1 /* ===-- floatundidf.c - Implement __floatundidf ---------------------------===
2  *
3  *                     The LLVM Compiler Infrastructure
4  *
5  * This file is dual licensed under the MIT and the University of Illinois Open
6  * Source Licenses. See LICENSE.TXT for details.
7  *
8  * ===----------------------------------------------------------------------===
9  *
10  * This file implements __floatundidf for the compiler_rt library.
11  *
12  * ===----------------------------------------------------------------------===
13  */
14 
15 /* Returns: convert a to a double, rounding toward even. */
16 
17 /* Assumption: double is a IEEE 64 bit floating point type
18  *             du_int is a 64 bit integral type
19  */
20 
21 /* seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm */
22 
23 #include "int_lib.h"
24 
ARM_EABI_FNALIAS(ul2d,floatundidf)25 ARM_EABI_FNALIAS(ul2d, floatundidf)
26 
27 #ifndef __SOFT_FP__
28 /* Support for systems that have hardware floating-point; we'll set the inexact flag
29  * as a side-effect of this computation.
30  */
31 
32 COMPILER_RT_ABI double
33 __floatundidf(du_int a)
34 {
35 	static const double twop52 = 4503599627370496.0; // 0x1.0p52
36 	static const double twop84 = 19342813113834066795298816.0; // 0x1.0p84
37 	static const double twop84_plus_twop52 = 19342813118337666422669312.0; // 0x1.00000001p84
38 
39 	union { uint64_t x; double d; } high = { .d = twop84 };
40 	union { uint64_t x; double d; } low = { .d = twop52 };
41 
42 	high.x |= a >> 32;
43 	low.x |= a & UINT64_C(0x00000000ffffffff);
44 
45 	const double result = (high.d - twop84_plus_twop52) + low.d;
46 	return result;
47 }
48 
49 #else
50 /* Support for systems that don't have hardware floating-point; there are no flags to
51  * set, and we don't want to code-gen to an unknown soft-float implementation.
52  */
53 
54 COMPILER_RT_ABI double
55 __floatundidf(du_int a)
56 {
57     if (a == 0)
58         return 0.0;
59     const unsigned N = sizeof(du_int) * CHAR_BIT;
60     int sd = N - __builtin_clzll(a);  /* number of significant digits */
61     int e = sd - 1;             /* exponent */
62     if (sd > DBL_MANT_DIG)
63     {
64         /*  start:  0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
65          *  finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
66          *                                                12345678901234567890123456
67          *  1 = msb 1 bit
68          *  P = bit DBL_MANT_DIG-1 bits to the right of 1
69          *  Q = bit DBL_MANT_DIG bits to the right of 1
70          *  R = "or" of all bits to the right of Q
71          */
72         switch (sd)
73         {
74         case DBL_MANT_DIG + 1:
75             a <<= 1;
76             break;
77         case DBL_MANT_DIG + 2:
78             break;
79         default:
80             a = (a >> (sd - (DBL_MANT_DIG+2))) |
81                 ((a & ((du_int)(-1) >> ((N + DBL_MANT_DIG+2) - sd))) != 0);
82         };
83         /* finish: */
84         a |= (a & 4) != 0;  /* Or P into R */
85         ++a;  /* round - this step may add a significant bit */
86         a >>= 2;  /* dump Q and R */
87         /* a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits */
88         if (a & ((du_int)1 << DBL_MANT_DIG))
89         {
90             a >>= 1;
91             ++e;
92         }
93         /* a is now rounded to DBL_MANT_DIG bits */
94     }
95     else
96     {
97         a <<= (DBL_MANT_DIG - sd);
98         /* a is now rounded to DBL_MANT_DIG bits */
99     }
100     double_bits fb;
101     fb.u.high = ((e + 1023) << 20)      |        /* exponent */
102                 ((su_int)(a >> 32) & 0x000FFFFF); /* mantissa-high */
103     fb.u.low = (su_int)a;                         /* mantissa-low  */
104     return fb.f;
105 }
106 #endif
107