1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating functions from LLVM IR into
11 // Machine IR.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/FunctionLoweringInfo.h"
16 #include "llvm/ADT/PostOrderIterator.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineModuleInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/WinEHFuncInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DebugInfo.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetFrameLowering.h"
37 #include "llvm/Target/TargetInstrInfo.h"
38 #include "llvm/Target/TargetLowering.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include "llvm/Target/TargetRegisterInfo.h"
41 #include "llvm/Target/TargetSubtargetInfo.h"
42 #include <algorithm>
43 using namespace llvm;
44
45 #define DEBUG_TYPE "function-lowering-info"
46
47 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
48 /// PHI nodes or outside of the basic block that defines it, or used by a
49 /// switch or atomic instruction, which may expand to multiple basic blocks.
isUsedOutsideOfDefiningBlock(const Instruction * I)50 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
51 if (I->use_empty()) return false;
52 if (isa<PHINode>(I)) return true;
53 const BasicBlock *BB = I->getParent();
54 for (const User *U : I->users())
55 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
56 return true;
57
58 return false;
59 }
60
getPreferredExtendForValue(const Value * V)61 static ISD::NodeType getPreferredExtendForValue(const Value *V) {
62 // For the users of the source value being used for compare instruction, if
63 // the number of signed predicate is greater than unsigned predicate, we
64 // prefer to use SIGN_EXTEND.
65 //
66 // With this optimization, we would be able to reduce some redundant sign or
67 // zero extension instruction, and eventually more machine CSE opportunities
68 // can be exposed.
69 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
70 unsigned NumOfSigned = 0, NumOfUnsigned = 0;
71 for (const User *U : V->users()) {
72 if (const auto *CI = dyn_cast<CmpInst>(U)) {
73 NumOfSigned += CI->isSigned();
74 NumOfUnsigned += CI->isUnsigned();
75 }
76 }
77 if (NumOfSigned > NumOfUnsigned)
78 ExtendKind = ISD::SIGN_EXTEND;
79
80 return ExtendKind;
81 }
82
set(const Function & fn,MachineFunction & mf,SelectionDAG * DAG)83 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
84 SelectionDAG *DAG) {
85 Fn = &fn;
86 MF = &mf;
87 TLI = MF->getSubtarget().getTargetLowering();
88 RegInfo = &MF->getRegInfo();
89 MachineModuleInfo &MMI = MF->getMMI();
90 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
91
92 // Check whether the function can return without sret-demotion.
93 SmallVector<ISD::OutputArg, 4> Outs;
94 GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
95 mf.getDataLayout());
96 CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF,
97 Fn->isVarArg(), Outs, Fn->getContext());
98
99 // Initialize the mapping of values to registers. This is only set up for
100 // instruction values that are used outside of the block that defines
101 // them.
102 Function::const_iterator BB = Fn->begin(), EB = Fn->end();
103 for (; BB != EB; ++BB)
104 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
105 I != E; ++I) {
106 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
107 Type *Ty = AI->getAllocatedType();
108 unsigned Align =
109 std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty),
110 AI->getAlignment());
111 unsigned StackAlign = TFI->getStackAlignment();
112
113 // Static allocas can be folded into the initial stack frame
114 // adjustment. For targets that don't realign the stack, don't
115 // do this if there is an extra alignment requirement.
116 if (AI->isStaticAlloca() &&
117 (TFI->isStackRealignable() || (Align <= StackAlign))) {
118 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
119 uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty);
120
121 TySize *= CUI->getZExtValue(); // Get total allocated size.
122 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
123
124 StaticAllocaMap[AI] =
125 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI);
126 } else {
127 // FIXME: Overaligned static allocas should be grouped into
128 // a single dynamic allocation instead of using a separate
129 // stack allocation for each one.
130 if (Align <= StackAlign)
131 Align = 0;
132 // Inform the Frame Information that we have variable-sized objects.
133 MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI);
134 }
135 }
136
137 // Look for inline asm that clobbers the SP register.
138 if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
139 ImmutableCallSite CS(&*I);
140 if (isa<InlineAsm>(CS.getCalledValue())) {
141 unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
142 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
143 std::vector<TargetLowering::AsmOperandInfo> Ops =
144 TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS);
145 for (size_t I = 0, E = Ops.size(); I != E; ++I) {
146 TargetLowering::AsmOperandInfo &Op = Ops[I];
147 if (Op.Type == InlineAsm::isClobber) {
148 // Clobbers don't have SDValue operands, hence SDValue().
149 TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
150 std::pair<unsigned, const TargetRegisterClass *> PhysReg =
151 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
152 Op.ConstraintVT);
153 if (PhysReg.first == SP)
154 MF->getFrameInfo()->setHasOpaqueSPAdjustment(true);
155 }
156 }
157 }
158 }
159
160 // Look for calls to the @llvm.va_start intrinsic. We can omit some
161 // prologue boilerplate for variadic functions that don't examine their
162 // arguments.
163 if (const auto *II = dyn_cast<IntrinsicInst>(I)) {
164 if (II->getIntrinsicID() == Intrinsic::vastart)
165 MF->getFrameInfo()->setHasVAStart(true);
166 }
167
168 // If we have a musttail call in a variadic function, we need to ensure we
169 // forward implicit register parameters.
170 if (const auto *CI = dyn_cast<CallInst>(I)) {
171 if (CI->isMustTailCall() && Fn->isVarArg())
172 MF->getFrameInfo()->setHasMustTailInVarArgFunc(true);
173 }
174
175 // Mark values used outside their block as exported, by allocating
176 // a virtual register for them.
177 if (isUsedOutsideOfDefiningBlock(&*I))
178 if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(I)))
179 InitializeRegForValue(&*I);
180
181 // Collect llvm.dbg.declare information. This is done now instead of
182 // during the initial isel pass through the IR so that it is done
183 // in a predictable order.
184 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
185 assert(DI->getVariable() && "Missing variable");
186 assert(DI->getDebugLoc() && "Missing location");
187 if (MMI.hasDebugInfo()) {
188 // Don't handle byval struct arguments or VLAs, for example.
189 // Non-byval arguments are handled here (they refer to the stack
190 // temporary alloca at this point).
191 const Value *Address = DI->getAddress();
192 if (Address) {
193 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
194 Address = BCI->getOperand(0);
195 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
196 DenseMap<const AllocaInst *, int>::iterator SI =
197 StaticAllocaMap.find(AI);
198 if (SI != StaticAllocaMap.end()) { // Check for VLAs.
199 int FI = SI->second;
200 MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(),
201 FI, DI->getDebugLoc());
202 }
203 }
204 }
205 }
206 }
207
208 // Decide the preferred extend type for a value.
209 PreferredExtendType[&*I] = getPreferredExtendForValue(&*I);
210 }
211
212 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
213 // also creates the initial PHI MachineInstrs, though none of the input
214 // operands are populated.
215 for (BB = Fn->begin(); BB != EB; ++BB) {
216 // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
217 // are really data, and no instructions can live here.
218 if (BB->isEHPad()) {
219 const Instruction *I = BB->getFirstNonPHI();
220 // If this is a non-landingpad EH pad, mark this function as using
221 // funclets.
222 // FIXME: SEH catchpads do not create funclets, so we could avoid setting
223 // this in such cases in order to improve frame layout.
224 if (!isa<LandingPadInst>(I)) {
225 MMI.setHasEHFunclets(true);
226 MF->getFrameInfo()->setHasOpaqueSPAdjustment(true);
227 }
228 if (isa<CatchSwitchInst>(I)) {
229 assert(&*BB->begin() == I &&
230 "WinEHPrepare failed to remove PHIs from imaginary BBs");
231 continue;
232 }
233 if (isa<FuncletPadInst>(I))
234 assert(&*BB->begin() == I && "WinEHPrepare failed to demote PHIs");
235 }
236
237 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&*BB);
238 MBBMap[&*BB] = MBB;
239 MF->push_back(MBB);
240
241 // Transfer the address-taken flag. This is necessary because there could
242 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
243 // the first one should be marked.
244 if (BB->hasAddressTaken())
245 MBB->setHasAddressTaken();
246
247 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
248 // appropriate.
249 for (BasicBlock::const_iterator I = BB->begin();
250 const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
251 if (PN->use_empty()) continue;
252
253 // Skip empty types
254 if (PN->getType()->isEmptyTy())
255 continue;
256
257 DebugLoc DL = PN->getDebugLoc();
258 unsigned PHIReg = ValueMap[PN];
259 assert(PHIReg && "PHI node does not have an assigned virtual register!");
260
261 SmallVector<EVT, 4> ValueVTs;
262 ComputeValueVTs(*TLI, MF->getDataLayout(), PN->getType(), ValueVTs);
263 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
264 EVT VT = ValueVTs[vti];
265 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
266 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
267 for (unsigned i = 0; i != NumRegisters; ++i)
268 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
269 PHIReg += NumRegisters;
270 }
271 }
272 }
273
274 // Mark landing pad blocks.
275 SmallVector<const LandingPadInst *, 4> LPads;
276 for (BB = Fn->begin(); BB != EB; ++BB) {
277 const Instruction *FNP = BB->getFirstNonPHI();
278 if (BB->isEHPad() && MBBMap.count(&*BB))
279 MBBMap[&*BB]->setIsEHPad();
280 if (const auto *LPI = dyn_cast<LandingPadInst>(FNP))
281 LPads.push_back(LPI);
282 }
283
284 // If this personality uses funclets, we need to do a bit more work.
285 if (!Fn->hasPersonalityFn())
286 return;
287 EHPersonality Personality = classifyEHPersonality(Fn->getPersonalityFn());
288 if (!isFuncletEHPersonality(Personality))
289 return;
290
291 // Calculate state numbers if we haven't already.
292 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
293 if (Personality == EHPersonality::MSVC_CXX)
294 calculateWinCXXEHStateNumbers(&fn, EHInfo);
295 else if (isAsynchronousEHPersonality(Personality))
296 calculateSEHStateNumbers(&fn, EHInfo);
297 else if (Personality == EHPersonality::CoreCLR)
298 calculateClrEHStateNumbers(&fn, EHInfo);
299
300 calculateCatchReturnSuccessorColors(&fn, EHInfo);
301
302 // Map all BB references in the WinEH data to MBBs.
303 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
304 for (WinEHHandlerType &H : TBME.HandlerArray) {
305 if (H.CatchObj.Alloca) {
306 assert(StaticAllocaMap.count(H.CatchObj.Alloca));
307 H.CatchObj.FrameIndex = StaticAllocaMap[H.CatchObj.Alloca];
308 } else {
309 H.CatchObj.FrameIndex = INT_MAX;
310 }
311 if (H.Handler)
312 H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
313 }
314 }
315 for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
316 if (UME.Cleanup)
317 UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
318 for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
319 const BasicBlock *BB = UME.Handler.get<const BasicBlock *>();
320 UME.Handler = MBBMap[BB];
321 }
322 for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
323 const BasicBlock *BB = CME.Handler.get<const BasicBlock *>();
324 CME.Handler = MBBMap[BB];
325 }
326 }
327
328 /// clear - Clear out all the function-specific state. This returns this
329 /// FunctionLoweringInfo to an empty state, ready to be used for a
330 /// different function.
clear()331 void FunctionLoweringInfo::clear() {
332 MBBMap.clear();
333 ValueMap.clear();
334 StaticAllocaMap.clear();
335 LiveOutRegInfo.clear();
336 VisitedBBs.clear();
337 ArgDbgValues.clear();
338 ByValArgFrameIndexMap.clear();
339 RegFixups.clear();
340 StatepointStackSlots.clear();
341 StatepointRelocatedValues.clear();
342 PreferredExtendType.clear();
343 }
344
345 /// CreateReg - Allocate a single virtual register for the given type.
CreateReg(MVT VT)346 unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
347 return RegInfo->createVirtualRegister(
348 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
349 }
350
351 /// CreateRegs - Allocate the appropriate number of virtual registers of
352 /// the correctly promoted or expanded types. Assign these registers
353 /// consecutive vreg numbers and return the first assigned number.
354 ///
355 /// In the case that the given value has struct or array type, this function
356 /// will assign registers for each member or element.
357 ///
CreateRegs(Type * Ty)358 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
359 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
360
361 SmallVector<EVT, 4> ValueVTs;
362 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
363
364 unsigned FirstReg = 0;
365 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
366 EVT ValueVT = ValueVTs[Value];
367 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
368
369 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
370 for (unsigned i = 0; i != NumRegs; ++i) {
371 unsigned R = CreateReg(RegisterVT);
372 if (!FirstReg) FirstReg = R;
373 }
374 }
375 return FirstReg;
376 }
377
378 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
379 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
380 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
381 /// the larger bit width by zero extension. The bit width must be no smaller
382 /// than the LiveOutInfo's existing bit width.
383 const FunctionLoweringInfo::LiveOutInfo *
GetLiveOutRegInfo(unsigned Reg,unsigned BitWidth)384 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
385 if (!LiveOutRegInfo.inBounds(Reg))
386 return nullptr;
387
388 LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
389 if (!LOI->IsValid)
390 return nullptr;
391
392 if (BitWidth > LOI->KnownZero.getBitWidth()) {
393 LOI->NumSignBits = 1;
394 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
395 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
396 }
397
398 return LOI;
399 }
400
401 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
402 /// register based on the LiveOutInfo of its operands.
ComputePHILiveOutRegInfo(const PHINode * PN)403 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
404 Type *Ty = PN->getType();
405 if (!Ty->isIntegerTy() || Ty->isVectorTy())
406 return;
407
408 SmallVector<EVT, 1> ValueVTs;
409 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
410 assert(ValueVTs.size() == 1 &&
411 "PHIs with non-vector integer types should have a single VT.");
412 EVT IntVT = ValueVTs[0];
413
414 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
415 return;
416 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
417 unsigned BitWidth = IntVT.getSizeInBits();
418
419 unsigned DestReg = ValueMap[PN];
420 if (!TargetRegisterInfo::isVirtualRegister(DestReg))
421 return;
422 LiveOutRegInfo.grow(DestReg);
423 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
424
425 Value *V = PN->getIncomingValue(0);
426 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
427 DestLOI.NumSignBits = 1;
428 APInt Zero(BitWidth, 0);
429 DestLOI.KnownZero = Zero;
430 DestLOI.KnownOne = Zero;
431 return;
432 }
433
434 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
435 APInt Val = CI->getValue().zextOrTrunc(BitWidth);
436 DestLOI.NumSignBits = Val.getNumSignBits();
437 DestLOI.KnownZero = ~Val;
438 DestLOI.KnownOne = Val;
439 } else {
440 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
441 "CopyToReg node was created.");
442 unsigned SrcReg = ValueMap[V];
443 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
444 DestLOI.IsValid = false;
445 return;
446 }
447 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
448 if (!SrcLOI) {
449 DestLOI.IsValid = false;
450 return;
451 }
452 DestLOI = *SrcLOI;
453 }
454
455 assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
456 DestLOI.KnownOne.getBitWidth() == BitWidth &&
457 "Masks should have the same bit width as the type.");
458
459 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
460 Value *V = PN->getIncomingValue(i);
461 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
462 DestLOI.NumSignBits = 1;
463 APInt Zero(BitWidth, 0);
464 DestLOI.KnownZero = Zero;
465 DestLOI.KnownOne = Zero;
466 return;
467 }
468
469 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
470 APInt Val = CI->getValue().zextOrTrunc(BitWidth);
471 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
472 DestLOI.KnownZero &= ~Val;
473 DestLOI.KnownOne &= Val;
474 continue;
475 }
476
477 assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
478 "its CopyToReg node was created.");
479 unsigned SrcReg = ValueMap[V];
480 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
481 DestLOI.IsValid = false;
482 return;
483 }
484 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
485 if (!SrcLOI) {
486 DestLOI.IsValid = false;
487 return;
488 }
489 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
490 DestLOI.KnownZero &= SrcLOI->KnownZero;
491 DestLOI.KnownOne &= SrcLOI->KnownOne;
492 }
493 }
494
495 /// setArgumentFrameIndex - Record frame index for the byval
496 /// argument. This overrides previous frame index entry for this argument,
497 /// if any.
setArgumentFrameIndex(const Argument * A,int FI)498 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
499 int FI) {
500 ByValArgFrameIndexMap[A] = FI;
501 }
502
503 /// getArgumentFrameIndex - Get frame index for the byval argument.
504 /// If the argument does not have any assigned frame index then 0 is
505 /// returned.
getArgumentFrameIndex(const Argument * A)506 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
507 DenseMap<const Argument *, int>::iterator I =
508 ByValArgFrameIndexMap.find(A);
509 if (I != ByValArgFrameIndexMap.end())
510 return I->second;
511 DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
512 return 0;
513 }
514
getCatchPadExceptionPointerVReg(const Value * CPI,const TargetRegisterClass * RC)515 unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
516 const Value *CPI, const TargetRegisterClass *RC) {
517 MachineRegisterInfo &MRI = MF->getRegInfo();
518 auto I = CatchPadExceptionPointers.insert({CPI, 0});
519 unsigned &VReg = I.first->second;
520 if (I.second)
521 VReg = MRI.createVirtualRegister(RC);
522 assert(VReg && "null vreg in exception pointer table!");
523 return VReg;
524 }
525
526 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are
527 /// being passed to this variadic function, and set the MachineModuleInfo's
528 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined
529 /// reference to _fltused on Windows, which will link in MSVCRT's
530 /// floating-point support.
ComputeUsesVAFloatArgument(const CallInst & I,MachineModuleInfo * MMI)531 void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
532 MachineModuleInfo *MMI)
533 {
534 FunctionType *FT = cast<FunctionType>(
535 I.getCalledValue()->getType()->getContainedType(0));
536 if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
537 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
538 Type* T = I.getArgOperand(i)->getType();
539 for (auto i : post_order(T)) {
540 if (i->isFloatingPointTy()) {
541 MMI->setUsesVAFloatArgument(true);
542 return;
543 }
544 }
545 }
546 }
547 }
548
549 /// AddLandingPadInfo - Extract the exception handling information from the
550 /// landingpad instruction and add them to the specified machine module info.
AddLandingPadInfo(const LandingPadInst & I,MachineModuleInfo & MMI,MachineBasicBlock * MBB)551 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
552 MachineBasicBlock *MBB) {
553 if (const auto *PF = dyn_cast<Function>(
554 I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts()))
555 MMI.addPersonality(PF);
556
557 if (I.isCleanup())
558 MMI.addCleanup(MBB);
559
560 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
561 // but we need to do it this way because of how the DWARF EH emitter
562 // processes the clauses.
563 for (unsigned i = I.getNumClauses(); i != 0; --i) {
564 Value *Val = I.getClause(i - 1);
565 if (I.isCatch(i - 1)) {
566 MMI.addCatchTypeInfo(MBB,
567 dyn_cast<GlobalValue>(Val->stripPointerCasts()));
568 } else {
569 // Add filters in a list.
570 Constant *CVal = cast<Constant>(Val);
571 SmallVector<const GlobalValue*, 4> FilterList;
572 for (User::op_iterator
573 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
574 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
575
576 MMI.addFilterTypeInfo(MBB, FilterList);
577 }
578 }
579 }
580