headers;
57   if (this->section_names != NULL)
58     delete this->section_names;
59   if (this->symbols != NULL)
60     delete this->symbols;
61   if (this->symbol_names != NULL)
62     delete this->symbol_names;
63   if (this->versym != NULL)
64     delete this->versym;
65   if (this->verdef != NULL)
66     delete this->verdef;
67   if (this->verneed != NULL)
68     delete this->verneed;
69 }
70 
71 // Class Xindex.
72 
73 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
74 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
75 // table we care about.
76 
77 template<int size, bool big_endian>
78 void
initialize_symtab_xindex(Object * object,unsigned int symtab_shndx)79 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
80 {
81   if (!this->symtab_xindex_.empty())
82     return;
83 
84   gold_assert(symtab_shndx != 0);
85 
86   // Look through the sections in reverse order, on the theory that it
87   // is more likely to be near the end than the beginning.
88   unsigned int i = object->shnum();
89   while (i > 0)
90     {
91       --i;
92       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
93 	  && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
94 	{
95 	  this->read_symtab_xindex<size, big_endian>(object, i, NULL);
96 	  return;
97 	}
98     }
99 
100   object->error(_("missing SHT_SYMTAB_SHNDX section"));
101 }
102 
103 // Read in the symtab_xindex_ array, given the section index of the
104 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
105 // section headers.
106 
107 template<int size, bool big_endian>
108 void
read_symtab_xindex(Object * object,unsigned int xindex_shndx,const unsigned char * pshdrs)109 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
110 			   const unsigned char* pshdrs)
111 {
112   section_size_type bytecount;
113   const unsigned char* contents;
114   if (pshdrs == NULL)
115     contents = object->section_contents(xindex_shndx, &bytecount, false);
116   else
117     {
118       const unsigned char* p = (pshdrs
119 				+ (xindex_shndx
120 				   * elfcpp::Elf_sizes<size>::shdr_size));
121       typename elfcpp::Shdr<size, big_endian> shdr(p);
122       bytecount = convert_to_section_size_type(shdr.get_sh_size());
123       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
124     }
125 
126   gold_assert(this->symtab_xindex_.empty());
127   this->symtab_xindex_.reserve(bytecount / 4);
128   for (section_size_type i = 0; i < bytecount; i += 4)
129     {
130       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
131       // We preadjust the section indexes we save.
132       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
133     }
134 }
135 
136 // Symbol symndx has a section of SHN_XINDEX; return the real section
137 // index.
138 
139 unsigned int
sym_xindex_to_shndx(Object * object,unsigned int symndx)140 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
141 {
142   if (symndx >= this->symtab_xindex_.size())
143     {
144       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
145 		    symndx);
146       return elfcpp::SHN_UNDEF;
147     }
148   unsigned int shndx = this->symtab_xindex_[symndx];
149   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
150     {
151       object->error(_("extended index for symbol %u out of range: %u"),
152 		    symndx, shndx);
153       return elfcpp::SHN_UNDEF;
154     }
155   return shndx;
156 }
157 
158 // Class Object.
159 
160 // Report an error for this object file.  This is used by the
161 // elfcpp::Elf_file interface, and also called by the Object code
162 // itself.
163 
164 void
error(const char * format,...) const165 Object::error(const char* format, ...) const
166 {
167   va_list args;
168   va_start(args, format);
169   char* buf = NULL;
170   if (vasprintf(&buf, format, args) < 0)
171     gold_nomem();
172   va_end(args);
173   gold_error(_("%s: %s"), this->name().c_str(), buf);
174   free(buf);
175 }
176 
177 // Return a view of the contents of a section.
178 
179 const unsigned char*
section_contents(unsigned int shndx,section_size_type * plen,bool cache)180 Object::section_contents(unsigned int shndx, section_size_type* plen,
181 			 bool cache)
182 { return this->do_section_contents(shndx, plen, cache); }
183 
184 // Read the section data into SD.  This is code common to Sized_relobj_file
185 // and Sized_dynobj, so we put it into Object.
186 
187 template<int size, bool big_endian>
188 void
read_section_data(elfcpp::Elf_file<size,big_endian,Object> * elf_file,Read_symbols_data * sd)189 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
190 			  Read_symbols_data* sd)
191 {
192   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 
194   // Read the section headers.
195   const off_t shoff = elf_file->shoff();
196   const unsigned int shnum = this->shnum();
197   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
198 					       true, true);
199 
200   // Read the section names.
201   const unsigned char* pshdrs = sd->section_headers->data();
202   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
203   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
204 
205   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
206     this->error(_("section name section has wrong type: %u"),
207 		static_cast<unsigned int>(shdrnames.get_sh_type()));
208 
209   sd->section_names_size =
210     convert_to_section_size_type(shdrnames.get_sh_size());
211   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
212 					     sd->section_names_size, false,
213 					     false);
214 }
215 
216 // If NAME is the name of a special .gnu.warning section, arrange for
217 // the warning to be issued.  SHNDX is the section index.  Return
218 // whether it is a warning section.
219 
220 bool
handle_gnu_warning_section(const char * name,unsigned int shndx,Symbol_table * symtab)221 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
222 				   Symbol_table* symtab)
223 {
224   const char warn_prefix[] = ".gnu.warning.";
225   const int warn_prefix_len = sizeof warn_prefix - 1;
226   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
227     {
228       // Read the section contents to get the warning text.  It would
229       // be nicer if we only did this if we have to actually issue a
230       // warning.  Unfortunately, warnings are issued as we relocate
231       // sections.  That means that we can not lock the object then,
232       // as we might try to issue the same warning multiple times
233       // simultaneously.
234       section_size_type len;
235       const unsigned char* contents = this->section_contents(shndx, &len,
236 							     false);
237       if (len == 0)
238 	{
239 	  const char* warning = name + warn_prefix_len;
240 	  contents = reinterpret_cast<const unsigned char*>(warning);
241 	  len = strlen(warning);
242 	}
243       std::string warning(reinterpret_cast<const char*>(contents), len);
244       symtab->add_warning(name + warn_prefix_len, this, warning);
245       return true;
246     }
247   return false;
248 }
249 
250 // If NAME is the name of the special section which indicates that
251 // this object was compiled with -fsplit-stack, mark it accordingly.
252 
253 bool
handle_split_stack_section(const char * name)254 Object::handle_split_stack_section(const char* name)
255 {
256   if (strcmp(name, ".note.GNU-split-stack") == 0)
257     {
258       this->uses_split_stack_ = true;
259       return true;
260     }
261   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
262     {
263       this->has_no_split_stack_ = true;
264       return true;
265     }
266   return false;
267 }
268 
269 // Class Relobj
270 
271 // To copy the symbols data read from the file to a local data structure.
272 // This function is called from do_layout only while doing garbage
273 // collection.
274 
275 void
copy_symbols_data(Symbols_data * gc_sd,Read_symbols_data * sd,unsigned int section_header_size)276 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
277 			  unsigned int section_header_size)
278 {
279   gc_sd->section_headers_data =
280 	 new unsigned char[(section_header_size)];
281   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
282 	 section_header_size);
283   gc_sd->section_names_data =
284 	 new unsigned char[sd->section_names_size];
285   memcpy(gc_sd->section_names_data, sd->section_names->data(),
286 	 sd->section_names_size);
287   gc_sd->section_names_size = sd->section_names_size;
288   if (sd->symbols != NULL)
289     {
290       gc_sd->symbols_data =
291 	     new unsigned char[sd->symbols_size];
292       memcpy(gc_sd->symbols_data, sd->symbols->data(),
293 	    sd->symbols_size);
294     }
295   else
296     {
297       gc_sd->symbols_data = NULL;
298     }
299   gc_sd->symbols_size = sd->symbols_size;
300   gc_sd->external_symbols_offset = sd->external_symbols_offset;
301   if (sd->symbol_names != NULL)
302     {
303       gc_sd->symbol_names_data =
304 	     new unsigned char[sd->symbol_names_size];
305       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
306 	    sd->symbol_names_size);
307     }
308   else
309     {
310       gc_sd->symbol_names_data = NULL;
311     }
312   gc_sd->symbol_names_size = sd->symbol_names_size;
313 }
314 
315 // This function determines if a particular section name must be included
316 // in the link.  This is used during garbage collection to determine the
317 // roots of the worklist.
318 
319 bool
is_section_name_included(const char * name)320 Relobj::is_section_name_included(const char* name)
321 {
322   if (is_prefix_of(".ctors", name)
323       || is_prefix_of(".dtors", name)
324       || is_prefix_of(".note", name)
325       || is_prefix_of(".init", name)
326       || is_prefix_of(".fini", name)
327       || is_prefix_of(".gcc_except_table", name)
328       || is_prefix_of(".jcr", name)
329       || is_prefix_of(".preinit_array", name)
330       || (is_prefix_of(".text", name)
331 	  && strstr(name, "personality"))
332       || (is_prefix_of(".data", name)
333 	  && strstr(name, "personality"))
334       || (is_prefix_of(".sdata", name)
335 	  && strstr(name, "personality"))
336       || (is_prefix_of(".gnu.linkonce.d", name)
337 	  && strstr(name, "personality"))
338       || (is_prefix_of(".rodata", name)
339 	  && strstr(name, "nptl_version")))
340     {
341       return true;
342     }
343   return false;
344 }
345 
346 // Finalize the incremental relocation information.  Allocates a block
347 // of relocation entries for each symbol, and sets the reloc_bases_
348 // array to point to the first entry in each block.  If CLEAR_COUNTS
349 // is TRUE, also clear the per-symbol relocation counters.
350 
351 void
finalize_incremental_relocs(Layout * layout,bool clear_counts)352 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
353 {
354   unsigned int nsyms = this->get_global_symbols()->size();
355   this->reloc_bases_ = new unsigned int[nsyms];
356 
357   gold_assert(this->reloc_bases_ != NULL);
358   gold_assert(layout->incremental_inputs() != NULL);
359 
360   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
361   for (unsigned int i = 0; i < nsyms; ++i)
362     {
363       this->reloc_bases_[i] = rindex;
364       rindex += this->reloc_counts_[i];
365       if (clear_counts)
366 	this->reloc_counts_[i] = 0;
367     }
368   layout->incremental_inputs()->set_reloc_count(rindex);
369 }
370 
371 // Class Sized_relobj.
372 
373 // Iterate over local symbols, calling a visitor class V for each GOT offset
374 // associated with a local symbol.
375 
376 template<int size, bool big_endian>
377 void
do_for_all_local_got_entries(Got_offset_list::Visitor * v) const378 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
379     Got_offset_list::Visitor* v) const
380 {
381   unsigned int nsyms = this->local_symbol_count();
382   for (unsigned int i = 0; i < nsyms; i++)
383     {
384       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
385       if (p != this->local_got_offsets_.end())
386 	{
387 	  const Got_offset_list* got_offsets = p->second;
388 	  got_offsets->for_all_got_offsets(v);
389 	}
390     }
391 }
392 
393 // Get the address of an output section.
394 
395 template<int size, bool big_endian>
396 uint64_t
do_output_section_address(unsigned int shndx)397 Sized_relobj<size, big_endian>::do_output_section_address(
398     unsigned int shndx)
399 {
400   // If the input file is linked as --just-symbols, the output
401   // section address is the input section address.
402   if (this->just_symbols())
403     return this->section_address(shndx);
404 
405   const Output_section* os = this->do_output_section(shndx);
406   gold_assert(os != NULL);
407   return os->address();
408 }
409 
410 // Class Sized_relobj_file.
411 
412 template<int size, bool big_endian>
Sized_relobj_file(const std::string & name,Input_file * input_file,off_t offset,const elfcpp::Ehdr<size,big_endian> & ehdr)413 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
414     const std::string& name,
415     Input_file* input_file,
416     off_t offset,
417     const elfcpp::Ehdr<size, big_endian>& ehdr)
418   : Sized_relobj<size, big_endian>(name, input_file, offset),
419     elf_file_(this, ehdr),
420     symtab_shndx_(-1U),
421     local_symbol_count_(0),
422     output_local_symbol_count_(0),
423     output_local_dynsym_count_(0),
424     symbols_(),
425     defined_count_(0),
426     local_symbol_offset_(0),
427     local_dynsym_offset_(0),
428     local_values_(),
429     local_plt_offsets_(),
430     kept_comdat_sections_(),
431     has_eh_frame_(false),
432     discarded_eh_frame_shndx_(-1U),
433     is_deferred_layout_(false),
434     deferred_layout_(),
435     deferred_layout_relocs_()
436 {
437   this->e_type_ = ehdr.get_e_type();
438 }
439 
440 template<int size, bool big_endian>
~Sized_relobj_file()441 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
442 {
443 }
444 
445 // Set up an object file based on the file header.  This sets up the
446 // section information.
447 
448 template<int size, bool big_endian>
449 void
do_setup()450 Sized_relobj_file<size, big_endian>::do_setup()
451 {
452   const unsigned int shnum = this->elf_file_.shnum();
453   this->set_shnum(shnum);
454 }
455 
456 // Find the SHT_SYMTAB section, given the section headers.  The ELF
457 // standard says that maybe in the future there can be more than one
458 // SHT_SYMTAB section.  Until somebody figures out how that could
459 // work, we assume there is only one.
460 
461 template<int size, bool big_endian>
462 void
find_symtab(const unsigned char * pshdrs)463 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
464 {
465   const unsigned int shnum = this->shnum();
466   this->symtab_shndx_ = 0;
467   if (shnum > 0)
468     {
469       // Look through the sections in reverse order, since gas tends
470       // to put the symbol table at the end.
471       const unsigned char* p = pshdrs + shnum * This::shdr_size;
472       unsigned int i = shnum;
473       unsigned int xindex_shndx = 0;
474       unsigned int xindex_link = 0;
475       while (i > 0)
476 	{
477 	  --i;
478 	  p -= This::shdr_size;
479 	  typename This::Shdr shdr(p);
480 	  if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
481 	    {
482 	      this->symtab_shndx_ = i;
483 	      if (xindex_shndx > 0 && xindex_link == i)
484 		{
485 		  Xindex* xindex =
486 		    new Xindex(this->elf_file_.large_shndx_offset());
487 		  xindex->read_symtab_xindex<size, big_endian>(this,
488 							       xindex_shndx,
489 							       pshdrs);
490 		  this->set_xindex(xindex);
491 		}
492 	      break;
493 	    }
494 
495 	  // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
496 	  // one.  This will work if it follows the SHT_SYMTAB
497 	  // section.
498 	  if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
499 	    {
500 	      xindex_shndx = i;
501 	      xindex_link = this->adjust_shndx(shdr.get_sh_link());
502 	    }
503 	}
504     }
505 }
506 
507 // Return the Xindex structure to use for object with lots of
508 // sections.
509 
510 template<int size, bool big_endian>
511 Xindex*
do_initialize_xindex()512 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
513 {
514   gold_assert(this->symtab_shndx_ != -1U);
515   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
516   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
517   return xindex;
518 }
519 
520 // Return whether SHDR has the right type and flags to be a GNU
521 // .eh_frame section.
522 
523 template<int size, bool big_endian>
524 bool
check_eh_frame_flags(const elfcpp::Shdr<size,big_endian> * shdr) const525 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
526     const elfcpp::Shdr<size, big_endian>* shdr) const
527 {
528   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
529   return ((sh_type == elfcpp::SHT_PROGBITS
530 	   || sh_type == elfcpp::SHT_X86_64_UNWIND)
531 	  && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
532 }
533 
534 // Find the section header with the given name.
535 
536 template<int size, bool big_endian>
537 const unsigned char*
find_shdr(const unsigned char * pshdrs,const char * name,const char * names,section_size_type names_size,const unsigned char * hdr) const538 Object::find_shdr(
539     const unsigned char* pshdrs,
540     const char* name,
541     const char* names,
542     section_size_type names_size,
543     const unsigned char* hdr) const
544 {
545   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
546   const unsigned int shnum = this->shnum();
547   const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
548   size_t sh_name = 0;
549 
550   while (1)
551     {
552       if (hdr)
553 	{
554 	  // We found HDR last time we were called, continue looking.
555 	  typename elfcpp::Shdr<size, big_endian> shdr(hdr);
556 	  sh_name = shdr.get_sh_name();
557 	}
558       else
559 	{
560 	  // Look for the next occurrence of NAME in NAMES.
561 	  // The fact that .shstrtab produced by current GNU tools is
562 	  // string merged means we shouldn't have both .not.foo and
563 	  // .foo in .shstrtab, and multiple .foo sections should all
564 	  // have the same sh_name.  However, this is not guaranteed
565 	  // by the ELF spec and not all ELF object file producers may
566 	  // be so clever.
567 	  size_t len = strlen(name) + 1;
568 	  const char *p = sh_name ? names + sh_name + len : names;
569 	  p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
570 						   name, len));
571 	  if (p == NULL)
572 	    return NULL;
573 	  sh_name = p - names;
574 	  hdr = pshdrs;
575 	  if (sh_name == 0)
576 	    return hdr;
577 	}
578 
579       hdr += shdr_size;
580       while (hdr < hdr_end)
581 	{
582 	  typename elfcpp::Shdr<size, big_endian> shdr(hdr);
583 	  if (shdr.get_sh_name() == sh_name)
584 	    return hdr;
585 	  hdr += shdr_size;
586 	}
587       hdr = NULL;
588       if (sh_name == 0)
589 	return hdr;
590     }
591 }
592 
593 // Return whether there is a GNU .eh_frame section, given the section
594 // headers and the section names.
595 
596 template<int size, bool big_endian>
597 bool
find_eh_frame(const unsigned char * pshdrs,const char * names,section_size_type names_size) const598 Sized_relobj_file<size, big_endian>::find_eh_frame(
599     const unsigned char* pshdrs,
600     const char* names,
601     section_size_type names_size) const
602 {
603   const unsigned char* s = NULL;
604 
605   while (1)
606     {
607       s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
608 						     names, names_size, s);
609       if (s == NULL)
610 	return false;
611 
612       typename This::Shdr shdr(s);
613       if (this->check_eh_frame_flags(&shdr))
614 	return true;
615     }
616 }
617 
618 // Return TRUE if this is a section whose contents will be needed in the
619 // Add_symbols task.  This function is only called for sections that have
620 // already passed the test in is_compressed_debug_section(), so we know
621 // that the section name begins with ".zdebug".
622 
623 static bool
need_decompressed_section(const char * name)624 need_decompressed_section(const char* name)
625 {
626   // Skip over the ".zdebug" and a quick check for the "_".
627   name += 7;
628   if (*name++ != '_')
629     return false;
630 
631 #ifdef ENABLE_THREADS
632   // Decompressing these sections now will help only if we're
633   // multithreaded.
634   if (parameters->options().threads())
635     {
636       // We will need .zdebug_str if this is not an incremental link
637       // (i.e., we are processing string merge sections) or if we need
638       // to build a gdb index.
639       if ((!parameters->incremental() || parameters->options().gdb_index())
640 	  && strcmp(name, "str") == 0)
641 	return true;
642 
643       // We will need these other sections when building a gdb index.
644       if (parameters->options().gdb_index()
645 	  && (strcmp(name, "info") == 0
646 	      || strcmp(name, "types") == 0
647 	      || strcmp(name, "pubnames") == 0
648 	      || strcmp(name, "pubtypes") == 0
649 	      || strcmp(name, "ranges") == 0
650 	      || strcmp(name, "abbrev") == 0))
651 	return true;
652     }
653 #endif
654 
655   // Even when single-threaded, we will need .zdebug_str if this is
656   // not an incremental link and we are building a gdb index.
657   // Otherwise, we would decompress the section twice: once for
658   // string merge processing, and once for building the gdb index.
659   if (!parameters->incremental()
660       && parameters->options().gdb_index()
661       && strcmp(name, "str") == 0)
662     return true;
663 
664   return false;
665 }
666 
667 // Build a table for any compressed debug sections, mapping each section index
668 // to the uncompressed size and (if needed) the decompressed contents.
669 
670 template<int size, bool big_endian>
671 Compressed_section_map*
build_compressed_section_map(const unsigned char * pshdrs,unsigned int shnum,const char * names,section_size_type names_size,Object * obj,bool decompress_if_needed)672 build_compressed_section_map(
673     const unsigned char* pshdrs,
674     unsigned int shnum,
675     const char* names,
676     section_size_type names_size,
677     Object* obj,
678     bool decompress_if_needed)
679 {
680   Compressed_section_map* uncompressed_map = new Compressed_section_map();
681   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
682   const unsigned char* p = pshdrs + shdr_size;
683 
684   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
685     {
686       typename elfcpp::Shdr<size, big_endian> shdr(p);
687       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
688 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
689 	{
690 	  if (shdr.get_sh_name() >= names_size)
691 	    {
692 	      obj->error(_("bad section name offset for section %u: %lu"),
693 			 i, static_cast<unsigned long>(shdr.get_sh_name()));
694 	      continue;
695 	    }
696 
697 	  const char* name = names + shdr.get_sh_name();
698 	  if (is_compressed_debug_section(name))
699 	    {
700 	      section_size_type len;
701 	      const unsigned char* contents =
702 		  obj->section_contents(i, &len, false);
703 	      uint64_t uncompressed_size = get_uncompressed_size(contents, len);
704 	      Compressed_section_info info;
705 	      info.size = convert_to_section_size_type(uncompressed_size);
706 	      info.contents = NULL;
707 	      if (uncompressed_size != -1ULL)
708 		{
709 		  unsigned char* uncompressed_data = NULL;
710 		  if (decompress_if_needed && need_decompressed_section(name))
711 		    {
712 		      uncompressed_data = new unsigned char[uncompressed_size];
713 		      if (decompress_input_section(contents, len,
714 						   uncompressed_data,
715 						   uncompressed_size))
716 			info.contents = uncompressed_data;
717 		      else
718 			delete[] uncompressed_data;
719 		    }
720 		  (*uncompressed_map)[i] = info;
721 		}
722 	    }
723 	}
724     }
725   return uncompressed_map;
726 }
727 
728 // Stash away info for a number of special sections.
729 // Return true if any of the sections found require local symbols to be read.
730 
731 template<int size, bool big_endian>
732 bool
do_find_special_sections(Read_symbols_data * sd)733 Sized_relobj_file<size, big_endian>::do_find_special_sections(
734     Read_symbols_data* sd)
735 {
736   const unsigned char* const pshdrs = sd->section_headers->data();
737   const unsigned char* namesu = sd->section_names->data();
738   const char* names = reinterpret_cast<const char*>(namesu);
739 
740   if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
741     this->has_eh_frame_ = true;
742 
743   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
744     {
745       Compressed_section_map* compressed_sections =
746 	  build_compressed_section_map<size, big_endian>(
747 	      pshdrs, this->shnum(), names, sd->section_names_size, this, true);
748       if (compressed_sections != NULL)
749         this->set_compressed_sections(compressed_sections);
750     }
751 
752   return (this->has_eh_frame_
753 	  || (!parameters->options().relocatable()
754 	      && parameters->options().gdb_index()
755 	      && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
756 		  || memmem(names, sd->section_names_size, "debug_types",
757 			    13) == 0)));
758 }
759 
760 // Read the sections and symbols from an object file.
761 
762 template<int size, bool big_endian>
763 void
do_read_symbols(Read_symbols_data * sd)764 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
765 {
766   this->base_read_symbols(sd);
767 }
768 
769 // Read the sections and symbols from an object file.  This is common
770 // code for all target-specific overrides of do_read_symbols().
771 
772 template<int size, bool big_endian>
773 void
base_read_symbols(Read_symbols_data * sd)774 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
775 {
776   this->read_section_data(&this->elf_file_, sd);
777 
778   const unsigned char* const pshdrs = sd->section_headers->data();
779 
780   this->find_symtab(pshdrs);
781 
782   bool need_local_symbols = this->do_find_special_sections(sd);
783 
784   sd->symbols = NULL;
785   sd->symbols_size = 0;
786   sd->external_symbols_offset = 0;
787   sd->symbol_names = NULL;
788   sd->symbol_names_size = 0;
789 
790   if (this->symtab_shndx_ == 0)
791     {
792       // No symbol table.  Weird but legal.
793       return;
794     }
795 
796   // Get the symbol table section header.
797   typename This::Shdr symtabshdr(pshdrs
798 				 + this->symtab_shndx_ * This::shdr_size);
799   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
800 
801   // If this object has a .eh_frame section, or if building a .gdb_index
802   // section and there is debug info, we need all the symbols.
803   // Otherwise we only need the external symbols.  While it would be
804   // simpler to just always read all the symbols, I've seen object
805   // files with well over 2000 local symbols, which for a 64-bit
806   // object file format is over 5 pages that we don't need to read
807   // now.
808 
809   const int sym_size = This::sym_size;
810   const unsigned int loccount = symtabshdr.get_sh_info();
811   this->local_symbol_count_ = loccount;
812   this->local_values_.resize(loccount);
813   section_offset_type locsize = loccount * sym_size;
814   off_t dataoff = symtabshdr.get_sh_offset();
815   section_size_type datasize =
816     convert_to_section_size_type(symtabshdr.get_sh_size());
817   off_t extoff = dataoff + locsize;
818   section_size_type extsize = datasize - locsize;
819 
820   off_t readoff = need_local_symbols ? dataoff : extoff;
821   section_size_type readsize = need_local_symbols ? datasize : extsize;
822 
823   if (readsize == 0)
824     {
825       // No external symbols.  Also weird but also legal.
826       return;
827     }
828 
829   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
830 
831   // Read the section header for the symbol names.
832   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
833   if (strtab_shndx >= this->shnum())
834     {
835       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
836       return;
837     }
838   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
839   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
840     {
841       this->error(_("symbol table name section has wrong type: %u"),
842 		  static_cast<unsigned int>(strtabshdr.get_sh_type()));
843       return;
844     }
845 
846   // Read the symbol names.
847   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
848 					       strtabshdr.get_sh_size(),
849 					       false, true);
850 
851   sd->symbols = fvsymtab;
852   sd->symbols_size = readsize;
853   sd->external_symbols_offset = need_local_symbols ? locsize : 0;
854   sd->symbol_names = fvstrtab;
855   sd->symbol_names_size =
856     convert_to_section_size_type(strtabshdr.get_sh_size());
857 }
858 
859 // Return the section index of symbol SYM.  Set *VALUE to its value in
860 // the object file.  Set *IS_ORDINARY if this is an ordinary section
861 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
862 // Note that for a symbol which is not defined in this object file,
863 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
864 // the final value of the symbol in the link.
865 
866 template<int size, bool big_endian>
867 unsigned int
symbol_section_and_value(unsigned int sym,Address * value,bool * is_ordinary)868 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
869 							      Address* value,
870 							      bool* is_ordinary)
871 {
872   section_size_type symbols_size;
873   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
874 							&symbols_size,
875 							false);
876 
877   const size_t count = symbols_size / This::sym_size;
878   gold_assert(sym < count);
879 
880   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
881   *value = elfsym.get_st_value();
882 
883   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
884 }
885 
886 // Return whether to include a section group in the link.  LAYOUT is
887 // used to keep track of which section groups we have already seen.
888 // INDEX is the index of the section group and SHDR is the section
889 // header.  If we do not want to include this group, we set bits in
890 // OMIT for each section which should be discarded.
891 
892 template<int size, bool big_endian>
893 bool
include_section_group(Symbol_table * symtab,Layout * layout,unsigned int index,const char * name,const unsigned char * shdrs,const char * section_names,section_size_type section_names_size,std::vector<bool> * omit)894 Sized_relobj_file<size, big_endian>::include_section_group(
895     Symbol_table* symtab,
896     Layout* layout,
897     unsigned int index,
898     const char* name,
899     const unsigned char* shdrs,
900     const char* section_names,
901     section_size_type section_names_size,
902     std::vector<bool>* omit)
903 {
904   // Read the section contents.
905   typename This::Shdr shdr(shdrs + index * This::shdr_size);
906   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
907 					     shdr.get_sh_size(), true, false);
908   const elfcpp::Elf_Word* pword =
909     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
910 
911   // The first word contains flags.  We only care about COMDAT section
912   // groups.  Other section groups are always included in the link
913   // just like ordinary sections.
914   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
915 
916   // Look up the group signature, which is the name of a symbol.  ELF
917   // uses a symbol name because some group signatures are long, and
918   // the name is generally already in the symbol table, so it makes
919   // sense to put the long string just once in .strtab rather than in
920   // both .strtab and .shstrtab.
921 
922   // Get the appropriate symbol table header (this will normally be
923   // the single SHT_SYMTAB section, but in principle it need not be).
924   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
925   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
926 
927   // Read the symbol table entry.
928   unsigned int symndx = shdr.get_sh_info();
929   if (symndx >= symshdr.get_sh_size() / This::sym_size)
930     {
931       this->error(_("section group %u info %u out of range"),
932 		  index, symndx);
933       return false;
934     }
935   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
936   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
937 					     false);
938   elfcpp::Sym<size, big_endian> sym(psym);
939 
940   // Read the symbol table names.
941   section_size_type symnamelen;
942   const unsigned char* psymnamesu;
943   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
944 				      &symnamelen, true);
945   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
946 
947   // Get the section group signature.
948   if (sym.get_st_name() >= symnamelen)
949     {
950       this->error(_("symbol %u name offset %u out of range"),
951 		  symndx, sym.get_st_name());
952       return false;
953     }
954 
955   std::string signature(psymnames + sym.get_st_name());
956 
957   // It seems that some versions of gas will create a section group
958   // associated with a section symbol, and then fail to give a name to
959   // the section symbol.  In such a case, use the name of the section.
960   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
961     {
962       bool is_ordinary;
963       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
964 						      sym.get_st_shndx(),
965 						      &is_ordinary);
966       if (!is_ordinary || sym_shndx >= this->shnum())
967 	{
968 	  this->error(_("symbol %u invalid section index %u"),
969 		      symndx, sym_shndx);
970 	  return false;
971 	}
972       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
973       if (member_shdr.get_sh_name() < section_names_size)
974 	signature = section_names + member_shdr.get_sh_name();
975     }
976 
977   // Record this section group in the layout, and see whether we've already
978   // seen one with the same signature.
979   bool include_group;
980   bool is_comdat;
981   Kept_section* kept_section = NULL;
982 
983   if ((flags & elfcpp::GRP_COMDAT) == 0)
984     {
985       include_group = true;
986       is_comdat = false;
987     }
988   else
989     {
990       include_group = layout->find_or_add_kept_section(signature,
991 						       this, index, true,
992 						       true, &kept_section);
993       is_comdat = true;
994     }
995 
996   if (is_comdat && include_group)
997     {
998       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
999       if (incremental_inputs != NULL)
1000 	incremental_inputs->report_comdat_group(this, signature.c_str());
1001     }
1002 
1003   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1004 
1005   std::vector<unsigned int> shndxes;
1006   bool relocate_group = include_group && parameters->options().relocatable();
1007   if (relocate_group)
1008     shndxes.reserve(count - 1);
1009 
1010   for (size_t i = 1; i < count; ++i)
1011     {
1012       elfcpp::Elf_Word shndx =
1013 	this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1014 
1015       if (relocate_group)
1016 	shndxes.push_back(shndx);
1017 
1018       if (shndx >= this->shnum())
1019 	{
1020 	  this->error(_("section %u in section group %u out of range"),
1021 		      shndx, index);
1022 	  continue;
1023 	}
1024 
1025       // Check for an earlier section number, since we're going to get
1026       // it wrong--we may have already decided to include the section.
1027       if (shndx < index)
1028 	this->error(_("invalid section group %u refers to earlier section %u"),
1029 		    index, shndx);
1030 
1031       // Get the name of the member section.
1032       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1033       if (member_shdr.get_sh_name() >= section_names_size)
1034 	{
1035 	  // This is an error, but it will be diagnosed eventually
1036 	  // in do_layout, so we don't need to do anything here but
1037 	  // ignore it.
1038 	  continue;
1039 	}
1040       std::string mname(section_names + member_shdr.get_sh_name());
1041 
1042       if (include_group)
1043 	{
1044 	  if (is_comdat)
1045 	    kept_section->add_comdat_section(mname, shndx,
1046 					     member_shdr.get_sh_size());
1047 	}
1048       else
1049 	{
1050 	  (*omit)[shndx] = true;
1051 
1052 	  if (is_comdat)
1053 	    {
1054 	      Relobj* kept_object = kept_section->object();
1055 	      if (kept_section->is_comdat())
1056 		{
1057 		  // Find the corresponding kept section, and store
1058 		  // that info in the discarded section table.
1059 		  unsigned int kept_shndx;
1060 		  uint64_t kept_size;
1061 		  if (kept_section->find_comdat_section(mname, &kept_shndx,
1062 							&kept_size))
1063 		    {
1064 		      // We don't keep a mapping for this section if
1065 		      // it has a different size.  The mapping is only
1066 		      // used for relocation processing, and we don't
1067 		      // want to treat the sections as similar if the
1068 		      // sizes are different.  Checking the section
1069 		      // size is the approach used by the GNU linker.
1070 		      if (kept_size == member_shdr.get_sh_size())
1071 			this->set_kept_comdat_section(shndx, kept_object,
1072 						      kept_shndx);
1073 		    }
1074 		}
1075 	      else
1076 		{
1077 		  // The existing section is a linkonce section.  Add
1078 		  // a mapping if there is exactly one section in the
1079 		  // group (which is true when COUNT == 2) and if it
1080 		  // is the same size.
1081 		  if (count == 2
1082 		      && (kept_section->linkonce_size()
1083 			  == member_shdr.get_sh_size()))
1084 		    this->set_kept_comdat_section(shndx, kept_object,
1085 						  kept_section->shndx());
1086 		}
1087 	    }
1088 	}
1089     }
1090 
1091   if (relocate_group)
1092     layout->layout_group(symtab, this, index, name, signature.c_str(),
1093 			 shdr, flags, &shndxes);
1094 
1095   return include_group;
1096 }
1097 
1098 // Whether to include a linkonce section in the link.  NAME is the
1099 // name of the section and SHDR is the section header.
1100 
1101 // Linkonce sections are a GNU extension implemented in the original
1102 // GNU linker before section groups were defined.  The semantics are
1103 // that we only include one linkonce section with a given name.  The
1104 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1105 // where T is the type of section and SYMNAME is the name of a symbol.
1106 // In an attempt to make linkonce sections interact well with section
1107 // groups, we try to identify SYMNAME and use it like a section group
1108 // signature.  We want to block section groups with that signature,
1109 // but not other linkonce sections with that signature.  We also use
1110 // the full name of the linkonce section as a normal section group
1111 // signature.
1112 
1113 template<int size, bool big_endian>
1114 bool
include_linkonce_section(Layout * layout,unsigned int index,const char * name,const elfcpp::Shdr<size,big_endian> & shdr)1115 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1116     Layout* layout,
1117     unsigned int index,
1118     const char* name,
1119     const elfcpp::Shdr<size, big_endian>& shdr)
1120 {
1121   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1122   // In general the symbol name we want will be the string following
1123   // the last '.'.  However, we have to handle the case of
1124   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1125   // some versions of gcc.  So we use a heuristic: if the name starts
1126   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1127   // we look for the last '.'.  We can't always simply skip
1128   // ".gnu.linkonce.X", because we have to deal with cases like
1129   // ".gnu.linkonce.d.rel.ro.local".
1130   const char* const linkonce_t = ".gnu.linkonce.t.";
1131   const char* symname;
1132   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1133     symname = name + strlen(linkonce_t);
1134   else
1135     symname = strrchr(name, '.') + 1;
1136   std::string sig1(symname);
1137   std::string sig2(name);
1138   Kept_section* kept1;
1139   Kept_section* kept2;
1140   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1141 						   false, &kept1);
1142   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1143 						   true, &kept2);
1144 
1145   if (!include2)
1146     {
1147       // We are not including this section because we already saw the
1148       // name of the section as a signature.  This normally implies
1149       // that the kept section is another linkonce section.  If it is
1150       // the same size, record it as the section which corresponds to
1151       // this one.
1152       if (kept2->object() != NULL
1153 	  && !kept2->is_comdat()
1154 	  && kept2->linkonce_size() == sh_size)
1155 	this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1156     }
1157   else if (!include1)
1158     {
1159       // The section is being discarded on the basis of its symbol
1160       // name.  This means that the corresponding kept section was
1161       // part of a comdat group, and it will be difficult to identify
1162       // the specific section within that group that corresponds to
1163       // this linkonce section.  We'll handle the simple case where
1164       // the group has only one member section.  Otherwise, it's not
1165       // worth the effort.
1166       unsigned int kept_shndx;
1167       uint64_t kept_size;
1168       if (kept1->object() != NULL
1169 	  && kept1->is_comdat()
1170 	  && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1171 	  && kept_size == sh_size)
1172 	this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1173     }
1174   else
1175     {
1176       kept1->set_linkonce_size(sh_size);
1177       kept2->set_linkonce_size(sh_size);
1178     }
1179 
1180   return include1 && include2;
1181 }
1182 
1183 // Layout an input section.
1184 
1185 template<int size, bool big_endian>
1186 inline void
layout_section(Layout * layout,unsigned int shndx,const char * name,const typename This::Shdr & shdr,unsigned int reloc_shndx,unsigned int reloc_type)1187 Sized_relobj_file<size, big_endian>::layout_section(
1188     Layout* layout,
1189     unsigned int shndx,
1190     const char* name,
1191     const typename This::Shdr& shdr,
1192     unsigned int reloc_shndx,
1193     unsigned int reloc_type)
1194 {
1195   off_t offset;
1196   Output_section* os = layout->layout(this, shndx, name, shdr,
1197 					  reloc_shndx, reloc_type, &offset);
1198 
1199   this->output_sections()[shndx] = os;
1200   if (offset == -1)
1201     this->section_offsets()[shndx] = invalid_address;
1202   else
1203     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1204 
1205   // If this section requires special handling, and if there are
1206   // relocs that apply to it, then we must do the special handling
1207   // before we apply the relocs.
1208   if (offset == -1 && reloc_shndx != 0)
1209     this->set_relocs_must_follow_section_writes();
1210 }
1211 
1212 // Layout an input .eh_frame section.
1213 
1214 template<int size, bool big_endian>
1215 void
layout_eh_frame_section(Layout * layout,const unsigned char * symbols_data,section_size_type symbols_size,const unsigned char * symbol_names_data,section_size_type symbol_names_size,unsigned int shndx,const typename This::Shdr & shdr,unsigned int reloc_shndx,unsigned int reloc_type)1216 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1217     Layout* layout,
1218     const unsigned char* symbols_data,
1219     section_size_type symbols_size,
1220     const unsigned char* symbol_names_data,
1221     section_size_type symbol_names_size,
1222     unsigned int shndx,
1223     const typename This::Shdr& shdr,
1224     unsigned int reloc_shndx,
1225     unsigned int reloc_type)
1226 {
1227   gold_assert(this->has_eh_frame_);
1228 
1229   off_t offset;
1230   Output_section* os = layout->layout_eh_frame(this,
1231 					       symbols_data,
1232 					       symbols_size,
1233 					       symbol_names_data,
1234 					       symbol_names_size,
1235 					       shndx,
1236 					       shdr,
1237 					       reloc_shndx,
1238 					       reloc_type,
1239 					       &offset);
1240   this->output_sections()[shndx] = os;
1241   if (os == NULL || offset == -1)
1242     {
1243       // An object can contain at most one section holding exception
1244       // frame information.
1245       gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1246       this->discarded_eh_frame_shndx_ = shndx;
1247       this->section_offsets()[shndx] = invalid_address;
1248     }
1249   else
1250     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1251 
1252   // If this section requires special handling, and if there are
1253   // relocs that aply to it, then we must do the special handling
1254   // before we apply the relocs.
1255   if (os != NULL && offset == -1 && reloc_shndx != 0)
1256     this->set_relocs_must_follow_section_writes();
1257 }
1258 
1259 // Lay out the input sections.  We walk through the sections and check
1260 // whether they should be included in the link.  If they should, we
1261 // pass them to the Layout object, which will return an output section
1262 // and an offset.
1263 // This function is called twice sometimes, two passes, when mapping
1264 // of input sections to output sections must be delayed.
1265 // This is true for the following :
1266 // * Garbage collection (--gc-sections): Some input sections will be
1267 // discarded and hence the assignment must wait until the second pass.
1268 // In the first pass,  it is for setting up some sections as roots to
1269 // a work-list for --gc-sections and to do comdat processing.
1270 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1271 // will be folded and hence the assignment must wait.
1272 // * Using plugins to map some sections to unique segments: Mapping
1273 // some sections to unique segments requires mapping them to unique
1274 // output sections too.  This can be done via plugins now and this
1275 // information is not available in the first pass.
1276 
1277 template<int size, bool big_endian>
1278 void
do_layout(Symbol_table * symtab,Layout * layout,Read_symbols_data * sd)1279 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1280 					       Layout* layout,
1281 					       Read_symbols_data* sd)
1282 {
1283   const unsigned int shnum = this->shnum();
1284 
1285   /* Should this function be called twice?  */
1286   bool is_two_pass = (parameters->options().gc_sections()
1287 		      || parameters->options().icf_enabled()
1288 		      || layout->is_unique_segment_for_sections_specified());
1289 
1290   /* Only one of is_pass_one and is_pass_two is true.  Both are false when
1291      a two-pass approach is not needed.  */
1292   bool is_pass_one = false;
1293   bool is_pass_two = false;
1294 
1295   Symbols_data* gc_sd = NULL;
1296 
1297   /* Check if do_layout needs to be two-pass.  If so, find out which pass
1298      should happen.  In the first pass, the data in sd is saved to be used
1299      later in the second pass.  */
1300   if (is_two_pass)
1301     {
1302       gc_sd = this->get_symbols_data();
1303       if (gc_sd == NULL)
1304 	{
1305 	  gold_assert(sd != NULL);
1306 	  is_pass_one = true;
1307 	}
1308       else
1309 	{
1310 	  if (parameters->options().gc_sections())
1311 	    gold_assert(symtab->gc()->is_worklist_ready());
1312 	  if (parameters->options().icf_enabled())
1313 	    gold_assert(symtab->icf()->is_icf_ready());
1314 	  is_pass_two = true;
1315 	}
1316     }
1317 
1318   if (shnum == 0)
1319     return;
1320 
1321   if (is_pass_one)
1322     {
1323       // During garbage collection save the symbols data to use it when
1324       // re-entering this function.
1325       gc_sd = new Symbols_data;
1326       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1327       this->set_symbols_data(gc_sd);
1328     }
1329 
1330   const unsigned char* section_headers_data = NULL;
1331   section_size_type section_names_size;
1332   const unsigned char* symbols_data = NULL;
1333   section_size_type symbols_size;
1334   const unsigned char* symbol_names_data = NULL;
1335   section_size_type symbol_names_size;
1336 
1337   if (is_two_pass)
1338     {
1339       section_headers_data = gc_sd->section_headers_data;
1340       section_names_size = gc_sd->section_names_size;
1341       symbols_data = gc_sd->symbols_data;
1342       symbols_size = gc_sd->symbols_size;
1343       symbol_names_data = gc_sd->symbol_names_data;
1344       symbol_names_size = gc_sd->symbol_names_size;
1345     }
1346   else
1347     {
1348       section_headers_data = sd->section_headers->data();
1349       section_names_size = sd->section_names_size;
1350       if (sd->symbols != NULL)
1351 	symbols_data = sd->symbols->data();
1352       symbols_size = sd->symbols_size;
1353       if (sd->symbol_names != NULL)
1354 	symbol_names_data = sd->symbol_names->data();
1355       symbol_names_size = sd->symbol_names_size;
1356     }
1357 
1358   // Get the section headers.
1359   const unsigned char* shdrs = section_headers_data;
1360   const unsigned char* pshdrs;
1361 
1362   // Get the section names.
1363   const unsigned char* pnamesu = (is_two_pass
1364 				  ? gc_sd->section_names_data
1365 				  : sd->section_names->data());
1366 
1367   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1368 
1369   // If any input files have been claimed by plugins, we need to defer
1370   // actual layout until the replacement files have arrived.
1371   const bool should_defer_layout =
1372       (parameters->options().has_plugins()
1373        && parameters->options().plugins()->should_defer_layout());
1374   unsigned int num_sections_to_defer = 0;
1375 
1376   // For each section, record the index of the reloc section if any.
1377   // Use 0 to mean that there is no reloc section, -1U to mean that
1378   // there is more than one.
1379   std::vector<unsigned int> reloc_shndx(shnum, 0);
1380   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1381   // Skip the first, dummy, section.
1382   pshdrs = shdrs + This::shdr_size;
1383   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1384     {
1385       typename This::Shdr shdr(pshdrs);
1386 
1387       // Count the number of sections whose layout will be deferred.
1388       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1389 	++num_sections_to_defer;
1390 
1391       unsigned int sh_type = shdr.get_sh_type();
1392       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1393 	{
1394 	  unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1395 	  if (target_shndx == 0 || target_shndx >= shnum)
1396 	    {
1397 	      this->error(_("relocation section %u has bad info %u"),
1398 			  i, target_shndx);
1399 	      continue;
1400 	    }
1401 
1402 	  if (reloc_shndx[target_shndx] != 0)
1403 	    reloc_shndx[target_shndx] = -1U;
1404 	  else
1405 	    {
1406 	      reloc_shndx[target_shndx] = i;
1407 	      reloc_type[target_shndx] = sh_type;
1408 	    }
1409 	}
1410     }
1411 
1412   Output_sections& out_sections(this->output_sections());
1413   std::vector<Address>& out_section_offsets(this->section_offsets());
1414 
1415   if (!is_pass_two)
1416     {
1417       out_sections.resize(shnum);
1418       out_section_offsets.resize(shnum);
1419     }
1420 
1421   // If we are only linking for symbols, then there is nothing else to
1422   // do here.
1423   if (this->input_file()->just_symbols())
1424     {
1425       if (!is_pass_two)
1426 	{
1427 	  delete sd->section_headers;
1428 	  sd->section_headers = NULL;
1429 	  delete sd->section_names;
1430 	  sd->section_names = NULL;
1431 	}
1432       return;
1433     }
1434 
1435   if (num_sections_to_defer > 0)
1436     {
1437       parameters->options().plugins()->add_deferred_layout_object(this);
1438       this->deferred_layout_.reserve(num_sections_to_defer);
1439       this->is_deferred_layout_ = true;
1440     }
1441 
1442   // Whether we've seen a .note.GNU-stack section.
1443   bool seen_gnu_stack = false;
1444   // The flags of a .note.GNU-stack section.
1445   uint64_t gnu_stack_flags = 0;
1446 
1447   // Keep track of which sections to omit.
1448   std::vector<bool> omit(shnum, false);
1449 
1450   // Keep track of reloc sections when emitting relocations.
1451   const bool relocatable = parameters->options().relocatable();
1452   const bool emit_relocs = (relocatable
1453 			    || parameters->options().emit_relocs());
1454   std::vector<unsigned int> reloc_sections;
1455 
1456   // Keep track of .eh_frame sections.
1457   std::vector<unsigned int> eh_frame_sections;
1458 
1459   // Keep track of .debug_info and .debug_types sections.
1460   std::vector<unsigned int> debug_info_sections;
1461   std::vector<unsigned int> debug_types_sections;
1462 
1463   // Skip the first, dummy, section.
1464   pshdrs = shdrs + This::shdr_size;
1465   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1466     {
1467       typename This::Shdr shdr(pshdrs);
1468 
1469       if (shdr.get_sh_name() >= section_names_size)
1470 	{
1471 	  this->error(_("bad section name offset for section %u: %lu"),
1472 		      i, static_cast<unsigned long>(shdr.get_sh_name()));
1473 	  return;
1474 	}
1475 
1476       const char* name = pnames + shdr.get_sh_name();
1477 
1478       if (!is_pass_two)
1479 	{
1480 	  if (this->handle_gnu_warning_section(name, i, symtab))
1481 	    {
1482 	      if (!relocatable && !parameters->options().shared())
1483 		omit[i] = true;
1484 	    }
1485 
1486 	  // The .note.GNU-stack section is special.  It gives the
1487 	  // protection flags that this object file requires for the stack
1488 	  // in memory.
1489 	  if (strcmp(name, ".note.GNU-stack") == 0)
1490 	    {
1491 	      seen_gnu_stack = true;
1492 	      gnu_stack_flags |= shdr.get_sh_flags();
1493 	      omit[i] = true;
1494 	    }
1495 
1496 	  // The .note.GNU-split-stack section is also special.  It
1497 	  // indicates that the object was compiled with
1498 	  // -fsplit-stack.
1499 	  if (this->handle_split_stack_section(name))
1500 	    {
1501 	      if (!relocatable && !parameters->options().shared())
1502 		omit[i] = true;
1503 	    }
1504 
1505 	  // Skip attributes section.
1506 	  if (parameters->target().is_attributes_section(name))
1507 	    {
1508 	      omit[i] = true;
1509 	    }
1510 
1511 	  bool discard = omit[i];
1512 	  if (!discard)
1513 	    {
1514 	      if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1515 		{
1516 		  if (!this->include_section_group(symtab, layout, i, name,
1517 						   shdrs, pnames,
1518 						   section_names_size,
1519 						   &omit))
1520 		    discard = true;
1521 		}
1522 	      else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1523 		       && Layout::is_linkonce(name))
1524 		{
1525 		  if (!this->include_linkonce_section(layout, i, name, shdr))
1526 		    discard = true;
1527 		}
1528 	    }
1529 
1530 	  // Add the section to the incremental inputs layout.
1531 	  Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1532 	  if (incremental_inputs != NULL
1533 	      && !discard
1534 	      && can_incremental_update(shdr.get_sh_type()))
1535 	    {
1536 	      off_t sh_size = shdr.get_sh_size();
1537 	      section_size_type uncompressed_size;
1538 	      if (this->section_is_compressed(i, &uncompressed_size))
1539 		sh_size = uncompressed_size;
1540 	      incremental_inputs->report_input_section(this, i, name, sh_size);
1541 	    }
1542 
1543 	  if (discard)
1544 	    {
1545 	      // Do not include this section in the link.
1546 	      out_sections[i] = NULL;
1547 	      out_section_offsets[i] = invalid_address;
1548 	      continue;
1549 	    }
1550 	}
1551 
1552       if (is_pass_one && parameters->options().gc_sections())
1553 	{
1554 	  if (this->is_section_name_included(name)
1555 	      || layout->keep_input_section (this, name)
1556 	      || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1557 	      || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1558 	    {
1559 	      symtab->gc()->worklist().push(Section_id(this, i));
1560 	    }
1561 	  // If the section name XXX can be represented as a C identifier
1562 	  // it cannot be discarded if there are references to
1563 	  // __start_XXX and __stop_XXX symbols.  These need to be
1564 	  // specially handled.
1565 	  if (is_cident(name))
1566 	    {
1567 	      symtab->gc()->add_cident_section(name, Section_id(this, i));
1568 	    }
1569 	}
1570 
1571       // When doing a relocatable link we are going to copy input
1572       // reloc sections into the output.  We only want to copy the
1573       // ones associated with sections which are not being discarded.
1574       // However, we don't know that yet for all sections.  So save
1575       // reloc sections and process them later. Garbage collection is
1576       // not triggered when relocatable code is desired.
1577       if (emit_relocs
1578 	  && (shdr.get_sh_type() == elfcpp::SHT_REL
1579 	      || shdr.get_sh_type() == elfcpp::SHT_RELA))
1580 	{
1581 	  reloc_sections.push_back(i);
1582 	  continue;
1583 	}
1584 
1585       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1586 	continue;
1587 
1588       // The .eh_frame section is special.  It holds exception frame
1589       // information that we need to read in order to generate the
1590       // exception frame header.  We process these after all the other
1591       // sections so that the exception frame reader can reliably
1592       // determine which sections are being discarded, and discard the
1593       // corresponding information.
1594       if (!relocatable
1595 	  && strcmp(name, ".eh_frame") == 0
1596 	  && this->check_eh_frame_flags(&shdr))
1597 	{
1598 	  if (is_pass_one)
1599 	    {
1600 	      if (this->is_deferred_layout())
1601 		out_sections[i] = reinterpret_cast<Output_section*>(2);
1602 	      else
1603 		out_sections[i] = reinterpret_cast<Output_section*>(1);
1604 	      out_section_offsets[i] = invalid_address;
1605 	    }
1606 	  else if (this->is_deferred_layout())
1607 	    this->deferred_layout_.push_back(Deferred_layout(i, name,
1608 							     pshdrs,
1609 							     reloc_shndx[i],
1610 							     reloc_type[i]));
1611 	  else
1612 	    eh_frame_sections.push_back(i);
1613 	  continue;
1614 	}
1615 
1616       if (is_pass_two && parameters->options().gc_sections())
1617 	{
1618 	  // This is executed during the second pass of garbage
1619 	  // collection. do_layout has been called before and some
1620 	  // sections have been already discarded. Simply ignore
1621 	  // such sections this time around.
1622 	  if (out_sections[i] == NULL)
1623 	    {
1624 	      gold_assert(out_section_offsets[i] == invalid_address);
1625 	      continue;
1626 	    }
1627 	  if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1628 	      && symtab->gc()->is_section_garbage(this, i))
1629 	      {
1630 		if (parameters->options().print_gc_sections())
1631 		  gold_info(_("%s: removing unused section from '%s'"
1632 			      " in file '%s'"),
1633 			    program_name, this->section_name(i).c_str(),
1634 			    this->name().c_str());
1635 		out_sections[i] = NULL;
1636 		out_section_offsets[i] = invalid_address;
1637 		continue;
1638 	      }
1639 	}
1640 
1641       if (is_pass_two && parameters->options().icf_enabled())
1642 	{
1643 	  if (out_sections[i] == NULL)
1644 	    {
1645 	      gold_assert(out_section_offsets[i] == invalid_address);
1646 	      continue;
1647 	    }
1648 	  if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1649 	      && symtab->icf()->is_section_folded(this, i))
1650 	      {
1651 		if (parameters->options().print_icf_sections())
1652 		  {
1653 		    Section_id folded =
1654 				symtab->icf()->get_folded_section(this, i);
1655 		    Relobj* folded_obj =
1656 				reinterpret_cast<Relobj*>(folded.first);
1657 		    gold_info(_("%s: ICF folding section '%s' in file '%s' "
1658 				"into '%s' in file '%s'"),
1659 			      program_name, this->section_name(i).c_str(),
1660 			      this->name().c_str(),
1661 			      folded_obj->section_name(folded.second).c_str(),
1662 			      folded_obj->name().c_str());
1663 		  }
1664 		out_sections[i] = NULL;
1665 		out_section_offsets[i] = invalid_address;
1666 		continue;
1667 	      }
1668 	}
1669 
1670       // Defer layout here if input files are claimed by plugins.  When gc
1671       // is turned on this function is called twice; we only want to do this
1672       // on the first pass.
1673       if (!is_pass_two
1674 	  && this->is_deferred_layout()
1675 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1676 	{
1677 	  this->deferred_layout_.push_back(Deferred_layout(i, name,
1678 							   pshdrs,
1679 							   reloc_shndx[i],
1680 							   reloc_type[i]));
1681 	  // Put dummy values here; real values will be supplied by
1682 	  // do_layout_deferred_sections.
1683 	  out_sections[i] = reinterpret_cast<Output_section*>(2);
1684 	  out_section_offsets[i] = invalid_address;
1685 	  continue;
1686 	}
1687 
1688       // During gc_pass_two if a section that was previously deferred is
1689       // found, do not layout the section as layout_deferred_sections will
1690       // do it later from gold.cc.
1691       if (is_pass_two
1692 	  && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1693 	continue;
1694 
1695       if (is_pass_one)
1696 	{
1697 	  // This is during garbage collection. The out_sections are
1698 	  // assigned in the second call to this function.
1699 	  out_sections[i] = reinterpret_cast<Output_section*>(1);
1700 	  out_section_offsets[i] = invalid_address;
1701 	}
1702       else
1703 	{
1704 	  // When garbage collection is switched on the actual layout
1705 	  // only happens in the second call.
1706 	  this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1707 			       reloc_type[i]);
1708 
1709 	  // When generating a .gdb_index section, we do additional
1710 	  // processing of .debug_info and .debug_types sections after all
1711 	  // the other sections for the same reason as above.
1712 	  if (!relocatable
1713 	      && parameters->options().gdb_index()
1714 	      && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1715 	    {
1716 	      if (strcmp(name, ".debug_info") == 0
1717 		  || strcmp(name, ".zdebug_info") == 0)
1718 		debug_info_sections.push_back(i);
1719 	      else if (strcmp(name, ".debug_types") == 0
1720 		       || strcmp(name, ".zdebug_types") == 0)
1721 		debug_types_sections.push_back(i);
1722 	    }
1723 	}
1724     }
1725 
1726   if (!is_pass_two)
1727     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1728 
1729   // Handle the .eh_frame sections after the other sections.
1730   gold_assert(!is_pass_one || eh_frame_sections.empty());
1731   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1732        p != eh_frame_sections.end();
1733        ++p)
1734     {
1735       unsigned int i = *p;
1736       const unsigned char* pshdr;
1737       pshdr = section_headers_data + i * This::shdr_size;
1738       typename This::Shdr shdr(pshdr);
1739 
1740       this->layout_eh_frame_section(layout,
1741 				    symbols_data,
1742 				    symbols_size,
1743 				    symbol_names_data,
1744 				    symbol_names_size,
1745 				    i,
1746 				    shdr,
1747 				    reloc_shndx[i],
1748 				    reloc_type[i]);
1749     }
1750 
1751   // When doing a relocatable link handle the reloc sections at the
1752   // end.  Garbage collection  and Identical Code Folding is not
1753   // turned on for relocatable code.
1754   if (emit_relocs)
1755     this->size_relocatable_relocs();
1756 
1757   gold_assert(!is_two_pass || reloc_sections.empty());
1758 
1759   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1760        p != reloc_sections.end();
1761        ++p)
1762     {
1763       unsigned int i = *p;
1764       const unsigned char* pshdr;
1765       pshdr = section_headers_data + i * This::shdr_size;
1766       typename This::Shdr shdr(pshdr);
1767 
1768       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1769       if (data_shndx >= shnum)
1770 	{
1771 	  // We already warned about this above.
1772 	  continue;
1773 	}
1774 
1775       Output_section* data_section = out_sections[data_shndx];
1776       if (data_section == reinterpret_cast<Output_section*>(2))
1777 	{
1778 	  if (is_pass_two)
1779 	    continue;
1780 	  // The layout for the data section was deferred, so we need
1781 	  // to defer the relocation section, too.
1782 	  const char* name = pnames + shdr.get_sh_name();
1783 	  this->deferred_layout_relocs_.push_back(
1784 	      Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1785 	  out_sections[i] = reinterpret_cast<Output_section*>(2);
1786 	  out_section_offsets[i] = invalid_address;
1787 	  continue;
1788 	}
1789       if (data_section == NULL)
1790 	{
1791 	  out_sections[i] = NULL;
1792 	  out_section_offsets[i] = invalid_address;
1793 	  continue;
1794 	}
1795 
1796       Relocatable_relocs* rr = new Relocatable_relocs();
1797       this->set_relocatable_relocs(i, rr);
1798 
1799       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1800 						rr);
1801       out_sections[i] = os;
1802       out_section_offsets[i] = invalid_address;
1803     }
1804 
1805   // When building a .gdb_index section, scan the .debug_info and
1806   // .debug_types sections.
1807   gold_assert(!is_pass_one
1808 	      || (debug_info_sections.empty() && debug_types_sections.empty()));
1809   for (std::vector<unsigned int>::const_iterator p
1810 	   = debug_info_sections.begin();
1811        p != debug_info_sections.end();
1812        ++p)
1813     {
1814       unsigned int i = *p;
1815       layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1816 			       i, reloc_shndx[i], reloc_type[i]);
1817     }
1818   for (std::vector<unsigned int>::const_iterator p
1819 	   = debug_types_sections.begin();
1820        p != debug_types_sections.end();
1821        ++p)
1822     {
1823       unsigned int i = *p;
1824       layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1825 			       i, reloc_shndx[i], reloc_type[i]);
1826     }
1827 
1828   if (is_pass_two)
1829     {
1830       delete[] gc_sd->section_headers_data;
1831       delete[] gc_sd->section_names_data;
1832       delete[] gc_sd->symbols_data;
1833       delete[] gc_sd->symbol_names_data;
1834       this->set_symbols_data(NULL);
1835     }
1836   else
1837     {
1838       delete sd->section_headers;
1839       sd->section_headers = NULL;
1840       delete sd->section_names;
1841       sd->section_names = NULL;
1842     }
1843 }
1844 
1845 // Layout sections whose layout was deferred while waiting for
1846 // input files from a plugin.
1847 
1848 template<int size, bool big_endian>
1849 void
do_layout_deferred_sections(Layout * layout)1850 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1851 {
1852   typename std::vector<Deferred_layout>::iterator deferred;
1853 
1854   for (deferred = this->deferred_layout_.begin();
1855        deferred != this->deferred_layout_.end();
1856        ++deferred)
1857     {
1858       typename This::Shdr shdr(deferred->shdr_data_);
1859 
1860       if (!parameters->options().relocatable()
1861 	  && deferred->name_ == ".eh_frame"
1862 	  && this->check_eh_frame_flags(&shdr))
1863 	{
1864 	  // Checking is_section_included is not reliable for
1865 	  // .eh_frame sections, because they do not have an output
1866 	  // section.  This is not a problem normally because we call
1867 	  // layout_eh_frame_section unconditionally, but when
1868 	  // deferring sections that is not true.  We don't want to
1869 	  // keep all .eh_frame sections because that will cause us to
1870 	  // keep all sections that they refer to, which is the wrong
1871 	  // way around.  Instead, the eh_frame code will discard
1872 	  // .eh_frame sections that refer to discarded sections.
1873 
1874 	  // Reading the symbols again here may be slow.
1875 	  Read_symbols_data sd;
1876 	  this->base_read_symbols(&sd);
1877 	  this->layout_eh_frame_section(layout,
1878 					sd.symbols->data(),
1879 					sd.symbols_size,
1880 					sd.symbol_names->data(),
1881 					sd.symbol_names_size,
1882 					deferred->shndx_,
1883 					shdr,
1884 					deferred->reloc_shndx_,
1885 					deferred->reloc_type_);
1886 	  continue;
1887 	}
1888 
1889       // If the section is not included, it is because the garbage collector
1890       // decided it is not needed.  Avoid reverting that decision.
1891       if (!this->is_section_included(deferred->shndx_))
1892 	continue;
1893 
1894       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1895 			   shdr, deferred->reloc_shndx_,
1896 			   deferred->reloc_type_);
1897     }
1898 
1899   this->deferred_layout_.clear();
1900 
1901   // Now handle the deferred relocation sections.
1902 
1903   Output_sections& out_sections(this->output_sections());
1904   std::vector<Address>& out_section_offsets(this->section_offsets());
1905 
1906   for (deferred = this->deferred_layout_relocs_.begin();
1907        deferred != this->deferred_layout_relocs_.end();
1908        ++deferred)
1909     {
1910       unsigned int shndx = deferred->shndx_;
1911       typename This::Shdr shdr(deferred->shdr_data_);
1912       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1913 
1914       Output_section* data_section = out_sections[data_shndx];
1915       if (data_section == NULL)
1916 	{
1917 	  out_sections[shndx] = NULL;
1918 	  out_section_offsets[shndx] = invalid_address;
1919 	  continue;
1920 	}
1921 
1922       Relocatable_relocs* rr = new Relocatable_relocs();
1923       this->set_relocatable_relocs(shndx, rr);
1924 
1925       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1926 						data_section, rr);
1927       out_sections[shndx] = os;
1928       out_section_offsets[shndx] = invalid_address;
1929     }
1930 }
1931 
1932 // Add the symbols to the symbol table.
1933 
1934 template<int size, bool big_endian>
1935 void
do_add_symbols(Symbol_table * symtab,Read_symbols_data * sd,Layout *)1936 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1937 						    Read_symbols_data* sd,
1938 						    Layout*)
1939 {
1940   if (sd->symbols == NULL)
1941     {
1942       gold_assert(sd->symbol_names == NULL);
1943       return;
1944     }
1945 
1946   const int sym_size = This::sym_size;
1947   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1948 		     / sym_size);
1949   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1950     {
1951       this->error(_("size of symbols is not multiple of symbol size"));
1952       return;
1953     }
1954 
1955   this->symbols_.resize(symcount);
1956 
1957   const char* sym_names =
1958     reinterpret_cast<const char*>(sd->symbol_names->data());
1959   symtab->add_from_relobj(this,
1960 			  sd->symbols->data() + sd->external_symbols_offset,
1961 			  symcount, this->local_symbol_count_,
1962 			  sym_names, sd->symbol_names_size,
1963 			  &this->symbols_,
1964 			  &this->defined_count_);
1965 
1966   delete sd->symbols;
1967   sd->symbols = NULL;
1968   delete sd->symbol_names;
1969   sd->symbol_names = NULL;
1970 }
1971 
1972 // Find out if this object, that is a member of a lib group, should be included
1973 // in the link. We check every symbol defined by this object. If the symbol
1974 // table has a strong undefined reference to that symbol, we have to include
1975 // the object.
1976 
1977 template<int size, bool big_endian>
1978 Archive::Should_include
do_should_include_member(Symbol_table * symtab,Layout * layout,Read_symbols_data * sd,std::string * why)1979 Sized_relobj_file<size, big_endian>::do_should_include_member(
1980     Symbol_table* symtab,
1981     Layout* layout,
1982     Read_symbols_data* sd,
1983     std::string* why)
1984 {
1985   char* tmpbuf = NULL;
1986   size_t tmpbuflen = 0;
1987   const char* sym_names =
1988       reinterpret_cast<const char*>(sd->symbol_names->data());
1989   const unsigned char* syms =
1990       sd->symbols->data() + sd->external_symbols_offset;
1991   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1992   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1993 			 / sym_size);
1994 
1995   const unsigned char* p = syms;
1996 
1997   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1998     {
1999       elfcpp::Sym<size, big_endian> sym(p);
2000       unsigned int st_shndx = sym.get_st_shndx();
2001       if (st_shndx == elfcpp::SHN_UNDEF)
2002 	continue;
2003 
2004       unsigned int st_name = sym.get_st_name();
2005       const char* name = sym_names + st_name;
2006       Symbol* symbol;
2007       Archive::Should_include t = Archive::should_include_member(symtab,
2008 								 layout,
2009 								 name,
2010 								 &symbol, why,
2011 								 &tmpbuf,
2012 								 &tmpbuflen);
2013       if (t == Archive::SHOULD_INCLUDE_YES)
2014 	{
2015 	  if (tmpbuf != NULL)
2016 	    free(tmpbuf);
2017 	  return t;
2018 	}
2019     }
2020   if (tmpbuf != NULL)
2021     free(tmpbuf);
2022   return Archive::SHOULD_INCLUDE_UNKNOWN;
2023 }
2024 
2025 // Iterate over global defined symbols, calling a visitor class V for each.
2026 
2027 template<int size, bool big_endian>
2028 void
do_for_all_global_symbols(Read_symbols_data * sd,Library_base::Symbol_visitor_base * v)2029 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2030     Read_symbols_data* sd,
2031     Library_base::Symbol_visitor_base* v)
2032 {
2033   const char* sym_names =
2034       reinterpret_cast<const char*>(sd->symbol_names->data());
2035   const unsigned char* syms =
2036       sd->symbols->data() + sd->external_symbols_offset;
2037   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2038   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2039 		     / sym_size);
2040   const unsigned char* p = syms;
2041 
2042   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2043     {
2044       elfcpp::Sym<size, big_endian> sym(p);
2045       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2046 	v->visit(sym_names + sym.get_st_name());
2047     }
2048 }
2049 
2050 // Return whether the local symbol SYMNDX has a PLT offset.
2051 
2052 template<int size, bool big_endian>
2053 bool
local_has_plt_offset(unsigned int symndx) const2054 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2055     unsigned int symndx) const
2056 {
2057   typename Local_plt_offsets::const_iterator p =
2058     this->local_plt_offsets_.find(symndx);
2059   return p != this->local_plt_offsets_.end();
2060 }
2061 
2062 // Get the PLT offset of a local symbol.
2063 
2064 template<int size, bool big_endian>
2065 unsigned int
do_local_plt_offset(unsigned int symndx) const2066 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2067     unsigned int symndx) const
2068 {
2069   typename Local_plt_offsets::const_iterator p =
2070     this->local_plt_offsets_.find(symndx);
2071   gold_assert(p != this->local_plt_offsets_.end());
2072   return p->second;
2073 }
2074 
2075 // Set the PLT offset of a local symbol.
2076 
2077 template<int size, bool big_endian>
2078 void
set_local_plt_offset(unsigned int symndx,unsigned int plt_offset)2079 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2080     unsigned int symndx, unsigned int plt_offset)
2081 {
2082   std::pair<typename Local_plt_offsets::iterator, bool> ins =
2083     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2084   gold_assert(ins.second);
2085 }
2086 
2087 // First pass over the local symbols.  Here we add their names to
2088 // *POOL and *DYNPOOL, and we store the symbol value in
2089 // THIS->LOCAL_VALUES_.  This function is always called from a
2090 // singleton thread.  This is followed by a call to
2091 // finalize_local_symbols.
2092 
2093 template<int size, bool big_endian>
2094 void
do_count_local_symbols(Stringpool * pool,Stringpool * dynpool)2095 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2096 							    Stringpool* dynpool)
2097 {
2098   gold_assert(this->symtab_shndx_ != -1U);
2099   if (this->symtab_shndx_ == 0)
2100     {
2101       // This object has no symbols.  Weird but legal.
2102       return;
2103     }
2104 
2105   // Read the symbol table section header.
2106   const unsigned int symtab_shndx = this->symtab_shndx_;
2107   typename This::Shdr symtabshdr(this,
2108 				 this->elf_file_.section_header(symtab_shndx));
2109   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2110 
2111   // Read the local symbols.
2112   const int sym_size = This::sym_size;
2113   const unsigned int loccount = this->local_symbol_count_;
2114   gold_assert(loccount == symtabshdr.get_sh_info());
2115   off_t locsize = loccount * sym_size;
2116   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2117 					      locsize, true, true);
2118 
2119   // Read the symbol names.
2120   const unsigned int strtab_shndx =
2121     this->adjust_shndx(symtabshdr.get_sh_link());
2122   section_size_type strtab_size;
2123   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2124 							&strtab_size,
2125 							true);
2126   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2127 
2128   // Loop over the local symbols.
2129 
2130   const Output_sections& out_sections(this->output_sections());
2131   unsigned int shnum = this->shnum();
2132   unsigned int count = 0;
2133   unsigned int dyncount = 0;
2134   // Skip the first, dummy, symbol.
2135   psyms += sym_size;
2136   bool strip_all = parameters->options().strip_all();
2137   bool discard_all = parameters->options().discard_all();
2138   bool discard_locals = parameters->options().discard_locals();
2139   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2140     {
2141       elfcpp::Sym<size, big_endian> sym(psyms);
2142 
2143       Symbol_value<size>& lv(this->local_values_[i]);
2144 
2145       bool is_ordinary;
2146       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2147 						  &is_ordinary);
2148       lv.set_input_shndx(shndx, is_ordinary);
2149 
2150       if (sym.get_st_type() == elfcpp::STT_SECTION)
2151 	lv.set_is_section_symbol();
2152       else if (sym.get_st_type() == elfcpp::STT_TLS)
2153 	lv.set_is_tls_symbol();
2154       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2155 	lv.set_is_ifunc_symbol();
2156 
2157       // Save the input symbol value for use in do_finalize_local_symbols().
2158       lv.set_input_value(sym.get_st_value());
2159 
2160       // Decide whether this symbol should go into the output file.
2161 
2162       if ((shndx < shnum && out_sections[shndx] == NULL)
2163 	  || shndx == this->discarded_eh_frame_shndx_)
2164 	{
2165 	  lv.set_no_output_symtab_entry();
2166 	  gold_assert(!lv.needs_output_dynsym_entry());
2167 	  continue;
2168 	}
2169 
2170       if (sym.get_st_type() == elfcpp::STT_SECTION
2171 	  || !this->adjust_local_symbol(&lv))
2172 	{
2173 	  lv.set_no_output_symtab_entry();
2174 	  gold_assert(!lv.needs_output_dynsym_entry());
2175 	  continue;
2176 	}
2177 
2178       if (sym.get_st_name() >= strtab_size)
2179 	{
2180 	  this->error(_("local symbol %u section name out of range: %u >= %u"),
2181 		      i, sym.get_st_name(),
2182 		      static_cast<unsigned int>(strtab_size));
2183 	  lv.set_no_output_symtab_entry();
2184 	  continue;
2185 	}
2186 
2187       const char* name = pnames + sym.get_st_name();
2188 
2189       // If needed, add the symbol to the dynamic symbol table string pool.
2190       if (lv.needs_output_dynsym_entry())
2191 	{
2192 	  dynpool->add(name, true, NULL);
2193 	  ++dyncount;
2194 	}
2195 
2196       if (strip_all
2197 	  || (discard_all && lv.may_be_discarded_from_output_symtab()))
2198 	{
2199 	  lv.set_no_output_symtab_entry();
2200 	  continue;
2201 	}
2202 
2203       // If --discard-locals option is used, discard all temporary local
2204       // symbols.  These symbols start with system-specific local label
2205       // prefixes, typically .L for ELF system.  We want to be compatible
2206       // with GNU ld so here we essentially use the same check in
2207       // bfd_is_local_label().  The code is different because we already
2208       // know that:
2209       //
2210       //   - the symbol is local and thus cannot have global or weak binding.
2211       //   - the symbol is not a section symbol.
2212       //   - the symbol has a name.
2213       //
2214       // We do not discard a symbol if it needs a dynamic symbol entry.
2215       if (discard_locals
2216 	  && sym.get_st_type() != elfcpp::STT_FILE
2217 	  && !lv.needs_output_dynsym_entry()
2218 	  && lv.may_be_discarded_from_output_symtab()
2219 	  && parameters->target().is_local_label_name(name))
2220 	{
2221 	  lv.set_no_output_symtab_entry();
2222 	  continue;
2223 	}
2224 
2225       // Discard the local symbol if -retain_symbols_file is specified
2226       // and the local symbol is not in that file.
2227       if (!parameters->options().should_retain_symbol(name))
2228 	{
2229 	  lv.set_no_output_symtab_entry();
2230 	  continue;
2231 	}
2232 
2233       // Add the symbol to the symbol table string pool.
2234       pool->add(name, true, NULL);
2235       ++count;
2236     }
2237 
2238   this->output_local_symbol_count_ = count;
2239   this->output_local_dynsym_count_ = dyncount;
2240 }
2241 
2242 // Compute the final value of a local symbol.
2243 
2244 template<int size, bool big_endian>
2245 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
compute_final_local_value_internal(unsigned int r_sym,const Symbol_value<size> * lv_in,Symbol_value<size> * lv_out,bool relocatable,const Output_sections & out_sections,const std::vector<Address> & out_offsets,const Symbol_table * symtab)2246 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2247     unsigned int r_sym,
2248     const Symbol_value<size>* lv_in,
2249     Symbol_value<size>* lv_out,
2250     bool relocatable,
2251     const Output_sections& out_sections,
2252     const std::vector<Address>& out_offsets,
2253     const Symbol_table* symtab)
2254 {
2255   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2256   // we may have a memory leak.
2257   gold_assert(lv_out->has_output_value());
2258 
2259   bool is_ordinary;
2260   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2261 
2262   // Set the output symbol value.
2263 
2264   if (!is_ordinary)
2265     {
2266       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2267 	lv_out->set_output_value(lv_in->input_value());
2268       else
2269 	{
2270 	  this->error(_("unknown section index %u for local symbol %u"),
2271 		      shndx, r_sym);
2272 	  lv_out->set_output_value(0);
2273 	  return This::CFLV_ERROR;
2274 	}
2275     }
2276   else
2277     {
2278       if (shndx >= this->shnum())
2279 	{
2280 	  this->error(_("local symbol %u section index %u out of range"),
2281 		      r_sym, shndx);
2282 	  lv_out->set_output_value(0);
2283 	  return This::CFLV_ERROR;
2284 	}
2285 
2286       Output_section* os = out_sections[shndx];
2287       Address secoffset = out_offsets[shndx];
2288       if (symtab->is_section_folded(this, shndx))
2289 	{
2290 	  gold_assert(os == NULL && secoffset == invalid_address);
2291 	  // Get the os of the section it is folded onto.
2292 	  Section_id folded = symtab->icf()->get_folded_section(this,
2293 								shndx);
2294 	  gold_assert(folded.first != NULL);
2295 	  Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2296 	    <Sized_relobj_file<size, big_endian>*>(folded.first);
2297 	  os = folded_obj->output_section(folded.second);
2298 	  gold_assert(os != NULL);
2299 	  secoffset = folded_obj->get_output_section_offset(folded.second);
2300 
2301 	  // This could be a relaxed input section.
2302 	  if (secoffset == invalid_address)
2303 	    {
2304 	      const Output_relaxed_input_section* relaxed_section =
2305 		os->find_relaxed_input_section(folded_obj, folded.second);
2306 	      gold_assert(relaxed_section != NULL);
2307 	      secoffset = relaxed_section->address() - os->address();
2308 	    }
2309 	}
2310 
2311       if (os == NULL)
2312 	{
2313 	  // This local symbol belongs to a section we are discarding.
2314 	  // In some cases when applying relocations later, we will
2315 	  // attempt to match it to the corresponding kept section,
2316 	  // so we leave the input value unchanged here.
2317 	  return This::CFLV_DISCARDED;
2318 	}
2319       else if (secoffset == invalid_address)
2320 	{
2321 	  uint64_t start;
2322 
2323 	  // This is a SHF_MERGE section or one which otherwise
2324 	  // requires special handling.
2325 	  if (shndx == this->discarded_eh_frame_shndx_)
2326 	    {
2327 	      // This local symbol belongs to a discarded .eh_frame
2328 	      // section.  Just treat it like the case in which
2329 	      // os == NULL above.
2330 	      gold_assert(this->has_eh_frame_);
2331 	      return This::CFLV_DISCARDED;
2332 	    }
2333 	  else if (!lv_in->is_section_symbol())
2334 	    {
2335 	      // This is not a section symbol.  We can determine
2336 	      // the final value now.
2337 	      lv_out->set_output_value(
2338 		  os->output_address(this, shndx, lv_in->input_value()));
2339 	    }
2340 	  else if (!os->find_starting_output_address(this, shndx, &start))
2341 	    {
2342 	      // This is a section symbol, but apparently not one in a
2343 	      // merged section.  First check to see if this is a relaxed
2344 	      // input section.  If so, use its address.  Otherwise just
2345 	      // use the start of the output section.  This happens with
2346 	      // relocatable links when the input object has section
2347 	      // symbols for arbitrary non-merge sections.
2348 	      const Output_section_data* posd =
2349 		os->find_relaxed_input_section(this, shndx);
2350 	      if (posd != NULL)
2351 		{
2352 		  Address relocatable_link_adjustment =
2353 		    relocatable ? os->address() : 0;
2354 		  lv_out->set_output_value(posd->address()
2355 					   - relocatable_link_adjustment);
2356 		}
2357 	      else
2358 		lv_out->set_output_value(os->address());
2359 	    }
2360 	  else
2361 	    {
2362 	      // We have to consider the addend to determine the
2363 	      // value to use in a relocation.  START is the start
2364 	      // of this input section.  If we are doing a relocatable
2365 	      // link, use offset from start output section instead of
2366 	      // address.
2367 	      Address adjusted_start =
2368 		relocatable ? start - os->address() : start;
2369 	      Merged_symbol_value<size>* msv =
2370 		new Merged_symbol_value<size>(lv_in->input_value(),
2371 					      adjusted_start);
2372 	      lv_out->set_merged_symbol_value(msv);
2373 	    }
2374 	}
2375       else if (lv_in->is_tls_symbol()
2376                || (lv_in->is_section_symbol()
2377                    && (os->flags() & elfcpp::SHF_TLS)))
2378 	lv_out->set_output_value(os->tls_offset()
2379 				 + secoffset
2380 				 + lv_in->input_value());
2381       else
2382 	lv_out->set_output_value((relocatable ? 0 : os->address())
2383 				 + secoffset
2384 				 + lv_in->input_value());
2385     }
2386   return This::CFLV_OK;
2387 }
2388 
2389 // Compute final local symbol value.  R_SYM is the index of a local
2390 // symbol in symbol table.  LV points to a symbol value, which is
2391 // expected to hold the input value and to be over-written by the
2392 // final value.  SYMTAB points to a symbol table.  Some targets may want
2393 // to know would-be-finalized local symbol values in relaxation.
2394 // Hence we provide this method.  Since this method updates *LV, a
2395 // callee should make a copy of the original local symbol value and
2396 // use the copy instead of modifying an object's local symbols before
2397 // everything is finalized.  The caller should also free up any allocated
2398 // memory in the return value in *LV.
2399 template<int size, bool big_endian>
2400 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
compute_final_local_value(unsigned int r_sym,const Symbol_value<size> * lv_in,Symbol_value<size> * lv_out,const Symbol_table * symtab)2401 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2402     unsigned int r_sym,
2403     const Symbol_value<size>* lv_in,
2404     Symbol_value<size>* lv_out,
2405     const Symbol_table* symtab)
2406 {
2407   // This is just a wrapper of compute_final_local_value_internal.
2408   const bool relocatable = parameters->options().relocatable();
2409   const Output_sections& out_sections(this->output_sections());
2410   const std::vector<Address>& out_offsets(this->section_offsets());
2411   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2412 						  relocatable, out_sections,
2413 						  out_offsets, symtab);
2414 }
2415 
2416 // Finalize the local symbols.  Here we set the final value in
2417 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2418 // This function is always called from a singleton thread.  The actual
2419 // output of the local symbols will occur in a separate task.
2420 
2421 template<int size, bool big_endian>
2422 unsigned int
do_finalize_local_symbols(unsigned int index,off_t off,Symbol_table * symtab)2423 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2424     unsigned int index,
2425     off_t off,
2426     Symbol_table* symtab)
2427 {
2428   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2429 
2430   const unsigned int loccount = this->local_symbol_count_;
2431   this->local_symbol_offset_ = off;
2432 
2433   const bool relocatable = parameters->options().relocatable();
2434   const Output_sections& out_sections(this->output_sections());
2435   const std::vector<Address>& out_offsets(this->section_offsets());
2436 
2437   for (unsigned int i = 1; i < loccount; ++i)
2438     {
2439       Symbol_value<size>* lv = &this->local_values_[i];
2440 
2441       Compute_final_local_value_status cflv_status =
2442 	this->compute_final_local_value_internal(i, lv, lv, relocatable,
2443 						 out_sections, out_offsets,
2444 						 symtab);
2445       switch (cflv_status)
2446 	{
2447 	case CFLV_OK:
2448 	  if (!lv->is_output_symtab_index_set())
2449 	    {
2450 	      lv->set_output_symtab_index(index);
2451 	      ++index;
2452 	    }
2453 	  break;
2454 	case CFLV_DISCARDED:
2455 	case CFLV_ERROR:
2456 	  // Do nothing.
2457 	  break;
2458 	default:
2459 	  gold_unreachable();
2460 	}
2461     }
2462   return index;
2463 }
2464 
2465 // Set the output dynamic symbol table indexes for the local variables.
2466 
2467 template<int size, bool big_endian>
2468 unsigned int
do_set_local_dynsym_indexes(unsigned int index)2469 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2470     unsigned int index)
2471 {
2472   const unsigned int loccount = this->local_symbol_count_;
2473   for (unsigned int i = 1; i < loccount; ++i)
2474     {
2475       Symbol_value<size>& lv(this->local_values_[i]);
2476       if (lv.needs_output_dynsym_entry())
2477 	{
2478 	  lv.set_output_dynsym_index(index);
2479 	  ++index;
2480 	}
2481     }
2482   return index;
2483 }
2484 
2485 // Set the offset where local dynamic symbol information will be stored.
2486 // Returns the count of local symbols contributed to the symbol table by
2487 // this object.
2488 
2489 template<int size, bool big_endian>
2490 unsigned int
do_set_local_dynsym_offset(off_t off)2491 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2492 {
2493   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2494   this->local_dynsym_offset_ = off;
2495   return this->output_local_dynsym_count_;
2496 }
2497 
2498 // If Symbols_data is not NULL get the section flags from here otherwise
2499 // get it from the file.
2500 
2501 template<int size, bool big_endian>
2502 uint64_t
do_section_flags(unsigned int shndx)2503 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2504 {
2505   Symbols_data* sd = this->get_symbols_data();
2506   if (sd != NULL)
2507     {
2508       const unsigned char* pshdrs = sd->section_headers_data
2509 				    + This::shdr_size * shndx;
2510       typename This::Shdr shdr(pshdrs);
2511       return shdr.get_sh_flags();
2512     }
2513   // If sd is NULL, read the section header from the file.
2514   return this->elf_file_.section_flags(shndx);
2515 }
2516 
2517 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2518 // in icf.cc
2519 
2520 template<int size, bool big_endian>
2521 uint64_t
do_section_entsize(unsigned int shndx)2522 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2523 {
2524   Symbols_data* sd = this->get_symbols_data();
2525   gold_assert(sd != NULL);
2526 
2527   const unsigned char* pshdrs = sd->section_headers_data
2528 				+ This::shdr_size * shndx;
2529   typename This::Shdr shdr(pshdrs);
2530   return shdr.get_sh_entsize();
2531 }
2532 
2533 // Write out the local symbols.
2534 
2535 template<int size, bool big_endian>
2536 void
write_local_symbols(Output_file * of,const Stringpool * sympool,const Stringpool * dynpool,Output_symtab_xindex * symtab_xindex,Output_symtab_xindex * dynsym_xindex,off_t symtab_off)2537 Sized_relobj_file<size, big_endian>::write_local_symbols(
2538     Output_file* of,
2539     const Stringpool* sympool,
2540     const Stringpool* dynpool,
2541     Output_symtab_xindex* symtab_xindex,
2542     Output_symtab_xindex* dynsym_xindex,
2543     off_t symtab_off)
2544 {
2545   const bool strip_all = parameters->options().strip_all();
2546   if (strip_all)
2547     {
2548       if (this->output_local_dynsym_count_ == 0)
2549 	return;
2550       this->output_local_symbol_count_ = 0;
2551     }
2552 
2553   gold_assert(this->symtab_shndx_ != -1U);
2554   if (this->symtab_shndx_ == 0)
2555     {
2556       // This object has no symbols.  Weird but legal.
2557       return;
2558     }
2559 
2560   // Read the symbol table section header.
2561   const unsigned int symtab_shndx = this->symtab_shndx_;
2562   typename This::Shdr symtabshdr(this,
2563 				 this->elf_file_.section_header(symtab_shndx));
2564   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2565   const unsigned int loccount = this->local_symbol_count_;
2566   gold_assert(loccount == symtabshdr.get_sh_info());
2567 
2568   // Read the local symbols.
2569   const int sym_size = This::sym_size;
2570   off_t locsize = loccount * sym_size;
2571   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2572 					      locsize, true, false);
2573 
2574   // Read the symbol names.
2575   const unsigned int strtab_shndx =
2576     this->adjust_shndx(symtabshdr.get_sh_link());
2577   section_size_type strtab_size;
2578   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2579 							&strtab_size,
2580 							false);
2581   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2582 
2583   // Get views into the output file for the portions of the symbol table
2584   // and the dynamic symbol table that we will be writing.
2585   off_t output_size = this->output_local_symbol_count_ * sym_size;
2586   unsigned char* oview = NULL;
2587   if (output_size > 0)
2588     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2589 				output_size);
2590 
2591   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2592   unsigned char* dyn_oview = NULL;
2593   if (dyn_output_size > 0)
2594     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2595 				    dyn_output_size);
2596 
2597   const Output_sections& out_sections(this->output_sections());
2598 
2599   gold_assert(this->local_values_.size() == loccount);
2600 
2601   unsigned char* ov = oview;
2602   unsigned char* dyn_ov = dyn_oview;
2603   psyms += sym_size;
2604   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2605     {
2606       elfcpp::Sym<size, big_endian> isym(psyms);
2607 
2608       Symbol_value<size>& lv(this->local_values_[i]);
2609 
2610       bool is_ordinary;
2611       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2612 						     &is_ordinary);
2613       if (is_ordinary)
2614 	{
2615 	  gold_assert(st_shndx < out_sections.size());
2616 	  if (out_sections[st_shndx] == NULL)
2617 	    continue;
2618 	  st_shndx = out_sections[st_shndx]->out_shndx();
2619 	  if (st_shndx >= elfcpp::SHN_LORESERVE)
2620 	    {
2621 	      if (lv.has_output_symtab_entry())
2622 		symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2623 	      if (lv.has_output_dynsym_entry())
2624 		dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2625 	      st_shndx = elfcpp::SHN_XINDEX;
2626 	    }
2627 	}
2628 
2629       // Write the symbol to the output symbol table.
2630       if (lv.has_output_symtab_entry())
2631 	{
2632 	  elfcpp::Sym_write<size, big_endian> osym(ov);
2633 
2634 	  gold_assert(isym.get_st_name() < strtab_size);
2635 	  const char* name = pnames + isym.get_st_name();
2636 	  osym.put_st_name(sympool->get_offset(name));
2637 	  osym.put_st_value(this->local_values_[i].value(this, 0));
2638 	  osym.put_st_size(isym.get_st_size());
2639 	  osym.put_st_info(isym.get_st_info());
2640 	  osym.put_st_other(isym.get_st_other());
2641 	  osym.put_st_shndx(st_shndx);
2642 
2643 	  ov += sym_size;
2644 	}
2645 
2646       // Write the symbol to the output dynamic symbol table.
2647       if (lv.has_output_dynsym_entry())
2648 	{
2649 	  gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2650 	  elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2651 
2652 	  gold_assert(isym.get_st_name() < strtab_size);
2653 	  const char* name = pnames + isym.get_st_name();
2654 	  osym.put_st_name(dynpool->get_offset(name));
2655 	  osym.put_st_value(this->local_values_[i].value(this, 0));
2656 	  osym.put_st_size(isym.get_st_size());
2657 	  osym.put_st_info(isym.get_st_info());
2658 	  osym.put_st_other(isym.get_st_other());
2659 	  osym.put_st_shndx(st_shndx);
2660 
2661 	  dyn_ov += sym_size;
2662 	}
2663     }
2664 
2665 
2666   if (output_size > 0)
2667     {
2668       gold_assert(ov - oview == output_size);
2669       of->write_output_view(symtab_off + this->local_symbol_offset_,
2670 			    output_size, oview);
2671     }
2672 
2673   if (dyn_output_size > 0)
2674     {
2675       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2676       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2677 			    dyn_oview);
2678     }
2679 }
2680 
2681 // Set *INFO to symbolic information about the offset OFFSET in the
2682 // section SHNDX.  Return true if we found something, false if we
2683 // found nothing.
2684 
2685 template<int size, bool big_endian>
2686 bool
get_symbol_location_info(unsigned int shndx,off_t offset,Symbol_location_info * info)2687 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2688     unsigned int shndx,
2689     off_t offset,
2690     Symbol_location_info* info)
2691 {
2692   if (this->symtab_shndx_ == 0)
2693     return false;
2694 
2695   section_size_type symbols_size;
2696   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2697 							&symbols_size,
2698 							false);
2699 
2700   unsigned int symbol_names_shndx =
2701     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2702   section_size_type names_size;
2703   const unsigned char* symbol_names_u =
2704     this->section_contents(symbol_names_shndx, &names_size, false);
2705   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2706 
2707   const int sym_size = This::sym_size;
2708   const size_t count = symbols_size / sym_size;
2709 
2710   const unsigned char* p = symbols;
2711   for (size_t i = 0; i < count; ++i, p += sym_size)
2712     {
2713       elfcpp::Sym<size, big_endian> sym(p);
2714 
2715       if (sym.get_st_type() == elfcpp::STT_FILE)
2716 	{
2717 	  if (sym.get_st_name() >= names_size)
2718 	    info->source_file = "(invalid)";
2719 	  else
2720 	    info->source_file = symbol_names + sym.get_st_name();
2721 	  continue;
2722 	}
2723 
2724       bool is_ordinary;
2725       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2726 						     &is_ordinary);
2727       if (is_ordinary
2728 	  && st_shndx == shndx
2729 	  && static_cast<off_t>(sym.get_st_value()) <= offset
2730 	  && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2731 	      > offset))
2732 	{
2733 	  info->enclosing_symbol_type = sym.get_st_type();
2734 	  if (sym.get_st_name() > names_size)
2735 	    info->enclosing_symbol_name = "(invalid)";
2736 	  else
2737 	    {
2738 	      info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2739 	      if (parameters->options().do_demangle())
2740 		{
2741 		  char* demangled_name = cplus_demangle(
2742 		      info->enclosing_symbol_name.c_str(),
2743 		      DMGL_ANSI | DMGL_PARAMS);
2744 		  if (demangled_name != NULL)
2745 		    {
2746 		      info->enclosing_symbol_name.assign(demangled_name);
2747 		      free(demangled_name);
2748 		    }
2749 		}
2750 	    }
2751 	  return true;
2752 	}
2753     }
2754 
2755   return false;
2756 }
2757 
2758 // Look for a kept section corresponding to the given discarded section,
2759 // and return its output address.  This is used only for relocations in
2760 // debugging sections.  If we can't find the kept section, return 0.
2761 
2762 template<int size, bool big_endian>
2763 typename Sized_relobj_file<size, big_endian>::Address
map_to_kept_section(unsigned int shndx,bool * found) const2764 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2765     unsigned int shndx,
2766     bool* found) const
2767 {
2768   Relobj* kept_object;
2769   unsigned int kept_shndx;
2770   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2771     {
2772       Sized_relobj_file<size, big_endian>* kept_relobj =
2773 	static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2774       Output_section* os = kept_relobj->output_section(kept_shndx);
2775       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2776       if (os != NULL && offset != invalid_address)
2777 	{
2778 	  *found = true;
2779 	  return os->address() + offset;
2780 	}
2781     }
2782   *found = false;
2783   return 0;
2784 }
2785 
2786 // Get symbol counts.
2787 
2788 template<int size, bool big_endian>
2789 void
do_get_global_symbol_counts(const Symbol_table *,size_t * defined,size_t * used) const2790 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2791     const Symbol_table*,
2792     size_t* defined,
2793     size_t* used) const
2794 {
2795   *defined = this->defined_count_;
2796   size_t count = 0;
2797   for (typename Symbols::const_iterator p = this->symbols_.begin();
2798        p != this->symbols_.end();
2799        ++p)
2800     if (*p != NULL
2801 	&& (*p)->source() == Symbol::FROM_OBJECT
2802 	&& (*p)->object() == this
2803 	&& (*p)->is_defined())
2804       ++count;
2805   *used = count;
2806 }
2807 
2808 // Return a view of the decompressed contents of a section.  Set *PLEN
2809 // to the size.  Set *IS_NEW to true if the contents need to be freed
2810 // by the caller.
2811 
2812 const unsigned char*
decompressed_section_contents(unsigned int shndx,section_size_type * plen,bool * is_new)2813 Object::decompressed_section_contents(
2814     unsigned int shndx,
2815     section_size_type* plen,
2816     bool* is_new)
2817 {
2818   section_size_type buffer_size;
2819   const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2820 							  false);
2821 
2822   if (this->compressed_sections_ == NULL)
2823     {
2824       *plen = buffer_size;
2825       *is_new = false;
2826       return buffer;
2827     }
2828 
2829   Compressed_section_map::const_iterator p =
2830       this->compressed_sections_->find(shndx);
2831   if (p == this->compressed_sections_->end())
2832     {
2833       *plen = buffer_size;
2834       *is_new = false;
2835       return buffer;
2836     }
2837 
2838   section_size_type uncompressed_size = p->second.size;
2839   if (p->second.contents != NULL)
2840     {
2841       *plen = uncompressed_size;
2842       *is_new = false;
2843       return p->second.contents;
2844     }
2845 
2846   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2847   if (!decompress_input_section(buffer,
2848 				buffer_size,
2849 				uncompressed_data,
2850 				uncompressed_size))
2851     this->error(_("could not decompress section %s"),
2852 		this->do_section_name(shndx).c_str());
2853 
2854   // We could cache the results in p->second.contents and store
2855   // false in *IS_NEW, but build_compressed_section_map() would
2856   // have done so if it had expected it to be profitable.  If
2857   // we reach this point, we expect to need the contents only
2858   // once in this pass.
2859   *plen = uncompressed_size;
2860   *is_new = true;
2861   return uncompressed_data;
2862 }
2863 
2864 // Discard any buffers of uncompressed sections.  This is done
2865 // at the end of the Add_symbols task.
2866 
2867 void
discard_decompressed_sections()2868 Object::discard_decompressed_sections()
2869 {
2870   if (this->compressed_sections_ == NULL)
2871     return;
2872 
2873   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2874        p != this->compressed_sections_->end();
2875        ++p)
2876     {
2877       if (p->second.contents != NULL)
2878 	{
2879 	  delete[] p->second.contents;
2880 	  p->second.contents = NULL;
2881 	}
2882     }
2883 }
2884 
2885 // Input_objects methods.
2886 
2887 // Add a regular relocatable object to the list.  Return false if this
2888 // object should be ignored.
2889 
2890 bool
add_object(Object * obj)2891 Input_objects::add_object(Object* obj)
2892 {
2893   // Print the filename if the -t/--trace option is selected.
2894   if (parameters->options().trace())
2895     gold_info("%s", obj->name().c_str());
2896 
2897   if (!obj->is_dynamic())
2898     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2899   else
2900     {
2901       // See if this is a duplicate SONAME.
2902       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2903       const char* soname = dynobj->soname();
2904 
2905       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2906 	this->sonames_.insert(soname);
2907       if (!ins.second)
2908 	{
2909 	  // We have already seen a dynamic object with this soname.
2910 	  return false;
2911 	}
2912 
2913       this->dynobj_list_.push_back(dynobj);
2914     }
2915 
2916   // Add this object to the cross-referencer if requested.
2917   if (parameters->options().user_set_print_symbol_counts()
2918       || parameters->options().cref())
2919     {
2920       if (this->cref_ == NULL)
2921 	this->cref_ = new Cref();
2922       this->cref_->add_object(obj);
2923     }
2924 
2925   return true;
2926 }
2927 
2928 // For each dynamic object, record whether we've seen all of its
2929 // explicit dependencies.
2930 
2931 void
check_dynamic_dependencies() const2932 Input_objects::check_dynamic_dependencies() const
2933 {
2934   bool issued_copy_dt_needed_error = false;
2935   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2936        p != this->dynobj_list_.end();
2937        ++p)
2938     {
2939       const Dynobj::Needed& needed((*p)->needed());
2940       bool found_all = true;
2941       Dynobj::Needed::const_iterator pneeded;
2942       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2943 	{
2944 	  if (this->sonames_.find(*pneeded) == this->sonames_.end())
2945 	    {
2946 	      found_all = false;
2947 	      break;
2948 	    }
2949 	}
2950       (*p)->set_has_unknown_needed_entries(!found_all);
2951 
2952       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2953       // that gold does not support.  However, they cause no trouble
2954       // unless there is a DT_NEEDED entry that we don't know about;
2955       // warn only in that case.
2956       if (!found_all
2957 	  && !issued_copy_dt_needed_error
2958 	  && (parameters->options().copy_dt_needed_entries()
2959 	      || parameters->options().add_needed()))
2960 	{
2961 	  const char* optname;
2962 	  if (parameters->options().copy_dt_needed_entries())
2963 	    optname = "--copy-dt-needed-entries";
2964 	  else
2965 	    optname = "--add-needed";
2966 	  gold_error(_("%s is not supported but is required for %s in %s"),
2967 		     optname, (*pneeded).c_str(), (*p)->name().c_str());
2968 	  issued_copy_dt_needed_error = true;
2969 	}
2970     }
2971 }
2972 
2973 // Start processing an archive.
2974 
2975 void
archive_start(Archive * archive)2976 Input_objects::archive_start(Archive* archive)
2977 {
2978   if (parameters->options().user_set_print_symbol_counts()
2979       || parameters->options().cref())
2980     {
2981       if (this->cref_ == NULL)
2982 	this->cref_ = new Cref();
2983       this->cref_->add_archive_start(archive);
2984     }
2985 }
2986 
2987 // Stop processing an archive.
2988 
2989 void
archive_stop(Archive * archive)2990 Input_objects::archive_stop(Archive* archive)
2991 {
2992   if (parameters->options().user_set_print_symbol_counts()
2993       || parameters->options().cref())
2994     this->cref_->add_archive_stop(archive);
2995 }
2996 
2997 // Print symbol counts
2998 
2999 void
print_symbol_counts(const Symbol_table * symtab) const3000 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3001 {
3002   if (parameters->options().user_set_print_symbol_counts()
3003       && this->cref_ != NULL)
3004     this->cref_->print_symbol_counts(symtab);
3005 }
3006 
3007 // Print a cross reference table.
3008 
3009 void
print_cref(const Symbol_table * symtab,FILE * f) const3010 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3011 {
3012   if (parameters->options().cref() && this->cref_ != NULL)
3013     this->cref_->print_cref(symtab, f);
3014 }
3015 
3016 // Relocate_info methods.
3017 
3018 // Return a string describing the location of a relocation when file
3019 // and lineno information is not available.  This is only used in
3020 // error messages.
3021 
3022 template<int size, bool big_endian>
3023 std::string
location(size_t,off_t offset) const3024 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3025 {
3026   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3027   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3028   if (!ret.empty())
3029     return ret;
3030 
3031   ret = this->object->name();
3032 
3033   Symbol_location_info info;
3034   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3035     {
3036       if (!info.source_file.empty())
3037 	{
3038 	  ret += ":";
3039 	  ret += info.source_file;
3040 	}
3041       ret += ":";
3042       if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3043 	ret += _("function ");
3044       ret += info.enclosing_symbol_name;
3045       return ret;
3046     }
3047 
3048   ret += "(";
3049   ret += this->object->section_name(this->data_shndx);
3050   char buf[100];
3051   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3052   ret += buf;
3053   return ret;
3054 }
3055 
3056 } // End namespace gold.
3057 
3058 namespace
3059 {
3060 
3061 using namespace gold;
3062 
3063 // Read an ELF file with the header and return the appropriate
3064 // instance of Object.
3065 
3066 template<int size, bool big_endian>
3067 Object*
make_elf_sized_object(const std::string & name,Input_file * input_file,off_t offset,const elfcpp::Ehdr<size,big_endian> & ehdr,bool * punconfigured)3068 make_elf_sized_object(const std::string& name, Input_file* input_file,
3069 		      off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3070 		      bool* punconfigured)
3071 {
3072   Target* target = select_target(input_file, offset,
3073 				 ehdr.get_e_machine(), size, big_endian,
3074 				 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3075 				 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3076   if (target == NULL)
3077     gold_fatal(_("%s: unsupported ELF machine number %d"),
3078 	       name.c_str(), ehdr.get_e_machine());
3079 
3080   if (!parameters->target_valid())
3081     set_parameters_target(target);
3082   else if (target != &parameters->target())
3083     {
3084       if (punconfigured != NULL)
3085 	*punconfigured = true;
3086       else
3087 	gold_error(_("%s: incompatible target"), name.c_str());
3088       return NULL;
3089     }
3090 
3091   return target->make_elf_object<size, big_endian>(name, input_file, offset,
3092 						   ehdr);
3093 }
3094 
3095 } // End anonymous namespace.
3096 
3097 namespace gold
3098 {
3099 
3100 // Return whether INPUT_FILE is an ELF object.
3101 
3102 bool
is_elf_object(Input_file * input_file,off_t offset,const unsigned char ** start,int * read_size)3103 is_elf_object(Input_file* input_file, off_t offset,
3104 	      const unsigned char** start, int* read_size)
3105 {
3106   off_t filesize = input_file->file().filesize();
3107   int want = elfcpp::Elf_recognizer::max_header_size;
3108   if (filesize - offset < want)
3109     want = filesize - offset;
3110 
3111   const unsigned char* p = input_file->file().get_view(offset, 0, want,
3112 						       true, false);
3113   *start = p;
3114   *read_size = want;
3115 
3116   return elfcpp::Elf_recognizer::is_elf_file(p, want);
3117 }
3118 
3119 // Read an ELF file and return the appropriate instance of Object.
3120 
3121 Object*
make_elf_object(const std::string & name,Input_file * input_file,off_t offset,const unsigned char * p,section_offset_type bytes,bool * punconfigured)3122 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3123 		const unsigned char* p, section_offset_type bytes,
3124 		bool* punconfigured)
3125 {
3126   if (punconfigured != NULL)
3127     *punconfigured = false;
3128 
3129   std::string error;
3130   bool big_endian = false;
3131   int size = 0;
3132   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3133 					       &big_endian, &error))
3134     {
3135       gold_error(_("%s: %s"), name.c_str(), error.c_str());
3136       return NULL;
3137     }
3138 
3139   if (size == 32)
3140     {
3141       if (big_endian)
3142 	{
3143 #ifdef HAVE_TARGET_32_BIG
3144 	  elfcpp::Ehdr<32, true> ehdr(p);
3145 	  return make_elf_sized_object<32, true>(name, input_file,
3146 						 offset, ehdr, punconfigured);
3147 #else
3148 	  if (punconfigured != NULL)
3149 	    *punconfigured = true;
3150 	  else
3151 	    gold_error(_("%s: not configured to support "
3152 			 "32-bit big-endian object"),
3153 		       name.c_str());
3154 	  return NULL;
3155 #endif
3156 	}
3157       else
3158 	{
3159 #ifdef HAVE_TARGET_32_LITTLE
3160 	  elfcpp::Ehdr<32, false> ehdr(p);
3161 	  return make_elf_sized_object<32, false>(name, input_file,
3162 						  offset, ehdr, punconfigured);
3163 #else
3164 	  if (punconfigured != NULL)
3165 	    *punconfigured = true;
3166 	  else
3167 	    gold_error(_("%s: not configured to support "
3168 			 "32-bit little-endian object"),
3169 		       name.c_str());
3170 	  return NULL;
3171 #endif
3172 	}
3173     }
3174   else if (size == 64)
3175     {
3176       if (big_endian)
3177 	{
3178 #ifdef HAVE_TARGET_64_BIG
3179 	  elfcpp::Ehdr<64, true> ehdr(p);
3180 	  return make_elf_sized_object<64, true>(name, input_file,
3181 						 offset, ehdr, punconfigured);
3182 #else
3183 	  if (punconfigured != NULL)
3184 	    *punconfigured = true;
3185 	  else
3186 	    gold_error(_("%s: not configured to support "
3187 			 "64-bit big-endian object"),
3188 		       name.c_str());
3189 	  return NULL;
3190 #endif
3191 	}
3192       else
3193 	{
3194 #ifdef HAVE_TARGET_64_LITTLE
3195 	  elfcpp::Ehdr<64, false> ehdr(p);
3196 	  return make_elf_sized_object<64, false>(name, input_file,
3197 						  offset, ehdr, punconfigured);
3198 #else
3199 	  if (punconfigured != NULL)
3200 	    *punconfigured = true;
3201 	  else
3202 	    gold_error(_("%s: not configured to support "
3203 			 "64-bit little-endian object"),
3204 		       name.c_str());
3205 	  return NULL;
3206 #endif
3207 	}
3208     }
3209   else
3210     gold_unreachable();
3211 }
3212 
3213 // Instantiate the templates we need.
3214 
3215 #ifdef HAVE_TARGET_32_LITTLE
3216 template
3217 void
3218 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3219 				     Read_symbols_data*);
3220 template
3221 const unsigned char*
3222 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3223 			    section_size_type, const unsigned char*) const;
3224 #endif
3225 
3226 #ifdef HAVE_TARGET_32_BIG
3227 template
3228 void
3229 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3230 				    Read_symbols_data*);
3231 template
3232 const unsigned char*
3233 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3234 			   section_size_type, const unsigned char*) const;
3235 #endif
3236 
3237 #ifdef HAVE_TARGET_64_LITTLE
3238 template
3239 void
3240 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3241 				     Read_symbols_data*);
3242 template
3243 const unsigned char*
3244 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3245 			    section_size_type, const unsigned char*) const;
3246 #endif
3247 
3248 #ifdef HAVE_TARGET_64_BIG
3249 template
3250 void
3251 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3252 				    Read_symbols_data*);
3253 template
3254 const unsigned char*
3255 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3256 			   section_size_type, const unsigned char*) const;
3257 #endif
3258 
3259 #ifdef HAVE_TARGET_32_LITTLE
3260 template
3261 class Sized_relobj<32, false>;
3262 
3263 template
3264 class Sized_relobj_file<32, false>;
3265 #endif
3266 
3267 #ifdef HAVE_TARGET_32_BIG
3268 template
3269 class Sized_relobj<32, true>;
3270 
3271 template
3272 class Sized_relobj_file<32, true>;
3273 #endif
3274 
3275 #ifdef HAVE_TARGET_64_LITTLE
3276 template
3277 class Sized_relobj<64, false>;
3278 
3279 template
3280 class Sized_relobj_file<64, false>;
3281 #endif
3282 
3283 #ifdef HAVE_TARGET_64_BIG
3284 template
3285 class Sized_relobj<64, true>;
3286 
3287 template
3288 class Sized_relobj_file<64, true>;
3289 #endif
3290 
3291 #ifdef HAVE_TARGET_32_LITTLE
3292 template
3293 struct Relocate_info<32, false>;
3294 #endif
3295 
3296 #ifdef HAVE_TARGET_32_BIG
3297 template
3298 struct Relocate_info<32, true>;
3299 #endif
3300 
3301 #ifdef HAVE_TARGET_64_LITTLE
3302 template
3303 struct Relocate_info<64, false>;
3304 #endif
3305 
3306 #ifdef HAVE_TARGET_64_BIG
3307 template
3308 struct Relocate_info<64, true>;
3309 #endif
3310 
3311 #ifdef HAVE_TARGET_32_LITTLE
3312 template
3313 void
3314 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3315 
3316 template
3317 void
3318 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3319 				      const unsigned char*);
3320 #endif
3321 
3322 #ifdef HAVE_TARGET_32_BIG
3323 template
3324 void
3325 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3326 
3327 template
3328 void
3329 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3330 				     const unsigned char*);
3331 #endif
3332 
3333 #ifdef HAVE_TARGET_64_LITTLE
3334 template
3335 void
3336 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3337 
3338 template
3339 void
3340 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3341 				      const unsigned char*);
3342 #endif
3343 
3344 #ifdef HAVE_TARGET_64_BIG
3345 template
3346 void
3347 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3348 
3349 template
3350 void
3351 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3352 				     const unsigned char*);
3353 #endif
3354 
3355 } // End namespace gold.
3356