1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "clang/AST/RecordLayout.h"
11 #include "clang/AST/ASTContext.h"
12 #include "clang/AST/Attr.h"
13 #include "clang/AST/CXXInheritance.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/DeclCXX.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Sema/SemaDiagnostic.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/MathExtras.h"
23
24 using namespace clang;
25
26 namespace {
27
28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29 /// For a class hierarchy like
30 ///
31 /// class A { };
32 /// class B : A { };
33 /// class C : A, B { };
34 ///
35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36 /// instances, one for B and two for A.
37 ///
38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39 struct BaseSubobjectInfo {
40 /// Class - The class for this base info.
41 const CXXRecordDecl *Class;
42
43 /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
44 bool IsVirtual;
45
46 /// Bases - Information about the base subobjects.
47 SmallVector<BaseSubobjectInfo*, 4> Bases;
48
49 /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50 /// of this base info (if one exists).
51 BaseSubobjectInfo *PrimaryVirtualBaseInfo;
52
53 // FIXME: Document.
54 const BaseSubobjectInfo *Derived;
55 };
56
57 /// \brief Externally provided layout. Typically used when the AST source, such
58 /// as DWARF, lacks all the information that was available at compile time, such
59 /// as alignment attributes on fields and pragmas in effect.
60 struct ExternalLayout {
ExternalLayout__anon07e898d70111::ExternalLayout61 ExternalLayout() : Size(0), Align(0) {}
62
63 /// \brief Overall record size in bits.
64 uint64_t Size;
65
66 /// \brief Overall record alignment in bits.
67 uint64_t Align;
68
69 /// \brief Record field offsets in bits.
70 llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
71
72 /// \brief Direct, non-virtual base offsets.
73 llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
74
75 /// \brief Virtual base offsets.
76 llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
77
78 /// Get the offset of the given field. The external source must provide
79 /// entries for all fields in the record.
getExternalFieldOffset__anon07e898d70111::ExternalLayout80 uint64_t getExternalFieldOffset(const FieldDecl *FD) {
81 assert(FieldOffsets.count(FD) &&
82 "Field does not have an external offset");
83 return FieldOffsets[FD];
84 }
85
getExternalNVBaseOffset__anon07e898d70111::ExternalLayout86 bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
87 auto Known = BaseOffsets.find(RD);
88 if (Known == BaseOffsets.end())
89 return false;
90 BaseOffset = Known->second;
91 return true;
92 }
93
getExternalVBaseOffset__anon07e898d70111::ExternalLayout94 bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
95 auto Known = VirtualBaseOffsets.find(RD);
96 if (Known == VirtualBaseOffsets.end())
97 return false;
98 BaseOffset = Known->second;
99 return true;
100 }
101 };
102
103 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
104 /// offsets while laying out a C++ class.
105 class EmptySubobjectMap {
106 const ASTContext &Context;
107 uint64_t CharWidth;
108
109 /// Class - The class whose empty entries we're keeping track of.
110 const CXXRecordDecl *Class;
111
112 /// EmptyClassOffsets - A map from offsets to empty record decls.
113 typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
114 typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
115 EmptyClassOffsetsMapTy EmptyClassOffsets;
116
117 /// MaxEmptyClassOffset - The highest offset known to contain an empty
118 /// base subobject.
119 CharUnits MaxEmptyClassOffset;
120
121 /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
122 /// member subobject that is empty.
123 void ComputeEmptySubobjectSizes();
124
125 void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
126
127 void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
128 CharUnits Offset, bool PlacingEmptyBase);
129
130 void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
131 const CXXRecordDecl *Class,
132 CharUnits Offset);
133 void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
134
135 /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
136 /// subobjects beyond the given offset.
AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const137 bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
138 return Offset <= MaxEmptyClassOffset;
139 }
140
141 CharUnits
getFieldOffset(const ASTRecordLayout & Layout,unsigned FieldNo) const142 getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
143 uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
144 assert(FieldOffset % CharWidth == 0 &&
145 "Field offset not at char boundary!");
146
147 return Context.toCharUnitsFromBits(FieldOffset);
148 }
149
150 protected:
151 bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
152 CharUnits Offset) const;
153
154 bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
155 CharUnits Offset);
156
157 bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
158 const CXXRecordDecl *Class,
159 CharUnits Offset) const;
160 bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
161 CharUnits Offset) const;
162
163 public:
164 /// This holds the size of the largest empty subobject (either a base
165 /// or a member). Will be zero if the record being built doesn't contain
166 /// any empty classes.
167 CharUnits SizeOfLargestEmptySubobject;
168
EmptySubobjectMap(const ASTContext & Context,const CXXRecordDecl * Class)169 EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
170 : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
171 ComputeEmptySubobjectSizes();
172 }
173
174 /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
175 /// at the given offset.
176 /// Returns false if placing the record will result in two components
177 /// (direct or indirect) of the same type having the same offset.
178 bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
179 CharUnits Offset);
180
181 /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
182 /// offset.
183 bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
184 };
185
ComputeEmptySubobjectSizes()186 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
187 // Check the bases.
188 for (const CXXBaseSpecifier &Base : Class->bases()) {
189 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
190
191 CharUnits EmptySize;
192 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
193 if (BaseDecl->isEmpty()) {
194 // If the class decl is empty, get its size.
195 EmptySize = Layout.getSize();
196 } else {
197 // Otherwise, we get the largest empty subobject for the decl.
198 EmptySize = Layout.getSizeOfLargestEmptySubobject();
199 }
200
201 if (EmptySize > SizeOfLargestEmptySubobject)
202 SizeOfLargestEmptySubobject = EmptySize;
203 }
204
205 // Check the fields.
206 for (const FieldDecl *FD : Class->fields()) {
207 const RecordType *RT =
208 Context.getBaseElementType(FD->getType())->getAs<RecordType>();
209
210 // We only care about record types.
211 if (!RT)
212 continue;
213
214 CharUnits EmptySize;
215 const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
216 const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
217 if (MemberDecl->isEmpty()) {
218 // If the class decl is empty, get its size.
219 EmptySize = Layout.getSize();
220 } else {
221 // Otherwise, we get the largest empty subobject for the decl.
222 EmptySize = Layout.getSizeOfLargestEmptySubobject();
223 }
224
225 if (EmptySize > SizeOfLargestEmptySubobject)
226 SizeOfLargestEmptySubobject = EmptySize;
227 }
228 }
229
230 bool
CanPlaceSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset) const231 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
232 CharUnits Offset) const {
233 // We only need to check empty bases.
234 if (!RD->isEmpty())
235 return true;
236
237 EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
238 if (I == EmptyClassOffsets.end())
239 return true;
240
241 const ClassVectorTy &Classes = I->second;
242 if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
243 return true;
244
245 // There is already an empty class of the same type at this offset.
246 return false;
247 }
248
AddSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset)249 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
250 CharUnits Offset) {
251 // We only care about empty bases.
252 if (!RD->isEmpty())
253 return;
254
255 // If we have empty structures inside a union, we can assign both
256 // the same offset. Just avoid pushing them twice in the list.
257 ClassVectorTy &Classes = EmptyClassOffsets[Offset];
258 if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
259 return;
260
261 Classes.push_back(RD);
262
263 // Update the empty class offset.
264 if (Offset > MaxEmptyClassOffset)
265 MaxEmptyClassOffset = Offset;
266 }
267
268 bool
CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)269 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
270 CharUnits Offset) {
271 // We don't have to keep looking past the maximum offset that's known to
272 // contain an empty class.
273 if (!AnyEmptySubobjectsBeyondOffset(Offset))
274 return true;
275
276 if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
277 return false;
278
279 // Traverse all non-virtual bases.
280 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
281 for (const BaseSubobjectInfo *Base : Info->Bases) {
282 if (Base->IsVirtual)
283 continue;
284
285 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
286
287 if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
288 return false;
289 }
290
291 if (Info->PrimaryVirtualBaseInfo) {
292 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
293
294 if (Info == PrimaryVirtualBaseInfo->Derived) {
295 if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
296 return false;
297 }
298 }
299
300 // Traverse all member variables.
301 unsigned FieldNo = 0;
302 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
303 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
304 if (I->isBitField())
305 continue;
306
307 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
308 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
309 return false;
310 }
311
312 return true;
313 }
314
UpdateEmptyBaseSubobjects(const BaseSubobjectInfo * Info,CharUnits Offset,bool PlacingEmptyBase)315 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
316 CharUnits Offset,
317 bool PlacingEmptyBase) {
318 if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
319 // We know that the only empty subobjects that can conflict with empty
320 // subobject of non-empty bases, are empty bases that can be placed at
321 // offset zero. Because of this, we only need to keep track of empty base
322 // subobjects with offsets less than the size of the largest empty
323 // subobject for our class.
324 return;
325 }
326
327 AddSubobjectAtOffset(Info->Class, Offset);
328
329 // Traverse all non-virtual bases.
330 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
331 for (const BaseSubobjectInfo *Base : Info->Bases) {
332 if (Base->IsVirtual)
333 continue;
334
335 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
336 UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
337 }
338
339 if (Info->PrimaryVirtualBaseInfo) {
340 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
341
342 if (Info == PrimaryVirtualBaseInfo->Derived)
343 UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
344 PlacingEmptyBase);
345 }
346
347 // Traverse all member variables.
348 unsigned FieldNo = 0;
349 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
350 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
351 if (I->isBitField())
352 continue;
353
354 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
355 UpdateEmptyFieldSubobjects(*I, FieldOffset);
356 }
357 }
358
CanPlaceBaseAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)359 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
360 CharUnits Offset) {
361 // If we know this class doesn't have any empty subobjects we don't need to
362 // bother checking.
363 if (SizeOfLargestEmptySubobject.isZero())
364 return true;
365
366 if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
367 return false;
368
369 // We are able to place the base at this offset. Make sure to update the
370 // empty base subobject map.
371 UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
372 return true;
373 }
374
375 bool
CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset) const376 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
377 const CXXRecordDecl *Class,
378 CharUnits Offset) const {
379 // We don't have to keep looking past the maximum offset that's known to
380 // contain an empty class.
381 if (!AnyEmptySubobjectsBeyondOffset(Offset))
382 return true;
383
384 if (!CanPlaceSubobjectAtOffset(RD, Offset))
385 return false;
386
387 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
388
389 // Traverse all non-virtual bases.
390 for (const CXXBaseSpecifier &Base : RD->bases()) {
391 if (Base.isVirtual())
392 continue;
393
394 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
395
396 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
397 if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
398 return false;
399 }
400
401 if (RD == Class) {
402 // This is the most derived class, traverse virtual bases as well.
403 for (const CXXBaseSpecifier &Base : RD->vbases()) {
404 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
405
406 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
407 if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
408 return false;
409 }
410 }
411
412 // Traverse all member variables.
413 unsigned FieldNo = 0;
414 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
415 I != E; ++I, ++FieldNo) {
416 if (I->isBitField())
417 continue;
418
419 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
420
421 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
422 return false;
423 }
424
425 return true;
426 }
427
428 bool
CanPlaceFieldSubobjectAtOffset(const FieldDecl * FD,CharUnits Offset) const429 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
430 CharUnits Offset) const {
431 // We don't have to keep looking past the maximum offset that's known to
432 // contain an empty class.
433 if (!AnyEmptySubobjectsBeyondOffset(Offset))
434 return true;
435
436 QualType T = FD->getType();
437 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
438 return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
439
440 // If we have an array type we need to look at every element.
441 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
442 QualType ElemTy = Context.getBaseElementType(AT);
443 const RecordType *RT = ElemTy->getAs<RecordType>();
444 if (!RT)
445 return true;
446
447 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
448 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
449
450 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
451 CharUnits ElementOffset = Offset;
452 for (uint64_t I = 0; I != NumElements; ++I) {
453 // We don't have to keep looking past the maximum offset that's known to
454 // contain an empty class.
455 if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
456 return true;
457
458 if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
459 return false;
460
461 ElementOffset += Layout.getSize();
462 }
463 }
464
465 return true;
466 }
467
468 bool
CanPlaceFieldAtOffset(const FieldDecl * FD,CharUnits Offset)469 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
470 CharUnits Offset) {
471 if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
472 return false;
473
474 // We are able to place the member variable at this offset.
475 // Make sure to update the empty base subobject map.
476 UpdateEmptyFieldSubobjects(FD, Offset);
477 return true;
478 }
479
UpdateEmptyFieldSubobjects(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset)480 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
481 const CXXRecordDecl *Class,
482 CharUnits Offset) {
483 // We know that the only empty subobjects that can conflict with empty
484 // field subobjects are subobjects of empty bases that can be placed at offset
485 // zero. Because of this, we only need to keep track of empty field
486 // subobjects with offsets less than the size of the largest empty
487 // subobject for our class.
488 if (Offset >= SizeOfLargestEmptySubobject)
489 return;
490
491 AddSubobjectAtOffset(RD, Offset);
492
493 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
494
495 // Traverse all non-virtual bases.
496 for (const CXXBaseSpecifier &Base : RD->bases()) {
497 if (Base.isVirtual())
498 continue;
499
500 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
501
502 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
503 UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
504 }
505
506 if (RD == Class) {
507 // This is the most derived class, traverse virtual bases as well.
508 for (const CXXBaseSpecifier &Base : RD->vbases()) {
509 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
510
511 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
512 UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
513 }
514 }
515
516 // Traverse all member variables.
517 unsigned FieldNo = 0;
518 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
519 I != E; ++I, ++FieldNo) {
520 if (I->isBitField())
521 continue;
522
523 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
524
525 UpdateEmptyFieldSubobjects(*I, FieldOffset);
526 }
527 }
528
UpdateEmptyFieldSubobjects(const FieldDecl * FD,CharUnits Offset)529 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
530 CharUnits Offset) {
531 QualType T = FD->getType();
532 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
533 UpdateEmptyFieldSubobjects(RD, RD, Offset);
534 return;
535 }
536
537 // If we have an array type we need to update every element.
538 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
539 QualType ElemTy = Context.getBaseElementType(AT);
540 const RecordType *RT = ElemTy->getAs<RecordType>();
541 if (!RT)
542 return;
543
544 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
545 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
546
547 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
548 CharUnits ElementOffset = Offset;
549
550 for (uint64_t I = 0; I != NumElements; ++I) {
551 // We know that the only empty subobjects that can conflict with empty
552 // field subobjects are subobjects of empty bases that can be placed at
553 // offset zero. Because of this, we only need to keep track of empty field
554 // subobjects with offsets less than the size of the largest empty
555 // subobject for our class.
556 if (ElementOffset >= SizeOfLargestEmptySubobject)
557 return;
558
559 UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
560 ElementOffset += Layout.getSize();
561 }
562 }
563 }
564
565 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
566
567 class ItaniumRecordLayoutBuilder {
568 protected:
569 // FIXME: Remove this and make the appropriate fields public.
570 friend class clang::ASTContext;
571
572 const ASTContext &Context;
573
574 EmptySubobjectMap *EmptySubobjects;
575
576 /// Size - The current size of the record layout.
577 uint64_t Size;
578
579 /// Alignment - The current alignment of the record layout.
580 CharUnits Alignment;
581
582 /// \brief The alignment if attribute packed is not used.
583 CharUnits UnpackedAlignment;
584
585 SmallVector<uint64_t, 16> FieldOffsets;
586
587 /// \brief Whether the external AST source has provided a layout for this
588 /// record.
589 unsigned UseExternalLayout : 1;
590
591 /// \brief Whether we need to infer alignment, even when we have an
592 /// externally-provided layout.
593 unsigned InferAlignment : 1;
594
595 /// Packed - Whether the record is packed or not.
596 unsigned Packed : 1;
597
598 unsigned IsUnion : 1;
599
600 unsigned IsMac68kAlign : 1;
601
602 unsigned IsMsStruct : 1;
603
604 /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
605 /// this contains the number of bits in the last unit that can be used for
606 /// an adjacent bitfield if necessary. The unit in question is usually
607 /// a byte, but larger units are used if IsMsStruct.
608 unsigned char UnfilledBitsInLastUnit;
609 /// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type
610 /// of the previous field if it was a bitfield.
611 unsigned char LastBitfieldTypeSize;
612
613 /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
614 /// #pragma pack.
615 CharUnits MaxFieldAlignment;
616
617 /// DataSize - The data size of the record being laid out.
618 uint64_t DataSize;
619
620 CharUnits NonVirtualSize;
621 CharUnits NonVirtualAlignment;
622
623 /// PrimaryBase - the primary base class (if one exists) of the class
624 /// we're laying out.
625 const CXXRecordDecl *PrimaryBase;
626
627 /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
628 /// out is virtual.
629 bool PrimaryBaseIsVirtual;
630
631 /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
632 /// pointer, as opposed to inheriting one from a primary base class.
633 bool HasOwnVFPtr;
634
635 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
636
637 /// Bases - base classes and their offsets in the record.
638 BaseOffsetsMapTy Bases;
639
640 // VBases - virtual base classes and their offsets in the record.
641 ASTRecordLayout::VBaseOffsetsMapTy VBases;
642
643 /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
644 /// primary base classes for some other direct or indirect base class.
645 CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
646
647 /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
648 /// inheritance graph order. Used for determining the primary base class.
649 const CXXRecordDecl *FirstNearlyEmptyVBase;
650
651 /// VisitedVirtualBases - A set of all the visited virtual bases, used to
652 /// avoid visiting virtual bases more than once.
653 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
654
655 /// Valid if UseExternalLayout is true.
656 ExternalLayout External;
657
ItaniumRecordLayoutBuilder(const ASTContext & Context,EmptySubobjectMap * EmptySubobjects)658 ItaniumRecordLayoutBuilder(const ASTContext &Context,
659 EmptySubobjectMap *EmptySubobjects)
660 : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
661 Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
662 UseExternalLayout(false), InferAlignment(false), Packed(false),
663 IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
664 UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0),
665 MaxFieldAlignment(CharUnits::Zero()), DataSize(0),
666 NonVirtualSize(CharUnits::Zero()),
667 NonVirtualAlignment(CharUnits::One()), PrimaryBase(nullptr),
668 PrimaryBaseIsVirtual(false), HasOwnVFPtr(false),
669 FirstNearlyEmptyVBase(nullptr) {}
670
671 void Layout(const RecordDecl *D);
672 void Layout(const CXXRecordDecl *D);
673 void Layout(const ObjCInterfaceDecl *D);
674
675 void LayoutFields(const RecordDecl *D);
676 void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
677 void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
678 bool FieldPacked, const FieldDecl *D);
679 void LayoutBitField(const FieldDecl *D);
680
getCXXABI() const681 TargetCXXABI getCXXABI() const {
682 return Context.getTargetInfo().getCXXABI();
683 }
684
685 /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
686 llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
687
688 typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
689 BaseSubobjectInfoMapTy;
690
691 /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
692 /// of the class we're laying out to their base subobject info.
693 BaseSubobjectInfoMapTy VirtualBaseInfo;
694
695 /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
696 /// class we're laying out to their base subobject info.
697 BaseSubobjectInfoMapTy NonVirtualBaseInfo;
698
699 /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
700 /// bases of the given class.
701 void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
702
703 /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
704 /// single class and all of its base classes.
705 BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
706 bool IsVirtual,
707 BaseSubobjectInfo *Derived);
708
709 /// DeterminePrimaryBase - Determine the primary base of the given class.
710 void DeterminePrimaryBase(const CXXRecordDecl *RD);
711
712 void SelectPrimaryVBase(const CXXRecordDecl *RD);
713
714 void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
715
716 /// LayoutNonVirtualBases - Determines the primary base class (if any) and
717 /// lays it out. Will then proceed to lay out all non-virtual base clasess.
718 void LayoutNonVirtualBases(const CXXRecordDecl *RD);
719
720 /// LayoutNonVirtualBase - Lays out a single non-virtual base.
721 void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
722
723 void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
724 CharUnits Offset);
725
726 /// LayoutVirtualBases - Lays out all the virtual bases.
727 void LayoutVirtualBases(const CXXRecordDecl *RD,
728 const CXXRecordDecl *MostDerivedClass);
729
730 /// LayoutVirtualBase - Lays out a single virtual base.
731 void LayoutVirtualBase(const BaseSubobjectInfo *Base);
732
733 /// LayoutBase - Will lay out a base and return the offset where it was
734 /// placed, in chars.
735 CharUnits LayoutBase(const BaseSubobjectInfo *Base);
736
737 /// InitializeLayout - Initialize record layout for the given record decl.
738 void InitializeLayout(const Decl *D);
739
740 /// FinishLayout - Finalize record layout. Adjust record size based on the
741 /// alignment.
742 void FinishLayout(const NamedDecl *D);
743
744 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
UpdateAlignment(CharUnits NewAlignment)745 void UpdateAlignment(CharUnits NewAlignment) {
746 UpdateAlignment(NewAlignment, NewAlignment);
747 }
748
749 /// \brief Retrieve the externally-supplied field offset for the given
750 /// field.
751 ///
752 /// \param Field The field whose offset is being queried.
753 /// \param ComputedOffset The offset that we've computed for this field.
754 uint64_t updateExternalFieldOffset(const FieldDecl *Field,
755 uint64_t ComputedOffset);
756
757 void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
758 uint64_t UnpackedOffset, unsigned UnpackedAlign,
759 bool isPacked, const FieldDecl *D);
760
761 DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
762
getSize() const763 CharUnits getSize() const {
764 assert(Size % Context.getCharWidth() == 0);
765 return Context.toCharUnitsFromBits(Size);
766 }
getSizeInBits() const767 uint64_t getSizeInBits() const { return Size; }
768
setSize(CharUnits NewSize)769 void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
setSize(uint64_t NewSize)770 void setSize(uint64_t NewSize) { Size = NewSize; }
771
getAligment() const772 CharUnits getAligment() const { return Alignment; }
773
getDataSize() const774 CharUnits getDataSize() const {
775 assert(DataSize % Context.getCharWidth() == 0);
776 return Context.toCharUnitsFromBits(DataSize);
777 }
getDataSizeInBits() const778 uint64_t getDataSizeInBits() const { return DataSize; }
779
setDataSize(CharUnits NewSize)780 void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
setDataSize(uint64_t NewSize)781 void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
782
783 ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
784 void operator=(const ItaniumRecordLayoutBuilder &) = delete;
785 };
786 } // end anonymous namespace
787
SelectPrimaryVBase(const CXXRecordDecl * RD)788 void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
789 for (const auto &I : RD->bases()) {
790 assert(!I.getType()->isDependentType() &&
791 "Cannot layout class with dependent bases.");
792
793 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
794
795 // Check if this is a nearly empty virtual base.
796 if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
797 // If it's not an indirect primary base, then we've found our primary
798 // base.
799 if (!IndirectPrimaryBases.count(Base)) {
800 PrimaryBase = Base;
801 PrimaryBaseIsVirtual = true;
802 return;
803 }
804
805 // Is this the first nearly empty virtual base?
806 if (!FirstNearlyEmptyVBase)
807 FirstNearlyEmptyVBase = Base;
808 }
809
810 SelectPrimaryVBase(Base);
811 if (PrimaryBase)
812 return;
813 }
814 }
815
816 /// DeterminePrimaryBase - Determine the primary base of the given class.
DeterminePrimaryBase(const CXXRecordDecl * RD)817 void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
818 // If the class isn't dynamic, it won't have a primary base.
819 if (!RD->isDynamicClass())
820 return;
821
822 // Compute all the primary virtual bases for all of our direct and
823 // indirect bases, and record all their primary virtual base classes.
824 RD->getIndirectPrimaryBases(IndirectPrimaryBases);
825
826 // If the record has a dynamic base class, attempt to choose a primary base
827 // class. It is the first (in direct base class order) non-virtual dynamic
828 // base class, if one exists.
829 for (const auto &I : RD->bases()) {
830 // Ignore virtual bases.
831 if (I.isVirtual())
832 continue;
833
834 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
835
836 if (Base->isDynamicClass()) {
837 // We found it.
838 PrimaryBase = Base;
839 PrimaryBaseIsVirtual = false;
840 return;
841 }
842 }
843
844 // Under the Itanium ABI, if there is no non-virtual primary base class,
845 // try to compute the primary virtual base. The primary virtual base is
846 // the first nearly empty virtual base that is not an indirect primary
847 // virtual base class, if one exists.
848 if (RD->getNumVBases() != 0) {
849 SelectPrimaryVBase(RD);
850 if (PrimaryBase)
851 return;
852 }
853
854 // Otherwise, it is the first indirect primary base class, if one exists.
855 if (FirstNearlyEmptyVBase) {
856 PrimaryBase = FirstNearlyEmptyVBase;
857 PrimaryBaseIsVirtual = true;
858 return;
859 }
860
861 assert(!PrimaryBase && "Should not get here with a primary base!");
862 }
863
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD,bool IsVirtual,BaseSubobjectInfo * Derived)864 BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
865 const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
866 BaseSubobjectInfo *Info;
867
868 if (IsVirtual) {
869 // Check if we already have info about this virtual base.
870 BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
871 if (InfoSlot) {
872 assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
873 return InfoSlot;
874 }
875
876 // We don't, create it.
877 InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
878 Info = InfoSlot;
879 } else {
880 Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
881 }
882
883 Info->Class = RD;
884 Info->IsVirtual = IsVirtual;
885 Info->Derived = nullptr;
886 Info->PrimaryVirtualBaseInfo = nullptr;
887
888 const CXXRecordDecl *PrimaryVirtualBase = nullptr;
889 BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
890
891 // Check if this base has a primary virtual base.
892 if (RD->getNumVBases()) {
893 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
894 if (Layout.isPrimaryBaseVirtual()) {
895 // This base does have a primary virtual base.
896 PrimaryVirtualBase = Layout.getPrimaryBase();
897 assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
898
899 // Now check if we have base subobject info about this primary base.
900 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
901
902 if (PrimaryVirtualBaseInfo) {
903 if (PrimaryVirtualBaseInfo->Derived) {
904 // We did have info about this primary base, and it turns out that it
905 // has already been claimed as a primary virtual base for another
906 // base.
907 PrimaryVirtualBase = nullptr;
908 } else {
909 // We can claim this base as our primary base.
910 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
911 PrimaryVirtualBaseInfo->Derived = Info;
912 }
913 }
914 }
915 }
916
917 // Now go through all direct bases.
918 for (const auto &I : RD->bases()) {
919 bool IsVirtual = I.isVirtual();
920
921 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
922
923 Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
924 }
925
926 if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
927 // Traversing the bases must have created the base info for our primary
928 // virtual base.
929 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
930 assert(PrimaryVirtualBaseInfo &&
931 "Did not create a primary virtual base!");
932
933 // Claim the primary virtual base as our primary virtual base.
934 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
935 PrimaryVirtualBaseInfo->Derived = Info;
936 }
937
938 return Info;
939 }
940
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD)941 void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
942 const CXXRecordDecl *RD) {
943 for (const auto &I : RD->bases()) {
944 bool IsVirtual = I.isVirtual();
945
946 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
947
948 // Compute the base subobject info for this base.
949 BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
950 nullptr);
951
952 if (IsVirtual) {
953 // ComputeBaseInfo has already added this base for us.
954 assert(VirtualBaseInfo.count(BaseDecl) &&
955 "Did not add virtual base!");
956 } else {
957 // Add the base info to the map of non-virtual bases.
958 assert(!NonVirtualBaseInfo.count(BaseDecl) &&
959 "Non-virtual base already exists!");
960 NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
961 }
962 }
963 }
964
EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign)965 void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
966 CharUnits UnpackedBaseAlign) {
967 CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
968
969 // The maximum field alignment overrides base align.
970 if (!MaxFieldAlignment.isZero()) {
971 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
972 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
973 }
974
975 // Round up the current record size to pointer alignment.
976 setSize(getSize().RoundUpToAlignment(BaseAlign));
977 setDataSize(getSize());
978
979 // Update the alignment.
980 UpdateAlignment(BaseAlign, UnpackedBaseAlign);
981 }
982
LayoutNonVirtualBases(const CXXRecordDecl * RD)983 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
984 const CXXRecordDecl *RD) {
985 // Then, determine the primary base class.
986 DeterminePrimaryBase(RD);
987
988 // Compute base subobject info.
989 ComputeBaseSubobjectInfo(RD);
990
991 // If we have a primary base class, lay it out.
992 if (PrimaryBase) {
993 if (PrimaryBaseIsVirtual) {
994 // If the primary virtual base was a primary virtual base of some other
995 // base class we'll have to steal it.
996 BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
997 PrimaryBaseInfo->Derived = nullptr;
998
999 // We have a virtual primary base, insert it as an indirect primary base.
1000 IndirectPrimaryBases.insert(PrimaryBase);
1001
1002 assert(!VisitedVirtualBases.count(PrimaryBase) &&
1003 "vbase already visited!");
1004 VisitedVirtualBases.insert(PrimaryBase);
1005
1006 LayoutVirtualBase(PrimaryBaseInfo);
1007 } else {
1008 BaseSubobjectInfo *PrimaryBaseInfo =
1009 NonVirtualBaseInfo.lookup(PrimaryBase);
1010 assert(PrimaryBaseInfo &&
1011 "Did not find base info for non-virtual primary base!");
1012
1013 LayoutNonVirtualBase(PrimaryBaseInfo);
1014 }
1015
1016 // If this class needs a vtable/vf-table and didn't get one from a
1017 // primary base, add it in now.
1018 } else if (RD->isDynamicClass()) {
1019 assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1020 CharUnits PtrWidth =
1021 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1022 CharUnits PtrAlign =
1023 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1024 EnsureVTablePointerAlignment(PtrAlign);
1025 HasOwnVFPtr = true;
1026 setSize(getSize() + PtrWidth);
1027 setDataSize(getSize());
1028 }
1029
1030 // Now lay out the non-virtual bases.
1031 for (const auto &I : RD->bases()) {
1032
1033 // Ignore virtual bases.
1034 if (I.isVirtual())
1035 continue;
1036
1037 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1038
1039 // Skip the primary base, because we've already laid it out. The
1040 // !PrimaryBaseIsVirtual check is required because we might have a
1041 // non-virtual base of the same type as a primary virtual base.
1042 if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1043 continue;
1044
1045 // Lay out the base.
1046 BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1047 assert(BaseInfo && "Did not find base info for non-virtual base!");
1048
1049 LayoutNonVirtualBase(BaseInfo);
1050 }
1051 }
1052
LayoutNonVirtualBase(const BaseSubobjectInfo * Base)1053 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
1054 const BaseSubobjectInfo *Base) {
1055 // Layout the base.
1056 CharUnits Offset = LayoutBase(Base);
1057
1058 // Add its base class offset.
1059 assert(!Bases.count(Base->Class) && "base offset already exists!");
1060 Bases.insert(std::make_pair(Base->Class, Offset));
1061
1062 AddPrimaryVirtualBaseOffsets(Base, Offset);
1063 }
1064
AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo * Info,CharUnits Offset)1065 void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
1066 const BaseSubobjectInfo *Info, CharUnits Offset) {
1067 // This base isn't interesting, it has no virtual bases.
1068 if (!Info->Class->getNumVBases())
1069 return;
1070
1071 // First, check if we have a virtual primary base to add offsets for.
1072 if (Info->PrimaryVirtualBaseInfo) {
1073 assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1074 "Primary virtual base is not virtual!");
1075 if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1076 // Add the offset.
1077 assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1078 "primary vbase offset already exists!");
1079 VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1080 ASTRecordLayout::VBaseInfo(Offset, false)));
1081
1082 // Traverse the primary virtual base.
1083 AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1084 }
1085 }
1086
1087 // Now go through all direct non-virtual bases.
1088 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1089 for (const BaseSubobjectInfo *Base : Info->Bases) {
1090 if (Base->IsVirtual)
1091 continue;
1092
1093 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1094 AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1095 }
1096 }
1097
LayoutVirtualBases(const CXXRecordDecl * RD,const CXXRecordDecl * MostDerivedClass)1098 void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
1099 const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
1100 const CXXRecordDecl *PrimaryBase;
1101 bool PrimaryBaseIsVirtual;
1102
1103 if (MostDerivedClass == RD) {
1104 PrimaryBase = this->PrimaryBase;
1105 PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1106 } else {
1107 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1108 PrimaryBase = Layout.getPrimaryBase();
1109 PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1110 }
1111
1112 for (const CXXBaseSpecifier &Base : RD->bases()) {
1113 assert(!Base.getType()->isDependentType() &&
1114 "Cannot layout class with dependent bases.");
1115
1116 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1117
1118 if (Base.isVirtual()) {
1119 if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1120 bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1121
1122 // Only lay out the virtual base if it's not an indirect primary base.
1123 if (!IndirectPrimaryBase) {
1124 // Only visit virtual bases once.
1125 if (!VisitedVirtualBases.insert(BaseDecl).second)
1126 continue;
1127
1128 const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1129 assert(BaseInfo && "Did not find virtual base info!");
1130 LayoutVirtualBase(BaseInfo);
1131 }
1132 }
1133 }
1134
1135 if (!BaseDecl->getNumVBases()) {
1136 // This base isn't interesting since it doesn't have any virtual bases.
1137 continue;
1138 }
1139
1140 LayoutVirtualBases(BaseDecl, MostDerivedClass);
1141 }
1142 }
1143
LayoutVirtualBase(const BaseSubobjectInfo * Base)1144 void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
1145 const BaseSubobjectInfo *Base) {
1146 assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1147
1148 // Layout the base.
1149 CharUnits Offset = LayoutBase(Base);
1150
1151 // Add its base class offset.
1152 assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1153 VBases.insert(std::make_pair(Base->Class,
1154 ASTRecordLayout::VBaseInfo(Offset, false)));
1155
1156 AddPrimaryVirtualBaseOffsets(Base, Offset);
1157 }
1158
1159 CharUnits
LayoutBase(const BaseSubobjectInfo * Base)1160 ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1161 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1162
1163
1164 CharUnits Offset;
1165
1166 // Query the external layout to see if it provides an offset.
1167 bool HasExternalLayout = false;
1168 if (UseExternalLayout) {
1169 llvm::DenseMap<const CXXRecordDecl *, CharUnits>::iterator Known;
1170 if (Base->IsVirtual)
1171 HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
1172 else
1173 HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
1174 }
1175
1176 CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1177 CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
1178
1179 // If we have an empty base class, try to place it at offset 0.
1180 if (Base->Class->isEmpty() &&
1181 (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1182 EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1183 setSize(std::max(getSize(), Layout.getSize()));
1184 UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1185
1186 return CharUnits::Zero();
1187 }
1188
1189 // The maximum field alignment overrides base align.
1190 if (!MaxFieldAlignment.isZero()) {
1191 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1192 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1193 }
1194
1195 if (!HasExternalLayout) {
1196 // Round up the current record size to the base's alignment boundary.
1197 Offset = getDataSize().RoundUpToAlignment(BaseAlign);
1198
1199 // Try to place the base.
1200 while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1201 Offset += BaseAlign;
1202 } else {
1203 bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1204 (void)Allowed;
1205 assert(Allowed && "Base subobject externally placed at overlapping offset");
1206
1207 if (InferAlignment && Offset < getDataSize().RoundUpToAlignment(BaseAlign)){
1208 // The externally-supplied base offset is before the base offset we
1209 // computed. Assume that the structure is packed.
1210 Alignment = CharUnits::One();
1211 InferAlignment = false;
1212 }
1213 }
1214
1215 if (!Base->Class->isEmpty()) {
1216 // Update the data size.
1217 setDataSize(Offset + Layout.getNonVirtualSize());
1218
1219 setSize(std::max(getSize(), getDataSize()));
1220 } else
1221 setSize(std::max(getSize(), Offset + Layout.getSize()));
1222
1223 // Remember max struct/class alignment.
1224 UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1225
1226 return Offset;
1227 }
1228
InitializeLayout(const Decl * D)1229 void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
1230 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1231 IsUnion = RD->isUnion();
1232 IsMsStruct = RD->isMsStruct(Context);
1233 }
1234
1235 Packed = D->hasAttr<PackedAttr>();
1236
1237 // Honor the default struct packing maximum alignment flag.
1238 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1239 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1240 }
1241
1242 // mac68k alignment supersedes maximum field alignment and attribute aligned,
1243 // and forces all structures to have 2-byte alignment. The IBM docs on it
1244 // allude to additional (more complicated) semantics, especially with regard
1245 // to bit-fields, but gcc appears not to follow that.
1246 if (D->hasAttr<AlignMac68kAttr>()) {
1247 IsMac68kAlign = true;
1248 MaxFieldAlignment = CharUnits::fromQuantity(2);
1249 Alignment = CharUnits::fromQuantity(2);
1250 } else {
1251 if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1252 MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1253
1254 if (unsigned MaxAlign = D->getMaxAlignment())
1255 UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1256 }
1257
1258 // If there is an external AST source, ask it for the various offsets.
1259 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1260 if (ExternalASTSource *Source = Context.getExternalSource()) {
1261 UseExternalLayout = Source->layoutRecordType(
1262 RD, External.Size, External.Align, External.FieldOffsets,
1263 External.BaseOffsets, External.VirtualBaseOffsets);
1264
1265 // Update based on external alignment.
1266 if (UseExternalLayout) {
1267 if (External.Align > 0) {
1268 Alignment = Context.toCharUnitsFromBits(External.Align);
1269 } else {
1270 // The external source didn't have alignment information; infer it.
1271 InferAlignment = true;
1272 }
1273 }
1274 }
1275 }
1276
Layout(const RecordDecl * D)1277 void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
1278 InitializeLayout(D);
1279 LayoutFields(D);
1280
1281 // Finally, round the size of the total struct up to the alignment of the
1282 // struct itself.
1283 FinishLayout(D);
1284 }
1285
Layout(const CXXRecordDecl * RD)1286 void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1287 InitializeLayout(RD);
1288
1289 // Lay out the vtable and the non-virtual bases.
1290 LayoutNonVirtualBases(RD);
1291
1292 LayoutFields(RD);
1293
1294 NonVirtualSize = Context.toCharUnitsFromBits(
1295 llvm::RoundUpToAlignment(getSizeInBits(),
1296 Context.getTargetInfo().getCharAlign()));
1297 NonVirtualAlignment = Alignment;
1298
1299 // Lay out the virtual bases and add the primary virtual base offsets.
1300 LayoutVirtualBases(RD, RD);
1301
1302 // Finally, round the size of the total struct up to the alignment
1303 // of the struct itself.
1304 FinishLayout(RD);
1305
1306 #ifndef NDEBUG
1307 // Check that we have base offsets for all bases.
1308 for (const CXXBaseSpecifier &Base : RD->bases()) {
1309 if (Base.isVirtual())
1310 continue;
1311
1312 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1313
1314 assert(Bases.count(BaseDecl) && "Did not find base offset!");
1315 }
1316
1317 // And all virtual bases.
1318 for (const CXXBaseSpecifier &Base : RD->vbases()) {
1319 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1320
1321 assert(VBases.count(BaseDecl) && "Did not find base offset!");
1322 }
1323 #endif
1324 }
1325
Layout(const ObjCInterfaceDecl * D)1326 void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1327 if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1328 const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1329
1330 UpdateAlignment(SL.getAlignment());
1331
1332 // We start laying out ivars not at the end of the superclass
1333 // structure, but at the next byte following the last field.
1334 setSize(SL.getDataSize());
1335 setDataSize(getSize());
1336 }
1337
1338 InitializeLayout(D);
1339 // Layout each ivar sequentially.
1340 for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1341 IVD = IVD->getNextIvar())
1342 LayoutField(IVD, false);
1343
1344 // Finally, round the size of the total struct up to the alignment of the
1345 // struct itself.
1346 FinishLayout(D);
1347 }
1348
LayoutFields(const RecordDecl * D)1349 void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1350 // Layout each field, for now, just sequentially, respecting alignment. In
1351 // the future, this will need to be tweakable by targets.
1352 bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1353 bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1354 for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1355 auto Next(I);
1356 ++Next;
1357 LayoutField(*I,
1358 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1359 }
1360 }
1361
1362 // Rounds the specified size to have it a multiple of the char size.
1363 static uint64_t
roundUpSizeToCharAlignment(uint64_t Size,const ASTContext & Context)1364 roundUpSizeToCharAlignment(uint64_t Size,
1365 const ASTContext &Context) {
1366 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1367 return llvm::RoundUpToAlignment(Size, CharAlignment);
1368 }
1369
LayoutWideBitField(uint64_t FieldSize,uint64_t TypeSize,bool FieldPacked,const FieldDecl * D)1370 void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1371 uint64_t TypeSize,
1372 bool FieldPacked,
1373 const FieldDecl *D) {
1374 assert(Context.getLangOpts().CPlusPlus &&
1375 "Can only have wide bit-fields in C++!");
1376
1377 // Itanium C++ ABI 2.4:
1378 // If sizeof(T)*8 < n, let T' be the largest integral POD type with
1379 // sizeof(T')*8 <= n.
1380
1381 QualType IntegralPODTypes[] = {
1382 Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1383 Context.UnsignedLongTy, Context.UnsignedLongLongTy
1384 };
1385
1386 QualType Type;
1387 for (const QualType &QT : IntegralPODTypes) {
1388 uint64_t Size = Context.getTypeSize(QT);
1389
1390 if (Size > FieldSize)
1391 break;
1392
1393 Type = QT;
1394 }
1395 assert(!Type.isNull() && "Did not find a type!");
1396
1397 CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1398
1399 // We're not going to use any of the unfilled bits in the last byte.
1400 UnfilledBitsInLastUnit = 0;
1401 LastBitfieldTypeSize = 0;
1402
1403 uint64_t FieldOffset;
1404 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1405
1406 if (IsUnion) {
1407 uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1408 Context);
1409 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1410 FieldOffset = 0;
1411 } else {
1412 // The bitfield is allocated starting at the next offset aligned
1413 // appropriately for T', with length n bits.
1414 FieldOffset = llvm::RoundUpToAlignment(getDataSizeInBits(),
1415 Context.toBits(TypeAlign));
1416
1417 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1418
1419 setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
1420 Context.getTargetInfo().getCharAlign()));
1421 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1422 }
1423
1424 // Place this field at the current location.
1425 FieldOffsets.push_back(FieldOffset);
1426
1427 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1428 Context.toBits(TypeAlign), FieldPacked, D);
1429
1430 // Update the size.
1431 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1432
1433 // Remember max struct/class alignment.
1434 UpdateAlignment(TypeAlign);
1435 }
1436
LayoutBitField(const FieldDecl * D)1437 void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1438 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1439 uint64_t FieldSize = D->getBitWidthValue(Context);
1440 TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1441 uint64_t TypeSize = FieldInfo.Width;
1442 unsigned FieldAlign = FieldInfo.Align;
1443
1444 // UnfilledBitsInLastUnit is the difference between the end of the
1445 // last allocated bitfield (i.e. the first bit offset available for
1446 // bitfields) and the end of the current data size in bits (i.e. the
1447 // first bit offset available for non-bitfields). The current data
1448 // size in bits is always a multiple of the char size; additionally,
1449 // for ms_struct records it's also a multiple of the
1450 // LastBitfieldTypeSize (if set).
1451
1452 // The struct-layout algorithm is dictated by the platform ABI,
1453 // which in principle could use almost any rules it likes. In
1454 // practice, UNIXy targets tend to inherit the algorithm described
1455 // in the System V generic ABI. The basic bitfield layout rule in
1456 // System V is to place bitfields at the next available bit offset
1457 // where the entire bitfield would fit in an aligned storage unit of
1458 // the declared type; it's okay if an earlier or later non-bitfield
1459 // is allocated in the same storage unit. However, some targets
1460 // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1461 // require this storage unit to be aligned, and therefore always put
1462 // the bitfield at the next available bit offset.
1463
1464 // ms_struct basically requests a complete replacement of the
1465 // platform ABI's struct-layout algorithm, with the high-level goal
1466 // of duplicating MSVC's layout. For non-bitfields, this follows
1467 // the standard algorithm. The basic bitfield layout rule is to
1468 // allocate an entire unit of the bitfield's declared type
1469 // (e.g. 'unsigned long'), then parcel it up among successive
1470 // bitfields whose declared types have the same size, making a new
1471 // unit as soon as the last can no longer store the whole value.
1472 // Since it completely replaces the platform ABI's algorithm,
1473 // settings like !useBitFieldTypeAlignment() do not apply.
1474
1475 // A zero-width bitfield forces the use of a new storage unit for
1476 // later bitfields. In general, this occurs by rounding up the
1477 // current size of the struct as if the algorithm were about to
1478 // place a non-bitfield of the field's formal type. Usually this
1479 // does not change the alignment of the struct itself, but it does
1480 // on some targets (those that useZeroLengthBitfieldAlignment(),
1481 // e.g. ARM). In ms_struct layout, zero-width bitfields are
1482 // ignored unless they follow a non-zero-width bitfield.
1483
1484 // A field alignment restriction (e.g. from #pragma pack) or
1485 // specification (e.g. from __attribute__((aligned))) changes the
1486 // formal alignment of the field. For System V, this alters the
1487 // required alignment of the notional storage unit that must contain
1488 // the bitfield. For ms_struct, this only affects the placement of
1489 // new storage units. In both cases, the effect of #pragma pack is
1490 // ignored on zero-width bitfields.
1491
1492 // On System V, a packed field (e.g. from #pragma pack or
1493 // __attribute__((packed))) always uses the next available bit
1494 // offset.
1495
1496 // In an ms_struct struct, the alignment of a fundamental type is
1497 // always equal to its size. This is necessary in order to mimic
1498 // the i386 alignment rules on targets which might not fully align
1499 // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1500
1501 // First, some simple bookkeeping to perform for ms_struct structs.
1502 if (IsMsStruct) {
1503 // The field alignment for integer types is always the size.
1504 FieldAlign = TypeSize;
1505
1506 // If the previous field was not a bitfield, or was a bitfield
1507 // with a different storage unit size, we're done with that
1508 // storage unit.
1509 if (LastBitfieldTypeSize != TypeSize) {
1510 // Also, ignore zero-length bitfields after non-bitfields.
1511 if (!LastBitfieldTypeSize && !FieldSize)
1512 FieldAlign = 1;
1513
1514 UnfilledBitsInLastUnit = 0;
1515 LastBitfieldTypeSize = 0;
1516 }
1517 }
1518
1519 // If the field is wider than its declared type, it follows
1520 // different rules in all cases.
1521 if (FieldSize > TypeSize) {
1522 LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
1523 return;
1524 }
1525
1526 // Compute the next available bit offset.
1527 uint64_t FieldOffset =
1528 IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1529
1530 // Handle targets that don't honor bitfield type alignment.
1531 if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1532 // Some such targets do honor it on zero-width bitfields.
1533 if (FieldSize == 0 &&
1534 Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1535 // The alignment to round up to is the max of the field's natural
1536 // alignment and a target-specific fixed value (sometimes zero).
1537 unsigned ZeroLengthBitfieldBoundary =
1538 Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1539 FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1540
1541 // If that doesn't apply, just ignore the field alignment.
1542 } else {
1543 FieldAlign = 1;
1544 }
1545 }
1546
1547 // Remember the alignment we would have used if the field were not packed.
1548 unsigned UnpackedFieldAlign = FieldAlign;
1549
1550 // Ignore the field alignment if the field is packed unless it has zero-size.
1551 if (!IsMsStruct && FieldPacked && FieldSize != 0)
1552 FieldAlign = 1;
1553
1554 // But, if there's an 'aligned' attribute on the field, honor that.
1555 if (unsigned ExplicitFieldAlign = D->getMaxAlignment()) {
1556 FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1557 UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1558 }
1559
1560 // But, if there's a #pragma pack in play, that takes precedent over
1561 // even the 'aligned' attribute, for non-zero-width bitfields.
1562 if (!MaxFieldAlignment.isZero() && FieldSize) {
1563 unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1564 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1565 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1566 }
1567
1568 // But, ms_struct just ignores all of that in unions, even explicit
1569 // alignment attributes.
1570 if (IsMsStruct && IsUnion) {
1571 FieldAlign = UnpackedFieldAlign = 1;
1572 }
1573
1574 // For purposes of diagnostics, we're going to simultaneously
1575 // compute the field offsets that we would have used if we weren't
1576 // adding any alignment padding or if the field weren't packed.
1577 uint64_t UnpaddedFieldOffset = FieldOffset;
1578 uint64_t UnpackedFieldOffset = FieldOffset;
1579
1580 // Check if we need to add padding to fit the bitfield within an
1581 // allocation unit with the right size and alignment. The rules are
1582 // somewhat different here for ms_struct structs.
1583 if (IsMsStruct) {
1584 // If it's not a zero-width bitfield, and we can fit the bitfield
1585 // into the active storage unit (and we haven't already decided to
1586 // start a new storage unit), just do so, regardless of any other
1587 // other consideration. Otherwise, round up to the right alignment.
1588 if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1589 FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
1590 UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
1591 UnpackedFieldAlign);
1592 UnfilledBitsInLastUnit = 0;
1593 }
1594
1595 } else {
1596 // #pragma pack, with any value, suppresses the insertion of padding.
1597 bool AllowPadding = MaxFieldAlignment.isZero();
1598
1599 // Compute the real offset.
1600 if (FieldSize == 0 ||
1601 (AllowPadding &&
1602 (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)) {
1603 FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
1604 }
1605
1606 // Repeat the computation for diagnostic purposes.
1607 if (FieldSize == 0 ||
1608 (AllowPadding &&
1609 (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
1610 UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
1611 UnpackedFieldAlign);
1612 }
1613
1614 // If we're using external layout, give the external layout a chance
1615 // to override this information.
1616 if (UseExternalLayout)
1617 FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1618
1619 // Okay, place the bitfield at the calculated offset.
1620 FieldOffsets.push_back(FieldOffset);
1621
1622 // Bookkeeping:
1623
1624 // Anonymous members don't affect the overall record alignment,
1625 // except on targets where they do.
1626 if (!IsMsStruct &&
1627 !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1628 !D->getIdentifier())
1629 FieldAlign = UnpackedFieldAlign = 1;
1630
1631 // Diagnose differences in layout due to padding or packing.
1632 if (!UseExternalLayout)
1633 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1634 UnpackedFieldAlign, FieldPacked, D);
1635
1636 // Update DataSize to include the last byte containing (part of) the bitfield.
1637
1638 // For unions, this is just a max operation, as usual.
1639 if (IsUnion) {
1640 // For ms_struct, allocate the entire storage unit --- unless this
1641 // is a zero-width bitfield, in which case just use a size of 1.
1642 uint64_t RoundedFieldSize;
1643 if (IsMsStruct) {
1644 RoundedFieldSize =
1645 (FieldSize ? TypeSize : Context.getTargetInfo().getCharWidth());
1646
1647 // Otherwise, allocate just the number of bytes required to store
1648 // the bitfield.
1649 } else {
1650 RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
1651 }
1652 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1653
1654 // For non-zero-width bitfields in ms_struct structs, allocate a new
1655 // storage unit if necessary.
1656 } else if (IsMsStruct && FieldSize) {
1657 // We should have cleared UnfilledBitsInLastUnit in every case
1658 // where we changed storage units.
1659 if (!UnfilledBitsInLastUnit) {
1660 setDataSize(FieldOffset + TypeSize);
1661 UnfilledBitsInLastUnit = TypeSize;
1662 }
1663 UnfilledBitsInLastUnit -= FieldSize;
1664 LastBitfieldTypeSize = TypeSize;
1665
1666 // Otherwise, bump the data size up to include the bitfield,
1667 // including padding up to char alignment, and then remember how
1668 // bits we didn't use.
1669 } else {
1670 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1671 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1672 setDataSize(llvm::RoundUpToAlignment(NewSizeInBits, CharAlignment));
1673 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1674
1675 // The only time we can get here for an ms_struct is if this is a
1676 // zero-width bitfield, which doesn't count as anything for the
1677 // purposes of unfilled bits.
1678 LastBitfieldTypeSize = 0;
1679 }
1680
1681 // Update the size.
1682 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1683
1684 // Remember max struct/class alignment.
1685 UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1686 Context.toCharUnitsFromBits(UnpackedFieldAlign));
1687 }
1688
LayoutField(const FieldDecl * D,bool InsertExtraPadding)1689 void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
1690 bool InsertExtraPadding) {
1691 if (D->isBitField()) {
1692 LayoutBitField(D);
1693 return;
1694 }
1695
1696 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1697
1698 // Reset the unfilled bits.
1699 UnfilledBitsInLastUnit = 0;
1700 LastBitfieldTypeSize = 0;
1701
1702 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1703 CharUnits FieldOffset =
1704 IsUnion ? CharUnits::Zero() : getDataSize();
1705 CharUnits FieldSize;
1706 CharUnits FieldAlign;
1707
1708 if (D->getType()->isIncompleteArrayType()) {
1709 // This is a flexible array member; we can't directly
1710 // query getTypeInfo about these, so we figure it out here.
1711 // Flexible array members don't have any size, but they
1712 // have to be aligned appropriately for their element type.
1713 FieldSize = CharUnits::Zero();
1714 const ArrayType* ATy = Context.getAsArrayType(D->getType());
1715 FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
1716 } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
1717 unsigned AS = RT->getPointeeType().getAddressSpace();
1718 FieldSize =
1719 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
1720 FieldAlign =
1721 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
1722 } else {
1723 std::pair<CharUnits, CharUnits> FieldInfo =
1724 Context.getTypeInfoInChars(D->getType());
1725 FieldSize = FieldInfo.first;
1726 FieldAlign = FieldInfo.second;
1727
1728 if (IsMsStruct) {
1729 // If MS bitfield layout is required, figure out what type is being
1730 // laid out and align the field to the width of that type.
1731
1732 // Resolve all typedefs down to their base type and round up the field
1733 // alignment if necessary.
1734 QualType T = Context.getBaseElementType(D->getType());
1735 if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1736 CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1737 if (TypeSize > FieldAlign)
1738 FieldAlign = TypeSize;
1739 }
1740 }
1741 }
1742
1743 // The align if the field is not packed. This is to check if the attribute
1744 // was unnecessary (-Wpacked).
1745 CharUnits UnpackedFieldAlign = FieldAlign;
1746 CharUnits UnpackedFieldOffset = FieldOffset;
1747
1748 if (FieldPacked)
1749 FieldAlign = CharUnits::One();
1750 CharUnits MaxAlignmentInChars =
1751 Context.toCharUnitsFromBits(D->getMaxAlignment());
1752 FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
1753 UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
1754
1755 // The maximum field alignment overrides the aligned attribute.
1756 if (!MaxFieldAlignment.isZero()) {
1757 FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
1758 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
1759 }
1760
1761 // Round up the current record size to the field's alignment boundary.
1762 FieldOffset = FieldOffset.RoundUpToAlignment(FieldAlign);
1763 UnpackedFieldOffset =
1764 UnpackedFieldOffset.RoundUpToAlignment(UnpackedFieldAlign);
1765
1766 if (UseExternalLayout) {
1767 FieldOffset = Context.toCharUnitsFromBits(
1768 updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
1769
1770 if (!IsUnion && EmptySubobjects) {
1771 // Record the fact that we're placing a field at this offset.
1772 bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
1773 (void)Allowed;
1774 assert(Allowed && "Externally-placed field cannot be placed here");
1775 }
1776 } else {
1777 if (!IsUnion && EmptySubobjects) {
1778 // Check if we can place the field at this offset.
1779 while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
1780 // We couldn't place the field at the offset. Try again at a new offset.
1781 FieldOffset += FieldAlign;
1782 }
1783 }
1784 }
1785
1786 // Place this field at the current location.
1787 FieldOffsets.push_back(Context.toBits(FieldOffset));
1788
1789 if (!UseExternalLayout)
1790 CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
1791 Context.toBits(UnpackedFieldOffset),
1792 Context.toBits(UnpackedFieldAlign), FieldPacked, D);
1793
1794 if (InsertExtraPadding) {
1795 CharUnits ASanAlignment = CharUnits::fromQuantity(8);
1796 CharUnits ExtraSizeForAsan = ASanAlignment;
1797 if (FieldSize % ASanAlignment)
1798 ExtraSizeForAsan +=
1799 ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
1800 FieldSize += ExtraSizeForAsan;
1801 }
1802
1803 // Reserve space for this field.
1804 uint64_t FieldSizeInBits = Context.toBits(FieldSize);
1805 if (IsUnion)
1806 setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits));
1807 else
1808 setDataSize(FieldOffset + FieldSize);
1809
1810 // Update the size.
1811 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1812
1813 // Remember max struct/class alignment.
1814 UpdateAlignment(FieldAlign, UnpackedFieldAlign);
1815 }
1816
FinishLayout(const NamedDecl * D)1817 void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
1818 // In C++, records cannot be of size 0.
1819 if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
1820 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
1821 // Compatibility with gcc requires a class (pod or non-pod)
1822 // which is not empty but of size 0; such as having fields of
1823 // array of zero-length, remains of Size 0
1824 if (RD->isEmpty())
1825 setSize(CharUnits::One());
1826 }
1827 else
1828 setSize(CharUnits::One());
1829 }
1830
1831 // Finally, round the size of the record up to the alignment of the
1832 // record itself.
1833 uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
1834 uint64_t UnpackedSizeInBits =
1835 llvm::RoundUpToAlignment(getSizeInBits(),
1836 Context.toBits(UnpackedAlignment));
1837 CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits);
1838 uint64_t RoundedSize
1839 = llvm::RoundUpToAlignment(getSizeInBits(), Context.toBits(Alignment));
1840
1841 if (UseExternalLayout) {
1842 // If we're inferring alignment, and the external size is smaller than
1843 // our size after we've rounded up to alignment, conservatively set the
1844 // alignment to 1.
1845 if (InferAlignment && External.Size < RoundedSize) {
1846 Alignment = CharUnits::One();
1847 InferAlignment = false;
1848 }
1849 setSize(External.Size);
1850 return;
1851 }
1852
1853 // Set the size to the final size.
1854 setSize(RoundedSize);
1855
1856 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
1857 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1858 // Warn if padding was introduced to the struct/class/union.
1859 if (getSizeInBits() > UnpaddedSize) {
1860 unsigned PadSize = getSizeInBits() - UnpaddedSize;
1861 bool InBits = true;
1862 if (PadSize % CharBitNum == 0) {
1863 PadSize = PadSize / CharBitNum;
1864 InBits = false;
1865 }
1866 Diag(RD->getLocation(), diag::warn_padded_struct_size)
1867 << Context.getTypeDeclType(RD)
1868 << PadSize
1869 << (InBits ? 1 : 0); // (byte|bit)
1870 }
1871
1872 // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
1873 // bother since there won't be alignment issues.
1874 if (Packed && UnpackedAlignment > CharUnits::One() &&
1875 getSize() == UnpackedSize)
1876 Diag(D->getLocation(), diag::warn_unnecessary_packed)
1877 << Context.getTypeDeclType(RD);
1878 }
1879 }
1880
UpdateAlignment(CharUnits NewAlignment,CharUnits UnpackedNewAlignment)1881 void ItaniumRecordLayoutBuilder::UpdateAlignment(
1882 CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
1883 // The alignment is not modified when using 'mac68k' alignment or when
1884 // we have an externally-supplied layout that also provides overall alignment.
1885 if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
1886 return;
1887
1888 if (NewAlignment > Alignment) {
1889 assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
1890 "Alignment not a power of 2");
1891 Alignment = NewAlignment;
1892 }
1893
1894 if (UnpackedNewAlignment > UnpackedAlignment) {
1895 assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
1896 "Alignment not a power of 2");
1897 UnpackedAlignment = UnpackedNewAlignment;
1898 }
1899 }
1900
1901 uint64_t
updateExternalFieldOffset(const FieldDecl * Field,uint64_t ComputedOffset)1902 ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
1903 uint64_t ComputedOffset) {
1904 uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
1905
1906 if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
1907 // The externally-supplied field offset is before the field offset we
1908 // computed. Assume that the structure is packed.
1909 Alignment = CharUnits::One();
1910 InferAlignment = false;
1911 }
1912
1913 // Use the externally-supplied field offset.
1914 return ExternalFieldOffset;
1915 }
1916
1917 /// \brief Get diagnostic %select index for tag kind for
1918 /// field padding diagnostic message.
1919 /// WARNING: Indexes apply to particular diagnostics only!
1920 ///
1921 /// \returns diagnostic %select index.
getPaddingDiagFromTagKind(TagTypeKind Tag)1922 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
1923 switch (Tag) {
1924 case TTK_Struct: return 0;
1925 case TTK_Interface: return 1;
1926 case TTK_Class: return 2;
1927 default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
1928 }
1929 }
1930
CheckFieldPadding(uint64_t Offset,uint64_t UnpaddedOffset,uint64_t UnpackedOffset,unsigned UnpackedAlign,bool isPacked,const FieldDecl * D)1931 void ItaniumRecordLayoutBuilder::CheckFieldPadding(
1932 uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
1933 unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
1934 // We let objc ivars without warning, objc interfaces generally are not used
1935 // for padding tricks.
1936 if (isa<ObjCIvarDecl>(D))
1937 return;
1938
1939 // Don't warn about structs created without a SourceLocation. This can
1940 // be done by clients of the AST, such as codegen.
1941 if (D->getLocation().isInvalid())
1942 return;
1943
1944 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
1945
1946 // Warn if padding was introduced to the struct/class.
1947 if (!IsUnion && Offset > UnpaddedOffset) {
1948 unsigned PadSize = Offset - UnpaddedOffset;
1949 bool InBits = true;
1950 if (PadSize % CharBitNum == 0) {
1951 PadSize = PadSize / CharBitNum;
1952 InBits = false;
1953 }
1954 if (D->getIdentifier())
1955 Diag(D->getLocation(), diag::warn_padded_struct_field)
1956 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
1957 << Context.getTypeDeclType(D->getParent())
1958 << PadSize
1959 << (InBits ? 1 : 0) // (byte|bit)
1960 << D->getIdentifier();
1961 else
1962 Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
1963 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
1964 << Context.getTypeDeclType(D->getParent())
1965 << PadSize
1966 << (InBits ? 1 : 0); // (byte|bit)
1967 }
1968
1969 // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
1970 // bother since there won't be alignment issues.
1971 if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset)
1972 Diag(D->getLocation(), diag::warn_unnecessary_packed)
1973 << D->getIdentifier();
1974 }
1975
computeKeyFunction(ASTContext & Context,const CXXRecordDecl * RD)1976 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
1977 const CXXRecordDecl *RD) {
1978 // If a class isn't polymorphic it doesn't have a key function.
1979 if (!RD->isPolymorphic())
1980 return nullptr;
1981
1982 // A class that is not externally visible doesn't have a key function. (Or
1983 // at least, there's no point to assigning a key function to such a class;
1984 // this doesn't affect the ABI.)
1985 if (!RD->isExternallyVisible())
1986 return nullptr;
1987
1988 // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
1989 // Same behavior as GCC.
1990 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
1991 if (TSK == TSK_ImplicitInstantiation ||
1992 TSK == TSK_ExplicitInstantiationDeclaration ||
1993 TSK == TSK_ExplicitInstantiationDefinition)
1994 return nullptr;
1995
1996 bool allowInlineFunctions =
1997 Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
1998
1999 for (const CXXMethodDecl *MD : RD->methods()) {
2000 if (!MD->isVirtual())
2001 continue;
2002
2003 if (MD->isPure())
2004 continue;
2005
2006 // Ignore implicit member functions, they are always marked as inline, but
2007 // they don't have a body until they're defined.
2008 if (MD->isImplicit())
2009 continue;
2010
2011 if (MD->isInlineSpecified())
2012 continue;
2013
2014 if (MD->hasInlineBody())
2015 continue;
2016
2017 // Ignore inline deleted or defaulted functions.
2018 if (!MD->isUserProvided())
2019 continue;
2020
2021 // In certain ABIs, ignore functions with out-of-line inline definitions.
2022 if (!allowInlineFunctions) {
2023 const FunctionDecl *Def;
2024 if (MD->hasBody(Def) && Def->isInlineSpecified())
2025 continue;
2026 }
2027
2028 if (Context.getLangOpts().CUDA) {
2029 // While compiler may see key method in this TU, during CUDA
2030 // compilation we should ignore methods that are not accessible
2031 // on this side of compilation.
2032 if (Context.getLangOpts().CUDAIsDevice) {
2033 // In device mode ignore methods without __device__ attribute.
2034 if (!MD->hasAttr<CUDADeviceAttr>())
2035 continue;
2036 } else {
2037 // In host mode ignore __device__-only methods.
2038 if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
2039 continue;
2040 }
2041 }
2042
2043 // If the key function is dllimport but the class isn't, then the class has
2044 // no key function. The DLL that exports the key function won't export the
2045 // vtable in this case.
2046 if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>())
2047 return nullptr;
2048
2049 // We found it.
2050 return MD;
2051 }
2052
2053 return nullptr;
2054 }
2055
Diag(SourceLocation Loc,unsigned DiagID)2056 DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
2057 unsigned DiagID) {
2058 return Context.getDiagnostics().Report(Loc, DiagID);
2059 }
2060
2061 /// Does the target C++ ABI require us to skip over the tail-padding
2062 /// of the given class (considering it as a base class) when allocating
2063 /// objects?
mustSkipTailPadding(TargetCXXABI ABI,const CXXRecordDecl * RD)2064 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2065 switch (ABI.getTailPaddingUseRules()) {
2066 case TargetCXXABI::AlwaysUseTailPadding:
2067 return false;
2068
2069 case TargetCXXABI::UseTailPaddingUnlessPOD03:
2070 // FIXME: To the extent that this is meant to cover the Itanium ABI
2071 // rules, we should implement the restrictions about over-sized
2072 // bitfields:
2073 //
2074 // http://mentorembedded.github.com/cxx-abi/abi.html#POD :
2075 // In general, a type is considered a POD for the purposes of
2076 // layout if it is a POD type (in the sense of ISO C++
2077 // [basic.types]). However, a POD-struct or POD-union (in the
2078 // sense of ISO C++ [class]) with a bitfield member whose
2079 // declared width is wider than the declared type of the
2080 // bitfield is not a POD for the purpose of layout. Similarly,
2081 // an array type is not a POD for the purpose of layout if the
2082 // element type of the array is not a POD for the purpose of
2083 // layout.
2084 //
2085 // Where references to the ISO C++ are made in this paragraph,
2086 // the Technical Corrigendum 1 version of the standard is
2087 // intended.
2088 return RD->isPOD();
2089
2090 case TargetCXXABI::UseTailPaddingUnlessPOD11:
2091 // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2092 // but with a lot of abstraction penalty stripped off. This does
2093 // assume that these properties are set correctly even in C++98
2094 // mode; fortunately, that is true because we want to assign
2095 // consistently semantics to the type-traits intrinsics (or at
2096 // least as many of them as possible).
2097 return RD->isTrivial() && RD->isStandardLayout();
2098 }
2099
2100 llvm_unreachable("bad tail-padding use kind");
2101 }
2102
isMsLayout(const ASTContext & Context)2103 static bool isMsLayout(const ASTContext &Context) {
2104 return Context.getTargetInfo().getCXXABI().isMicrosoft();
2105 }
2106
2107 // This section contains an implementation of struct layout that is, up to the
2108 // included tests, compatible with cl.exe (2013). The layout produced is
2109 // significantly different than those produced by the Itanium ABI. Here we note
2110 // the most important differences.
2111 //
2112 // * The alignment of bitfields in unions is ignored when computing the
2113 // alignment of the union.
2114 // * The existence of zero-width bitfield that occurs after anything other than
2115 // a non-zero length bitfield is ignored.
2116 // * There is no explicit primary base for the purposes of layout. All bases
2117 // with vfptrs are laid out first, followed by all bases without vfptrs.
2118 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2119 // function pointer) and a vbptr (virtual base pointer). They can each be
2120 // shared with a, non-virtual bases. These bases need not be the same. vfptrs
2121 // always occur at offset 0. vbptrs can occur at an arbitrary offset and are
2122 // placed after the lexiographically last non-virtual base. This placement
2123 // is always before fields but can be in the middle of the non-virtual bases
2124 // due to the two-pass layout scheme for non-virtual-bases.
2125 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2126 // the virtual base and is used in conjunction with virtual overrides during
2127 // construction and destruction. This is always a 4 byte value and is used as
2128 // an alternative to constructor vtables.
2129 // * vtordisps are allocated in a block of memory with size and alignment equal
2130 // to the alignment of the completed structure (before applying __declspec(
2131 // align())). The vtordisp always occur at the end of the allocation block,
2132 // immediately prior to the virtual base.
2133 // * vfptrs are injected after all bases and fields have been laid out. In
2134 // order to guarantee proper alignment of all fields, the vfptr injection
2135 // pushes all bases and fields back by the alignment imposed by those bases
2136 // and fields. This can potentially add a significant amount of padding.
2137 // vfptrs are always injected at offset 0.
2138 // * vbptrs are injected after all bases and fields have been laid out. In
2139 // order to guarantee proper alignment of all fields, the vfptr injection
2140 // pushes all bases and fields back by the alignment imposed by those bases
2141 // and fields. This can potentially add a significant amount of padding.
2142 // vbptrs are injected immediately after the last non-virtual base as
2143 // lexiographically ordered in the code. If this site isn't pointer aligned
2144 // the vbptr is placed at the next properly aligned location. Enough padding
2145 // is added to guarantee a fit.
2146 // * The last zero sized non-virtual base can be placed at the end of the
2147 // struct (potentially aliasing another object), or may alias with the first
2148 // field, even if they are of the same type.
2149 // * The last zero size virtual base may be placed at the end of the struct
2150 // potentially aliasing another object.
2151 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2152 // between bases or vbases with specific properties. The criteria for
2153 // additional padding between two bases is that the first base is zero sized
2154 // or ends with a zero sized subobject and the second base is zero sized or
2155 // trails with a zero sized base or field (sharing of vfptrs can reorder the
2156 // layout of the so the leading base is not always the first one declared).
2157 // This rule does take into account fields that are not records, so padding
2158 // will occur even if the last field is, e.g. an int. The padding added for
2159 // bases is 1 byte. The padding added between vbases depends on the alignment
2160 // of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2161 // * There is no concept of non-virtual alignment, non-virtual alignment and
2162 // alignment are always identical.
2163 // * There is a distinction between alignment and required alignment.
2164 // __declspec(align) changes the required alignment of a struct. This
2165 // alignment is _always_ obeyed, even in the presence of #pragma pack. A
2166 // record inherits required alignment from all of its fields and bases.
2167 // * __declspec(align) on bitfields has the effect of changing the bitfield's
2168 // alignment instead of its required alignment. This is the only known way
2169 // to make the alignment of a struct bigger than 8. Interestingly enough
2170 // this alignment is also immune to the effects of #pragma pack and can be
2171 // used to create structures with large alignment under #pragma pack.
2172 // However, because it does not impact required alignment, such a structure,
2173 // when used as a field or base, will not be aligned if #pragma pack is
2174 // still active at the time of use.
2175 //
2176 // Known incompatibilities:
2177 // * all: #pragma pack between fields in a record
2178 // * 2010 and back: If the last field in a record is a bitfield, every object
2179 // laid out after the record will have extra padding inserted before it. The
2180 // extra padding will have size equal to the size of the storage class of the
2181 // bitfield. 0 sized bitfields don't exhibit this behavior and the extra
2182 // padding can be avoided by adding a 0 sized bitfield after the non-zero-
2183 // sized bitfield.
2184 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2185 // greater due to __declspec(align()) then a second layout phase occurs after
2186 // The locations of the vf and vb pointers are known. This layout phase
2187 // suffers from the "last field is a bitfield" bug in 2010 and results in
2188 // _every_ field getting padding put in front of it, potentially including the
2189 // vfptr, leaving the vfprt at a non-zero location which results in a fault if
2190 // anything tries to read the vftbl. The second layout phase also treats
2191 // bitfields as separate entities and gives them each storage rather than
2192 // packing them. Additionally, because this phase appears to perform a
2193 // (an unstable) sort on the members before laying them out and because merged
2194 // bitfields have the same address, the bitfields end up in whatever order
2195 // the sort left them in, a behavior we could never hope to replicate.
2196
2197 namespace {
2198 struct MicrosoftRecordLayoutBuilder {
2199 struct ElementInfo {
2200 CharUnits Size;
2201 CharUnits Alignment;
2202 };
2203 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
MicrosoftRecordLayoutBuilder__anon07e898d70211::MicrosoftRecordLayoutBuilder2204 MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
2205 private:
2206 MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
2207 void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
2208 public:
2209 void layout(const RecordDecl *RD);
2210 void cxxLayout(const CXXRecordDecl *RD);
2211 /// \brief Initializes size and alignment and honors some flags.
2212 void initializeLayout(const RecordDecl *RD);
2213 /// \brief Initialized C++ layout, compute alignment and virtual alignment and
2214 /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is
2215 /// laid out.
2216 void initializeCXXLayout(const CXXRecordDecl *RD);
2217 void layoutNonVirtualBases(const CXXRecordDecl *RD);
2218 void layoutNonVirtualBase(const CXXRecordDecl *BaseDecl,
2219 const ASTRecordLayout &BaseLayout,
2220 const ASTRecordLayout *&PreviousBaseLayout);
2221 void injectVFPtr(const CXXRecordDecl *RD);
2222 void injectVBPtr(const CXXRecordDecl *RD);
2223 /// \brief Lays out the fields of the record. Also rounds size up to
2224 /// alignment.
2225 void layoutFields(const RecordDecl *RD);
2226 void layoutField(const FieldDecl *FD);
2227 void layoutBitField(const FieldDecl *FD);
2228 /// \brief Lays out a single zero-width bit-field in the record and handles
2229 /// special cases associated with zero-width bit-fields.
2230 void layoutZeroWidthBitField(const FieldDecl *FD);
2231 void layoutVirtualBases(const CXXRecordDecl *RD);
2232 void finalizeLayout(const RecordDecl *RD);
2233 /// \brief Gets the size and alignment of a base taking pragma pack and
2234 /// __declspec(align) into account.
2235 ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2236 /// \brief Gets the size and alignment of a field taking pragma pack and
2237 /// __declspec(align) into account. It also updates RequiredAlignment as a
2238 /// side effect because it is most convenient to do so here.
2239 ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2240 /// \brief Places a field at an offset in CharUnits.
placeFieldAtOffset__anon07e898d70211::MicrosoftRecordLayoutBuilder2241 void placeFieldAtOffset(CharUnits FieldOffset) {
2242 FieldOffsets.push_back(Context.toBits(FieldOffset));
2243 }
2244 /// \brief Places a bitfield at a bit offset.
placeFieldAtBitOffset__anon07e898d70211::MicrosoftRecordLayoutBuilder2245 void placeFieldAtBitOffset(uint64_t FieldOffset) {
2246 FieldOffsets.push_back(FieldOffset);
2247 }
2248 /// \brief Compute the set of virtual bases for which vtordisps are required.
2249 void computeVtorDispSet(
2250 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2251 const CXXRecordDecl *RD) const;
2252 const ASTContext &Context;
2253 /// \brief The size of the record being laid out.
2254 CharUnits Size;
2255 /// \brief The non-virtual size of the record layout.
2256 CharUnits NonVirtualSize;
2257 /// \brief The data size of the record layout.
2258 CharUnits DataSize;
2259 /// \brief The current alignment of the record layout.
2260 CharUnits Alignment;
2261 /// \brief The maximum allowed field alignment. This is set by #pragma pack.
2262 CharUnits MaxFieldAlignment;
2263 /// \brief The alignment that this record must obey. This is imposed by
2264 /// __declspec(align()) on the record itself or one of its fields or bases.
2265 CharUnits RequiredAlignment;
2266 /// \brief The size of the allocation of the currently active bitfield.
2267 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2268 /// is true.
2269 CharUnits CurrentBitfieldSize;
2270 /// \brief Offset to the virtual base table pointer (if one exists).
2271 CharUnits VBPtrOffset;
2272 /// \brief Minimum record size possible.
2273 CharUnits MinEmptyStructSize;
2274 /// \brief The size and alignment info of a pointer.
2275 ElementInfo PointerInfo;
2276 /// \brief The primary base class (if one exists).
2277 const CXXRecordDecl *PrimaryBase;
2278 /// \brief The class we share our vb-pointer with.
2279 const CXXRecordDecl *SharedVBPtrBase;
2280 /// \brief The collection of field offsets.
2281 SmallVector<uint64_t, 16> FieldOffsets;
2282 /// \brief Base classes and their offsets in the record.
2283 BaseOffsetsMapTy Bases;
2284 /// \brief virtual base classes and their offsets in the record.
2285 ASTRecordLayout::VBaseOffsetsMapTy VBases;
2286 /// \brief The number of remaining bits in our last bitfield allocation.
2287 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2288 /// true.
2289 unsigned RemainingBitsInField;
2290 bool IsUnion : 1;
2291 /// \brief True if the last field laid out was a bitfield and was not 0
2292 /// width.
2293 bool LastFieldIsNonZeroWidthBitfield : 1;
2294 /// \brief True if the class has its own vftable pointer.
2295 bool HasOwnVFPtr : 1;
2296 /// \brief True if the class has a vbtable pointer.
2297 bool HasVBPtr : 1;
2298 /// \brief True if the last sub-object within the type is zero sized or the
2299 /// object itself is zero sized. This *does not* count members that are not
2300 /// records. Only used for MS-ABI.
2301 bool EndsWithZeroSizedObject : 1;
2302 /// \brief True if this class is zero sized or first base is zero sized or
2303 /// has this property. Only used for MS-ABI.
2304 bool LeadsWithZeroSizedBase : 1;
2305
2306 /// \brief True if the external AST source provided a layout for this record.
2307 bool UseExternalLayout : 1;
2308
2309 /// \brief The layout provided by the external AST source. Only active if
2310 /// UseExternalLayout is true.
2311 ExternalLayout External;
2312 };
2313 } // namespace
2314
2315 MicrosoftRecordLayoutBuilder::ElementInfo
getAdjustedElementInfo(const ASTRecordLayout & Layout)2316 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2317 const ASTRecordLayout &Layout) {
2318 ElementInfo Info;
2319 Info.Alignment = Layout.getAlignment();
2320 // Respect pragma pack.
2321 if (!MaxFieldAlignment.isZero())
2322 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2323 // Track zero-sized subobjects here where it's already available.
2324 EndsWithZeroSizedObject = Layout.hasZeroSizedSubObject();
2325 // Respect required alignment, this is necessary because we may have adjusted
2326 // the alignment in the case of pragam pack. Note that the required alignment
2327 // doesn't actually apply to the struct alignment at this point.
2328 Alignment = std::max(Alignment, Info.Alignment);
2329 RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2330 Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2331 Info.Size = Layout.getNonVirtualSize();
2332 return Info;
2333 }
2334
2335 MicrosoftRecordLayoutBuilder::ElementInfo
getAdjustedElementInfo(const FieldDecl * FD)2336 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2337 const FieldDecl *FD) {
2338 // Get the alignment of the field type's natural alignment, ignore any
2339 // alignment attributes.
2340 ElementInfo Info;
2341 std::tie(Info.Size, Info.Alignment) =
2342 Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2343 // Respect align attributes on the field.
2344 CharUnits FieldRequiredAlignment =
2345 Context.toCharUnitsFromBits(FD->getMaxAlignment());
2346 // Respect align attributes on the type.
2347 if (Context.isAlignmentRequired(FD->getType()))
2348 FieldRequiredAlignment = std::max(
2349 Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2350 // Respect attributes applied to subobjects of the field.
2351 if (FD->isBitField())
2352 // For some reason __declspec align impacts alignment rather than required
2353 // alignment when it is applied to bitfields.
2354 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2355 else {
2356 if (auto RT =
2357 FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2358 auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2359 EndsWithZeroSizedObject = Layout.hasZeroSizedSubObject();
2360 FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2361 Layout.getRequiredAlignment());
2362 }
2363 // Capture required alignment as a side-effect.
2364 RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2365 }
2366 // Respect pragma pack, attribute pack and declspec align
2367 if (!MaxFieldAlignment.isZero())
2368 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2369 if (FD->hasAttr<PackedAttr>())
2370 Info.Alignment = CharUnits::One();
2371 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2372 return Info;
2373 }
2374
layout(const RecordDecl * RD)2375 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2376 // For C record layout, zero-sized records always have size 4.
2377 MinEmptyStructSize = CharUnits::fromQuantity(4);
2378 initializeLayout(RD);
2379 layoutFields(RD);
2380 DataSize = Size = Size.RoundUpToAlignment(Alignment);
2381 RequiredAlignment = std::max(
2382 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2383 finalizeLayout(RD);
2384 }
2385
cxxLayout(const CXXRecordDecl * RD)2386 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2387 // The C++ standard says that empty structs have size 1.
2388 MinEmptyStructSize = CharUnits::One();
2389 initializeLayout(RD);
2390 initializeCXXLayout(RD);
2391 layoutNonVirtualBases(RD);
2392 layoutFields(RD);
2393 injectVBPtr(RD);
2394 injectVFPtr(RD);
2395 if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2396 Alignment = std::max(Alignment, PointerInfo.Alignment);
2397 auto RoundingAlignment = Alignment;
2398 if (!MaxFieldAlignment.isZero())
2399 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2400 NonVirtualSize = Size = Size.RoundUpToAlignment(RoundingAlignment);
2401 RequiredAlignment = std::max(
2402 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2403 layoutVirtualBases(RD);
2404 finalizeLayout(RD);
2405 }
2406
initializeLayout(const RecordDecl * RD)2407 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2408 IsUnion = RD->isUnion();
2409 Size = CharUnits::Zero();
2410 Alignment = CharUnits::One();
2411 // In 64-bit mode we always perform an alignment step after laying out vbases.
2412 // In 32-bit mode we do not. The check to see if we need to perform alignment
2413 // checks the RequiredAlignment field and performs alignment if it isn't 0.
2414 RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
2415 ? CharUnits::One()
2416 : CharUnits::Zero();
2417 // Compute the maximum field alignment.
2418 MaxFieldAlignment = CharUnits::Zero();
2419 // Honor the default struct packing maximum alignment flag.
2420 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2421 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2422 // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger
2423 // than the pointer size.
2424 if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2425 unsigned PackedAlignment = MFAA->getAlignment();
2426 if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
2427 MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2428 }
2429 // Packed attribute forces max field alignment to be 1.
2430 if (RD->hasAttr<PackedAttr>())
2431 MaxFieldAlignment = CharUnits::One();
2432
2433 // Try to respect the external layout if present.
2434 UseExternalLayout = false;
2435 if (ExternalASTSource *Source = Context.getExternalSource())
2436 UseExternalLayout = Source->layoutRecordType(
2437 RD, External.Size, External.Align, External.FieldOffsets,
2438 External.BaseOffsets, External.VirtualBaseOffsets);
2439 }
2440
2441 void
initializeCXXLayout(const CXXRecordDecl * RD)2442 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2443 EndsWithZeroSizedObject = false;
2444 LeadsWithZeroSizedBase = false;
2445 HasOwnVFPtr = false;
2446 HasVBPtr = false;
2447 PrimaryBase = nullptr;
2448 SharedVBPtrBase = nullptr;
2449 // Calculate pointer size and alignment. These are used for vfptr and vbprt
2450 // injection.
2451 PointerInfo.Size =
2452 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
2453 PointerInfo.Alignment =
2454 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
2455 // Respect pragma pack.
2456 if (!MaxFieldAlignment.isZero())
2457 PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2458 }
2459
2460 void
layoutNonVirtualBases(const CXXRecordDecl * RD)2461 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2462 // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2463 // out any bases that do not contain vfptrs. We implement this as two passes
2464 // over the bases. This approach guarantees that the primary base is laid out
2465 // first. We use these passes to calculate some additional aggregated
2466 // information about the bases, such as reqruied alignment and the presence of
2467 // zero sized members.
2468 const ASTRecordLayout *PreviousBaseLayout = nullptr;
2469 // Iterate through the bases and lay out the non-virtual ones.
2470 for (const CXXBaseSpecifier &Base : RD->bases()) {
2471 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2472 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2473 // Mark and skip virtual bases.
2474 if (Base.isVirtual()) {
2475 HasVBPtr = true;
2476 continue;
2477 }
2478 // Check fo a base to share a VBPtr with.
2479 if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2480 SharedVBPtrBase = BaseDecl;
2481 HasVBPtr = true;
2482 }
2483 // Only lay out bases with extendable VFPtrs on the first pass.
2484 if (!BaseLayout.hasExtendableVFPtr())
2485 continue;
2486 // If we don't have a primary base, this one qualifies.
2487 if (!PrimaryBase) {
2488 PrimaryBase = BaseDecl;
2489 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2490 }
2491 // Lay out the base.
2492 layoutNonVirtualBase(BaseDecl, BaseLayout, PreviousBaseLayout);
2493 }
2494 // Figure out if we need a fresh VFPtr for this class.
2495 if (!PrimaryBase && RD->isDynamicClass())
2496 for (CXXRecordDecl::method_iterator i = RD->method_begin(),
2497 e = RD->method_end();
2498 !HasOwnVFPtr && i != e; ++i)
2499 HasOwnVFPtr = i->isVirtual() && i->size_overridden_methods() == 0;
2500 // If we don't have a primary base then we have a leading object that could
2501 // itself lead with a zero-sized object, something we track.
2502 bool CheckLeadingLayout = !PrimaryBase;
2503 // Iterate through the bases and lay out the non-virtual ones.
2504 for (const CXXBaseSpecifier &Base : RD->bases()) {
2505 if (Base.isVirtual())
2506 continue;
2507 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2508 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2509 // Only lay out bases without extendable VFPtrs on the second pass.
2510 if (BaseLayout.hasExtendableVFPtr()) {
2511 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2512 continue;
2513 }
2514 // If this is the first layout, check to see if it leads with a zero sized
2515 // object. If it does, so do we.
2516 if (CheckLeadingLayout) {
2517 CheckLeadingLayout = false;
2518 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2519 }
2520 // Lay out the base.
2521 layoutNonVirtualBase(BaseDecl, BaseLayout, PreviousBaseLayout);
2522 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2523 }
2524 // Set our VBPtroffset if we know it at this point.
2525 if (!HasVBPtr)
2526 VBPtrOffset = CharUnits::fromQuantity(-1);
2527 else if (SharedVBPtrBase) {
2528 const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2529 VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2530 }
2531 }
2532
layoutNonVirtualBase(const CXXRecordDecl * BaseDecl,const ASTRecordLayout & BaseLayout,const ASTRecordLayout * & PreviousBaseLayout)2533 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2534 const CXXRecordDecl *BaseDecl,
2535 const ASTRecordLayout &BaseLayout,
2536 const ASTRecordLayout *&PreviousBaseLayout) {
2537 // Insert padding between two bases if the left first one is zero sized or
2538 // contains a zero sized subobject and the right is zero sized or one leads
2539 // with a zero sized base.
2540 if (PreviousBaseLayout && PreviousBaseLayout->hasZeroSizedSubObject() &&
2541 BaseLayout.leadsWithZeroSizedBase())
2542 Size++;
2543 ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2544 CharUnits BaseOffset;
2545
2546 // Respect the external AST source base offset, if present.
2547 bool FoundBase = false;
2548 if (UseExternalLayout) {
2549 FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
2550 if (FoundBase)
2551 assert(BaseOffset >= Size && "base offset already allocated");
2552 }
2553
2554 if (!FoundBase)
2555 BaseOffset = Size.RoundUpToAlignment(Info.Alignment);
2556 Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2557 Size = BaseOffset + BaseLayout.getNonVirtualSize();
2558 PreviousBaseLayout = &BaseLayout;
2559 }
2560
layoutFields(const RecordDecl * RD)2561 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2562 LastFieldIsNonZeroWidthBitfield = false;
2563 for (const FieldDecl *Field : RD->fields())
2564 layoutField(Field);
2565 }
2566
layoutField(const FieldDecl * FD)2567 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2568 if (FD->isBitField()) {
2569 layoutBitField(FD);
2570 return;
2571 }
2572 LastFieldIsNonZeroWidthBitfield = false;
2573 ElementInfo Info = getAdjustedElementInfo(FD);
2574 Alignment = std::max(Alignment, Info.Alignment);
2575 if (IsUnion) {
2576 placeFieldAtOffset(CharUnits::Zero());
2577 Size = std::max(Size, Info.Size);
2578 } else {
2579 CharUnits FieldOffset;
2580 if (UseExternalLayout) {
2581 FieldOffset =
2582 Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
2583 assert(FieldOffset >= Size && "field offset already allocated");
2584 } else {
2585 FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
2586 }
2587 placeFieldAtOffset(FieldOffset);
2588 Size = FieldOffset + Info.Size;
2589 }
2590 }
2591
layoutBitField(const FieldDecl * FD)2592 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
2593 unsigned Width = FD->getBitWidthValue(Context);
2594 if (Width == 0) {
2595 layoutZeroWidthBitField(FD);
2596 return;
2597 }
2598 ElementInfo Info = getAdjustedElementInfo(FD);
2599 // Clamp the bitfield to a containable size for the sake of being able
2600 // to lay them out. Sema will throw an error.
2601 if (Width > Context.toBits(Info.Size))
2602 Width = Context.toBits(Info.Size);
2603 // Check to see if this bitfield fits into an existing allocation. Note:
2604 // MSVC refuses to pack bitfields of formal types with different sizes
2605 // into the same allocation.
2606 if (!IsUnion && LastFieldIsNonZeroWidthBitfield &&
2607 CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
2608 placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
2609 RemainingBitsInField -= Width;
2610 return;
2611 }
2612 LastFieldIsNonZeroWidthBitfield = true;
2613 CurrentBitfieldSize = Info.Size;
2614 if (IsUnion) {
2615 placeFieldAtOffset(CharUnits::Zero());
2616 Size = std::max(Size, Info.Size);
2617 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2618 } else {
2619 // Allocate a new block of memory and place the bitfield in it.
2620 CharUnits FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
2621 placeFieldAtOffset(FieldOffset);
2622 Size = FieldOffset + Info.Size;
2623 Alignment = std::max(Alignment, Info.Alignment);
2624 RemainingBitsInField = Context.toBits(Info.Size) - Width;
2625 }
2626 }
2627
2628 void
layoutZeroWidthBitField(const FieldDecl * FD)2629 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
2630 // Zero-width bitfields are ignored unless they follow a non-zero-width
2631 // bitfield.
2632 if (!LastFieldIsNonZeroWidthBitfield) {
2633 placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
2634 // TODO: Add a Sema warning that MS ignores alignment for zero
2635 // sized bitfields that occur after zero-size bitfields or non-bitfields.
2636 return;
2637 }
2638 LastFieldIsNonZeroWidthBitfield = false;
2639 ElementInfo Info = getAdjustedElementInfo(FD);
2640 if (IsUnion) {
2641 placeFieldAtOffset(CharUnits::Zero());
2642 Size = std::max(Size, Info.Size);
2643 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2644 } else {
2645 // Round up the current record size to the field's alignment boundary.
2646 CharUnits FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
2647 placeFieldAtOffset(FieldOffset);
2648 Size = FieldOffset;
2649 Alignment = std::max(Alignment, Info.Alignment);
2650 }
2651 }
2652
injectVBPtr(const CXXRecordDecl * RD)2653 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
2654 if (!HasVBPtr || SharedVBPtrBase)
2655 return;
2656 // Inject the VBPointer at the injection site.
2657 CharUnits InjectionSite = VBPtrOffset;
2658 // But before we do, make sure it's properly aligned.
2659 VBPtrOffset = VBPtrOffset.RoundUpToAlignment(PointerInfo.Alignment);
2660 // Shift everything after the vbptr down, unless we're using an external
2661 // layout.
2662 if (UseExternalLayout)
2663 return;
2664 // Determine where the first field should be laid out after the vbptr.
2665 CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
2666 // Make sure that the amount we push the fields back by is a multiple of the
2667 // alignment.
2668 CharUnits Offset = (FieldStart - InjectionSite).RoundUpToAlignment(
2669 std::max(RequiredAlignment, Alignment));
2670 Size += Offset;
2671 for (uint64_t &FieldOffset : FieldOffsets)
2672 FieldOffset += Context.toBits(Offset);
2673 for (BaseOffsetsMapTy::value_type &Base : Bases)
2674 if (Base.second >= InjectionSite)
2675 Base.second += Offset;
2676 }
2677
injectVFPtr(const CXXRecordDecl * RD)2678 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
2679 if (!HasOwnVFPtr)
2680 return;
2681 // Make sure that the amount we push the struct back by is a multiple of the
2682 // alignment.
2683 CharUnits Offset = PointerInfo.Size.RoundUpToAlignment(
2684 std::max(RequiredAlignment, Alignment));
2685 // Push back the vbptr, but increase the size of the object and push back
2686 // regular fields by the offset only if not using external record layout.
2687 if (HasVBPtr)
2688 VBPtrOffset += Offset;
2689
2690 if (UseExternalLayout)
2691 return;
2692
2693 Size += Offset;
2694
2695 // If we're using an external layout, the fields offsets have already
2696 // accounted for this adjustment.
2697 for (uint64_t &FieldOffset : FieldOffsets)
2698 FieldOffset += Context.toBits(Offset);
2699 for (BaseOffsetsMapTy::value_type &Base : Bases)
2700 Base.second += Offset;
2701 }
2702
layoutVirtualBases(const CXXRecordDecl * RD)2703 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
2704 if (!HasVBPtr)
2705 return;
2706 // Vtordisps are always 4 bytes (even in 64-bit mode)
2707 CharUnits VtorDispSize = CharUnits::fromQuantity(4);
2708 CharUnits VtorDispAlignment = VtorDispSize;
2709 // vtordisps respect pragma pack.
2710 if (!MaxFieldAlignment.isZero())
2711 VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
2712 // The alignment of the vtordisp is at least the required alignment of the
2713 // entire record. This requirement may be present to support vtordisp
2714 // injection.
2715 for (const CXXBaseSpecifier &VBase : RD->vbases()) {
2716 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
2717 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2718 RequiredAlignment =
2719 std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
2720 }
2721 VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
2722 // Compute the vtordisp set.
2723 llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
2724 computeVtorDispSet(HasVtorDispSet, RD);
2725 // Iterate through the virtual bases and lay them out.
2726 const ASTRecordLayout *PreviousBaseLayout = nullptr;
2727 for (const CXXBaseSpecifier &VBase : RD->vbases()) {
2728 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
2729 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2730 bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0;
2731 // Insert padding between two bases if the left first one is zero sized or
2732 // contains a zero sized subobject and the right is zero sized or one leads
2733 // with a zero sized base. The padding between virtual bases is 4
2734 // bytes (in both 32 and 64 bits modes) and always involves rounding up to
2735 // the required alignment, we don't know why.
2736 if ((PreviousBaseLayout && PreviousBaseLayout->hasZeroSizedSubObject() &&
2737 BaseLayout.leadsWithZeroSizedBase()) || HasVtordisp) {
2738 Size = Size.RoundUpToAlignment(VtorDispAlignment) + VtorDispSize;
2739 Alignment = std::max(VtorDispAlignment, Alignment);
2740 }
2741 // Insert the virtual base.
2742 ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2743 CharUnits BaseOffset;
2744
2745 // Respect the external AST source base offset, if present.
2746 bool FoundBase = false;
2747 if (UseExternalLayout) {
2748 FoundBase = External.getExternalVBaseOffset(BaseDecl, BaseOffset);
2749 if (FoundBase)
2750 assert(BaseOffset >= Size && "base offset already allocated");
2751 }
2752 if (!FoundBase)
2753 BaseOffset = Size.RoundUpToAlignment(Info.Alignment);
2754
2755 VBases.insert(std::make_pair(BaseDecl,
2756 ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
2757 Size = BaseOffset + BaseLayout.getNonVirtualSize();
2758 PreviousBaseLayout = &BaseLayout;
2759 }
2760 }
2761
finalizeLayout(const RecordDecl * RD)2762 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
2763 // Respect required alignment. Note that in 32-bit mode Required alignment
2764 // may be 0 and cause size not to be updated.
2765 DataSize = Size;
2766 if (!RequiredAlignment.isZero()) {
2767 Alignment = std::max(Alignment, RequiredAlignment);
2768 auto RoundingAlignment = Alignment;
2769 if (!MaxFieldAlignment.isZero())
2770 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2771 RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
2772 Size = Size.RoundUpToAlignment(RoundingAlignment);
2773 }
2774 if (Size.isZero()) {
2775 EndsWithZeroSizedObject = true;
2776 LeadsWithZeroSizedBase = true;
2777 // Zero-sized structures have size equal to their alignment if a
2778 // __declspec(align) came into play.
2779 if (RequiredAlignment >= MinEmptyStructSize)
2780 Size = Alignment;
2781 else
2782 Size = MinEmptyStructSize;
2783 }
2784
2785 if (UseExternalLayout) {
2786 Size = Context.toCharUnitsFromBits(External.Size);
2787 if (External.Align)
2788 Alignment = Context.toCharUnitsFromBits(External.Align);
2789 }
2790 }
2791
2792 // Recursively walks the non-virtual bases of a class and determines if any of
2793 // them are in the bases with overridden methods set.
2794 static bool
RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl * > & BasesWithOverriddenMethods,const CXXRecordDecl * RD)2795 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
2796 BasesWithOverriddenMethods,
2797 const CXXRecordDecl *RD) {
2798 if (BasesWithOverriddenMethods.count(RD))
2799 return true;
2800 // If any of a virtual bases non-virtual bases (recursively) requires a
2801 // vtordisp than so does this virtual base.
2802 for (const CXXBaseSpecifier &Base : RD->bases())
2803 if (!Base.isVirtual() &&
2804 RequiresVtordisp(BasesWithOverriddenMethods,
2805 Base.getType()->getAsCXXRecordDecl()))
2806 return true;
2807 return false;
2808 }
2809
computeVtorDispSet(llvm::SmallPtrSetImpl<const CXXRecordDecl * > & HasVtordispSet,const CXXRecordDecl * RD) const2810 void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
2811 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
2812 const CXXRecordDecl *RD) const {
2813 // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
2814 // vftables.
2815 if (RD->getMSVtorDispMode() == MSVtorDispAttr::ForVFTable) {
2816 for (const CXXBaseSpecifier &Base : RD->vbases()) {
2817 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2818 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
2819 if (Layout.hasExtendableVFPtr())
2820 HasVtordispSet.insert(BaseDecl);
2821 }
2822 return;
2823 }
2824
2825 // If any of our bases need a vtordisp for this type, so do we. Check our
2826 // direct bases for vtordisp requirements.
2827 for (const CXXBaseSpecifier &Base : RD->bases()) {
2828 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2829 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
2830 for (const auto &bi : Layout.getVBaseOffsetsMap())
2831 if (bi.second.hasVtorDisp())
2832 HasVtordispSet.insert(bi.first);
2833 }
2834 // We don't introduce any additional vtordisps if either:
2835 // * A user declared constructor or destructor aren't declared.
2836 // * #pragma vtordisp(0) or the /vd0 flag are in use.
2837 if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
2838 RD->getMSVtorDispMode() == MSVtorDispAttr::Never)
2839 return;
2840 // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
2841 // possible for a partially constructed object with virtual base overrides to
2842 // escape a non-trivial constructor.
2843 assert(RD->getMSVtorDispMode() == MSVtorDispAttr::ForVBaseOverride);
2844 // Compute a set of base classes which define methods we override. A virtual
2845 // base in this set will require a vtordisp. A virtual base that transitively
2846 // contains one of these bases as a non-virtual base will also require a
2847 // vtordisp.
2848 llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
2849 llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
2850 // Seed the working set with our non-destructor, non-pure virtual methods.
2851 for (const CXXMethodDecl *MD : RD->methods())
2852 if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD) && !MD->isPure())
2853 Work.insert(MD);
2854 while (!Work.empty()) {
2855 const CXXMethodDecl *MD = *Work.begin();
2856 CXXMethodDecl::method_iterator i = MD->begin_overridden_methods(),
2857 e = MD->end_overridden_methods();
2858 // If a virtual method has no-overrides it lives in its parent's vtable.
2859 if (i == e)
2860 BasesWithOverriddenMethods.insert(MD->getParent());
2861 else
2862 Work.insert(i, e);
2863 // We've finished processing this element, remove it from the working set.
2864 Work.erase(MD);
2865 }
2866 // For each of our virtual bases, check if it is in the set of overridden
2867 // bases or if it transitively contains a non-virtual base that is.
2868 for (const CXXBaseSpecifier &Base : RD->vbases()) {
2869 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2870 if (!HasVtordispSet.count(BaseDecl) &&
2871 RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
2872 HasVtordispSet.insert(BaseDecl);
2873 }
2874 }
2875
2876 /// getASTRecordLayout - Get or compute information about the layout of the
2877 /// specified record (struct/union/class), which indicates its size and field
2878 /// position information.
2879 const ASTRecordLayout &
getASTRecordLayout(const RecordDecl * D) const2880 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
2881 // These asserts test different things. A record has a definition
2882 // as soon as we begin to parse the definition. That definition is
2883 // not a complete definition (which is what isDefinition() tests)
2884 // until we *finish* parsing the definition.
2885
2886 if (D->hasExternalLexicalStorage() && !D->getDefinition())
2887 getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
2888
2889 D = D->getDefinition();
2890 assert(D && "Cannot get layout of forward declarations!");
2891 assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
2892 assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
2893
2894 // Look up this layout, if already laid out, return what we have.
2895 // Note that we can't save a reference to the entry because this function
2896 // is recursive.
2897 const ASTRecordLayout *Entry = ASTRecordLayouts[D];
2898 if (Entry) return *Entry;
2899
2900 const ASTRecordLayout *NewEntry = nullptr;
2901
2902 if (isMsLayout(*this)) {
2903 MicrosoftRecordLayoutBuilder Builder(*this);
2904 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
2905 Builder.cxxLayout(RD);
2906 NewEntry = new (*this) ASTRecordLayout(
2907 *this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment,
2908 Builder.HasOwnVFPtr, Builder.HasOwnVFPtr || Builder.PrimaryBase,
2909 Builder.VBPtrOffset, Builder.NonVirtualSize,
2910 Builder.FieldOffsets.data(), Builder.FieldOffsets.size(),
2911 Builder.NonVirtualSize, Builder.Alignment, CharUnits::Zero(),
2912 Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
2913 Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
2914 Builder.Bases, Builder.VBases);
2915 } else {
2916 Builder.layout(D);
2917 NewEntry = new (*this) ASTRecordLayout(
2918 *this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment,
2919 Builder.Size, Builder.FieldOffsets.data(),
2920 Builder.FieldOffsets.size());
2921 }
2922 } else {
2923 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
2924 EmptySubobjectMap EmptySubobjects(*this, RD);
2925 ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
2926 Builder.Layout(RD);
2927
2928 // In certain situations, we are allowed to lay out objects in the
2929 // tail-padding of base classes. This is ABI-dependent.
2930 // FIXME: this should be stored in the record layout.
2931 bool skipTailPadding =
2932 mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
2933
2934 // FIXME: This should be done in FinalizeLayout.
2935 CharUnits DataSize =
2936 skipTailPadding ? Builder.getSize() : Builder.getDataSize();
2937 CharUnits NonVirtualSize =
2938 skipTailPadding ? DataSize : Builder.NonVirtualSize;
2939 NewEntry = new (*this) ASTRecordLayout(
2940 *this, Builder.getSize(), Builder.Alignment,
2941 /*RequiredAlignment : used by MS-ABI)*/
2942 Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
2943 CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets.data(),
2944 Builder.FieldOffsets.size(), NonVirtualSize,
2945 Builder.NonVirtualAlignment,
2946 EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
2947 Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
2948 Builder.VBases);
2949 } else {
2950 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
2951 Builder.Layout(D);
2952
2953 NewEntry = new (*this) ASTRecordLayout(
2954 *this, Builder.getSize(), Builder.Alignment,
2955 /*RequiredAlignment : used by MS-ABI)*/
2956 Builder.Alignment, Builder.getSize(), Builder.FieldOffsets.data(),
2957 Builder.FieldOffsets.size());
2958 }
2959 }
2960
2961 ASTRecordLayouts[D] = NewEntry;
2962
2963 if (getLangOpts().DumpRecordLayouts) {
2964 llvm::outs() << "\n*** Dumping AST Record Layout\n";
2965 DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
2966 }
2967
2968 return *NewEntry;
2969 }
2970
getCurrentKeyFunction(const CXXRecordDecl * RD)2971 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
2972 if (!getTargetInfo().getCXXABI().hasKeyFunctions())
2973 return nullptr;
2974
2975 assert(RD->getDefinition() && "Cannot get key function for forward decl!");
2976 RD = cast<CXXRecordDecl>(RD->getDefinition());
2977
2978 // Beware:
2979 // 1) computing the key function might trigger deserialization, which might
2980 // invalidate iterators into KeyFunctions
2981 // 2) 'get' on the LazyDeclPtr might also trigger deserialization and
2982 // invalidate the LazyDeclPtr within the map itself
2983 LazyDeclPtr Entry = KeyFunctions[RD];
2984 const Decl *Result =
2985 Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
2986
2987 // Store it back if it changed.
2988 if (Entry.isOffset() || Entry.isValid() != bool(Result))
2989 KeyFunctions[RD] = const_cast<Decl*>(Result);
2990
2991 return cast_or_null<CXXMethodDecl>(Result);
2992 }
2993
setNonKeyFunction(const CXXMethodDecl * Method)2994 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
2995 assert(Method == Method->getFirstDecl() &&
2996 "not working with method declaration from class definition");
2997
2998 // Look up the cache entry. Since we're working with the first
2999 // declaration, its parent must be the class definition, which is
3000 // the correct key for the KeyFunctions hash.
3001 const auto &Map = KeyFunctions;
3002 auto I = Map.find(Method->getParent());
3003
3004 // If it's not cached, there's nothing to do.
3005 if (I == Map.end()) return;
3006
3007 // If it is cached, check whether it's the target method, and if so,
3008 // remove it from the cache. Note, the call to 'get' might invalidate
3009 // the iterator and the LazyDeclPtr object within the map.
3010 LazyDeclPtr Ptr = I->second;
3011 if (Ptr.get(getExternalSource()) == Method) {
3012 // FIXME: remember that we did this for module / chained PCH state?
3013 KeyFunctions.erase(Method->getParent());
3014 }
3015 }
3016
getFieldOffset(const ASTContext & C,const FieldDecl * FD)3017 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
3018 const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
3019 return Layout.getFieldOffset(FD->getFieldIndex());
3020 }
3021
getFieldOffset(const ValueDecl * VD) const3022 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
3023 uint64_t OffsetInBits;
3024 if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
3025 OffsetInBits = ::getFieldOffset(*this, FD);
3026 } else {
3027 const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
3028
3029 OffsetInBits = 0;
3030 for (const NamedDecl *ND : IFD->chain())
3031 OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
3032 }
3033
3034 return OffsetInBits;
3035 }
3036
3037 /// getObjCLayout - Get or compute information about the layout of the
3038 /// given interface.
3039 ///
3040 /// \param Impl - If given, also include the layout of the interface's
3041 /// implementation. This may differ by including synthesized ivars.
3042 const ASTRecordLayout &
getObjCLayout(const ObjCInterfaceDecl * D,const ObjCImplementationDecl * Impl) const3043 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
3044 const ObjCImplementationDecl *Impl) const {
3045 // Retrieve the definition
3046 if (D->hasExternalLexicalStorage() && !D->getDefinition())
3047 getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
3048 D = D->getDefinition();
3049 assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
3050
3051 // Look up this layout, if already laid out, return what we have.
3052 const ObjCContainerDecl *Key =
3053 Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
3054 if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
3055 return *Entry;
3056
3057 // Add in synthesized ivar count if laying out an implementation.
3058 if (Impl) {
3059 unsigned SynthCount = CountNonClassIvars(D);
3060 // If there aren't any sythesized ivars then reuse the interface
3061 // entry. Note we can't cache this because we simply free all
3062 // entries later; however we shouldn't look up implementations
3063 // frequently.
3064 if (SynthCount == 0)
3065 return getObjCLayout(D, nullptr);
3066 }
3067
3068 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3069 Builder.Layout(D);
3070
3071 const ASTRecordLayout *NewEntry =
3072 new (*this) ASTRecordLayout(*this, Builder.getSize(),
3073 Builder.Alignment,
3074 /*RequiredAlignment : used by MS-ABI)*/
3075 Builder.Alignment,
3076 Builder.getDataSize(),
3077 Builder.FieldOffsets.data(),
3078 Builder.FieldOffsets.size());
3079
3080 ObjCLayouts[Key] = NewEntry;
3081
3082 return *NewEntry;
3083 }
3084
PrintOffset(raw_ostream & OS,CharUnits Offset,unsigned IndentLevel)3085 static void PrintOffset(raw_ostream &OS,
3086 CharUnits Offset, unsigned IndentLevel) {
3087 OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
3088 OS.indent(IndentLevel * 2);
3089 }
3090
PrintBitFieldOffset(raw_ostream & OS,CharUnits Offset,unsigned Begin,unsigned Width,unsigned IndentLevel)3091 static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
3092 unsigned Begin, unsigned Width,
3093 unsigned IndentLevel) {
3094 llvm::SmallString<10> Buffer;
3095 {
3096 llvm::raw_svector_ostream BufferOS(Buffer);
3097 BufferOS << Offset.getQuantity() << ':';
3098 if (Width == 0) {
3099 BufferOS << '-';
3100 } else {
3101 BufferOS << Begin << '-' << (Begin + Width - 1);
3102 }
3103 }
3104
3105 OS << llvm::right_justify(Buffer, 10) << " | ";
3106 OS.indent(IndentLevel * 2);
3107 }
3108
PrintIndentNoOffset(raw_ostream & OS,unsigned IndentLevel)3109 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
3110 OS << " | ";
3111 OS.indent(IndentLevel * 2);
3112 }
3113
DumpRecordLayout(raw_ostream & OS,const RecordDecl * RD,const ASTContext & C,CharUnits Offset,unsigned IndentLevel,const char * Description,bool PrintSizeInfo,bool IncludeVirtualBases)3114 static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
3115 const ASTContext &C,
3116 CharUnits Offset,
3117 unsigned IndentLevel,
3118 const char* Description,
3119 bool PrintSizeInfo,
3120 bool IncludeVirtualBases) {
3121 const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
3122 auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
3123
3124 PrintOffset(OS, Offset, IndentLevel);
3125 OS << C.getTypeDeclType(const_cast<RecordDecl*>(RD)).getAsString();
3126 if (Description)
3127 OS << ' ' << Description;
3128 if (CXXRD && CXXRD->isEmpty())
3129 OS << " (empty)";
3130 OS << '\n';
3131
3132 IndentLevel++;
3133
3134 // Dump bases.
3135 if (CXXRD) {
3136 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3137 bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3138 bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3139
3140 // Vtable pointer.
3141 if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
3142 PrintOffset(OS, Offset, IndentLevel);
3143 OS << '(' << *RD << " vtable pointer)\n";
3144 } else if (HasOwnVFPtr) {
3145 PrintOffset(OS, Offset, IndentLevel);
3146 // vfptr (for Microsoft C++ ABI)
3147 OS << '(' << *RD << " vftable pointer)\n";
3148 }
3149
3150 // Collect nvbases.
3151 SmallVector<const CXXRecordDecl *, 4> Bases;
3152 for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
3153 assert(!Base.getType()->isDependentType() &&
3154 "Cannot layout class with dependent bases.");
3155 if (!Base.isVirtual())
3156 Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3157 }
3158
3159 // Sort nvbases by offset.
3160 std::stable_sort(Bases.begin(), Bases.end(),
3161 [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3162 return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3163 });
3164
3165 // Dump (non-virtual) bases
3166 for (const CXXRecordDecl *Base : Bases) {
3167 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3168 DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3169 Base == PrimaryBase ? "(primary base)" : "(base)",
3170 /*PrintSizeInfo=*/false,
3171 /*IncludeVirtualBases=*/false);
3172 }
3173
3174 // vbptr (for Microsoft C++ ABI)
3175 if (HasOwnVBPtr) {
3176 PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3177 OS << '(' << *RD << " vbtable pointer)\n";
3178 }
3179 }
3180
3181 // Dump fields.
3182 uint64_t FieldNo = 0;
3183 for (RecordDecl::field_iterator I = RD->field_begin(),
3184 E = RD->field_end(); I != E; ++I, ++FieldNo) {
3185 const FieldDecl &Field = **I;
3186 uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
3187 CharUnits FieldOffset =
3188 Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
3189
3190 // Recursively dump fields of record type.
3191 if (auto RT = Field.getType()->getAs<RecordType>()) {
3192 DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
3193 Field.getName().data(),
3194 /*PrintSizeInfo=*/false,
3195 /*IncludeVirtualBases=*/true);
3196 continue;
3197 }
3198
3199 if (Field.isBitField()) {
3200 uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
3201 unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
3202 unsigned Width = Field.getBitWidthValue(C);
3203 PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
3204 } else {
3205 PrintOffset(OS, FieldOffset, IndentLevel);
3206 }
3207 OS << Field.getType().getAsString() << ' ' << Field << '\n';
3208 }
3209
3210 // Dump virtual bases.
3211 if (CXXRD && IncludeVirtualBases) {
3212 const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
3213 Layout.getVBaseOffsetsMap();
3214
3215 for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
3216 assert(Base.isVirtual() && "Found non-virtual class!");
3217 const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3218
3219 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3220
3221 if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
3222 PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3223 OS << "(vtordisp for vbase " << *VBase << ")\n";
3224 }
3225
3226 DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3227 VBase == Layout.getPrimaryBase() ?
3228 "(primary virtual base)" : "(virtual base)",
3229 /*PrintSizeInfo=*/false,
3230 /*IncludeVirtualBases=*/false);
3231 }
3232 }
3233
3234 if (!PrintSizeInfo) return;
3235
3236 PrintIndentNoOffset(OS, IndentLevel - 1);
3237 OS << "[sizeof=" << Layout.getSize().getQuantity();
3238 if (CXXRD && !isMsLayout(C))
3239 OS << ", dsize=" << Layout.getDataSize().getQuantity();
3240 OS << ", align=" << Layout.getAlignment().getQuantity();
3241
3242 if (CXXRD) {
3243 OS << ",\n";
3244 PrintIndentNoOffset(OS, IndentLevel - 1);
3245 OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3246 OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
3247 }
3248 OS << "]\n";
3249 }
3250
DumpRecordLayout(const RecordDecl * RD,raw_ostream & OS,bool Simple) const3251 void ASTContext::DumpRecordLayout(const RecordDecl *RD,
3252 raw_ostream &OS,
3253 bool Simple) const {
3254 if (!Simple) {
3255 ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
3256 /*PrintSizeInfo*/true,
3257 /*IncludeVirtualBases=*/true);
3258 return;
3259 }
3260
3261 // The "simple" format is designed to be parsed by the
3262 // layout-override testing code. There shouldn't be any external
3263 // uses of this format --- when LLDB overrides a layout, it sets up
3264 // the data structures directly --- so feel free to adjust this as
3265 // you like as long as you also update the rudimentary parser for it
3266 // in libFrontend.
3267
3268 const ASTRecordLayout &Info = getASTRecordLayout(RD);
3269 OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
3270 OS << "\nLayout: ";
3271 OS << "<ASTRecordLayout\n";
3272 OS << " Size:" << toBits(Info.getSize()) << "\n";
3273 if (!isMsLayout(*this))
3274 OS << " DataSize:" << toBits(Info.getDataSize()) << "\n";
3275 OS << " Alignment:" << toBits(Info.getAlignment()) << "\n";
3276 OS << " FieldOffsets: [";
3277 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3278 if (i) OS << ", ";
3279 OS << Info.getFieldOffset(i);
3280 }
3281 OS << "]>\n";
3282 }
3283