1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_HEAP_MARK_COMPACT_H_
6 #define V8_HEAP_MARK_COMPACT_H_
7 
8 #include "src/base/bits.h"
9 #include "src/heap/spaces.h"
10 
11 namespace v8 {
12 namespace internal {
13 
14 // Callback function, returns whether an object is alive. The heap size
15 // of the object is returned in size. It optionally updates the offset
16 // to the first live object in the page (only used for old and map objects).
17 typedef bool (*IsAliveFunction)(HeapObject* obj, int* size, int* offset);
18 
19 // Callback function to mark an object in a given heap.
20 typedef void (*MarkObjectFunction)(Heap* heap, HeapObject* object);
21 
22 // Forward declarations.
23 class CodeFlusher;
24 class MarkCompactCollector;
25 class MarkingVisitor;
26 class RootMarkingVisitor;
27 class SlotsBuffer;
28 class SlotsBufferAllocator;
29 
30 
31 class Marking : public AllStatic {
32  public:
INLINE(static MarkBit MarkBitFrom (Address addr))33   INLINE(static MarkBit MarkBitFrom(Address addr)) {
34     MemoryChunk* p = MemoryChunk::FromAddress(addr);
35     return p->markbits()->MarkBitFromIndex(p->AddressToMarkbitIndex(addr));
36   }
37 
INLINE(static MarkBit MarkBitFrom (HeapObject * obj))38   INLINE(static MarkBit MarkBitFrom(HeapObject* obj)) {
39     return MarkBitFrom(reinterpret_cast<Address>(obj));
40   }
41 
42   // Impossible markbits: 01
43   static const char* kImpossibleBitPattern;
INLINE(static bool IsImpossible (MarkBit mark_bit))44   INLINE(static bool IsImpossible(MarkBit mark_bit)) {
45     return !mark_bit.Get() && mark_bit.Next().Get();
46   }
47 
48   // Black markbits: 11
49   static const char* kBlackBitPattern;
INLINE(static bool IsBlack (MarkBit mark_bit))50   INLINE(static bool IsBlack(MarkBit mark_bit)) {
51     return mark_bit.Get() && mark_bit.Next().Get();
52   }
53 
54   // White markbits: 00 - this is required by the mark bit clearer.
55   static const char* kWhiteBitPattern;
INLINE(static bool IsWhite (MarkBit mark_bit))56   INLINE(static bool IsWhite(MarkBit mark_bit)) {
57     DCHECK(!IsImpossible(mark_bit));
58     return !mark_bit.Get();
59   }
60 
61   // Grey markbits: 10
62   static const char* kGreyBitPattern;
INLINE(static bool IsGrey (MarkBit mark_bit))63   INLINE(static bool IsGrey(MarkBit mark_bit)) {
64     return mark_bit.Get() && !mark_bit.Next().Get();
65   }
66 
67   // IsBlackOrGrey assumes that the first bit is set for black or grey
68   // objects.
INLINE(static bool IsBlackOrGrey (MarkBit mark_bit))69   INLINE(static bool IsBlackOrGrey(MarkBit mark_bit)) { return mark_bit.Get(); }
70 
INLINE(static void MarkBlack (MarkBit mark_bit))71   INLINE(static void MarkBlack(MarkBit mark_bit)) {
72     mark_bit.Set();
73     mark_bit.Next().Set();
74   }
75 
INLINE(static void MarkWhite (MarkBit mark_bit))76   INLINE(static void MarkWhite(MarkBit mark_bit)) {
77     mark_bit.Clear();
78     mark_bit.Next().Clear();
79   }
80 
INLINE(static void BlackToWhite (MarkBit markbit))81   INLINE(static void BlackToWhite(MarkBit markbit)) {
82     DCHECK(IsBlack(markbit));
83     markbit.Clear();
84     markbit.Next().Clear();
85   }
86 
INLINE(static void GreyToWhite (MarkBit markbit))87   INLINE(static void GreyToWhite(MarkBit markbit)) {
88     DCHECK(IsGrey(markbit));
89     markbit.Clear();
90     markbit.Next().Clear();
91   }
92 
INLINE(static void BlackToGrey (MarkBit markbit))93   INLINE(static void BlackToGrey(MarkBit markbit)) {
94     DCHECK(IsBlack(markbit));
95     markbit.Next().Clear();
96   }
97 
INLINE(static void WhiteToGrey (MarkBit markbit))98   INLINE(static void WhiteToGrey(MarkBit markbit)) {
99     DCHECK(IsWhite(markbit));
100     markbit.Set();
101   }
102 
INLINE(static void WhiteToBlack (MarkBit markbit))103   INLINE(static void WhiteToBlack(MarkBit markbit)) {
104     DCHECK(IsWhite(markbit));
105     markbit.Set();
106     markbit.Next().Set();
107   }
108 
INLINE(static void GreyToBlack (MarkBit markbit))109   INLINE(static void GreyToBlack(MarkBit markbit)) {
110     DCHECK(IsGrey(markbit));
111     markbit.Next().Set();
112   }
113 
INLINE(static void BlackToGrey (HeapObject * obj))114   INLINE(static void BlackToGrey(HeapObject* obj)) {
115     BlackToGrey(MarkBitFrom(obj));
116   }
117 
INLINE(static void AnyToGrey (MarkBit markbit))118   INLINE(static void AnyToGrey(MarkBit markbit)) {
119     markbit.Set();
120     markbit.Next().Clear();
121   }
122 
123   static void TransferMark(Heap* heap, Address old_start, Address new_start);
124 
125 #ifdef DEBUG
126   enum ObjectColor {
127     BLACK_OBJECT,
128     WHITE_OBJECT,
129     GREY_OBJECT,
130     IMPOSSIBLE_COLOR
131   };
132 
ColorName(ObjectColor color)133   static const char* ColorName(ObjectColor color) {
134     switch (color) {
135       case BLACK_OBJECT:
136         return "black";
137       case WHITE_OBJECT:
138         return "white";
139       case GREY_OBJECT:
140         return "grey";
141       case IMPOSSIBLE_COLOR:
142         return "impossible";
143     }
144     return "error";
145   }
146 
Color(HeapObject * obj)147   static ObjectColor Color(HeapObject* obj) {
148     return Color(Marking::MarkBitFrom(obj));
149   }
150 
Color(MarkBit mark_bit)151   static ObjectColor Color(MarkBit mark_bit) {
152     if (IsBlack(mark_bit)) return BLACK_OBJECT;
153     if (IsWhite(mark_bit)) return WHITE_OBJECT;
154     if (IsGrey(mark_bit)) return GREY_OBJECT;
155     UNREACHABLE();
156     return IMPOSSIBLE_COLOR;
157   }
158 #endif
159 
160   // Returns true if the transferred color is black.
INLINE(static bool TransferColor (HeapObject * from,HeapObject * to))161   INLINE(static bool TransferColor(HeapObject* from, HeapObject* to)) {
162     MarkBit from_mark_bit = MarkBitFrom(from);
163     MarkBit to_mark_bit = MarkBitFrom(to);
164     DCHECK(Marking::IsWhite(to_mark_bit));
165     if (from_mark_bit.Get()) {
166       to_mark_bit.Set();
167       if (from_mark_bit.Next().Get()) {
168         to_mark_bit.Next().Set();
169         return true;
170       }
171     }
172     return false;
173   }
174 
175  private:
176   DISALLOW_IMPLICIT_CONSTRUCTORS(Marking);
177 };
178 
179 // ----------------------------------------------------------------------------
180 // Marking deque for tracing live objects.
181 class MarkingDeque {
182  public:
MarkingDeque()183   MarkingDeque()
184       : array_(NULL),
185         top_(0),
186         bottom_(0),
187         mask_(0),
188         overflowed_(false),
189         in_use_(false) {}
190 
191   void Initialize(Address low, Address high);
192   void Uninitialize(bool aborting = false);
193 
IsFull()194   inline bool IsFull() { return ((top_ + 1) & mask_) == bottom_; }
195 
IsEmpty()196   inline bool IsEmpty() { return top_ == bottom_; }
197 
overflowed()198   bool overflowed() const { return overflowed_; }
199 
in_use()200   bool in_use() const { return in_use_; }
201 
ClearOverflowed()202   void ClearOverflowed() { overflowed_ = false; }
203 
SetOverflowed()204   void SetOverflowed() { overflowed_ = true; }
205 
206   // Push the object on the marking stack if there is room, otherwise mark the
207   // deque as overflowed and wait for a rescan of the heap.
INLINE(bool Push (HeapObject * object))208   INLINE(bool Push(HeapObject* object)) {
209     DCHECK(object->IsHeapObject());
210     if (IsFull()) {
211       SetOverflowed();
212       return false;
213     } else {
214       array_[top_] = object;
215       top_ = ((top_ + 1) & mask_);
216       return true;
217     }
218   }
219 
INLINE(HeapObject * Pop ())220   INLINE(HeapObject* Pop()) {
221     DCHECK(!IsEmpty());
222     top_ = ((top_ - 1) & mask_);
223     HeapObject* object = array_[top_];
224     DCHECK(object->IsHeapObject());
225     return object;
226   }
227 
228   // Unshift the object into the marking stack if there is room, otherwise mark
229   // the deque as overflowed and wait for a rescan of the heap.
INLINE(bool Unshift (HeapObject * object))230   INLINE(bool Unshift(HeapObject* object)) {
231     DCHECK(object->IsHeapObject());
232     if (IsFull()) {
233       SetOverflowed();
234       return false;
235     } else {
236       bottom_ = ((bottom_ - 1) & mask_);
237       array_[bottom_] = object;
238       return true;
239     }
240   }
241 
array()242   HeapObject** array() { return array_; }
bottom()243   int bottom() { return bottom_; }
top()244   int top() { return top_; }
mask()245   int mask() { return mask_; }
set_top(int top)246   void set_top(int top) { top_ = top; }
247 
248  private:
249   HeapObject** array_;
250   // array_[(top - 1) & mask_] is the top element in the deque.  The Deque is
251   // empty when top_ == bottom_.  It is full when top_ + 1 == bottom
252   // (mod mask + 1).
253   int top_;
254   int bottom_;
255   int mask_;
256   bool overflowed_;
257   bool in_use_;
258 
259   DISALLOW_COPY_AND_ASSIGN(MarkingDeque);
260 };
261 
262 
263 // CodeFlusher collects candidates for code flushing during marking and
264 // processes those candidates after marking has completed in order to
265 // reset those functions referencing code objects that would otherwise
266 // be unreachable. Code objects can be referenced in two ways:
267 //    - SharedFunctionInfo references unoptimized code.
268 //    - JSFunction references either unoptimized or optimized code.
269 // We are not allowed to flush unoptimized code for functions that got
270 // optimized or inlined into optimized code, because we might bailout
271 // into the unoptimized code again during deoptimization.
272 class CodeFlusher {
273  public:
CodeFlusher(Isolate * isolate)274   explicit CodeFlusher(Isolate* isolate)
275       : isolate_(isolate),
276         jsfunction_candidates_head_(nullptr),
277         shared_function_info_candidates_head_(nullptr) {}
278 
279   inline void AddCandidate(SharedFunctionInfo* shared_info);
280   inline void AddCandidate(JSFunction* function);
281 
282   void EvictCandidate(SharedFunctionInfo* shared_info);
283   void EvictCandidate(JSFunction* function);
284 
ProcessCandidates()285   void ProcessCandidates() {
286     ProcessSharedFunctionInfoCandidates();
287     ProcessJSFunctionCandidates();
288   }
289 
290   void IteratePointersToFromSpace(ObjectVisitor* v);
291 
292  private:
293   void ProcessJSFunctionCandidates();
294   void ProcessSharedFunctionInfoCandidates();
295 
296   static inline JSFunction** GetNextCandidateSlot(JSFunction* candidate);
297   static inline JSFunction* GetNextCandidate(JSFunction* candidate);
298   static inline void SetNextCandidate(JSFunction* candidate,
299                                       JSFunction* next_candidate);
300   static inline void ClearNextCandidate(JSFunction* candidate,
301                                         Object* undefined);
302 
303   static inline SharedFunctionInfo* GetNextCandidate(
304       SharedFunctionInfo* candidate);
305   static inline void SetNextCandidate(SharedFunctionInfo* candidate,
306                                       SharedFunctionInfo* next_candidate);
307   static inline void ClearNextCandidate(SharedFunctionInfo* candidate);
308 
309   Isolate* isolate_;
310   JSFunction* jsfunction_candidates_head_;
311   SharedFunctionInfo* shared_function_info_candidates_head_;
312 
313   DISALLOW_COPY_AND_ASSIGN(CodeFlusher);
314 };
315 
316 
317 // Defined in isolate.h.
318 class ThreadLocalTop;
319 
320 
321 // -------------------------------------------------------------------------
322 // Mark-Compact collector
323 class MarkCompactCollector {
324  public:
325   enum IterationMode {
326     kKeepMarking,
327     kClearMarkbits,
328   };
329 
330   static void Initialize();
331 
332   void SetUp();
333 
334   void TearDown();
335 
336   void CollectEvacuationCandidates(PagedSpace* space);
337 
338   void AddEvacuationCandidate(Page* p);
339 
340   // Prepares for GC by resetting relocation info in old and map spaces and
341   // choosing spaces to compact.
342   void Prepare();
343 
344   // Performs a global garbage collection.
345   void CollectGarbage();
346 
347   enum CompactionMode { INCREMENTAL_COMPACTION, NON_INCREMENTAL_COMPACTION };
348 
349   bool StartCompaction(CompactionMode mode);
350 
351   void AbortCompaction();
352 
353 #ifdef DEBUG
354   // Checks whether performing mark-compact collection.
in_use()355   bool in_use() { return state_ > PREPARE_GC; }
are_map_pointers_encoded()356   bool are_map_pointers_encoded() { return state_ == UPDATE_POINTERS; }
357 #endif
358 
359   // Determine type of object and emit deletion log event.
360   static void ReportDeleteIfNeeded(HeapObject* obj, Isolate* isolate);
361 
362   // Distinguishable invalid map encodings (for single word and multiple words)
363   // that indicate free regions.
364   static const uint32_t kSingleFreeEncoding = 0;
365   static const uint32_t kMultiFreeEncoding = 1;
366 
367   static inline bool IsMarked(Object* obj);
368   static bool IsUnmarkedHeapObjectWithHeap(Heap* heap, Object** p);
369 
heap()370   inline Heap* heap() const { return heap_; }
371   inline Isolate* isolate() const;
372 
code_flusher()373   CodeFlusher* code_flusher() { return code_flusher_; }
is_code_flushing_enabled()374   inline bool is_code_flushing_enabled() const { return code_flusher_ != NULL; }
375 
376   enum SweepingParallelism { SWEEP_ON_MAIN_THREAD, SWEEP_IN_PARALLEL };
377 
378 #ifdef VERIFY_HEAP
379   void VerifyValidStoreAndSlotsBufferEntries();
380   void VerifyMarkbitsAreClean();
381   static void VerifyMarkbitsAreClean(PagedSpace* space);
382   static void VerifyMarkbitsAreClean(NewSpace* space);
383   void VerifyWeakEmbeddedObjectsInCode();
384   void VerifyOmittedMapChecks();
385 #endif
386 
INLINE(static bool ShouldSkipEvacuationSlotRecording (Object * host))387   INLINE(static bool ShouldSkipEvacuationSlotRecording(Object* host)) {
388     return Page::FromAddress(reinterpret_cast<Address>(host))
389         ->ShouldSkipEvacuationSlotRecording();
390   }
391 
INLINE(static bool IsOnEvacuationCandidate (Object * obj))392   INLINE(static bool IsOnEvacuationCandidate(Object* obj)) {
393     return Page::FromAddress(reinterpret_cast<Address>(obj))
394         ->IsEvacuationCandidate();
395   }
396 
397   void RecordRelocSlot(RelocInfo* rinfo, Object* target);
398   void RecordCodeEntrySlot(HeapObject* object, Address slot, Code* target);
399   void RecordCodeTargetPatch(Address pc, Code* target);
400   INLINE(void RecordSlot(HeapObject* object, Object** slot, Object* target));
401   INLINE(void ForceRecordSlot(HeapObject* object, Object** slot,
402                               Object* target));
403 
404   void UpdateSlots(SlotsBuffer* buffer);
405   void UpdateSlotsRecordedIn(SlotsBuffer* buffer);
406 
407   void MigrateObject(HeapObject* dst, HeapObject* src, int size,
408                      AllocationSpace to_old_space,
409                      SlotsBuffer** evacuation_slots_buffer);
410 
411   void InvalidateCode(Code* code);
412 
413   void ClearMarkbits();
414 
is_compacting()415   bool is_compacting() const { return compacting_; }
416 
marking_parity()417   MarkingParity marking_parity() { return marking_parity_; }
418 
419   // Concurrent and parallel sweeping support. If required_freed_bytes was set
420   // to a value larger than 0, then sweeping returns after a block of at least
421   // required_freed_bytes was freed. If required_freed_bytes was set to zero
422   // then the whole given space is swept. It returns the size of the maximum
423   // continuous freed memory chunk.
424   int SweepInParallel(PagedSpace* space, int required_freed_bytes);
425 
426   // Sweeps a given page concurrently to the sweeper threads. It returns the
427   // size of the maximum continuous freed memory chunk.
428   int SweepInParallel(Page* page, PagedSpace* space);
429 
430   // Ensures that sweeping is finished.
431   //
432   // Note: Can only be called safely from main thread.
433   void EnsureSweepingCompleted();
434 
435   void SweepOrWaitUntilSweepingCompleted(Page* page);
436 
437   // Help out in sweeping the corresponding space and refill memory that has
438   // been regained.
439   //
440   // Note: Thread-safe.
441   void SweepAndRefill(CompactionSpace* space);
442 
443   // If sweeper threads are not active this method will return true. If
444   // this is a latency issue we should be smarter here. Otherwise, it will
445   // return true if the sweeper threads are done processing the pages.
446   bool IsSweepingCompleted();
447 
448   // Checks if sweeping is in progress right now on any space.
sweeping_in_progress()449   bool sweeping_in_progress() { return sweeping_in_progress_; }
450 
set_evacuation(bool evacuation)451   void set_evacuation(bool evacuation) { evacuation_ = evacuation; }
452 
evacuation()453   bool evacuation() const { return evacuation_; }
454 
455   // Special case for processing weak references in a full collection. We need
456   // to artificially keep AllocationSites alive for a time.
457   void MarkAllocationSite(AllocationSite* site);
458 
459   // Mark objects in implicit references groups if their parent object
460   // is marked.
461   void MarkImplicitRefGroups(MarkObjectFunction mark_object);
462 
marking_deque()463   MarkingDeque* marking_deque() { return &marking_deque_; }
464 
465   static const size_t kMaxMarkingDequeSize = 4 * MB;
466   static const size_t kMinMarkingDequeSize = 256 * KB;
467 
EnsureMarkingDequeIsCommittedAndInitialize(size_t max_size)468   void EnsureMarkingDequeIsCommittedAndInitialize(size_t max_size) {
469     if (!marking_deque_.in_use()) {
470       EnsureMarkingDequeIsCommitted(max_size);
471       InitializeMarkingDeque();
472     }
473   }
474 
475   void EnsureMarkingDequeIsCommitted(size_t max_size);
476   void EnsureMarkingDequeIsReserved();
477 
478   void InitializeMarkingDeque();
479 
480   // The following four methods can just be called after marking, when the
481   // whole transitive closure is known. They must be called before sweeping
482   // when mark bits are still intact.
483   bool IsSlotInBlackObject(Page* p, Address slot, HeapObject** out_object);
484   bool IsSlotInBlackObjectSlow(Page* p, Address slot);
485   bool IsSlotInLiveObject(Address slot);
486   void VerifyIsSlotInLiveObject(Address slot, HeapObject* object);
487 
488   // Removes all the slots in the slot buffers that are within the given
489   // address range.
490   void RemoveObjectSlots(Address start_slot, Address end_slot);
491 
492   //
493   // Free lists filled by sweeper and consumed by corresponding spaces
494   // (including compaction spaces).
495   //
free_list_old_space()496   base::SmartPointer<FreeList>& free_list_old_space() {
497     return free_list_old_space_;
498   }
free_list_code_space()499   base::SmartPointer<FreeList>& free_list_code_space() {
500     return free_list_code_space_;
501   }
free_list_map_space()502   base::SmartPointer<FreeList>& free_list_map_space() {
503     return free_list_map_space_;
504   }
505 
506  private:
507   class CompactionTask;
508   class EvacuateNewSpaceVisitor;
509   class EvacuateOldSpaceVisitor;
510   class EvacuateVisitorBase;
511   class HeapObjectVisitor;
512   class SweeperTask;
513 
514   static const int kInitialLocalPretenuringFeedbackCapacity = 256;
515 
516   explicit MarkCompactCollector(Heap* heap);
517 
518   bool WillBeDeoptimized(Code* code);
519   void EvictPopularEvacuationCandidate(Page* page);
520   void ClearInvalidStoreAndSlotsBufferEntries();
521 
522   void StartSweeperThreads();
523 
524   void ComputeEvacuationHeuristics(int area_size,
525                                    int* target_fragmentation_percent,
526                                    int* max_evacuated_bytes);
527 
528 #ifdef DEBUG
529   enum CollectorState {
530     IDLE,
531     PREPARE_GC,
532     MARK_LIVE_OBJECTS,
533     SWEEP_SPACES,
534     ENCODE_FORWARDING_ADDRESSES,
535     UPDATE_POINTERS,
536     RELOCATE_OBJECTS
537   };
538 
539   // The current stage of the collector.
540   CollectorState state_;
541 #endif
542 
543   MarkingParity marking_parity_;
544 
545   bool was_marked_incrementally_;
546 
547   bool evacuation_;
548 
549   SlotsBufferAllocator* slots_buffer_allocator_;
550 
551   SlotsBuffer* migration_slots_buffer_;
552 
553   // Finishes GC, performs heap verification if enabled.
554   void Finish();
555 
556   // -----------------------------------------------------------------------
557   // Phase 1: Marking live objects.
558   //
559   //  Before: The heap has been prepared for garbage collection by
560   //          MarkCompactCollector::Prepare() and is otherwise in its
561   //          normal state.
562   //
563   //   After: Live objects are marked and non-live objects are unmarked.
564 
565   friend class CodeMarkingVisitor;
566   friend class IncrementalMarkingMarkingVisitor;
567   friend class MarkCompactMarkingVisitor;
568   friend class MarkingVisitor;
569   friend class RecordMigratedSlotVisitor;
570   friend class RootMarkingVisitor;
571   friend class SharedFunctionInfoMarkingVisitor;
572 
573   // Mark code objects that are active on the stack to prevent them
574   // from being flushed.
575   void PrepareThreadForCodeFlushing(Isolate* isolate, ThreadLocalTop* top);
576 
577   void PrepareForCodeFlushing();
578 
579   // Marking operations for objects reachable from roots.
580   void MarkLiveObjects();
581 
582   // Pushes a black object onto the marking stack and accounts for live bytes.
583   // Note that this assumes live bytes have not yet been counted.
584   INLINE(void PushBlack(HeapObject* obj));
585 
586   // Unshifts a black object into the marking stack and accounts for live bytes.
587   // Note that this assumes lives bytes have already been counted.
588   INLINE(void UnshiftBlack(HeapObject* obj));
589 
590   // Marks the object black and pushes it on the marking stack.
591   // This is for non-incremental marking only.
592   INLINE(void MarkObject(HeapObject* obj, MarkBit mark_bit));
593 
594   // Marks the object black assuming that it is not yet marked.
595   // This is for non-incremental marking only.
596   INLINE(void SetMark(HeapObject* obj, MarkBit mark_bit));
597 
598   // Mark the heap roots and all objects reachable from them.
599   void MarkRoots(RootMarkingVisitor* visitor);
600 
601   // Mark the string table specially.  References to internalized strings from
602   // the string table are weak.
603   void MarkStringTable(RootMarkingVisitor* visitor);
604 
605   // Mark objects reachable (transitively) from objects in the marking stack
606   // or overflowed in the heap.
607   void ProcessMarkingDeque();
608 
609   // Mark objects reachable (transitively) from objects in the marking stack
610   // or overflowed in the heap.  This respects references only considered in
611   // the final atomic marking pause including the following:
612   //    - Processing of objects reachable through Harmony WeakMaps.
613   //    - Objects reachable due to host application logic like object groups
614   //      or implicit references' groups.
615   void ProcessEphemeralMarking(ObjectVisitor* visitor,
616                                bool only_process_harmony_weak_collections);
617 
618   // If the call-site of the top optimized code was not prepared for
619   // deoptimization, then treat the maps in the code as strong pointers,
620   // otherwise a map can die and deoptimize the code.
621   void ProcessTopOptimizedFrame(ObjectVisitor* visitor);
622 
623   // Collects a list of dependent code from maps embedded in optimize code.
624   DependentCode* DependentCodeListFromNonLiveMaps();
625 
626   // Mark objects reachable (transitively) from objects in the marking
627   // stack.  This function empties the marking stack, but may leave
628   // overflowed objects in the heap, in which case the marking stack's
629   // overflow flag will be set.
630   void EmptyMarkingDeque();
631 
632   // Refill the marking stack with overflowed objects from the heap.  This
633   // function either leaves the marking stack full or clears the overflow
634   // flag on the marking stack.
635   void RefillMarkingDeque();
636 
637   // Helper methods for refilling the marking stack by discovering grey objects
638   // on various pages of the heap. Used by {RefillMarkingDeque} only.
639   template <class T>
640   void DiscoverGreyObjectsWithIterator(T* it);
641   void DiscoverGreyObjectsOnPage(MemoryChunk* p);
642   void DiscoverGreyObjectsInSpace(PagedSpace* space);
643   void DiscoverGreyObjectsInNewSpace();
644 
645   // Callback function for telling whether the object *p is an unmarked
646   // heap object.
647   static bool IsUnmarkedHeapObject(Object** p);
648 
649   // Clear non-live references in weak cells, transition and descriptor arrays,
650   // and deoptimize dependent code of non-live maps.
651   void ClearNonLiveReferences();
652   void MarkDependentCodeForDeoptimization(DependentCode* list);
653   // Find non-live targets of simple transitions in the given list. Clear
654   // transitions to non-live targets and if needed trim descriptors arrays.
655   void ClearSimpleMapTransitions(Object* non_live_map_list);
656   void ClearSimpleMapTransition(Map* map, Map* dead_transition);
657   // Compact every array in the global list of transition arrays and
658   // trim the corresponding descriptor array if a transition target is non-live.
659   void ClearFullMapTransitions();
660   bool CompactTransitionArray(Map* map, TransitionArray* transitions,
661                               DescriptorArray* descriptors);
662   void TrimDescriptorArray(Map* map, DescriptorArray* descriptors);
663   void TrimEnumCache(Map* map, DescriptorArray* descriptors);
664 
665   // Mark all values associated with reachable keys in weak collections
666   // encountered so far.  This might push new object or even new weak maps onto
667   // the marking stack.
668   void ProcessWeakCollections();
669 
670   // After all reachable objects have been marked those weak map entries
671   // with an unreachable key are removed from all encountered weak maps.
672   // The linked list of all encountered weak maps is destroyed.
673   void ClearWeakCollections();
674 
675   // We have to remove all encountered weak maps from the list of weak
676   // collections when incremental marking is aborted.
677   void AbortWeakCollections();
678 
679   void ClearWeakCells(Object** non_live_map_list,
680                       DependentCode** dependent_code_list);
681   void AbortWeakCells();
682 
683   void AbortTransitionArrays();
684 
685   // -----------------------------------------------------------------------
686   // Phase 2: Sweeping to clear mark bits and free non-live objects for
687   // a non-compacting collection.
688   //
689   //  Before: Live objects are marked and non-live objects are unmarked.
690   //
691   //   After: Live objects are unmarked, non-live regions have been added to
692   //          their space's free list. Active eden semispace is compacted by
693   //          evacuation.
694   //
695 
696   // If we are not compacting the heap, we simply sweep the spaces except
697   // for the large object space, clearing mark bits and adding unmarked
698   // regions to each space's free list.
699   void SweepSpaces();
700 
701   void EvacuateNewSpacePrologue();
702 
703   // Returns local pretenuring feedback.
704   HashMap* EvacuateNewSpaceInParallel();
705 
706   void AddEvacuationSlotsBufferSynchronized(
707       SlotsBuffer* evacuation_slots_buffer);
708 
709   void EvacuatePages(CompactionSpaceCollection* compaction_spaces,
710                      SlotsBuffer** evacuation_slots_buffer);
711 
712   void EvacuatePagesInParallel();
713 
714   // The number of parallel compaction tasks, including the main thread.
715   int NumberOfParallelCompactionTasks();
716 
717 
718   void StartParallelCompaction(CompactionSpaceCollection** compaction_spaces,
719                                uint32_t* task_ids, int len);
720   void WaitUntilCompactionCompleted(uint32_t* task_ids, int len);
721 
722   void EvacuateNewSpaceAndCandidates();
723 
724   void UpdatePointersAfterEvacuation();
725 
726   // Iterates through all live objects on a page using marking information.
727   // Returns whether all objects have successfully been visited.
728   bool VisitLiveObjects(MemoryChunk* page, HeapObjectVisitor* visitor,
729                         IterationMode mode);
730 
731   void VisitLiveObjectsBody(Page* page, ObjectVisitor* visitor);
732 
733   void RecomputeLiveBytes(MemoryChunk* page);
734 
735   void SweepAbortedPages();
736 
737   void ReleaseEvacuationCandidates();
738 
739   // Moves the pages of the evacuation_candidates_ list to the end of their
740   // corresponding space pages list.
741   void MoveEvacuationCandidatesToEndOfPagesList();
742 
743   // Starts sweeping of a space by contributing on the main thread and setting
744   // up other pages for sweeping.
745   void StartSweepSpace(PagedSpace* space);
746 
747   // Finalizes the parallel sweeping phase. Marks all the pages that were
748   // swept in parallel.
749   void ParallelSweepSpacesComplete();
750 
751   void ParallelSweepSpaceComplete(PagedSpace* space);
752 
753   // Updates store buffer and slot buffer for a pointer in a migrating object.
754   void RecordMigratedSlot(Object* value, Address slot,
755                           SlotsBuffer** evacuation_slots_buffer);
756 
757   // Adds the code entry slot to the slots buffer.
758   void RecordMigratedCodeEntrySlot(Address code_entry, Address code_entry_slot,
759                                    SlotsBuffer** evacuation_slots_buffer);
760 
761   // Adds the slot of a moved code object.
762   void RecordMigratedCodeObjectSlot(Address code_object,
763                                     SlotsBuffer** evacuation_slots_buffer);
764 
765 #ifdef DEBUG
766   friend class MarkObjectVisitor;
767   static void VisitObject(HeapObject* obj);
768 
769   friend class UnmarkObjectVisitor;
770   static void UnmarkObject(HeapObject* obj);
771 #endif
772 
773   Heap* heap_;
774   base::VirtualMemory* marking_deque_memory_;
775   size_t marking_deque_memory_committed_;
776   MarkingDeque marking_deque_;
777   CodeFlusher* code_flusher_;
778   bool have_code_to_deoptimize_;
779 
780   List<Page*> evacuation_candidates_;
781 
782   List<MemoryChunk*> newspace_evacuation_candidates_;
783 
784   // The evacuation_slots_buffers_ are used by the compaction threads.
785   // When a compaction task finishes, it uses
786   // AddEvacuationSlotsbufferSynchronized to adds its slots buffer to the
787   // evacuation_slots_buffers_ list using the evacuation_slots_buffers_mutex_
788   // lock.
789   base::Mutex evacuation_slots_buffers_mutex_;
790   List<SlotsBuffer*> evacuation_slots_buffers_;
791 
792   base::SmartPointer<FreeList> free_list_old_space_;
793   base::SmartPointer<FreeList> free_list_code_space_;
794   base::SmartPointer<FreeList> free_list_map_space_;
795 
796   // True if we are collecting slots to perform evacuation from evacuation
797   // candidates.
798   bool compacting_;
799 
800   // True if concurrent or parallel sweeping is currently in progress.
801   bool sweeping_in_progress_;
802 
803   // True if parallel compaction is currently in progress.
804   bool compaction_in_progress_;
805 
806   // Semaphore used to synchronize sweeper tasks.
807   base::Semaphore pending_sweeper_tasks_semaphore_;
808 
809   // Semaphore used to synchronize compaction tasks.
810   base::Semaphore pending_compaction_tasks_semaphore_;
811 
812   friend class Heap;
813   friend class StoreBuffer;
814 };
815 
816 
817 class MarkBitCellIterator BASE_EMBEDDED {
818  public:
MarkBitCellIterator(MemoryChunk * chunk)819   explicit MarkBitCellIterator(MemoryChunk* chunk) : chunk_(chunk) {
820     last_cell_index_ = Bitmap::IndexToCell(Bitmap::CellAlignIndex(
821         chunk_->AddressToMarkbitIndex(chunk_->area_end())));
822     cell_base_ = chunk_->area_start();
823     cell_index_ = Bitmap::IndexToCell(
824         Bitmap::CellAlignIndex(chunk_->AddressToMarkbitIndex(cell_base_)));
825     cells_ = chunk_->markbits()->cells();
826   }
827 
Done()828   inline bool Done() { return cell_index_ == last_cell_index_; }
829 
HasNext()830   inline bool HasNext() { return cell_index_ < last_cell_index_ - 1; }
831 
CurrentCell()832   inline MarkBit::CellType* CurrentCell() {
833     DCHECK(cell_index_ == Bitmap::IndexToCell(Bitmap::CellAlignIndex(
834                               chunk_->AddressToMarkbitIndex(cell_base_))));
835     return &cells_[cell_index_];
836   }
837 
CurrentCellBase()838   inline Address CurrentCellBase() {
839     DCHECK(cell_index_ == Bitmap::IndexToCell(Bitmap::CellAlignIndex(
840                               chunk_->AddressToMarkbitIndex(cell_base_))));
841     return cell_base_;
842   }
843 
Advance()844   inline void Advance() {
845     cell_index_++;
846     cell_base_ += 32 * kPointerSize;
847   }
848 
849   // Return the next mark bit cell. If there is no next it returns 0;
PeekNext()850   inline MarkBit::CellType PeekNext() {
851     if (HasNext()) {
852       return cells_[cell_index_ + 1];
853     }
854     return 0;
855   }
856 
857  private:
858   MemoryChunk* chunk_;
859   MarkBit::CellType* cells_;
860   unsigned int last_cell_index_;
861   unsigned int cell_index_;
862   Address cell_base_;
863 };
864 
865 enum LiveObjectIterationMode { kBlackObjects, kGreyObjects, kAllLiveObjects };
866 
867 template <LiveObjectIterationMode T>
868 class LiveObjectIterator BASE_EMBEDDED {
869  public:
LiveObjectIterator(MemoryChunk * chunk)870   explicit LiveObjectIterator(MemoryChunk* chunk)
871       : chunk_(chunk),
872         it_(chunk_),
873         cell_base_(it_.CurrentCellBase()),
874         current_cell_(*it_.CurrentCell()) {}
875 
876   HeapObject* Next();
877 
878  private:
879   MemoryChunk* chunk_;
880   MarkBitCellIterator it_;
881   Address cell_base_;
882   MarkBit::CellType current_cell_;
883 };
884 
885 
886 class EvacuationScope BASE_EMBEDDED {
887  public:
EvacuationScope(MarkCompactCollector * collector)888   explicit EvacuationScope(MarkCompactCollector* collector)
889       : collector_(collector) {
890     collector_->set_evacuation(true);
891   }
892 
~EvacuationScope()893   ~EvacuationScope() { collector_->set_evacuation(false); }
894 
895  private:
896   MarkCompactCollector* collector_;
897 };
898 
899 
900 const char* AllocationSpaceName(AllocationSpace space);
901 }  // namespace internal
902 }  // namespace v8
903 
904 #endif  // V8_HEAP_MARK_COMPACT_H_
905