1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the TypeBasedAliasAnalysis pass, which implements
11 // metadata-based TBAA.
12 //
13 // In LLVM IR, memory does not have types, so LLVM's own type system is not
14 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
15 // a type system of a higher level language. This can be used to implement
16 // typical C/C++ TBAA, but it can also be used to implement custom alias
17 // analysis behavior for other languages.
18 //
19 // We now support two types of metadata format: scalar TBAA and struct-path
20 // aware TBAA. After all testing cases are upgraded to use struct-path aware
21 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
22 // can be dropped.
23 //
24 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
25 // three fields, e.g.:
26 // !0 = metadata !{ metadata !"an example type tree" }
27 // !1 = metadata !{ metadata !"int", metadata !0 }
28 // !2 = metadata !{ metadata !"float", metadata !0 }
29 // !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
30 //
31 // The first field is an identity field. It can be any value, usually
32 // an MDString, which uniquely identifies the type. The most important
33 // name in the tree is the name of the root node. Two trees with
34 // different root node names are entirely disjoint, even if they
35 // have leaves with common names.
36 //
37 // The second field identifies the type's parent node in the tree, or
38 // is null or omitted for a root node. A type is considered to alias
39 // all of its descendants and all of its ancestors in the tree. Also,
40 // a type is considered to alias all types in other trees, so that
41 // bitcode produced from multiple front-ends is handled conservatively.
42 //
43 // If the third field is present, it's an integer which if equal to 1
44 // indicates that the type is "constant" (meaning pointsToConstantMemory
45 // should return true; see
46 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
47 //
48 // With struct-path aware TBAA, the MDNodes attached to an instruction using
49 // "!tbaa" are called path tag nodes.
50 //
51 // The path tag node has 4 fields with the last field being optional.
52 //
53 // The first field is the base type node, it can be a struct type node
54 // or a scalar type node. The second field is the access type node, it
55 // must be a scalar type node. The third field is the offset into the base type.
56 // The last field has the same meaning as the last field of our scalar TBAA:
57 // it's an integer which if equal to 1 indicates that the access is "constant".
58 //
59 // The struct type node has a name and a list of pairs, one pair for each member
60 // of the struct. The first element of each pair is a type node (a struct type
61 // node or a sclar type node), specifying the type of the member, the second
62 // element of each pair is the offset of the member.
63 //
64 // Given an example
65 // typedef struct {
66 // short s;
67 // } A;
68 // typedef struct {
69 // uint16_t s;
70 // A a;
71 // } B;
72 //
73 // For an acess to B.a.s, we attach !5 (a path tag node) to the load/store
74 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
75 // type short) and the offset is 4.
76 //
77 // !0 = metadata !{metadata !"Simple C/C++ TBAA"}
78 // !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node
79 // !2 = metadata !{metadata !"short", metadata !1} // Scalar type node
80 // !3 = metadata !{metadata !"A", metadata !2, i64 0} // Struct type node
81 // !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4}
82 // // Struct type node
83 // !5 = metadata !{metadata !4, metadata !2, i64 4} // Path tag node
84 //
85 // The struct type nodes and the scalar type nodes form a type DAG.
86 // Root (!0)
87 // char (!1) -- edge to Root
88 // short (!2) -- edge to char
89 // A (!3) -- edge with offset 0 to short
90 // B (!4) -- edge with offset 0 to short and edge with offset 4 to A
91 //
92 // To check if two tags (tagX and tagY) can alias, we start from the base type
93 // of tagX, follow the edge with the correct offset in the type DAG and adjust
94 // the offset until we reach the base type of tagY or until we reach the Root
95 // node.
96 // If we reach the base type of tagY, compare the adjusted offset with
97 // offset of tagY, return Alias if the offsets are the same, return NoAlias
98 // otherwise.
99 // If we reach the Root node, perform the above starting from base type of tagY
100 // to see if we reach base type of tagX.
101 //
102 // If they have different roots, they're part of different potentially
103 // unrelated type systems, so we return Alias to be conservative.
104 // If neither node is an ancestor of the other and they have the same root,
105 // then we say NoAlias.
106 //
107 // TODO: The current metadata format doesn't support struct
108 // fields. For example:
109 // struct X {
110 // double d;
111 // int i;
112 // };
113 // void foo(struct X *x, struct X *y, double *p) {
114 // *x = *y;
115 // *p = 0.0;
116 // }
117 // Struct X has a double member, so the store to *x can alias the store to *p.
118 // Currently it's not possible to precisely describe all the things struct X
119 // aliases, so struct assignments must use conservative TBAA nodes. There's
120 // no scheme for attaching metadata to @llvm.memcpy yet either.
121 //
122 //===----------------------------------------------------------------------===//
123
124 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
125 #include "llvm/Analysis/TargetLibraryInfo.h"
126 #include "llvm/ADT/SetVector.h"
127 #include "llvm/IR/Constants.h"
128 #include "llvm/IR/LLVMContext.h"
129 #include "llvm/IR/Module.h"
130 #include "llvm/Support/CommandLine.h"
131 using namespace llvm;
132
133 // A handy option for disabling TBAA functionality. The same effect can also be
134 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
135 // more convenient.
136 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true));
137
138 namespace {
139 /// TBAANode - This is a simple wrapper around an MDNode which provides a
140 /// higher-level interface by hiding the details of how alias analysis
141 /// information is encoded in its operands.
142 class TBAANode {
143 const MDNode *Node;
144
145 public:
TBAANode()146 TBAANode() : Node(nullptr) {}
TBAANode(const MDNode * N)147 explicit TBAANode(const MDNode *N) : Node(N) {}
148
149 /// getNode - Get the MDNode for this TBAANode.
getNode() const150 const MDNode *getNode() const { return Node; }
151
152 /// getParent - Get this TBAANode's Alias tree parent.
getParent() const153 TBAANode getParent() const {
154 if (Node->getNumOperands() < 2)
155 return TBAANode();
156 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
157 if (!P)
158 return TBAANode();
159 // Ok, this node has a valid parent. Return it.
160 return TBAANode(P);
161 }
162
163 /// TypeIsImmutable - Test if this TBAANode represents a type for objects
164 /// which are not modified (by any means) in the context where this
165 /// AliasAnalysis is relevant.
TypeIsImmutable() const166 bool TypeIsImmutable() const {
167 if (Node->getNumOperands() < 3)
168 return false;
169 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
170 if (!CI)
171 return false;
172 return CI->getValue()[0];
173 }
174 };
175
176 /// This is a simple wrapper around an MDNode which provides a
177 /// higher-level interface by hiding the details of how alias analysis
178 /// information is encoded in its operands.
179 class TBAAStructTagNode {
180 /// This node should be created with createTBAAStructTagNode.
181 const MDNode *Node;
182
183 public:
TBAAStructTagNode(const MDNode * N)184 explicit TBAAStructTagNode(const MDNode *N) : Node(N) {}
185
186 /// Get the MDNode for this TBAAStructTagNode.
getNode() const187 const MDNode *getNode() const { return Node; }
188
getBaseType() const189 const MDNode *getBaseType() const {
190 return dyn_cast_or_null<MDNode>(Node->getOperand(0));
191 }
getAccessType() const192 const MDNode *getAccessType() const {
193 return dyn_cast_or_null<MDNode>(Node->getOperand(1));
194 }
getOffset() const195 uint64_t getOffset() const {
196 return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
197 }
198 /// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for
199 /// objects which are not modified (by any means) in the context where this
200 /// AliasAnalysis is relevant.
TypeIsImmutable() const201 bool TypeIsImmutable() const {
202 if (Node->getNumOperands() < 4)
203 return false;
204 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(3));
205 if (!CI)
206 return false;
207 return CI->getValue()[0];
208 }
209 };
210
211 /// This is a simple wrapper around an MDNode which provides a
212 /// higher-level interface by hiding the details of how alias analysis
213 /// information is encoded in its operands.
214 class TBAAStructTypeNode {
215 /// This node should be created with createTBAAStructTypeNode.
216 const MDNode *Node;
217
218 public:
TBAAStructTypeNode()219 TBAAStructTypeNode() : Node(nullptr) {}
TBAAStructTypeNode(const MDNode * N)220 explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
221
222 /// Get the MDNode for this TBAAStructTypeNode.
getNode() const223 const MDNode *getNode() const { return Node; }
224
225 /// Get this TBAAStructTypeNode's field in the type DAG with
226 /// given offset. Update the offset to be relative to the field type.
getParent(uint64_t & Offset) const227 TBAAStructTypeNode getParent(uint64_t &Offset) const {
228 // Parent can be omitted for the root node.
229 if (Node->getNumOperands() < 2)
230 return TBAAStructTypeNode();
231
232 // Fast path for a scalar type node and a struct type node with a single
233 // field.
234 if (Node->getNumOperands() <= 3) {
235 uint64_t Cur = Node->getNumOperands() == 2
236 ? 0
237 : mdconst::extract<ConstantInt>(Node->getOperand(2))
238 ->getZExtValue();
239 Offset -= Cur;
240 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
241 if (!P)
242 return TBAAStructTypeNode();
243 return TBAAStructTypeNode(P);
244 }
245
246 // Assume the offsets are in order. We return the previous field if
247 // the current offset is bigger than the given offset.
248 unsigned TheIdx = 0;
249 for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
250 uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
251 ->getZExtValue();
252 if (Cur > Offset) {
253 assert(Idx >= 3 &&
254 "TBAAStructTypeNode::getParent should have an offset match!");
255 TheIdx = Idx - 2;
256 break;
257 }
258 }
259 // Move along the last field.
260 if (TheIdx == 0)
261 TheIdx = Node->getNumOperands() - 2;
262 uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
263 ->getZExtValue();
264 Offset -= Cur;
265 MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
266 if (!P)
267 return TBAAStructTypeNode();
268 return TBAAStructTypeNode(P);
269 }
270 };
271 }
272
273 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
274 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
275 /// format.
isStructPathTBAA(const MDNode * MD)276 static bool isStructPathTBAA(const MDNode *MD) {
277 // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
278 // a TBAA tag.
279 return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
280 }
281
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)282 AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
283 const MemoryLocation &LocB) {
284 if (!EnableTBAA)
285 return AAResultBase::alias(LocA, LocB);
286
287 // Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
288 // be conservative.
289 const MDNode *AM = LocA.AATags.TBAA;
290 if (!AM)
291 return AAResultBase::alias(LocA, LocB);
292 const MDNode *BM = LocB.AATags.TBAA;
293 if (!BM)
294 return AAResultBase::alias(LocA, LocB);
295
296 // If they may alias, chain to the next AliasAnalysis.
297 if (Aliases(AM, BM))
298 return AAResultBase::alias(LocA, LocB);
299
300 // Otherwise return a definitive result.
301 return NoAlias;
302 }
303
pointsToConstantMemory(const MemoryLocation & Loc,bool OrLocal)304 bool TypeBasedAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
305 bool OrLocal) {
306 if (!EnableTBAA)
307 return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
308
309 const MDNode *M = Loc.AATags.TBAA;
310 if (!M)
311 return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
312
313 // If this is an "immutable" type, we can assume the pointer is pointing
314 // to constant memory.
315 if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
316 (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
317 return true;
318
319 return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
320 }
321
322 FunctionModRefBehavior
getModRefBehavior(ImmutableCallSite CS)323 TypeBasedAAResult::getModRefBehavior(ImmutableCallSite CS) {
324 if (!EnableTBAA)
325 return AAResultBase::getModRefBehavior(CS);
326
327 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
328
329 // If this is an "immutable" type, we can assume the call doesn't write
330 // to memory.
331 if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
332 if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
333 (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
334 Min = FMRB_OnlyReadsMemory;
335
336 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
337 }
338
getModRefBehavior(const Function * F)339 FunctionModRefBehavior TypeBasedAAResult::getModRefBehavior(const Function *F) {
340 // Functions don't have metadata. Just chain to the next implementation.
341 return AAResultBase::getModRefBehavior(F);
342 }
343
getModRefInfo(ImmutableCallSite CS,const MemoryLocation & Loc)344 ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS,
345 const MemoryLocation &Loc) {
346 if (!EnableTBAA)
347 return AAResultBase::getModRefInfo(CS, Loc);
348
349 if (const MDNode *L = Loc.AATags.TBAA)
350 if (const MDNode *M =
351 CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
352 if (!Aliases(L, M))
353 return MRI_NoModRef;
354
355 return AAResultBase::getModRefInfo(CS, Loc);
356 }
357
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)358 ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS1,
359 ImmutableCallSite CS2) {
360 if (!EnableTBAA)
361 return AAResultBase::getModRefInfo(CS1, CS2);
362
363 if (const MDNode *M1 =
364 CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
365 if (const MDNode *M2 =
366 CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
367 if (!Aliases(M1, M2))
368 return MRI_NoModRef;
369
370 return AAResultBase::getModRefInfo(CS1, CS2);
371 }
372
isTBAAVtableAccess() const373 bool MDNode::isTBAAVtableAccess() const {
374 if (!isStructPathTBAA(this)) {
375 if (getNumOperands() < 1)
376 return false;
377 if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
378 if (Tag1->getString() == "vtable pointer")
379 return true;
380 }
381 return false;
382 }
383
384 // For struct-path aware TBAA, we use the access type of the tag.
385 if (getNumOperands() < 2)
386 return false;
387 MDNode *Tag = cast_or_null<MDNode>(getOperand(1));
388 if (!Tag)
389 return false;
390 if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
391 if (Tag1->getString() == "vtable pointer")
392 return true;
393 }
394 return false;
395 }
396
getMostGenericTBAA(MDNode * A,MDNode * B)397 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
398 if (!A || !B)
399 return nullptr;
400
401 if (A == B)
402 return A;
403
404 // For struct-path aware TBAA, we use the access type of the tag.
405 bool StructPath = isStructPathTBAA(A) && isStructPathTBAA(B);
406 if (StructPath) {
407 A = cast_or_null<MDNode>(A->getOperand(1));
408 if (!A)
409 return nullptr;
410 B = cast_or_null<MDNode>(B->getOperand(1));
411 if (!B)
412 return nullptr;
413 }
414
415 SmallSetVector<MDNode *, 4> PathA;
416 MDNode *T = A;
417 while (T) {
418 if (PathA.count(T))
419 report_fatal_error("Cycle found in TBAA metadata.");
420 PathA.insert(T);
421 T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
422 : nullptr;
423 }
424
425 SmallSetVector<MDNode *, 4> PathB;
426 T = B;
427 while (T) {
428 if (PathB.count(T))
429 report_fatal_error("Cycle found in TBAA metadata.");
430 PathB.insert(T);
431 T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
432 : nullptr;
433 }
434
435 int IA = PathA.size() - 1;
436 int IB = PathB.size() - 1;
437
438 MDNode *Ret = nullptr;
439 while (IA >= 0 && IB >= 0) {
440 if (PathA[IA] == PathB[IB])
441 Ret = PathA[IA];
442 else
443 break;
444 --IA;
445 --IB;
446 }
447 if (!StructPath)
448 return Ret;
449
450 if (!Ret)
451 return nullptr;
452 // We need to convert from a type node to a tag node.
453 Type *Int64 = IntegerType::get(A->getContext(), 64);
454 Metadata *Ops[3] = {Ret, Ret,
455 ConstantAsMetadata::get(ConstantInt::get(Int64, 0))};
456 return MDNode::get(A->getContext(), Ops);
457 }
458
getAAMetadata(AAMDNodes & N,bool Merge) const459 void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
460 if (Merge)
461 N.TBAA =
462 MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
463 else
464 N.TBAA = getMetadata(LLVMContext::MD_tbaa);
465
466 if (Merge)
467 N.Scope = MDNode::getMostGenericAliasScope(
468 N.Scope, getMetadata(LLVMContext::MD_alias_scope));
469 else
470 N.Scope = getMetadata(LLVMContext::MD_alias_scope);
471
472 if (Merge)
473 N.NoAlias =
474 MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
475 else
476 N.NoAlias = getMetadata(LLVMContext::MD_noalias);
477 }
478
479 /// Aliases - Test whether the type represented by A may alias the
480 /// type represented by B.
Aliases(const MDNode * A,const MDNode * B) const481 bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
482 // Make sure that both MDNodes are struct-path aware.
483 if (isStructPathTBAA(A) && isStructPathTBAA(B))
484 return PathAliases(A, B);
485
486 // Keep track of the root node for A and B.
487 TBAANode RootA, RootB;
488
489 // Climb the tree from A to see if we reach B.
490 for (TBAANode T(A);;) {
491 if (T.getNode() == B)
492 // B is an ancestor of A.
493 return true;
494
495 RootA = T;
496 T = T.getParent();
497 if (!T.getNode())
498 break;
499 }
500
501 // Climb the tree from B to see if we reach A.
502 for (TBAANode T(B);;) {
503 if (T.getNode() == A)
504 // A is an ancestor of B.
505 return true;
506
507 RootB = T;
508 T = T.getParent();
509 if (!T.getNode())
510 break;
511 }
512
513 // Neither node is an ancestor of the other.
514
515 // If they have different roots, they're part of different potentially
516 // unrelated type systems, so we must be conservative.
517 if (RootA.getNode() != RootB.getNode())
518 return true;
519
520 // If they have the same root, then we've proved there's no alias.
521 return false;
522 }
523
524 /// Test whether the struct-path tag represented by A may alias the
525 /// struct-path tag represented by B.
PathAliases(const MDNode * A,const MDNode * B) const526 bool TypeBasedAAResult::PathAliases(const MDNode *A, const MDNode *B) const {
527 // Verify that both input nodes are struct-path aware.
528 assert(isStructPathTBAA(A) && "MDNode A is not struct-path aware.");
529 assert(isStructPathTBAA(B) && "MDNode B is not struct-path aware.");
530
531 // Keep track of the root node for A and B.
532 TBAAStructTypeNode RootA, RootB;
533 TBAAStructTagNode TagA(A), TagB(B);
534
535 // TODO: We need to check if AccessType of TagA encloses AccessType of
536 // TagB to support aggregate AccessType. If yes, return true.
537
538 // Start from the base type of A, follow the edge with the correct offset in
539 // the type DAG and adjust the offset until we reach the base type of B or
540 // until we reach the Root node.
541 // Compare the adjusted offset once we have the same base.
542
543 // Climb the type DAG from base type of A to see if we reach base type of B.
544 const MDNode *BaseA = TagA.getBaseType();
545 const MDNode *BaseB = TagB.getBaseType();
546 uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
547 for (TBAAStructTypeNode T(BaseA);;) {
548 if (T.getNode() == BaseB)
549 // Base type of A encloses base type of B, check if the offsets match.
550 return OffsetA == OffsetB;
551
552 RootA = T;
553 // Follow the edge with the correct offset, OffsetA will be adjusted to
554 // be relative to the field type.
555 T = T.getParent(OffsetA);
556 if (!T.getNode())
557 break;
558 }
559
560 // Reset OffsetA and climb the type DAG from base type of B to see if we reach
561 // base type of A.
562 OffsetA = TagA.getOffset();
563 for (TBAAStructTypeNode T(BaseB);;) {
564 if (T.getNode() == BaseA)
565 // Base type of B encloses base type of A, check if the offsets match.
566 return OffsetA == OffsetB;
567
568 RootB = T;
569 // Follow the edge with the correct offset, OffsetB will be adjusted to
570 // be relative to the field type.
571 T = T.getParent(OffsetB);
572 if (!T.getNode())
573 break;
574 }
575
576 // Neither node is an ancestor of the other.
577
578 // If they have different roots, they're part of different potentially
579 // unrelated type systems, so we must be conservative.
580 if (RootA.getNode() != RootB.getNode())
581 return true;
582
583 // If they have the same root, then we've proved there's no alias.
584 return false;
585 }
586
run(Function & F,AnalysisManager<Function> * AM)587 TypeBasedAAResult TypeBasedAA::run(Function &F, AnalysisManager<Function> *AM) {
588 return TypeBasedAAResult(AM->getResult<TargetLibraryAnalysis>(F));
589 }
590
591 char TypeBasedAA::PassID;
592
593 char TypeBasedAAWrapperPass::ID = 0;
594 INITIALIZE_PASS_BEGIN(TypeBasedAAWrapperPass, "tbaa",
595 "Type-Based Alias Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)596 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
597 INITIALIZE_PASS_END(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
598 false, true)
599
600 ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
601 return new TypeBasedAAWrapperPass();
602 }
603
TypeBasedAAWrapperPass()604 TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
605 initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
606 }
607
doInitialization(Module & M)608 bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
609 Result.reset(new TypeBasedAAResult(
610 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
611 return false;
612 }
613
doFinalization(Module & M)614 bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
615 Result.reset();
616 return false;
617 }
618
getAnalysisUsage(AnalysisUsage & AU) const619 void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
620 AU.setPreservesAll();
621 AU.addRequired<TargetLibraryInfoWrapperPass>();
622 }
623