1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/Mangle.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/Builtins.h"
27 #include "clang/Basic/CharInfo.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Lexer.h"
31 #include "clang/Lex/LiteralSupport.h"
32 #include "clang/Sema/SemaDiagnostic.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cstring>
37 using namespace clang;
38
getBestDynamicClassType() const39 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
40 const Expr *E = ignoreParenBaseCasts();
41
42 QualType DerivedType = E->getType();
43 if (const PointerType *PTy = DerivedType->getAs<PointerType>())
44 DerivedType = PTy->getPointeeType();
45
46 if (DerivedType->isDependentType())
47 return nullptr;
48
49 const RecordType *Ty = DerivedType->castAs<RecordType>();
50 Decl *D = Ty->getDecl();
51 return cast<CXXRecordDecl>(D);
52 }
53
skipRValueSubobjectAdjustments(SmallVectorImpl<const Expr * > & CommaLHSs,SmallVectorImpl<SubobjectAdjustment> & Adjustments) const54 const Expr *Expr::skipRValueSubobjectAdjustments(
55 SmallVectorImpl<const Expr *> &CommaLHSs,
56 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
57 const Expr *E = this;
58 while (true) {
59 E = E->IgnoreParens();
60
61 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
62 if ((CE->getCastKind() == CK_DerivedToBase ||
63 CE->getCastKind() == CK_UncheckedDerivedToBase) &&
64 E->getType()->isRecordType()) {
65 E = CE->getSubExpr();
66 CXXRecordDecl *Derived
67 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
68 Adjustments.push_back(SubobjectAdjustment(CE, Derived));
69 continue;
70 }
71
72 if (CE->getCastKind() == CK_NoOp) {
73 E = CE->getSubExpr();
74 continue;
75 }
76 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
77 if (!ME->isArrow()) {
78 assert(ME->getBase()->getType()->isRecordType());
79 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
80 if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
81 E = ME->getBase();
82 Adjustments.push_back(SubobjectAdjustment(Field));
83 continue;
84 }
85 }
86 }
87 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
88 if (BO->isPtrMemOp()) {
89 assert(BO->getRHS()->isRValue());
90 E = BO->getLHS();
91 const MemberPointerType *MPT =
92 BO->getRHS()->getType()->getAs<MemberPointerType>();
93 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
94 continue;
95 } else if (BO->getOpcode() == BO_Comma) {
96 CommaLHSs.push_back(BO->getLHS());
97 E = BO->getRHS();
98 continue;
99 }
100 }
101
102 // Nothing changed.
103 break;
104 }
105 return E;
106 }
107
108 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
109 /// that is known to return 0 or 1. This happens for _Bool/bool expressions
110 /// but also int expressions which are produced by things like comparisons in
111 /// C.
isKnownToHaveBooleanValue() const112 bool Expr::isKnownToHaveBooleanValue() const {
113 const Expr *E = IgnoreParens();
114
115 // If this value has _Bool type, it is obvious 0/1.
116 if (E->getType()->isBooleanType()) return true;
117 // If this is a non-scalar-integer type, we don't care enough to try.
118 if (!E->getType()->isIntegralOrEnumerationType()) return false;
119
120 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
121 switch (UO->getOpcode()) {
122 case UO_Plus:
123 return UO->getSubExpr()->isKnownToHaveBooleanValue();
124 case UO_LNot:
125 return true;
126 default:
127 return false;
128 }
129 }
130
131 // Only look through implicit casts. If the user writes
132 // '(int) (a && b)' treat it as an arbitrary int.
133 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
134 return CE->getSubExpr()->isKnownToHaveBooleanValue();
135
136 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
137 switch (BO->getOpcode()) {
138 default: return false;
139 case BO_LT: // Relational operators.
140 case BO_GT:
141 case BO_LE:
142 case BO_GE:
143 case BO_EQ: // Equality operators.
144 case BO_NE:
145 case BO_LAnd: // AND operator.
146 case BO_LOr: // Logical OR operator.
147 return true;
148
149 case BO_And: // Bitwise AND operator.
150 case BO_Xor: // Bitwise XOR operator.
151 case BO_Or: // Bitwise OR operator.
152 // Handle things like (x==2)|(y==12).
153 return BO->getLHS()->isKnownToHaveBooleanValue() &&
154 BO->getRHS()->isKnownToHaveBooleanValue();
155
156 case BO_Comma:
157 case BO_Assign:
158 return BO->getRHS()->isKnownToHaveBooleanValue();
159 }
160 }
161
162 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
163 return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
164 CO->getFalseExpr()->isKnownToHaveBooleanValue();
165
166 return false;
167 }
168
169 // Amusing macro metaprogramming hack: check whether a class provides
170 // a more specific implementation of getExprLoc().
171 //
172 // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
173 namespace {
174 /// This implementation is used when a class provides a custom
175 /// implementation of getExprLoc.
176 template <class E, class T>
getExprLocImpl(const Expr * expr,SourceLocation (T::* v)()const)177 SourceLocation getExprLocImpl(const Expr *expr,
178 SourceLocation (T::*v)() const) {
179 return static_cast<const E*>(expr)->getExprLoc();
180 }
181
182 /// This implementation is used when a class doesn't provide
183 /// a custom implementation of getExprLoc. Overload resolution
184 /// should pick it over the implementation above because it's
185 /// more specialized according to function template partial ordering.
186 template <class E>
getExprLocImpl(const Expr * expr,SourceLocation (Expr::* v)()const)187 SourceLocation getExprLocImpl(const Expr *expr,
188 SourceLocation (Expr::*v)() const) {
189 return static_cast<const E*>(expr)->getLocStart();
190 }
191 }
192
getExprLoc() const193 SourceLocation Expr::getExprLoc() const {
194 switch (getStmtClass()) {
195 case Stmt::NoStmtClass: llvm_unreachable("statement without class");
196 #define ABSTRACT_STMT(type)
197 #define STMT(type, base) \
198 case Stmt::type##Class: break;
199 #define EXPR(type, base) \
200 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
201 #include "clang/AST/StmtNodes.inc"
202 }
203 llvm_unreachable("unknown expression kind");
204 }
205
206 //===----------------------------------------------------------------------===//
207 // Primary Expressions.
208 //===----------------------------------------------------------------------===//
209
210 /// \brief Compute the type-, value-, and instantiation-dependence of a
211 /// declaration reference
212 /// based on the declaration being referenced.
computeDeclRefDependence(const ASTContext & Ctx,NamedDecl * D,QualType T,bool & TypeDependent,bool & ValueDependent,bool & InstantiationDependent)213 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
214 QualType T, bool &TypeDependent,
215 bool &ValueDependent,
216 bool &InstantiationDependent) {
217 TypeDependent = false;
218 ValueDependent = false;
219 InstantiationDependent = false;
220
221 // (TD) C++ [temp.dep.expr]p3:
222 // An id-expression is type-dependent if it contains:
223 //
224 // and
225 //
226 // (VD) C++ [temp.dep.constexpr]p2:
227 // An identifier is value-dependent if it is:
228
229 // (TD) - an identifier that was declared with dependent type
230 // (VD) - a name declared with a dependent type,
231 if (T->isDependentType()) {
232 TypeDependent = true;
233 ValueDependent = true;
234 InstantiationDependent = true;
235 return;
236 } else if (T->isInstantiationDependentType()) {
237 InstantiationDependent = true;
238 }
239
240 // (TD) - a conversion-function-id that specifies a dependent type
241 if (D->getDeclName().getNameKind()
242 == DeclarationName::CXXConversionFunctionName) {
243 QualType T = D->getDeclName().getCXXNameType();
244 if (T->isDependentType()) {
245 TypeDependent = true;
246 ValueDependent = true;
247 InstantiationDependent = true;
248 return;
249 }
250
251 if (T->isInstantiationDependentType())
252 InstantiationDependent = true;
253 }
254
255 // (VD) - the name of a non-type template parameter,
256 if (isa<NonTypeTemplateParmDecl>(D)) {
257 ValueDependent = true;
258 InstantiationDependent = true;
259 return;
260 }
261
262 // (VD) - a constant with integral or enumeration type and is
263 // initialized with an expression that is value-dependent.
264 // (VD) - a constant with literal type and is initialized with an
265 // expression that is value-dependent [C++11].
266 // (VD) - FIXME: Missing from the standard:
267 // - an entity with reference type and is initialized with an
268 // expression that is value-dependent [C++11]
269 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
270 if ((Ctx.getLangOpts().CPlusPlus11 ?
271 Var->getType()->isLiteralType(Ctx) :
272 Var->getType()->isIntegralOrEnumerationType()) &&
273 (Var->getType().isConstQualified() ||
274 Var->getType()->isReferenceType())) {
275 if (const Expr *Init = Var->getAnyInitializer())
276 if (Init->isValueDependent()) {
277 ValueDependent = true;
278 InstantiationDependent = true;
279 }
280 }
281
282 // (VD) - FIXME: Missing from the standard:
283 // - a member function or a static data member of the current
284 // instantiation
285 if (Var->isStaticDataMember() &&
286 Var->getDeclContext()->isDependentContext()) {
287 ValueDependent = true;
288 InstantiationDependent = true;
289 TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
290 if (TInfo->getType()->isIncompleteArrayType())
291 TypeDependent = true;
292 }
293
294 return;
295 }
296
297 // (VD) - FIXME: Missing from the standard:
298 // - a member function or a static data member of the current
299 // instantiation
300 if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
301 ValueDependent = true;
302 InstantiationDependent = true;
303 }
304 }
305
computeDependence(const ASTContext & Ctx)306 void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
307 bool TypeDependent = false;
308 bool ValueDependent = false;
309 bool InstantiationDependent = false;
310 computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
311 ValueDependent, InstantiationDependent);
312
313 ExprBits.TypeDependent |= TypeDependent;
314 ExprBits.ValueDependent |= ValueDependent;
315 ExprBits.InstantiationDependent |= InstantiationDependent;
316
317 // Is the declaration a parameter pack?
318 if (getDecl()->isParameterPack())
319 ExprBits.ContainsUnexpandedParameterPack = true;
320 }
321
DeclRefExpr(const ASTContext & Ctx,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingVariableOrCapture,const DeclarationNameInfo & NameInfo,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,QualType T,ExprValueKind VK)322 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
323 NestedNameSpecifierLoc QualifierLoc,
324 SourceLocation TemplateKWLoc,
325 ValueDecl *D, bool RefersToEnclosingVariableOrCapture,
326 const DeclarationNameInfo &NameInfo,
327 NamedDecl *FoundD,
328 const TemplateArgumentListInfo *TemplateArgs,
329 QualType T, ExprValueKind VK)
330 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
331 D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
332 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
333 if (QualifierLoc) {
334 getInternalQualifierLoc() = QualifierLoc;
335 auto *NNS = QualifierLoc.getNestedNameSpecifier();
336 if (NNS->isInstantiationDependent())
337 ExprBits.InstantiationDependent = true;
338 if (NNS->containsUnexpandedParameterPack())
339 ExprBits.ContainsUnexpandedParameterPack = true;
340 }
341 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
342 if (FoundD)
343 getInternalFoundDecl() = FoundD;
344 DeclRefExprBits.HasTemplateKWAndArgsInfo
345 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
346 DeclRefExprBits.RefersToEnclosingVariableOrCapture =
347 RefersToEnclosingVariableOrCapture;
348 if (TemplateArgs) {
349 bool Dependent = false;
350 bool InstantiationDependent = false;
351 bool ContainsUnexpandedParameterPack = false;
352 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
353 Dependent,
354 InstantiationDependent,
355 ContainsUnexpandedParameterPack);
356 assert(!Dependent && "built a DeclRefExpr with dependent template args");
357 ExprBits.InstantiationDependent |= InstantiationDependent;
358 ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
359 } else if (TemplateKWLoc.isValid()) {
360 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
361 }
362 DeclRefExprBits.HadMultipleCandidates = 0;
363
364 computeDependence(Ctx);
365 }
366
Create(const ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingVariableOrCapture,SourceLocation NameLoc,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)367 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
368 NestedNameSpecifierLoc QualifierLoc,
369 SourceLocation TemplateKWLoc,
370 ValueDecl *D,
371 bool RefersToEnclosingVariableOrCapture,
372 SourceLocation NameLoc,
373 QualType T,
374 ExprValueKind VK,
375 NamedDecl *FoundD,
376 const TemplateArgumentListInfo *TemplateArgs) {
377 return Create(Context, QualifierLoc, TemplateKWLoc, D,
378 RefersToEnclosingVariableOrCapture,
379 DeclarationNameInfo(D->getDeclName(), NameLoc),
380 T, VK, FoundD, TemplateArgs);
381 }
382
Create(const ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingVariableOrCapture,const DeclarationNameInfo & NameInfo,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)383 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
384 NestedNameSpecifierLoc QualifierLoc,
385 SourceLocation TemplateKWLoc,
386 ValueDecl *D,
387 bool RefersToEnclosingVariableOrCapture,
388 const DeclarationNameInfo &NameInfo,
389 QualType T,
390 ExprValueKind VK,
391 NamedDecl *FoundD,
392 const TemplateArgumentListInfo *TemplateArgs) {
393 // Filter out cases where the found Decl is the same as the value refenenced.
394 if (D == FoundD)
395 FoundD = nullptr;
396
397 std::size_t Size = sizeof(DeclRefExpr);
398 if (QualifierLoc)
399 Size += sizeof(NestedNameSpecifierLoc);
400 if (FoundD)
401 Size += sizeof(NamedDecl *);
402 if (TemplateArgs) {
403 Size = llvm::RoundUpToAlignment(Size,
404 llvm::alignOf<ASTTemplateKWAndArgsInfo>());
405 Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
406 } else if (TemplateKWLoc.isValid()) {
407 Size = llvm::RoundUpToAlignment(Size,
408 llvm::alignOf<ASTTemplateKWAndArgsInfo>());
409 Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
410 }
411
412 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
413 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
414 RefersToEnclosingVariableOrCapture,
415 NameInfo, FoundD, TemplateArgs, T, VK);
416 }
417
CreateEmpty(const ASTContext & Context,bool HasQualifier,bool HasFoundDecl,bool HasTemplateKWAndArgsInfo,unsigned NumTemplateArgs)418 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
419 bool HasQualifier,
420 bool HasFoundDecl,
421 bool HasTemplateKWAndArgsInfo,
422 unsigned NumTemplateArgs) {
423 std::size_t Size = sizeof(DeclRefExpr);
424 if (HasQualifier)
425 Size += sizeof(NestedNameSpecifierLoc);
426 if (HasFoundDecl)
427 Size += sizeof(NamedDecl *);
428 if (HasTemplateKWAndArgsInfo) {
429 Size = llvm::RoundUpToAlignment(Size,
430 llvm::alignOf<ASTTemplateKWAndArgsInfo>());
431 Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
432 }
433
434 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
435 return new (Mem) DeclRefExpr(EmptyShell());
436 }
437
getLocStart() const438 SourceLocation DeclRefExpr::getLocStart() const {
439 if (hasQualifier())
440 return getQualifierLoc().getBeginLoc();
441 return getNameInfo().getLocStart();
442 }
getLocEnd() const443 SourceLocation DeclRefExpr::getLocEnd() const {
444 if (hasExplicitTemplateArgs())
445 return getRAngleLoc();
446 return getNameInfo().getLocEnd();
447 }
448
PredefinedExpr(SourceLocation L,QualType FNTy,IdentType IT,StringLiteral * SL)449 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
450 StringLiteral *SL)
451 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
452 FNTy->isDependentType(), FNTy->isDependentType(),
453 FNTy->isInstantiationDependentType(),
454 /*ContainsUnexpandedParameterPack=*/false),
455 Loc(L), Type(IT), FnName(SL) {}
456
getFunctionName()457 StringLiteral *PredefinedExpr::getFunctionName() {
458 return cast_or_null<StringLiteral>(FnName);
459 }
460
getIdentTypeName(PredefinedExpr::IdentType IT)461 StringRef PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT) {
462 switch (IT) {
463 case Func:
464 return "__func__";
465 case Function:
466 return "__FUNCTION__";
467 case FuncDName:
468 return "__FUNCDNAME__";
469 case LFunction:
470 return "L__FUNCTION__";
471 case PrettyFunction:
472 return "__PRETTY_FUNCTION__";
473 case FuncSig:
474 return "__FUNCSIG__";
475 case PrettyFunctionNoVirtual:
476 break;
477 }
478 llvm_unreachable("Unknown ident type for PredefinedExpr");
479 }
480
481 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
482 // expr" policy instead.
ComputeName(IdentType IT,const Decl * CurrentDecl)483 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
484 ASTContext &Context = CurrentDecl->getASTContext();
485
486 if (IT == PredefinedExpr::FuncDName) {
487 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
488 std::unique_ptr<MangleContext> MC;
489 MC.reset(Context.createMangleContext());
490
491 if (MC->shouldMangleDeclName(ND)) {
492 SmallString<256> Buffer;
493 llvm::raw_svector_ostream Out(Buffer);
494 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
495 MC->mangleCXXCtor(CD, Ctor_Base, Out);
496 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
497 MC->mangleCXXDtor(DD, Dtor_Base, Out);
498 else
499 MC->mangleName(ND, Out);
500
501 if (!Buffer.empty() && Buffer.front() == '\01')
502 return Buffer.substr(1);
503 return Buffer.str();
504 } else
505 return ND->getIdentifier()->getName();
506 }
507 return "";
508 }
509 if (auto *BD = dyn_cast<BlockDecl>(CurrentDecl)) {
510 std::unique_ptr<MangleContext> MC;
511 MC.reset(Context.createMangleContext());
512 SmallString<256> Buffer;
513 llvm::raw_svector_ostream Out(Buffer);
514 auto DC = CurrentDecl->getDeclContext();
515 if (DC->isFileContext())
516 MC->mangleGlobalBlock(BD, /*ID*/ nullptr, Out);
517 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
518 MC->mangleCtorBlock(CD, /*CT*/ Ctor_Complete, BD, Out);
519 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
520 MC->mangleDtorBlock(DD, /*DT*/ Dtor_Complete, BD, Out);
521 else
522 MC->mangleBlock(DC, BD, Out);
523 return Out.str();
524 }
525 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
526 if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig)
527 return FD->getNameAsString();
528
529 SmallString<256> Name;
530 llvm::raw_svector_ostream Out(Name);
531
532 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
533 if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
534 Out << "virtual ";
535 if (MD->isStatic())
536 Out << "static ";
537 }
538
539 PrintingPolicy Policy(Context.getLangOpts());
540 std::string Proto;
541 llvm::raw_string_ostream POut(Proto);
542
543 const FunctionDecl *Decl = FD;
544 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
545 Decl = Pattern;
546 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
547 const FunctionProtoType *FT = nullptr;
548 if (FD->hasWrittenPrototype())
549 FT = dyn_cast<FunctionProtoType>(AFT);
550
551 if (IT == FuncSig) {
552 switch (FT->getCallConv()) {
553 case CC_C: POut << "__cdecl "; break;
554 case CC_X86StdCall: POut << "__stdcall "; break;
555 case CC_X86FastCall: POut << "__fastcall "; break;
556 case CC_X86ThisCall: POut << "__thiscall "; break;
557 case CC_X86VectorCall: POut << "__vectorcall "; break;
558 // Only bother printing the conventions that MSVC knows about.
559 default: break;
560 }
561 }
562
563 FD->printQualifiedName(POut, Policy);
564
565 POut << "(";
566 if (FT) {
567 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
568 if (i) POut << ", ";
569 POut << Decl->getParamDecl(i)->getType().stream(Policy);
570 }
571
572 if (FT->isVariadic()) {
573 if (FD->getNumParams()) POut << ", ";
574 POut << "...";
575 }
576 }
577 POut << ")";
578
579 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
580 const FunctionType *FT = MD->getType()->castAs<FunctionType>();
581 if (FT->isConst())
582 POut << " const";
583 if (FT->isVolatile())
584 POut << " volatile";
585 RefQualifierKind Ref = MD->getRefQualifier();
586 if (Ref == RQ_LValue)
587 POut << " &";
588 else if (Ref == RQ_RValue)
589 POut << " &&";
590 }
591
592 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
593 SpecsTy Specs;
594 const DeclContext *Ctx = FD->getDeclContext();
595 while (Ctx && isa<NamedDecl>(Ctx)) {
596 const ClassTemplateSpecializationDecl *Spec
597 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
598 if (Spec && !Spec->isExplicitSpecialization())
599 Specs.push_back(Spec);
600 Ctx = Ctx->getParent();
601 }
602
603 std::string TemplateParams;
604 llvm::raw_string_ostream TOut(TemplateParams);
605 for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
606 I != E; ++I) {
607 const TemplateParameterList *Params
608 = (*I)->getSpecializedTemplate()->getTemplateParameters();
609 const TemplateArgumentList &Args = (*I)->getTemplateArgs();
610 assert(Params->size() == Args.size());
611 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
612 StringRef Param = Params->getParam(i)->getName();
613 if (Param.empty()) continue;
614 TOut << Param << " = ";
615 Args.get(i).print(Policy, TOut);
616 TOut << ", ";
617 }
618 }
619
620 FunctionTemplateSpecializationInfo *FSI
621 = FD->getTemplateSpecializationInfo();
622 if (FSI && !FSI->isExplicitSpecialization()) {
623 const TemplateParameterList* Params
624 = FSI->getTemplate()->getTemplateParameters();
625 const TemplateArgumentList* Args = FSI->TemplateArguments;
626 assert(Params->size() == Args->size());
627 for (unsigned i = 0, e = Params->size(); i != e; ++i) {
628 StringRef Param = Params->getParam(i)->getName();
629 if (Param.empty()) continue;
630 TOut << Param << " = ";
631 Args->get(i).print(Policy, TOut);
632 TOut << ", ";
633 }
634 }
635
636 TOut.flush();
637 if (!TemplateParams.empty()) {
638 // remove the trailing comma and space
639 TemplateParams.resize(TemplateParams.size() - 2);
640 POut << " [" << TemplateParams << "]";
641 }
642
643 POut.flush();
644
645 // Print "auto" for all deduced return types. This includes C++1y return
646 // type deduction and lambdas. For trailing return types resolve the
647 // decltype expression. Otherwise print the real type when this is
648 // not a constructor or destructor.
649 if (isa<CXXMethodDecl>(FD) &&
650 cast<CXXMethodDecl>(FD)->getParent()->isLambda())
651 Proto = "auto " + Proto;
652 else if (FT && FT->getReturnType()->getAs<DecltypeType>())
653 FT->getReturnType()
654 ->getAs<DecltypeType>()
655 ->getUnderlyingType()
656 .getAsStringInternal(Proto, Policy);
657 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
658 AFT->getReturnType().getAsStringInternal(Proto, Policy);
659
660 Out << Proto;
661
662 return Name.str().str();
663 }
664 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
665 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
666 // Skip to its enclosing function or method, but not its enclosing
667 // CapturedDecl.
668 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
669 const Decl *D = Decl::castFromDeclContext(DC);
670 return ComputeName(IT, D);
671 }
672 llvm_unreachable("CapturedDecl not inside a function or method");
673 }
674 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
675 SmallString<256> Name;
676 llvm::raw_svector_ostream Out(Name);
677 Out << (MD->isInstanceMethod() ? '-' : '+');
678 Out << '[';
679
680 // For incorrect code, there might not be an ObjCInterfaceDecl. Do
681 // a null check to avoid a crash.
682 if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
683 Out << *ID;
684
685 if (const ObjCCategoryImplDecl *CID =
686 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
687 Out << '(' << *CID << ')';
688
689 Out << ' ';
690 MD->getSelector().print(Out);
691 Out << ']';
692
693 return Name.str().str();
694 }
695 if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
696 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
697 return "top level";
698 }
699 return "";
700 }
701
setIntValue(const ASTContext & C,const llvm::APInt & Val)702 void APNumericStorage::setIntValue(const ASTContext &C,
703 const llvm::APInt &Val) {
704 if (hasAllocation())
705 C.Deallocate(pVal);
706
707 BitWidth = Val.getBitWidth();
708 unsigned NumWords = Val.getNumWords();
709 const uint64_t* Words = Val.getRawData();
710 if (NumWords > 1) {
711 pVal = new (C) uint64_t[NumWords];
712 std::copy(Words, Words + NumWords, pVal);
713 } else if (NumWords == 1)
714 VAL = Words[0];
715 else
716 VAL = 0;
717 }
718
IntegerLiteral(const ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)719 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
720 QualType type, SourceLocation l)
721 : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
722 false, false),
723 Loc(l) {
724 assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
725 assert(V.getBitWidth() == C.getIntWidth(type) &&
726 "Integer type is not the correct size for constant.");
727 setValue(C, V);
728 }
729
730 IntegerLiteral *
Create(const ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)731 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
732 QualType type, SourceLocation l) {
733 return new (C) IntegerLiteral(C, V, type, l);
734 }
735
736 IntegerLiteral *
Create(const ASTContext & C,EmptyShell Empty)737 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
738 return new (C) IntegerLiteral(Empty);
739 }
740
FloatingLiteral(const ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)741 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
742 bool isexact, QualType Type, SourceLocation L)
743 : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
744 false, false), Loc(L) {
745 setSemantics(V.getSemantics());
746 FloatingLiteralBits.IsExact = isexact;
747 setValue(C, V);
748 }
749
FloatingLiteral(const ASTContext & C,EmptyShell Empty)750 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
751 : Expr(FloatingLiteralClass, Empty) {
752 setRawSemantics(IEEEhalf);
753 FloatingLiteralBits.IsExact = false;
754 }
755
756 FloatingLiteral *
Create(const ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)757 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
758 bool isexact, QualType Type, SourceLocation L) {
759 return new (C) FloatingLiteral(C, V, isexact, Type, L);
760 }
761
762 FloatingLiteral *
Create(const ASTContext & C,EmptyShell Empty)763 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
764 return new (C) FloatingLiteral(C, Empty);
765 }
766
getSemantics() const767 const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
768 switch(FloatingLiteralBits.Semantics) {
769 case IEEEhalf:
770 return llvm::APFloat::IEEEhalf;
771 case IEEEsingle:
772 return llvm::APFloat::IEEEsingle;
773 case IEEEdouble:
774 return llvm::APFloat::IEEEdouble;
775 case x87DoubleExtended:
776 return llvm::APFloat::x87DoubleExtended;
777 case IEEEquad:
778 return llvm::APFloat::IEEEquad;
779 case PPCDoubleDouble:
780 return llvm::APFloat::PPCDoubleDouble;
781 }
782 llvm_unreachable("Unrecognised floating semantics");
783 }
784
setSemantics(const llvm::fltSemantics & Sem)785 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
786 if (&Sem == &llvm::APFloat::IEEEhalf)
787 FloatingLiteralBits.Semantics = IEEEhalf;
788 else if (&Sem == &llvm::APFloat::IEEEsingle)
789 FloatingLiteralBits.Semantics = IEEEsingle;
790 else if (&Sem == &llvm::APFloat::IEEEdouble)
791 FloatingLiteralBits.Semantics = IEEEdouble;
792 else if (&Sem == &llvm::APFloat::x87DoubleExtended)
793 FloatingLiteralBits.Semantics = x87DoubleExtended;
794 else if (&Sem == &llvm::APFloat::IEEEquad)
795 FloatingLiteralBits.Semantics = IEEEquad;
796 else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
797 FloatingLiteralBits.Semantics = PPCDoubleDouble;
798 else
799 llvm_unreachable("Unknown floating semantics");
800 }
801
802 /// getValueAsApproximateDouble - This returns the value as an inaccurate
803 /// double. Note that this may cause loss of precision, but is useful for
804 /// debugging dumps, etc.
getValueAsApproximateDouble() const805 double FloatingLiteral::getValueAsApproximateDouble() const {
806 llvm::APFloat V = getValue();
807 bool ignored;
808 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
809 &ignored);
810 return V.convertToDouble();
811 }
812
mapCharByteWidth(TargetInfo const & target,StringKind k)813 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
814 int CharByteWidth = 0;
815 switch(k) {
816 case Ascii:
817 case UTF8:
818 CharByteWidth = target.getCharWidth();
819 break;
820 case Wide:
821 CharByteWidth = target.getWCharWidth();
822 break;
823 case UTF16:
824 CharByteWidth = target.getChar16Width();
825 break;
826 case UTF32:
827 CharByteWidth = target.getChar32Width();
828 break;
829 }
830 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
831 CharByteWidth /= 8;
832 assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
833 && "character byte widths supported are 1, 2, and 4 only");
834 return CharByteWidth;
835 }
836
Create(const ASTContext & C,StringRef Str,StringKind Kind,bool Pascal,QualType Ty,const SourceLocation * Loc,unsigned NumStrs)837 StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str,
838 StringKind Kind, bool Pascal, QualType Ty,
839 const SourceLocation *Loc,
840 unsigned NumStrs) {
841 assert(C.getAsConstantArrayType(Ty) &&
842 "StringLiteral must be of constant array type!");
843
844 // Allocate enough space for the StringLiteral plus an array of locations for
845 // any concatenated string tokens.
846 void *Mem = C.Allocate(sizeof(StringLiteral)+
847 sizeof(SourceLocation)*(NumStrs-1),
848 llvm::alignOf<StringLiteral>());
849 StringLiteral *SL = new (Mem) StringLiteral(Ty);
850
851 // OPTIMIZE: could allocate this appended to the StringLiteral.
852 SL->setString(C,Str,Kind,Pascal);
853
854 SL->TokLocs[0] = Loc[0];
855 SL->NumConcatenated = NumStrs;
856
857 if (NumStrs != 1)
858 memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
859 return SL;
860 }
861
CreateEmpty(const ASTContext & C,unsigned NumStrs)862 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C,
863 unsigned NumStrs) {
864 void *Mem = C.Allocate(sizeof(StringLiteral)+
865 sizeof(SourceLocation)*(NumStrs-1),
866 llvm::alignOf<StringLiteral>());
867 StringLiteral *SL = new (Mem) StringLiteral(QualType());
868 SL->CharByteWidth = 0;
869 SL->Length = 0;
870 SL->NumConcatenated = NumStrs;
871 return SL;
872 }
873
outputString(raw_ostream & OS) const874 void StringLiteral::outputString(raw_ostream &OS) const {
875 switch (getKind()) {
876 case Ascii: break; // no prefix.
877 case Wide: OS << 'L'; break;
878 case UTF8: OS << "u8"; break;
879 case UTF16: OS << 'u'; break;
880 case UTF32: OS << 'U'; break;
881 }
882 OS << '"';
883 static const char Hex[] = "0123456789ABCDEF";
884
885 unsigned LastSlashX = getLength();
886 for (unsigned I = 0, N = getLength(); I != N; ++I) {
887 switch (uint32_t Char = getCodeUnit(I)) {
888 default:
889 // FIXME: Convert UTF-8 back to codepoints before rendering.
890
891 // Convert UTF-16 surrogate pairs back to codepoints before rendering.
892 // Leave invalid surrogates alone; we'll use \x for those.
893 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
894 Char <= 0xdbff) {
895 uint32_t Trail = getCodeUnit(I + 1);
896 if (Trail >= 0xdc00 && Trail <= 0xdfff) {
897 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
898 ++I;
899 }
900 }
901
902 if (Char > 0xff) {
903 // If this is a wide string, output characters over 0xff using \x
904 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
905 // codepoint: use \x escapes for invalid codepoints.
906 if (getKind() == Wide ||
907 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
908 // FIXME: Is this the best way to print wchar_t?
909 OS << "\\x";
910 int Shift = 28;
911 while ((Char >> Shift) == 0)
912 Shift -= 4;
913 for (/**/; Shift >= 0; Shift -= 4)
914 OS << Hex[(Char >> Shift) & 15];
915 LastSlashX = I;
916 break;
917 }
918
919 if (Char > 0xffff)
920 OS << "\\U00"
921 << Hex[(Char >> 20) & 15]
922 << Hex[(Char >> 16) & 15];
923 else
924 OS << "\\u";
925 OS << Hex[(Char >> 12) & 15]
926 << Hex[(Char >> 8) & 15]
927 << Hex[(Char >> 4) & 15]
928 << Hex[(Char >> 0) & 15];
929 break;
930 }
931
932 // If we used \x... for the previous character, and this character is a
933 // hexadecimal digit, prevent it being slurped as part of the \x.
934 if (LastSlashX + 1 == I) {
935 switch (Char) {
936 case '0': case '1': case '2': case '3': case '4':
937 case '5': case '6': case '7': case '8': case '9':
938 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
939 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
940 OS << "\"\"";
941 }
942 }
943
944 assert(Char <= 0xff &&
945 "Characters above 0xff should already have been handled.");
946
947 if (isPrintable(Char))
948 OS << (char)Char;
949 else // Output anything hard as an octal escape.
950 OS << '\\'
951 << (char)('0' + ((Char >> 6) & 7))
952 << (char)('0' + ((Char >> 3) & 7))
953 << (char)('0' + ((Char >> 0) & 7));
954 break;
955 // Handle some common non-printable cases to make dumps prettier.
956 case '\\': OS << "\\\\"; break;
957 case '"': OS << "\\\""; break;
958 case '\n': OS << "\\n"; break;
959 case '\t': OS << "\\t"; break;
960 case '\a': OS << "\\a"; break;
961 case '\b': OS << "\\b"; break;
962 }
963 }
964 OS << '"';
965 }
966
setString(const ASTContext & C,StringRef Str,StringKind Kind,bool IsPascal)967 void StringLiteral::setString(const ASTContext &C, StringRef Str,
968 StringKind Kind, bool IsPascal) {
969 //FIXME: we assume that the string data comes from a target that uses the same
970 // code unit size and endianess for the type of string.
971 this->Kind = Kind;
972 this->IsPascal = IsPascal;
973
974 CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
975 assert((Str.size()%CharByteWidth == 0)
976 && "size of data must be multiple of CharByteWidth");
977 Length = Str.size()/CharByteWidth;
978
979 switch(CharByteWidth) {
980 case 1: {
981 char *AStrData = new (C) char[Length];
982 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
983 StrData.asChar = AStrData;
984 break;
985 }
986 case 2: {
987 uint16_t *AStrData = new (C) uint16_t[Length];
988 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
989 StrData.asUInt16 = AStrData;
990 break;
991 }
992 case 4: {
993 uint32_t *AStrData = new (C) uint32_t[Length];
994 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
995 StrData.asUInt32 = AStrData;
996 break;
997 }
998 default:
999 assert(false && "unsupported CharByteWidth");
1000 }
1001 }
1002
1003 /// getLocationOfByte - Return a source location that points to the specified
1004 /// byte of this string literal.
1005 ///
1006 /// Strings are amazingly complex. They can be formed from multiple tokens and
1007 /// can have escape sequences in them in addition to the usual trigraph and
1008 /// escaped newline business. This routine handles this complexity.
1009 ///
1010 /// The *StartToken sets the first token to be searched in this function and
1011 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1012 /// returning, it updates the *StartToken to the TokNo of the token being found
1013 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1014 /// string.
1015 /// Using these two parameters can reduce the time complexity from O(n^2) to
1016 /// O(n) if one wants to get the location of byte for all the tokens in a
1017 /// string.
1018 ///
1019 SourceLocation
getLocationOfByte(unsigned ByteNo,const SourceManager & SM,const LangOptions & Features,const TargetInfo & Target,unsigned * StartToken,unsigned * StartTokenByteOffset) const1020 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1021 const LangOptions &Features,
1022 const TargetInfo &Target, unsigned *StartToken,
1023 unsigned *StartTokenByteOffset) const {
1024 assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
1025 "Only narrow string literals are currently supported");
1026
1027 // Loop over all of the tokens in this string until we find the one that
1028 // contains the byte we're looking for.
1029 unsigned TokNo = 0;
1030 unsigned StringOffset = 0;
1031 if (StartToken)
1032 TokNo = *StartToken;
1033 if (StartTokenByteOffset) {
1034 StringOffset = *StartTokenByteOffset;
1035 ByteNo -= StringOffset;
1036 }
1037 while (1) {
1038 assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1039 SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1040
1041 // Get the spelling of the string so that we can get the data that makes up
1042 // the string literal, not the identifier for the macro it is potentially
1043 // expanded through.
1044 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1045
1046 // Re-lex the token to get its length and original spelling.
1047 std::pair<FileID, unsigned> LocInfo =
1048 SM.getDecomposedLoc(StrTokSpellingLoc);
1049 bool Invalid = false;
1050 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1051 if (Invalid) {
1052 if (StartTokenByteOffset != nullptr)
1053 *StartTokenByteOffset = StringOffset;
1054 if (StartToken != nullptr)
1055 *StartToken = TokNo;
1056 return StrTokSpellingLoc;
1057 }
1058
1059 const char *StrData = Buffer.data()+LocInfo.second;
1060
1061 // Create a lexer starting at the beginning of this token.
1062 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1063 Buffer.begin(), StrData, Buffer.end());
1064 Token TheTok;
1065 TheLexer.LexFromRawLexer(TheTok);
1066
1067 // Use the StringLiteralParser to compute the length of the string in bytes.
1068 StringLiteralParser SLP(TheTok, SM, Features, Target);
1069 unsigned TokNumBytes = SLP.GetStringLength();
1070
1071 // If the byte is in this token, return the location of the byte.
1072 if (ByteNo < TokNumBytes ||
1073 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1074 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1075
1076 // Now that we know the offset of the token in the spelling, use the
1077 // preprocessor to get the offset in the original source.
1078 if (StartTokenByteOffset != nullptr)
1079 *StartTokenByteOffset = StringOffset;
1080 if (StartToken != nullptr)
1081 *StartToken = TokNo;
1082 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1083 }
1084
1085 // Move to the next string token.
1086 StringOffset += TokNumBytes;
1087 ++TokNo;
1088 ByteNo -= TokNumBytes;
1089 }
1090 }
1091
1092
1093
1094 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1095 /// corresponds to, e.g. "sizeof" or "[pre]++".
getOpcodeStr(Opcode Op)1096 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1097 switch (Op) {
1098 case UO_PostInc: return "++";
1099 case UO_PostDec: return "--";
1100 case UO_PreInc: return "++";
1101 case UO_PreDec: return "--";
1102 case UO_AddrOf: return "&";
1103 case UO_Deref: return "*";
1104 case UO_Plus: return "+";
1105 case UO_Minus: return "-";
1106 case UO_Not: return "~";
1107 case UO_LNot: return "!";
1108 case UO_Real: return "__real";
1109 case UO_Imag: return "__imag";
1110 case UO_Extension: return "__extension__";
1111 case UO_Coawait: return "co_await";
1112 }
1113 llvm_unreachable("Unknown unary operator");
1114 }
1115
1116 UnaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO,bool Postfix)1117 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1118 switch (OO) {
1119 default: llvm_unreachable("No unary operator for overloaded function");
1120 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
1121 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1122 case OO_Amp: return UO_AddrOf;
1123 case OO_Star: return UO_Deref;
1124 case OO_Plus: return UO_Plus;
1125 case OO_Minus: return UO_Minus;
1126 case OO_Tilde: return UO_Not;
1127 case OO_Exclaim: return UO_LNot;
1128 case OO_Coawait: return UO_Coawait;
1129 }
1130 }
1131
getOverloadedOperator(Opcode Opc)1132 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1133 switch (Opc) {
1134 case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1135 case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1136 case UO_AddrOf: return OO_Amp;
1137 case UO_Deref: return OO_Star;
1138 case UO_Plus: return OO_Plus;
1139 case UO_Minus: return OO_Minus;
1140 case UO_Not: return OO_Tilde;
1141 case UO_LNot: return OO_Exclaim;
1142 case UO_Coawait: return OO_Coawait;
1143 default: return OO_None;
1144 }
1145 }
1146
1147
1148 //===----------------------------------------------------------------------===//
1149 // Postfix Operators.
1150 //===----------------------------------------------------------------------===//
1151
CallExpr(const ASTContext & C,StmtClass SC,Expr * fn,unsigned NumPreArgs,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation rparenloc)1152 CallExpr::CallExpr(const ASTContext& C, StmtClass SC, Expr *fn,
1153 unsigned NumPreArgs, ArrayRef<Expr*> args, QualType t,
1154 ExprValueKind VK, SourceLocation rparenloc)
1155 : Expr(SC, t, VK, OK_Ordinary,
1156 fn->isTypeDependent(),
1157 fn->isValueDependent(),
1158 fn->isInstantiationDependent(),
1159 fn->containsUnexpandedParameterPack()),
1160 NumArgs(args.size()) {
1161
1162 SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
1163 SubExprs[FN] = fn;
1164 for (unsigned i = 0; i != args.size(); ++i) {
1165 if (args[i]->isTypeDependent())
1166 ExprBits.TypeDependent = true;
1167 if (args[i]->isValueDependent())
1168 ExprBits.ValueDependent = true;
1169 if (args[i]->isInstantiationDependent())
1170 ExprBits.InstantiationDependent = true;
1171 if (args[i]->containsUnexpandedParameterPack())
1172 ExprBits.ContainsUnexpandedParameterPack = true;
1173
1174 SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
1175 }
1176
1177 CallExprBits.NumPreArgs = NumPreArgs;
1178 RParenLoc = rparenloc;
1179 }
1180
CallExpr(const ASTContext & C,Expr * fn,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation rparenloc)1181 CallExpr::CallExpr(const ASTContext &C, Expr *fn, ArrayRef<Expr *> args,
1182 QualType t, ExprValueKind VK, SourceLocation rparenloc)
1183 : CallExpr(C, CallExprClass, fn, /*NumPreArgs=*/0, args, t, VK, rparenloc) {
1184 }
1185
CallExpr(const ASTContext & C,StmtClass SC,EmptyShell Empty)1186 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty)
1187 : CallExpr(C, SC, /*NumPreArgs=*/0, Empty) {}
1188
CallExpr(const ASTContext & C,StmtClass SC,unsigned NumPreArgs,EmptyShell Empty)1189 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
1190 EmptyShell Empty)
1191 : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
1192 // FIXME: Why do we allocate this?
1193 SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
1194 CallExprBits.NumPreArgs = NumPreArgs;
1195 }
1196
getCalleeDecl()1197 Decl *CallExpr::getCalleeDecl() {
1198 Expr *CEE = getCallee()->IgnoreParenImpCasts();
1199
1200 while (SubstNonTypeTemplateParmExpr *NTTP
1201 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1202 CEE = NTTP->getReplacement()->IgnoreParenCasts();
1203 }
1204
1205 // If we're calling a dereference, look at the pointer instead.
1206 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1207 if (BO->isPtrMemOp())
1208 CEE = BO->getRHS()->IgnoreParenCasts();
1209 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1210 if (UO->getOpcode() == UO_Deref)
1211 CEE = UO->getSubExpr()->IgnoreParenCasts();
1212 }
1213 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1214 return DRE->getDecl();
1215 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1216 return ME->getMemberDecl();
1217
1218 return nullptr;
1219 }
1220
getDirectCallee()1221 FunctionDecl *CallExpr::getDirectCallee() {
1222 return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1223 }
1224
1225 /// setNumArgs - This changes the number of arguments present in this call.
1226 /// Any orphaned expressions are deleted by this, and any new operands are set
1227 /// to null.
setNumArgs(const ASTContext & C,unsigned NumArgs)1228 void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
1229 // No change, just return.
1230 if (NumArgs == getNumArgs()) return;
1231
1232 // If shrinking # arguments, just delete the extras and forgot them.
1233 if (NumArgs < getNumArgs()) {
1234 this->NumArgs = NumArgs;
1235 return;
1236 }
1237
1238 // Otherwise, we are growing the # arguments. New an bigger argument array.
1239 unsigned NumPreArgs = getNumPreArgs();
1240 Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1241 // Copy over args.
1242 for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1243 NewSubExprs[i] = SubExprs[i];
1244 // Null out new args.
1245 for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1246 i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1247 NewSubExprs[i] = nullptr;
1248
1249 if (SubExprs) C.Deallocate(SubExprs);
1250 SubExprs = NewSubExprs;
1251 this->NumArgs = NumArgs;
1252 }
1253
1254 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
1255 /// not, return 0.
getBuiltinCallee() const1256 unsigned CallExpr::getBuiltinCallee() const {
1257 // All simple function calls (e.g. func()) are implicitly cast to pointer to
1258 // function. As a result, we try and obtain the DeclRefExpr from the
1259 // ImplicitCastExpr.
1260 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1261 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1262 return 0;
1263
1264 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1265 if (!DRE)
1266 return 0;
1267
1268 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1269 if (!FDecl)
1270 return 0;
1271
1272 if (!FDecl->getIdentifier())
1273 return 0;
1274
1275 return FDecl->getBuiltinID();
1276 }
1277
isUnevaluatedBuiltinCall(const ASTContext & Ctx) const1278 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1279 if (unsigned BI = getBuiltinCallee())
1280 return Ctx.BuiltinInfo.isUnevaluated(BI);
1281 return false;
1282 }
1283
getCallReturnType(const ASTContext & Ctx) const1284 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1285 const Expr *Callee = getCallee();
1286 QualType CalleeType = Callee->getType();
1287 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1288 CalleeType = FnTypePtr->getPointeeType();
1289 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1290 CalleeType = BPT->getPointeeType();
1291 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1292 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1293 return Ctx.VoidTy;
1294
1295 // This should never be overloaded and so should never return null.
1296 CalleeType = Expr::findBoundMemberType(Callee);
1297 }
1298
1299 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1300 return FnType->getReturnType();
1301 }
1302
getLocStart() const1303 SourceLocation CallExpr::getLocStart() const {
1304 if (isa<CXXOperatorCallExpr>(this))
1305 return cast<CXXOperatorCallExpr>(this)->getLocStart();
1306
1307 SourceLocation begin = getCallee()->getLocStart();
1308 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1309 begin = getArg(0)->getLocStart();
1310 return begin;
1311 }
getLocEnd() const1312 SourceLocation CallExpr::getLocEnd() const {
1313 if (isa<CXXOperatorCallExpr>(this))
1314 return cast<CXXOperatorCallExpr>(this)->getLocEnd();
1315
1316 SourceLocation end = getRParenLoc();
1317 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1318 end = getArg(getNumArgs() - 1)->getLocEnd();
1319 return end;
1320 }
1321
Create(const ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,ArrayRef<OffsetOfNode> comps,ArrayRef<Expr * > exprs,SourceLocation RParenLoc)1322 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1323 SourceLocation OperatorLoc,
1324 TypeSourceInfo *tsi,
1325 ArrayRef<OffsetOfNode> comps,
1326 ArrayRef<Expr*> exprs,
1327 SourceLocation RParenLoc) {
1328 void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1329 sizeof(OffsetOfNode) * comps.size() +
1330 sizeof(Expr*) * exprs.size());
1331
1332 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1333 RParenLoc);
1334 }
1335
CreateEmpty(const ASTContext & C,unsigned numComps,unsigned numExprs)1336 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1337 unsigned numComps, unsigned numExprs) {
1338 void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1339 sizeof(OffsetOfNode) * numComps +
1340 sizeof(Expr*) * numExprs);
1341 return new (Mem) OffsetOfExpr(numComps, numExprs);
1342 }
1343
OffsetOfExpr(const ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,ArrayRef<OffsetOfNode> comps,ArrayRef<Expr * > exprs,SourceLocation RParenLoc)1344 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1345 SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1346 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1347 SourceLocation RParenLoc)
1348 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1349 /*TypeDependent=*/false,
1350 /*ValueDependent=*/tsi->getType()->isDependentType(),
1351 tsi->getType()->isInstantiationDependentType(),
1352 tsi->getType()->containsUnexpandedParameterPack()),
1353 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1354 NumComps(comps.size()), NumExprs(exprs.size())
1355 {
1356 for (unsigned i = 0; i != comps.size(); ++i) {
1357 setComponent(i, comps[i]);
1358 }
1359
1360 for (unsigned i = 0; i != exprs.size(); ++i) {
1361 if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1362 ExprBits.ValueDependent = true;
1363 if (exprs[i]->containsUnexpandedParameterPack())
1364 ExprBits.ContainsUnexpandedParameterPack = true;
1365
1366 setIndexExpr(i, exprs[i]);
1367 }
1368 }
1369
getFieldName() const1370 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1371 assert(getKind() == Field || getKind() == Identifier);
1372 if (getKind() == Field)
1373 return getField()->getIdentifier();
1374
1375 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1376 }
1377
UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind,Expr * E,QualType resultType,SourceLocation op,SourceLocation rp)1378 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1379 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1380 SourceLocation op, SourceLocation rp)
1381 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1382 false, // Never type-dependent (C++ [temp.dep.expr]p3).
1383 // Value-dependent if the argument is type-dependent.
1384 E->isTypeDependent(), E->isInstantiationDependent(),
1385 E->containsUnexpandedParameterPack()),
1386 OpLoc(op), RParenLoc(rp) {
1387 UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1388 UnaryExprOrTypeTraitExprBits.IsType = false;
1389 Argument.Ex = E;
1390
1391 // Check to see if we are in the situation where alignof(decl) should be
1392 // dependent because decl's alignment is dependent.
1393 if (ExprKind == UETT_AlignOf) {
1394 if (!isValueDependent() || !isInstantiationDependent()) {
1395 E = E->IgnoreParens();
1396
1397 const ValueDecl *D = nullptr;
1398 if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
1399 D = DRE->getDecl();
1400 else if (const auto *ME = dyn_cast<MemberExpr>(E))
1401 D = ME->getMemberDecl();
1402
1403 if (D) {
1404 for (const auto *I : D->specific_attrs<AlignedAttr>()) {
1405 if (I->isAlignmentDependent()) {
1406 setValueDependent(true);
1407 setInstantiationDependent(true);
1408 break;
1409 }
1410 }
1411 }
1412 }
1413 }
1414 }
1415
Create(const ASTContext & C,Expr * base,bool isarrow,SourceLocation OperatorLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * memberdecl,DeclAccessPair founddecl,DeclarationNameInfo nameinfo,const TemplateArgumentListInfo * targs,QualType ty,ExprValueKind vk,ExprObjectKind ok)1416 MemberExpr *MemberExpr::Create(
1417 const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc,
1418 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1419 ValueDecl *memberdecl, DeclAccessPair founddecl,
1420 DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs,
1421 QualType ty, ExprValueKind vk, ExprObjectKind ok) {
1422 std::size_t Size = sizeof(MemberExpr);
1423
1424 bool hasQualOrFound = (QualifierLoc ||
1425 founddecl.getDecl() != memberdecl ||
1426 founddecl.getAccess() != memberdecl->getAccess());
1427 if (hasQualOrFound)
1428 Size += sizeof(MemberNameQualifier);
1429
1430 if (targs)
1431 Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1432 else if (TemplateKWLoc.isValid())
1433 Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1434
1435 void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1436 MemberExpr *E = new (Mem)
1437 MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok);
1438
1439 if (hasQualOrFound) {
1440 // FIXME: Wrong. We should be looking at the member declaration we found.
1441 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1442 E->setValueDependent(true);
1443 E->setTypeDependent(true);
1444 E->setInstantiationDependent(true);
1445 }
1446 else if (QualifierLoc &&
1447 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1448 E->setInstantiationDependent(true);
1449
1450 E->HasQualifierOrFoundDecl = true;
1451
1452 MemberNameQualifier *NQ = E->getMemberQualifier();
1453 NQ->QualifierLoc = QualifierLoc;
1454 NQ->FoundDecl = founddecl;
1455 }
1456
1457 E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1458
1459 if (targs) {
1460 bool Dependent = false;
1461 bool InstantiationDependent = false;
1462 bool ContainsUnexpandedParameterPack = false;
1463 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1464 Dependent,
1465 InstantiationDependent,
1466 ContainsUnexpandedParameterPack);
1467 if (InstantiationDependent)
1468 E->setInstantiationDependent(true);
1469 } else if (TemplateKWLoc.isValid()) {
1470 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1471 }
1472
1473 return E;
1474 }
1475
getLocStart() const1476 SourceLocation MemberExpr::getLocStart() const {
1477 if (isImplicitAccess()) {
1478 if (hasQualifier())
1479 return getQualifierLoc().getBeginLoc();
1480 return MemberLoc;
1481 }
1482
1483 // FIXME: We don't want this to happen. Rather, we should be able to
1484 // detect all kinds of implicit accesses more cleanly.
1485 SourceLocation BaseStartLoc = getBase()->getLocStart();
1486 if (BaseStartLoc.isValid())
1487 return BaseStartLoc;
1488 return MemberLoc;
1489 }
getLocEnd() const1490 SourceLocation MemberExpr::getLocEnd() const {
1491 SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1492 if (hasExplicitTemplateArgs())
1493 EndLoc = getRAngleLoc();
1494 else if (EndLoc.isInvalid())
1495 EndLoc = getBase()->getLocEnd();
1496 return EndLoc;
1497 }
1498
CastConsistency() const1499 bool CastExpr::CastConsistency() const {
1500 switch (getCastKind()) {
1501 case CK_DerivedToBase:
1502 case CK_UncheckedDerivedToBase:
1503 case CK_DerivedToBaseMemberPointer:
1504 case CK_BaseToDerived:
1505 case CK_BaseToDerivedMemberPointer:
1506 assert(!path_empty() && "Cast kind should have a base path!");
1507 break;
1508
1509 case CK_CPointerToObjCPointerCast:
1510 assert(getType()->isObjCObjectPointerType());
1511 assert(getSubExpr()->getType()->isPointerType());
1512 goto CheckNoBasePath;
1513
1514 case CK_BlockPointerToObjCPointerCast:
1515 assert(getType()->isObjCObjectPointerType());
1516 assert(getSubExpr()->getType()->isBlockPointerType());
1517 goto CheckNoBasePath;
1518
1519 case CK_ReinterpretMemberPointer:
1520 assert(getType()->isMemberPointerType());
1521 assert(getSubExpr()->getType()->isMemberPointerType());
1522 goto CheckNoBasePath;
1523
1524 case CK_BitCast:
1525 // Arbitrary casts to C pointer types count as bitcasts.
1526 // Otherwise, we should only have block and ObjC pointer casts
1527 // here if they stay within the type kind.
1528 if (!getType()->isPointerType()) {
1529 assert(getType()->isObjCObjectPointerType() ==
1530 getSubExpr()->getType()->isObjCObjectPointerType());
1531 assert(getType()->isBlockPointerType() ==
1532 getSubExpr()->getType()->isBlockPointerType());
1533 }
1534 goto CheckNoBasePath;
1535
1536 case CK_AnyPointerToBlockPointerCast:
1537 assert(getType()->isBlockPointerType());
1538 assert(getSubExpr()->getType()->isAnyPointerType() &&
1539 !getSubExpr()->getType()->isBlockPointerType());
1540 goto CheckNoBasePath;
1541
1542 case CK_CopyAndAutoreleaseBlockObject:
1543 assert(getType()->isBlockPointerType());
1544 assert(getSubExpr()->getType()->isBlockPointerType());
1545 goto CheckNoBasePath;
1546
1547 case CK_FunctionToPointerDecay:
1548 assert(getType()->isPointerType());
1549 assert(getSubExpr()->getType()->isFunctionType());
1550 goto CheckNoBasePath;
1551
1552 case CK_AddressSpaceConversion:
1553 assert(getType()->isPointerType());
1554 assert(getSubExpr()->getType()->isPointerType());
1555 assert(getType()->getPointeeType().getAddressSpace() !=
1556 getSubExpr()->getType()->getPointeeType().getAddressSpace());
1557 // These should not have an inheritance path.
1558 case CK_Dynamic:
1559 case CK_ToUnion:
1560 case CK_ArrayToPointerDecay:
1561 case CK_NullToMemberPointer:
1562 case CK_NullToPointer:
1563 case CK_ConstructorConversion:
1564 case CK_IntegralToPointer:
1565 case CK_PointerToIntegral:
1566 case CK_ToVoid:
1567 case CK_VectorSplat:
1568 case CK_IntegralCast:
1569 case CK_IntegralToFloating:
1570 case CK_FloatingToIntegral:
1571 case CK_FloatingCast:
1572 case CK_ObjCObjectLValueCast:
1573 case CK_FloatingRealToComplex:
1574 case CK_FloatingComplexToReal:
1575 case CK_FloatingComplexCast:
1576 case CK_FloatingComplexToIntegralComplex:
1577 case CK_IntegralRealToComplex:
1578 case CK_IntegralComplexToReal:
1579 case CK_IntegralComplexCast:
1580 case CK_IntegralComplexToFloatingComplex:
1581 case CK_ARCProduceObject:
1582 case CK_ARCConsumeObject:
1583 case CK_ARCReclaimReturnedObject:
1584 case CK_ARCExtendBlockObject:
1585 case CK_ZeroToOCLEvent:
1586 assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1587 goto CheckNoBasePath;
1588
1589 case CK_Dependent:
1590 case CK_LValueToRValue:
1591 case CK_NoOp:
1592 case CK_AtomicToNonAtomic:
1593 case CK_NonAtomicToAtomic:
1594 case CK_PointerToBoolean:
1595 case CK_IntegralToBoolean:
1596 case CK_FloatingToBoolean:
1597 case CK_MemberPointerToBoolean:
1598 case CK_FloatingComplexToBoolean:
1599 case CK_IntegralComplexToBoolean:
1600 case CK_LValueBitCast: // -> bool&
1601 case CK_UserDefinedConversion: // operator bool()
1602 case CK_BuiltinFnToFnPtr:
1603 CheckNoBasePath:
1604 assert(path_empty() && "Cast kind should not have a base path!");
1605 break;
1606 }
1607 return true;
1608 }
1609
getCastKindName() const1610 const char *CastExpr::getCastKindName() const {
1611 switch (getCastKind()) {
1612 case CK_Dependent:
1613 return "Dependent";
1614 case CK_BitCast:
1615 return "BitCast";
1616 case CK_LValueBitCast:
1617 return "LValueBitCast";
1618 case CK_LValueToRValue:
1619 return "LValueToRValue";
1620 case CK_NoOp:
1621 return "NoOp";
1622 case CK_BaseToDerived:
1623 return "BaseToDerived";
1624 case CK_DerivedToBase:
1625 return "DerivedToBase";
1626 case CK_UncheckedDerivedToBase:
1627 return "UncheckedDerivedToBase";
1628 case CK_Dynamic:
1629 return "Dynamic";
1630 case CK_ToUnion:
1631 return "ToUnion";
1632 case CK_ArrayToPointerDecay:
1633 return "ArrayToPointerDecay";
1634 case CK_FunctionToPointerDecay:
1635 return "FunctionToPointerDecay";
1636 case CK_NullToMemberPointer:
1637 return "NullToMemberPointer";
1638 case CK_NullToPointer:
1639 return "NullToPointer";
1640 case CK_BaseToDerivedMemberPointer:
1641 return "BaseToDerivedMemberPointer";
1642 case CK_DerivedToBaseMemberPointer:
1643 return "DerivedToBaseMemberPointer";
1644 case CK_ReinterpretMemberPointer:
1645 return "ReinterpretMemberPointer";
1646 case CK_UserDefinedConversion:
1647 return "UserDefinedConversion";
1648 case CK_ConstructorConversion:
1649 return "ConstructorConversion";
1650 case CK_IntegralToPointer:
1651 return "IntegralToPointer";
1652 case CK_PointerToIntegral:
1653 return "PointerToIntegral";
1654 case CK_PointerToBoolean:
1655 return "PointerToBoolean";
1656 case CK_ToVoid:
1657 return "ToVoid";
1658 case CK_VectorSplat:
1659 return "VectorSplat";
1660 case CK_IntegralCast:
1661 return "IntegralCast";
1662 case CK_IntegralToBoolean:
1663 return "IntegralToBoolean";
1664 case CK_IntegralToFloating:
1665 return "IntegralToFloating";
1666 case CK_FloatingToIntegral:
1667 return "FloatingToIntegral";
1668 case CK_FloatingCast:
1669 return "FloatingCast";
1670 case CK_FloatingToBoolean:
1671 return "FloatingToBoolean";
1672 case CK_MemberPointerToBoolean:
1673 return "MemberPointerToBoolean";
1674 case CK_CPointerToObjCPointerCast:
1675 return "CPointerToObjCPointerCast";
1676 case CK_BlockPointerToObjCPointerCast:
1677 return "BlockPointerToObjCPointerCast";
1678 case CK_AnyPointerToBlockPointerCast:
1679 return "AnyPointerToBlockPointerCast";
1680 case CK_ObjCObjectLValueCast:
1681 return "ObjCObjectLValueCast";
1682 case CK_FloatingRealToComplex:
1683 return "FloatingRealToComplex";
1684 case CK_FloatingComplexToReal:
1685 return "FloatingComplexToReal";
1686 case CK_FloatingComplexToBoolean:
1687 return "FloatingComplexToBoolean";
1688 case CK_FloatingComplexCast:
1689 return "FloatingComplexCast";
1690 case CK_FloatingComplexToIntegralComplex:
1691 return "FloatingComplexToIntegralComplex";
1692 case CK_IntegralRealToComplex:
1693 return "IntegralRealToComplex";
1694 case CK_IntegralComplexToReal:
1695 return "IntegralComplexToReal";
1696 case CK_IntegralComplexToBoolean:
1697 return "IntegralComplexToBoolean";
1698 case CK_IntegralComplexCast:
1699 return "IntegralComplexCast";
1700 case CK_IntegralComplexToFloatingComplex:
1701 return "IntegralComplexToFloatingComplex";
1702 case CK_ARCConsumeObject:
1703 return "ARCConsumeObject";
1704 case CK_ARCProduceObject:
1705 return "ARCProduceObject";
1706 case CK_ARCReclaimReturnedObject:
1707 return "ARCReclaimReturnedObject";
1708 case CK_ARCExtendBlockObject:
1709 return "ARCExtendBlockObject";
1710 case CK_AtomicToNonAtomic:
1711 return "AtomicToNonAtomic";
1712 case CK_NonAtomicToAtomic:
1713 return "NonAtomicToAtomic";
1714 case CK_CopyAndAutoreleaseBlockObject:
1715 return "CopyAndAutoreleaseBlockObject";
1716 case CK_BuiltinFnToFnPtr:
1717 return "BuiltinFnToFnPtr";
1718 case CK_ZeroToOCLEvent:
1719 return "ZeroToOCLEvent";
1720 case CK_AddressSpaceConversion:
1721 return "AddressSpaceConversion";
1722 }
1723
1724 llvm_unreachable("Unhandled cast kind!");
1725 }
1726
getSubExprAsWritten()1727 Expr *CastExpr::getSubExprAsWritten() {
1728 Expr *SubExpr = nullptr;
1729 CastExpr *E = this;
1730 do {
1731 SubExpr = E->getSubExpr();
1732
1733 // Skip through reference binding to temporary.
1734 if (MaterializeTemporaryExpr *Materialize
1735 = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1736 SubExpr = Materialize->GetTemporaryExpr();
1737
1738 // Skip any temporary bindings; they're implicit.
1739 if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1740 SubExpr = Binder->getSubExpr();
1741
1742 // Conversions by constructor and conversion functions have a
1743 // subexpression describing the call; strip it off.
1744 if (E->getCastKind() == CK_ConstructorConversion)
1745 SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1746 else if (E->getCastKind() == CK_UserDefinedConversion)
1747 SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1748
1749 // If the subexpression we're left with is an implicit cast, look
1750 // through that, too.
1751 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1752
1753 return SubExpr;
1754 }
1755
path_buffer()1756 CXXBaseSpecifier **CastExpr::path_buffer() {
1757 switch (getStmtClass()) {
1758 #define ABSTRACT_STMT(x)
1759 #define CASTEXPR(Type, Base) \
1760 case Stmt::Type##Class: \
1761 return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1762 #define STMT(Type, Base)
1763 #include "clang/AST/StmtNodes.inc"
1764 default:
1765 llvm_unreachable("non-cast expressions not possible here");
1766 }
1767 }
1768
setCastPath(const CXXCastPath & Path)1769 void CastExpr::setCastPath(const CXXCastPath &Path) {
1770 assert(Path.size() == path_size());
1771 memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1772 }
1773
Create(const ASTContext & C,QualType T,CastKind Kind,Expr * Operand,const CXXCastPath * BasePath,ExprValueKind VK)1774 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
1775 CastKind Kind, Expr *Operand,
1776 const CXXCastPath *BasePath,
1777 ExprValueKind VK) {
1778 unsigned PathSize = (BasePath ? BasePath->size() : 0);
1779 void *Buffer =
1780 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1781 ImplicitCastExpr *E =
1782 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1783 if (PathSize) E->setCastPath(*BasePath);
1784 return E;
1785 }
1786
CreateEmpty(const ASTContext & C,unsigned PathSize)1787 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
1788 unsigned PathSize) {
1789 void *Buffer =
1790 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1791 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1792 }
1793
1794
Create(const ASTContext & C,QualType T,ExprValueKind VK,CastKind K,Expr * Op,const CXXCastPath * BasePath,TypeSourceInfo * WrittenTy,SourceLocation L,SourceLocation R)1795 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
1796 ExprValueKind VK, CastKind K, Expr *Op,
1797 const CXXCastPath *BasePath,
1798 TypeSourceInfo *WrittenTy,
1799 SourceLocation L, SourceLocation R) {
1800 unsigned PathSize = (BasePath ? BasePath->size() : 0);
1801 void *Buffer =
1802 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1803 CStyleCastExpr *E =
1804 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1805 if (PathSize) E->setCastPath(*BasePath);
1806 return E;
1807 }
1808
CreateEmpty(const ASTContext & C,unsigned PathSize)1809 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
1810 unsigned PathSize) {
1811 void *Buffer =
1812 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1813 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1814 }
1815
1816 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1817 /// corresponds to, e.g. "<<=".
getOpcodeStr(Opcode Op)1818 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
1819 switch (Op) {
1820 case BO_PtrMemD: return ".*";
1821 case BO_PtrMemI: return "->*";
1822 case BO_Mul: return "*";
1823 case BO_Div: return "/";
1824 case BO_Rem: return "%";
1825 case BO_Add: return "+";
1826 case BO_Sub: return "-";
1827 case BO_Shl: return "<<";
1828 case BO_Shr: return ">>";
1829 case BO_LT: return "<";
1830 case BO_GT: return ">";
1831 case BO_LE: return "<=";
1832 case BO_GE: return ">=";
1833 case BO_EQ: return "==";
1834 case BO_NE: return "!=";
1835 case BO_And: return "&";
1836 case BO_Xor: return "^";
1837 case BO_Or: return "|";
1838 case BO_LAnd: return "&&";
1839 case BO_LOr: return "||";
1840 case BO_Assign: return "=";
1841 case BO_MulAssign: return "*=";
1842 case BO_DivAssign: return "/=";
1843 case BO_RemAssign: return "%=";
1844 case BO_AddAssign: return "+=";
1845 case BO_SubAssign: return "-=";
1846 case BO_ShlAssign: return "<<=";
1847 case BO_ShrAssign: return ">>=";
1848 case BO_AndAssign: return "&=";
1849 case BO_XorAssign: return "^=";
1850 case BO_OrAssign: return "|=";
1851 case BO_Comma: return ",";
1852 }
1853
1854 llvm_unreachable("Invalid OpCode!");
1855 }
1856
1857 BinaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO)1858 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1859 switch (OO) {
1860 default: llvm_unreachable("Not an overloadable binary operator");
1861 case OO_Plus: return BO_Add;
1862 case OO_Minus: return BO_Sub;
1863 case OO_Star: return BO_Mul;
1864 case OO_Slash: return BO_Div;
1865 case OO_Percent: return BO_Rem;
1866 case OO_Caret: return BO_Xor;
1867 case OO_Amp: return BO_And;
1868 case OO_Pipe: return BO_Or;
1869 case OO_Equal: return BO_Assign;
1870 case OO_Less: return BO_LT;
1871 case OO_Greater: return BO_GT;
1872 case OO_PlusEqual: return BO_AddAssign;
1873 case OO_MinusEqual: return BO_SubAssign;
1874 case OO_StarEqual: return BO_MulAssign;
1875 case OO_SlashEqual: return BO_DivAssign;
1876 case OO_PercentEqual: return BO_RemAssign;
1877 case OO_CaretEqual: return BO_XorAssign;
1878 case OO_AmpEqual: return BO_AndAssign;
1879 case OO_PipeEqual: return BO_OrAssign;
1880 case OO_LessLess: return BO_Shl;
1881 case OO_GreaterGreater: return BO_Shr;
1882 case OO_LessLessEqual: return BO_ShlAssign;
1883 case OO_GreaterGreaterEqual: return BO_ShrAssign;
1884 case OO_EqualEqual: return BO_EQ;
1885 case OO_ExclaimEqual: return BO_NE;
1886 case OO_LessEqual: return BO_LE;
1887 case OO_GreaterEqual: return BO_GE;
1888 case OO_AmpAmp: return BO_LAnd;
1889 case OO_PipePipe: return BO_LOr;
1890 case OO_Comma: return BO_Comma;
1891 case OO_ArrowStar: return BO_PtrMemI;
1892 }
1893 }
1894
getOverloadedOperator(Opcode Opc)1895 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1896 static const OverloadedOperatorKind OverOps[] = {
1897 /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1898 OO_Star, OO_Slash, OO_Percent,
1899 OO_Plus, OO_Minus,
1900 OO_LessLess, OO_GreaterGreater,
1901 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1902 OO_EqualEqual, OO_ExclaimEqual,
1903 OO_Amp,
1904 OO_Caret,
1905 OO_Pipe,
1906 OO_AmpAmp,
1907 OO_PipePipe,
1908 OO_Equal, OO_StarEqual,
1909 OO_SlashEqual, OO_PercentEqual,
1910 OO_PlusEqual, OO_MinusEqual,
1911 OO_LessLessEqual, OO_GreaterGreaterEqual,
1912 OO_AmpEqual, OO_CaretEqual,
1913 OO_PipeEqual,
1914 OO_Comma
1915 };
1916 return OverOps[Opc];
1917 }
1918
InitListExpr(const ASTContext & C,SourceLocation lbraceloc,ArrayRef<Expr * > initExprs,SourceLocation rbraceloc)1919 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
1920 ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1921 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1922 false, false),
1923 InitExprs(C, initExprs.size()),
1924 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
1925 {
1926 sawArrayRangeDesignator(false);
1927 for (unsigned I = 0; I != initExprs.size(); ++I) {
1928 if (initExprs[I]->isTypeDependent())
1929 ExprBits.TypeDependent = true;
1930 if (initExprs[I]->isValueDependent())
1931 ExprBits.ValueDependent = true;
1932 if (initExprs[I]->isInstantiationDependent())
1933 ExprBits.InstantiationDependent = true;
1934 if (initExprs[I]->containsUnexpandedParameterPack())
1935 ExprBits.ContainsUnexpandedParameterPack = true;
1936 }
1937
1938 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1939 }
1940
reserveInits(const ASTContext & C,unsigned NumInits)1941 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
1942 if (NumInits > InitExprs.size())
1943 InitExprs.reserve(C, NumInits);
1944 }
1945
resizeInits(const ASTContext & C,unsigned NumInits)1946 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
1947 InitExprs.resize(C, NumInits, nullptr);
1948 }
1949
updateInit(const ASTContext & C,unsigned Init,Expr * expr)1950 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
1951 if (Init >= InitExprs.size()) {
1952 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
1953 setInit(Init, expr);
1954 return nullptr;
1955 }
1956
1957 Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1958 setInit(Init, expr);
1959 return Result;
1960 }
1961
setArrayFiller(Expr * filler)1962 void InitListExpr::setArrayFiller(Expr *filler) {
1963 assert(!hasArrayFiller() && "Filler already set!");
1964 ArrayFillerOrUnionFieldInit = filler;
1965 // Fill out any "holes" in the array due to designated initializers.
1966 Expr **inits = getInits();
1967 for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1968 if (inits[i] == nullptr)
1969 inits[i] = filler;
1970 }
1971
isStringLiteralInit() const1972 bool InitListExpr::isStringLiteralInit() const {
1973 if (getNumInits() != 1)
1974 return false;
1975 const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
1976 if (!AT || !AT->getElementType()->isIntegerType())
1977 return false;
1978 // It is possible for getInit() to return null.
1979 const Expr *Init = getInit(0);
1980 if (!Init)
1981 return false;
1982 Init = Init->IgnoreParens();
1983 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1984 }
1985
getLocStart() const1986 SourceLocation InitListExpr::getLocStart() const {
1987 if (InitListExpr *SyntacticForm = getSyntacticForm())
1988 return SyntacticForm->getLocStart();
1989 SourceLocation Beg = LBraceLoc;
1990 if (Beg.isInvalid()) {
1991 // Find the first non-null initializer.
1992 for (InitExprsTy::const_iterator I = InitExprs.begin(),
1993 E = InitExprs.end();
1994 I != E; ++I) {
1995 if (Stmt *S = *I) {
1996 Beg = S->getLocStart();
1997 break;
1998 }
1999 }
2000 }
2001 return Beg;
2002 }
2003
getLocEnd() const2004 SourceLocation InitListExpr::getLocEnd() const {
2005 if (InitListExpr *SyntacticForm = getSyntacticForm())
2006 return SyntacticForm->getLocEnd();
2007 SourceLocation End = RBraceLoc;
2008 if (End.isInvalid()) {
2009 // Find the first non-null initializer from the end.
2010 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
2011 E = InitExprs.rend();
2012 I != E; ++I) {
2013 if (Stmt *S = *I) {
2014 End = S->getLocEnd();
2015 break;
2016 }
2017 }
2018 }
2019 return End;
2020 }
2021
2022 /// getFunctionType - Return the underlying function type for this block.
2023 ///
getFunctionType() const2024 const FunctionProtoType *BlockExpr::getFunctionType() const {
2025 // The block pointer is never sugared, but the function type might be.
2026 return cast<BlockPointerType>(getType())
2027 ->getPointeeType()->castAs<FunctionProtoType>();
2028 }
2029
getCaretLocation() const2030 SourceLocation BlockExpr::getCaretLocation() const {
2031 return TheBlock->getCaretLocation();
2032 }
getBody() const2033 const Stmt *BlockExpr::getBody() const {
2034 return TheBlock->getBody();
2035 }
getBody()2036 Stmt *BlockExpr::getBody() {
2037 return TheBlock->getBody();
2038 }
2039
2040
2041 //===----------------------------------------------------------------------===//
2042 // Generic Expression Routines
2043 //===----------------------------------------------------------------------===//
2044
2045 /// isUnusedResultAWarning - Return true if this immediate expression should
2046 /// be warned about if the result is unused. If so, fill in Loc and Ranges
2047 /// with location to warn on and the source range[s] to report with the
2048 /// warning.
isUnusedResultAWarning(const Expr * & WarnE,SourceLocation & Loc,SourceRange & R1,SourceRange & R2,ASTContext & Ctx) const2049 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2050 SourceRange &R1, SourceRange &R2,
2051 ASTContext &Ctx) const {
2052 // Don't warn if the expr is type dependent. The type could end up
2053 // instantiating to void.
2054 if (isTypeDependent())
2055 return false;
2056
2057 switch (getStmtClass()) {
2058 default:
2059 if (getType()->isVoidType())
2060 return false;
2061 WarnE = this;
2062 Loc = getExprLoc();
2063 R1 = getSourceRange();
2064 return true;
2065 case ParenExprClass:
2066 return cast<ParenExpr>(this)->getSubExpr()->
2067 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2068 case GenericSelectionExprClass:
2069 return cast<GenericSelectionExpr>(this)->getResultExpr()->
2070 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2071 case ChooseExprClass:
2072 return cast<ChooseExpr>(this)->getChosenSubExpr()->
2073 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2074 case UnaryOperatorClass: {
2075 const UnaryOperator *UO = cast<UnaryOperator>(this);
2076
2077 switch (UO->getOpcode()) {
2078 case UO_Plus:
2079 case UO_Minus:
2080 case UO_AddrOf:
2081 case UO_Not:
2082 case UO_LNot:
2083 case UO_Deref:
2084 break;
2085 case UO_Coawait:
2086 // This is just the 'operator co_await' call inside the guts of a
2087 // dependent co_await call.
2088 case UO_PostInc:
2089 case UO_PostDec:
2090 case UO_PreInc:
2091 case UO_PreDec: // ++/--
2092 return false; // Not a warning.
2093 case UO_Real:
2094 case UO_Imag:
2095 // accessing a piece of a volatile complex is a side-effect.
2096 if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2097 .isVolatileQualified())
2098 return false;
2099 break;
2100 case UO_Extension:
2101 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2102 }
2103 WarnE = this;
2104 Loc = UO->getOperatorLoc();
2105 R1 = UO->getSubExpr()->getSourceRange();
2106 return true;
2107 }
2108 case BinaryOperatorClass: {
2109 const BinaryOperator *BO = cast<BinaryOperator>(this);
2110 switch (BO->getOpcode()) {
2111 default:
2112 break;
2113 // Consider the RHS of comma for side effects. LHS was checked by
2114 // Sema::CheckCommaOperands.
2115 case BO_Comma:
2116 // ((foo = <blah>), 0) is an idiom for hiding the result (and
2117 // lvalue-ness) of an assignment written in a macro.
2118 if (IntegerLiteral *IE =
2119 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2120 if (IE->getValue() == 0)
2121 return false;
2122 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2123 // Consider '||', '&&' to have side effects if the LHS or RHS does.
2124 case BO_LAnd:
2125 case BO_LOr:
2126 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2127 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2128 return false;
2129 break;
2130 }
2131 if (BO->isAssignmentOp())
2132 return false;
2133 WarnE = this;
2134 Loc = BO->getOperatorLoc();
2135 R1 = BO->getLHS()->getSourceRange();
2136 R2 = BO->getRHS()->getSourceRange();
2137 return true;
2138 }
2139 case CompoundAssignOperatorClass:
2140 case VAArgExprClass:
2141 case AtomicExprClass:
2142 return false;
2143
2144 case ConditionalOperatorClass: {
2145 // If only one of the LHS or RHS is a warning, the operator might
2146 // be being used for control flow. Only warn if both the LHS and
2147 // RHS are warnings.
2148 const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
2149 if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2150 return false;
2151 if (!Exp->getLHS())
2152 return true;
2153 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2154 }
2155
2156 case MemberExprClass:
2157 WarnE = this;
2158 Loc = cast<MemberExpr>(this)->getMemberLoc();
2159 R1 = SourceRange(Loc, Loc);
2160 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2161 return true;
2162
2163 case ArraySubscriptExprClass:
2164 WarnE = this;
2165 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2166 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2167 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2168 return true;
2169
2170 case CXXOperatorCallExprClass: {
2171 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2172 // overloads as there is no reasonable way to define these such that they
2173 // have non-trivial, desirable side-effects. See the -Wunused-comparison
2174 // warning: operators == and != are commonly typo'ed, and so warning on them
2175 // provides additional value as well. If this list is updated,
2176 // DiagnoseUnusedComparison should be as well.
2177 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2178 switch (Op->getOperator()) {
2179 default:
2180 break;
2181 case OO_EqualEqual:
2182 case OO_ExclaimEqual:
2183 case OO_Less:
2184 case OO_Greater:
2185 case OO_GreaterEqual:
2186 case OO_LessEqual:
2187 if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2188 Op->getCallReturnType(Ctx)->isVoidType())
2189 break;
2190 WarnE = this;
2191 Loc = Op->getOperatorLoc();
2192 R1 = Op->getSourceRange();
2193 return true;
2194 }
2195
2196 // Fallthrough for generic call handling.
2197 }
2198 case CallExprClass:
2199 case CXXMemberCallExprClass:
2200 case UserDefinedLiteralClass: {
2201 // If this is a direct call, get the callee.
2202 const CallExpr *CE = cast<CallExpr>(this);
2203 if (const Decl *FD = CE->getCalleeDecl()) {
2204 const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
2205 bool HasWarnUnusedResultAttr = Func ? Func->hasUnusedResultAttr()
2206 : FD->hasAttr<WarnUnusedResultAttr>();
2207
2208 // If the callee has attribute pure, const, or warn_unused_result, warn
2209 // about it. void foo() { strlen("bar"); } should warn.
2210 //
2211 // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2212 // updated to match for QoI.
2213 if (HasWarnUnusedResultAttr ||
2214 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2215 WarnE = this;
2216 Loc = CE->getCallee()->getLocStart();
2217 R1 = CE->getCallee()->getSourceRange();
2218
2219 if (unsigned NumArgs = CE->getNumArgs())
2220 R2 = SourceRange(CE->getArg(0)->getLocStart(),
2221 CE->getArg(NumArgs-1)->getLocEnd());
2222 return true;
2223 }
2224 }
2225 return false;
2226 }
2227
2228 // If we don't know precisely what we're looking at, let's not warn.
2229 case UnresolvedLookupExprClass:
2230 case CXXUnresolvedConstructExprClass:
2231 return false;
2232
2233 case CXXTemporaryObjectExprClass:
2234 case CXXConstructExprClass: {
2235 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2236 if (Type->hasAttr<WarnUnusedAttr>()) {
2237 WarnE = this;
2238 Loc = getLocStart();
2239 R1 = getSourceRange();
2240 return true;
2241 }
2242 }
2243 return false;
2244 }
2245
2246 case ObjCMessageExprClass: {
2247 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2248 if (Ctx.getLangOpts().ObjCAutoRefCount &&
2249 ME->isInstanceMessage() &&
2250 !ME->getType()->isVoidType() &&
2251 ME->getMethodFamily() == OMF_init) {
2252 WarnE = this;
2253 Loc = getExprLoc();
2254 R1 = ME->getSourceRange();
2255 return true;
2256 }
2257
2258 if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2259 if (MD->hasAttr<WarnUnusedResultAttr>()) {
2260 WarnE = this;
2261 Loc = getExprLoc();
2262 return true;
2263 }
2264
2265 return false;
2266 }
2267
2268 case ObjCPropertyRefExprClass:
2269 WarnE = this;
2270 Loc = getExprLoc();
2271 R1 = getSourceRange();
2272 return true;
2273
2274 case PseudoObjectExprClass: {
2275 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2276
2277 // Only complain about things that have the form of a getter.
2278 if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2279 isa<BinaryOperator>(PO->getSyntacticForm()))
2280 return false;
2281
2282 WarnE = this;
2283 Loc = getExprLoc();
2284 R1 = getSourceRange();
2285 return true;
2286 }
2287
2288 case StmtExprClass: {
2289 // Statement exprs don't logically have side effects themselves, but are
2290 // sometimes used in macros in ways that give them a type that is unused.
2291 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2292 // however, if the result of the stmt expr is dead, we don't want to emit a
2293 // warning.
2294 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2295 if (!CS->body_empty()) {
2296 if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2297 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2298 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2299 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2300 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2301 }
2302
2303 if (getType()->isVoidType())
2304 return false;
2305 WarnE = this;
2306 Loc = cast<StmtExpr>(this)->getLParenLoc();
2307 R1 = getSourceRange();
2308 return true;
2309 }
2310 case CXXFunctionalCastExprClass:
2311 case CStyleCastExprClass: {
2312 // Ignore an explicit cast to void unless the operand is a non-trivial
2313 // volatile lvalue.
2314 const CastExpr *CE = cast<CastExpr>(this);
2315 if (CE->getCastKind() == CK_ToVoid) {
2316 if (CE->getSubExpr()->isGLValue() &&
2317 CE->getSubExpr()->getType().isVolatileQualified()) {
2318 const DeclRefExpr *DRE =
2319 dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2320 if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2321 cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
2322 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2323 R1, R2, Ctx);
2324 }
2325 }
2326 return false;
2327 }
2328
2329 // If this is a cast to a constructor conversion, check the operand.
2330 // Otherwise, the result of the cast is unused.
2331 if (CE->getCastKind() == CK_ConstructorConversion)
2332 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2333
2334 WarnE = this;
2335 if (const CXXFunctionalCastExpr *CXXCE =
2336 dyn_cast<CXXFunctionalCastExpr>(this)) {
2337 Loc = CXXCE->getLocStart();
2338 R1 = CXXCE->getSubExpr()->getSourceRange();
2339 } else {
2340 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2341 Loc = CStyleCE->getLParenLoc();
2342 R1 = CStyleCE->getSubExpr()->getSourceRange();
2343 }
2344 return true;
2345 }
2346 case ImplicitCastExprClass: {
2347 const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2348
2349 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2350 if (ICE->getCastKind() == CK_LValueToRValue &&
2351 ICE->getSubExpr()->getType().isVolatileQualified())
2352 return false;
2353
2354 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2355 }
2356 case CXXDefaultArgExprClass:
2357 return (cast<CXXDefaultArgExpr>(this)
2358 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2359 case CXXDefaultInitExprClass:
2360 return (cast<CXXDefaultInitExpr>(this)
2361 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2362
2363 case CXXNewExprClass:
2364 // FIXME: In theory, there might be new expressions that don't have side
2365 // effects (e.g. a placement new with an uninitialized POD).
2366 case CXXDeleteExprClass:
2367 return false;
2368 case CXXBindTemporaryExprClass:
2369 return (cast<CXXBindTemporaryExpr>(this)
2370 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2371 case ExprWithCleanupsClass:
2372 return (cast<ExprWithCleanups>(this)
2373 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2374 }
2375 }
2376
2377 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2378 /// returns true, if it is; false otherwise.
isOBJCGCCandidate(ASTContext & Ctx) const2379 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2380 const Expr *E = IgnoreParens();
2381 switch (E->getStmtClass()) {
2382 default:
2383 return false;
2384 case ObjCIvarRefExprClass:
2385 return true;
2386 case Expr::UnaryOperatorClass:
2387 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2388 case ImplicitCastExprClass:
2389 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2390 case MaterializeTemporaryExprClass:
2391 return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2392 ->isOBJCGCCandidate(Ctx);
2393 case CStyleCastExprClass:
2394 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2395 case DeclRefExprClass: {
2396 const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2397
2398 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2399 if (VD->hasGlobalStorage())
2400 return true;
2401 QualType T = VD->getType();
2402 // dereferencing to a pointer is always a gc'able candidate,
2403 // unless it is __weak.
2404 return T->isPointerType() &&
2405 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2406 }
2407 return false;
2408 }
2409 case MemberExprClass: {
2410 const MemberExpr *M = cast<MemberExpr>(E);
2411 return M->getBase()->isOBJCGCCandidate(Ctx);
2412 }
2413 case ArraySubscriptExprClass:
2414 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2415 }
2416 }
2417
isBoundMemberFunction(ASTContext & Ctx) const2418 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2419 if (isTypeDependent())
2420 return false;
2421 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2422 }
2423
findBoundMemberType(const Expr * expr)2424 QualType Expr::findBoundMemberType(const Expr *expr) {
2425 assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2426
2427 // Bound member expressions are always one of these possibilities:
2428 // x->m x.m x->*y x.*y
2429 // (possibly parenthesized)
2430
2431 expr = expr->IgnoreParens();
2432 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2433 assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2434 return mem->getMemberDecl()->getType();
2435 }
2436
2437 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2438 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2439 ->getPointeeType();
2440 assert(type->isFunctionType());
2441 return type;
2442 }
2443
2444 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
2445 return QualType();
2446 }
2447
IgnoreParens()2448 Expr* Expr::IgnoreParens() {
2449 Expr* E = this;
2450 while (true) {
2451 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2452 E = P->getSubExpr();
2453 continue;
2454 }
2455 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2456 if (P->getOpcode() == UO_Extension) {
2457 E = P->getSubExpr();
2458 continue;
2459 }
2460 }
2461 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2462 if (!P->isResultDependent()) {
2463 E = P->getResultExpr();
2464 continue;
2465 }
2466 }
2467 if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
2468 if (!P->isConditionDependent()) {
2469 E = P->getChosenSubExpr();
2470 continue;
2471 }
2472 }
2473 return E;
2474 }
2475 }
2476
2477 /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
2478 /// or CastExprs or ImplicitCastExprs, returning their operand.
IgnoreParenCasts()2479 Expr *Expr::IgnoreParenCasts() {
2480 Expr *E = this;
2481 while (true) {
2482 E = E->IgnoreParens();
2483 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2484 E = P->getSubExpr();
2485 continue;
2486 }
2487 if (MaterializeTemporaryExpr *Materialize
2488 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2489 E = Materialize->GetTemporaryExpr();
2490 continue;
2491 }
2492 if (SubstNonTypeTemplateParmExpr *NTTP
2493 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2494 E = NTTP->getReplacement();
2495 continue;
2496 }
2497 return E;
2498 }
2499 }
2500
IgnoreCasts()2501 Expr *Expr::IgnoreCasts() {
2502 Expr *E = this;
2503 while (true) {
2504 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2505 E = P->getSubExpr();
2506 continue;
2507 }
2508 if (MaterializeTemporaryExpr *Materialize
2509 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2510 E = Materialize->GetTemporaryExpr();
2511 continue;
2512 }
2513 if (SubstNonTypeTemplateParmExpr *NTTP
2514 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2515 E = NTTP->getReplacement();
2516 continue;
2517 }
2518 return E;
2519 }
2520 }
2521
2522 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2523 /// casts. This is intended purely as a temporary workaround for code
2524 /// that hasn't yet been rewritten to do the right thing about those
2525 /// casts, and may disappear along with the last internal use.
IgnoreParenLValueCasts()2526 Expr *Expr::IgnoreParenLValueCasts() {
2527 Expr *E = this;
2528 while (true) {
2529 E = E->IgnoreParens();
2530 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2531 if (P->getCastKind() == CK_LValueToRValue) {
2532 E = P->getSubExpr();
2533 continue;
2534 }
2535 } else if (MaterializeTemporaryExpr *Materialize
2536 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2537 E = Materialize->GetTemporaryExpr();
2538 continue;
2539 } else if (SubstNonTypeTemplateParmExpr *NTTP
2540 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2541 E = NTTP->getReplacement();
2542 continue;
2543 }
2544 break;
2545 }
2546 return E;
2547 }
2548
ignoreParenBaseCasts()2549 Expr *Expr::ignoreParenBaseCasts() {
2550 Expr *E = this;
2551 while (true) {
2552 E = E->IgnoreParens();
2553 if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2554 if (CE->getCastKind() == CK_DerivedToBase ||
2555 CE->getCastKind() == CK_UncheckedDerivedToBase ||
2556 CE->getCastKind() == CK_NoOp) {
2557 E = CE->getSubExpr();
2558 continue;
2559 }
2560 }
2561
2562 return E;
2563 }
2564 }
2565
IgnoreParenImpCasts()2566 Expr *Expr::IgnoreParenImpCasts() {
2567 Expr *E = this;
2568 while (true) {
2569 E = E->IgnoreParens();
2570 if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2571 E = P->getSubExpr();
2572 continue;
2573 }
2574 if (MaterializeTemporaryExpr *Materialize
2575 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2576 E = Materialize->GetTemporaryExpr();
2577 continue;
2578 }
2579 if (SubstNonTypeTemplateParmExpr *NTTP
2580 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2581 E = NTTP->getReplacement();
2582 continue;
2583 }
2584 return E;
2585 }
2586 }
2587
IgnoreConversionOperator()2588 Expr *Expr::IgnoreConversionOperator() {
2589 if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2590 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2591 return MCE->getImplicitObjectArgument();
2592 }
2593 return this;
2594 }
2595
2596 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2597 /// value (including ptr->int casts of the same size). Strip off any
2598 /// ParenExpr or CastExprs, returning their operand.
IgnoreParenNoopCasts(ASTContext & Ctx)2599 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2600 Expr *E = this;
2601 while (true) {
2602 E = E->IgnoreParens();
2603
2604 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2605 // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2606 // ptr<->int casts of the same width. We also ignore all identity casts.
2607 Expr *SE = P->getSubExpr();
2608
2609 if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2610 E = SE;
2611 continue;
2612 }
2613
2614 if ((E->getType()->isPointerType() ||
2615 E->getType()->isIntegralType(Ctx)) &&
2616 (SE->getType()->isPointerType() ||
2617 SE->getType()->isIntegralType(Ctx)) &&
2618 Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2619 E = SE;
2620 continue;
2621 }
2622 }
2623
2624 if (SubstNonTypeTemplateParmExpr *NTTP
2625 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2626 E = NTTP->getReplacement();
2627 continue;
2628 }
2629
2630 return E;
2631 }
2632 }
2633
isDefaultArgument() const2634 bool Expr::isDefaultArgument() const {
2635 const Expr *E = this;
2636 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2637 E = M->GetTemporaryExpr();
2638
2639 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2640 E = ICE->getSubExprAsWritten();
2641
2642 return isa<CXXDefaultArgExpr>(E);
2643 }
2644
2645 /// \brief Skip over any no-op casts and any temporary-binding
2646 /// expressions.
skipTemporaryBindingsNoOpCastsAndParens(const Expr * E)2647 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2648 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2649 E = M->GetTemporaryExpr();
2650
2651 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2652 if (ICE->getCastKind() == CK_NoOp)
2653 E = ICE->getSubExpr();
2654 else
2655 break;
2656 }
2657
2658 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2659 E = BE->getSubExpr();
2660
2661 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2662 if (ICE->getCastKind() == CK_NoOp)
2663 E = ICE->getSubExpr();
2664 else
2665 break;
2666 }
2667
2668 return E->IgnoreParens();
2669 }
2670
2671 /// isTemporaryObject - Determines if this expression produces a
2672 /// temporary of the given class type.
isTemporaryObject(ASTContext & C,const CXXRecordDecl * TempTy) const2673 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2674 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2675 return false;
2676
2677 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2678
2679 // Temporaries are by definition pr-values of class type.
2680 if (!E->Classify(C).isPRValue()) {
2681 // In this context, property reference is a message call and is pr-value.
2682 if (!isa<ObjCPropertyRefExpr>(E))
2683 return false;
2684 }
2685
2686 // Black-list a few cases which yield pr-values of class type that don't
2687 // refer to temporaries of that type:
2688
2689 // - implicit derived-to-base conversions
2690 if (isa<ImplicitCastExpr>(E)) {
2691 switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2692 case CK_DerivedToBase:
2693 case CK_UncheckedDerivedToBase:
2694 return false;
2695 default:
2696 break;
2697 }
2698 }
2699
2700 // - member expressions (all)
2701 if (isa<MemberExpr>(E))
2702 return false;
2703
2704 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2705 if (BO->isPtrMemOp())
2706 return false;
2707
2708 // - opaque values (all)
2709 if (isa<OpaqueValueExpr>(E))
2710 return false;
2711
2712 return true;
2713 }
2714
isImplicitCXXThis() const2715 bool Expr::isImplicitCXXThis() const {
2716 const Expr *E = this;
2717
2718 // Strip away parentheses and casts we don't care about.
2719 while (true) {
2720 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2721 E = Paren->getSubExpr();
2722 continue;
2723 }
2724
2725 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2726 if (ICE->getCastKind() == CK_NoOp ||
2727 ICE->getCastKind() == CK_LValueToRValue ||
2728 ICE->getCastKind() == CK_DerivedToBase ||
2729 ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2730 E = ICE->getSubExpr();
2731 continue;
2732 }
2733 }
2734
2735 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2736 if (UnOp->getOpcode() == UO_Extension) {
2737 E = UnOp->getSubExpr();
2738 continue;
2739 }
2740 }
2741
2742 if (const MaterializeTemporaryExpr *M
2743 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2744 E = M->GetTemporaryExpr();
2745 continue;
2746 }
2747
2748 break;
2749 }
2750
2751 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2752 return This->isImplicit();
2753
2754 return false;
2755 }
2756
2757 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2758 /// in Exprs is type-dependent.
hasAnyTypeDependentArguments(ArrayRef<Expr * > Exprs)2759 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
2760 for (unsigned I = 0; I < Exprs.size(); ++I)
2761 if (Exprs[I]->isTypeDependent())
2762 return true;
2763
2764 return false;
2765 }
2766
isConstantInitializer(ASTContext & Ctx,bool IsForRef,const Expr ** Culprit) const2767 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
2768 const Expr **Culprit) const {
2769 // This function is attempting whether an expression is an initializer
2770 // which can be evaluated at compile-time. It very closely parallels
2771 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
2772 // will lead to unexpected results. Like ConstExprEmitter, it falls back
2773 // to isEvaluatable most of the time.
2774 //
2775 // If we ever capture reference-binding directly in the AST, we can
2776 // kill the second parameter.
2777
2778 if (IsForRef) {
2779 EvalResult Result;
2780 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
2781 return true;
2782 if (Culprit)
2783 *Culprit = this;
2784 return false;
2785 }
2786
2787 switch (getStmtClass()) {
2788 default: break;
2789 case StringLiteralClass:
2790 case ObjCEncodeExprClass:
2791 return true;
2792 case CXXTemporaryObjectExprClass:
2793 case CXXConstructExprClass: {
2794 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2795
2796 if (CE->getConstructor()->isTrivial() &&
2797 CE->getConstructor()->getParent()->hasTrivialDestructor()) {
2798 // Trivial default constructor
2799 if (!CE->getNumArgs()) return true;
2800
2801 // Trivial copy constructor
2802 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
2803 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
2804 }
2805
2806 break;
2807 }
2808 case CompoundLiteralExprClass: {
2809 // This handles gcc's extension that allows global initializers like
2810 // "struct x {int x;} x = (struct x) {};".
2811 // FIXME: This accepts other cases it shouldn't!
2812 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2813 return Exp->isConstantInitializer(Ctx, false, Culprit);
2814 }
2815 case DesignatedInitUpdateExprClass: {
2816 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
2817 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
2818 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
2819 }
2820 case InitListExprClass: {
2821 const InitListExpr *ILE = cast<InitListExpr>(this);
2822 if (ILE->getType()->isArrayType()) {
2823 unsigned numInits = ILE->getNumInits();
2824 for (unsigned i = 0; i < numInits; i++) {
2825 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
2826 return false;
2827 }
2828 return true;
2829 }
2830
2831 if (ILE->getType()->isRecordType()) {
2832 unsigned ElementNo = 0;
2833 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
2834 for (const auto *Field : RD->fields()) {
2835 // If this is a union, skip all the fields that aren't being initialized.
2836 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
2837 continue;
2838
2839 // Don't emit anonymous bitfields, they just affect layout.
2840 if (Field->isUnnamedBitfield())
2841 continue;
2842
2843 if (ElementNo < ILE->getNumInits()) {
2844 const Expr *Elt = ILE->getInit(ElementNo++);
2845 if (Field->isBitField()) {
2846 // Bitfields have to evaluate to an integer.
2847 llvm::APSInt ResultTmp;
2848 if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) {
2849 if (Culprit)
2850 *Culprit = Elt;
2851 return false;
2852 }
2853 } else {
2854 bool RefType = Field->getType()->isReferenceType();
2855 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
2856 return false;
2857 }
2858 }
2859 }
2860 return true;
2861 }
2862
2863 break;
2864 }
2865 case ImplicitValueInitExprClass:
2866 case NoInitExprClass:
2867 return true;
2868 case ParenExprClass:
2869 return cast<ParenExpr>(this)->getSubExpr()
2870 ->isConstantInitializer(Ctx, IsForRef, Culprit);
2871 case GenericSelectionExprClass:
2872 return cast<GenericSelectionExpr>(this)->getResultExpr()
2873 ->isConstantInitializer(Ctx, IsForRef, Culprit);
2874 case ChooseExprClass:
2875 if (cast<ChooseExpr>(this)->isConditionDependent()) {
2876 if (Culprit)
2877 *Culprit = this;
2878 return false;
2879 }
2880 return cast<ChooseExpr>(this)->getChosenSubExpr()
2881 ->isConstantInitializer(Ctx, IsForRef, Culprit);
2882 case UnaryOperatorClass: {
2883 const UnaryOperator* Exp = cast<UnaryOperator>(this);
2884 if (Exp->getOpcode() == UO_Extension)
2885 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2886 break;
2887 }
2888 case CXXFunctionalCastExprClass:
2889 case CXXStaticCastExprClass:
2890 case ImplicitCastExprClass:
2891 case CStyleCastExprClass:
2892 case ObjCBridgedCastExprClass:
2893 case CXXDynamicCastExprClass:
2894 case CXXReinterpretCastExprClass:
2895 case CXXConstCastExprClass: {
2896 const CastExpr *CE = cast<CastExpr>(this);
2897
2898 // Handle misc casts we want to ignore.
2899 if (CE->getCastKind() == CK_NoOp ||
2900 CE->getCastKind() == CK_LValueToRValue ||
2901 CE->getCastKind() == CK_ToUnion ||
2902 CE->getCastKind() == CK_ConstructorConversion ||
2903 CE->getCastKind() == CK_NonAtomicToAtomic ||
2904 CE->getCastKind() == CK_AtomicToNonAtomic)
2905 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2906
2907 break;
2908 }
2909 case MaterializeTemporaryExprClass:
2910 return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2911 ->isConstantInitializer(Ctx, false, Culprit);
2912
2913 case SubstNonTypeTemplateParmExprClass:
2914 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
2915 ->isConstantInitializer(Ctx, false, Culprit);
2916 case CXXDefaultArgExprClass:
2917 return cast<CXXDefaultArgExpr>(this)->getExpr()
2918 ->isConstantInitializer(Ctx, false, Culprit);
2919 case CXXDefaultInitExprClass:
2920 return cast<CXXDefaultInitExpr>(this)->getExpr()
2921 ->isConstantInitializer(Ctx, false, Culprit);
2922 }
2923 // Allow certain forms of UB in constant initializers: signed integer
2924 // overflow and floating-point division by zero. We'll give a warning on
2925 // these, but they're common enough that we have to accept them.
2926 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
2927 return true;
2928 if (Culprit)
2929 *Culprit = this;
2930 return false;
2931 }
2932
2933 namespace {
2934 /// \brief Look for any side effects within a Stmt.
2935 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
2936 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
2937 const bool IncludePossibleEffects;
2938 bool HasSideEffects;
2939
2940 public:
SideEffectFinder(const ASTContext & Context,bool IncludePossible)2941 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
2942 : Inherited(Context),
2943 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
2944
hasSideEffects() const2945 bool hasSideEffects() const { return HasSideEffects; }
2946
VisitExpr(const Expr * E)2947 void VisitExpr(const Expr *E) {
2948 if (!HasSideEffects &&
2949 E->HasSideEffects(Context, IncludePossibleEffects))
2950 HasSideEffects = true;
2951 }
2952 };
2953 }
2954
HasSideEffects(const ASTContext & Ctx,bool IncludePossibleEffects) const2955 bool Expr::HasSideEffects(const ASTContext &Ctx,
2956 bool IncludePossibleEffects) const {
2957 // In circumstances where we care about definite side effects instead of
2958 // potential side effects, we want to ignore expressions that are part of a
2959 // macro expansion as a potential side effect.
2960 if (!IncludePossibleEffects && getExprLoc().isMacroID())
2961 return false;
2962
2963 if (isInstantiationDependent())
2964 return IncludePossibleEffects;
2965
2966 switch (getStmtClass()) {
2967 case NoStmtClass:
2968 #define ABSTRACT_STMT(Type)
2969 #define STMT(Type, Base) case Type##Class:
2970 #define EXPR(Type, Base)
2971 #include "clang/AST/StmtNodes.inc"
2972 llvm_unreachable("unexpected Expr kind");
2973
2974 case DependentScopeDeclRefExprClass:
2975 case CXXUnresolvedConstructExprClass:
2976 case CXXDependentScopeMemberExprClass:
2977 case UnresolvedLookupExprClass:
2978 case UnresolvedMemberExprClass:
2979 case PackExpansionExprClass:
2980 case SubstNonTypeTemplateParmPackExprClass:
2981 case FunctionParmPackExprClass:
2982 case TypoExprClass:
2983 case CXXFoldExprClass:
2984 llvm_unreachable("shouldn't see dependent / unresolved nodes here");
2985
2986 case DeclRefExprClass:
2987 case ObjCIvarRefExprClass:
2988 case PredefinedExprClass:
2989 case IntegerLiteralClass:
2990 case FloatingLiteralClass:
2991 case ImaginaryLiteralClass:
2992 case StringLiteralClass:
2993 case CharacterLiteralClass:
2994 case OffsetOfExprClass:
2995 case ImplicitValueInitExprClass:
2996 case UnaryExprOrTypeTraitExprClass:
2997 case AddrLabelExprClass:
2998 case GNUNullExprClass:
2999 case NoInitExprClass:
3000 case CXXBoolLiteralExprClass:
3001 case CXXNullPtrLiteralExprClass:
3002 case CXXThisExprClass:
3003 case CXXScalarValueInitExprClass:
3004 case TypeTraitExprClass:
3005 case ArrayTypeTraitExprClass:
3006 case ExpressionTraitExprClass:
3007 case CXXNoexceptExprClass:
3008 case SizeOfPackExprClass:
3009 case ObjCStringLiteralClass:
3010 case ObjCEncodeExprClass:
3011 case ObjCBoolLiteralExprClass:
3012 case CXXUuidofExprClass:
3013 case OpaqueValueExprClass:
3014 // These never have a side-effect.
3015 return false;
3016
3017 case CallExprClass:
3018 case CXXOperatorCallExprClass:
3019 case CXXMemberCallExprClass:
3020 case CUDAKernelCallExprClass:
3021 case UserDefinedLiteralClass: {
3022 // We don't know a call definitely has side effects, except for calls
3023 // to pure/const functions that definitely don't.
3024 // If the call itself is considered side-effect free, check the operands.
3025 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3026 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3027 if (IsPure || !IncludePossibleEffects)
3028 break;
3029 return true;
3030 }
3031
3032 case BlockExprClass:
3033 case CXXBindTemporaryExprClass:
3034 if (!IncludePossibleEffects)
3035 break;
3036 return true;
3037
3038 case MSPropertyRefExprClass:
3039 case MSPropertySubscriptExprClass:
3040 case CompoundAssignOperatorClass:
3041 case VAArgExprClass:
3042 case AtomicExprClass:
3043 case CXXThrowExprClass:
3044 case CXXNewExprClass:
3045 case CXXDeleteExprClass:
3046 case ExprWithCleanupsClass:
3047 case CoawaitExprClass:
3048 case CoyieldExprClass:
3049 // These always have a side-effect.
3050 return true;
3051
3052 case StmtExprClass: {
3053 // StmtExprs have a side-effect if any substatement does.
3054 SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3055 Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3056 return Finder.hasSideEffects();
3057 }
3058
3059 case ParenExprClass:
3060 case ArraySubscriptExprClass:
3061 case OMPArraySectionExprClass:
3062 case MemberExprClass:
3063 case ConditionalOperatorClass:
3064 case BinaryConditionalOperatorClass:
3065 case CompoundLiteralExprClass:
3066 case ExtVectorElementExprClass:
3067 case DesignatedInitExprClass:
3068 case DesignatedInitUpdateExprClass:
3069 case ParenListExprClass:
3070 case CXXPseudoDestructorExprClass:
3071 case CXXStdInitializerListExprClass:
3072 case SubstNonTypeTemplateParmExprClass:
3073 case MaterializeTemporaryExprClass:
3074 case ShuffleVectorExprClass:
3075 case ConvertVectorExprClass:
3076 case AsTypeExprClass:
3077 // These have a side-effect if any subexpression does.
3078 break;
3079
3080 case UnaryOperatorClass:
3081 if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3082 return true;
3083 break;
3084
3085 case BinaryOperatorClass:
3086 if (cast<BinaryOperator>(this)->isAssignmentOp())
3087 return true;
3088 break;
3089
3090 case InitListExprClass:
3091 // FIXME: The children for an InitListExpr doesn't include the array filler.
3092 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3093 if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3094 return true;
3095 break;
3096
3097 case GenericSelectionExprClass:
3098 return cast<GenericSelectionExpr>(this)->getResultExpr()->
3099 HasSideEffects(Ctx, IncludePossibleEffects);
3100
3101 case ChooseExprClass:
3102 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3103 Ctx, IncludePossibleEffects);
3104
3105 case CXXDefaultArgExprClass:
3106 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3107 Ctx, IncludePossibleEffects);
3108
3109 case CXXDefaultInitExprClass: {
3110 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3111 if (const Expr *E = FD->getInClassInitializer())
3112 return E->HasSideEffects(Ctx, IncludePossibleEffects);
3113 // If we've not yet parsed the initializer, assume it has side-effects.
3114 return true;
3115 }
3116
3117 case CXXDynamicCastExprClass: {
3118 // A dynamic_cast expression has side-effects if it can throw.
3119 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3120 if (DCE->getTypeAsWritten()->isReferenceType() &&
3121 DCE->getCastKind() == CK_Dynamic)
3122 return true;
3123 } // Fall through.
3124 case ImplicitCastExprClass:
3125 case CStyleCastExprClass:
3126 case CXXStaticCastExprClass:
3127 case CXXReinterpretCastExprClass:
3128 case CXXConstCastExprClass:
3129 case CXXFunctionalCastExprClass: {
3130 // While volatile reads are side-effecting in both C and C++, we treat them
3131 // as having possible (not definite) side-effects. This allows idiomatic
3132 // code to behave without warning, such as sizeof(*v) for a volatile-
3133 // qualified pointer.
3134 if (!IncludePossibleEffects)
3135 break;
3136
3137 const CastExpr *CE = cast<CastExpr>(this);
3138 if (CE->getCastKind() == CK_LValueToRValue &&
3139 CE->getSubExpr()->getType().isVolatileQualified())
3140 return true;
3141 break;
3142 }
3143
3144 case CXXTypeidExprClass:
3145 // typeid might throw if its subexpression is potentially-evaluated, so has
3146 // side-effects in that case whether or not its subexpression does.
3147 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3148
3149 case CXXConstructExprClass:
3150 case CXXTemporaryObjectExprClass: {
3151 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3152 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3153 return true;
3154 // A trivial constructor does not add any side-effects of its own. Just look
3155 // at its arguments.
3156 break;
3157 }
3158
3159 case LambdaExprClass: {
3160 const LambdaExpr *LE = cast<LambdaExpr>(this);
3161 for (LambdaExpr::capture_iterator I = LE->capture_begin(),
3162 E = LE->capture_end(); I != E; ++I)
3163 if (I->getCaptureKind() == LCK_ByCopy)
3164 // FIXME: Only has a side-effect if the variable is volatile or if
3165 // the copy would invoke a non-trivial copy constructor.
3166 return true;
3167 return false;
3168 }
3169
3170 case PseudoObjectExprClass: {
3171 // Only look for side-effects in the semantic form, and look past
3172 // OpaqueValueExpr bindings in that form.
3173 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3174 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3175 E = PO->semantics_end();
3176 I != E; ++I) {
3177 const Expr *Subexpr = *I;
3178 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3179 Subexpr = OVE->getSourceExpr();
3180 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3181 return true;
3182 }
3183 return false;
3184 }
3185
3186 case ObjCBoxedExprClass:
3187 case ObjCArrayLiteralClass:
3188 case ObjCDictionaryLiteralClass:
3189 case ObjCSelectorExprClass:
3190 case ObjCProtocolExprClass:
3191 case ObjCIsaExprClass:
3192 case ObjCIndirectCopyRestoreExprClass:
3193 case ObjCSubscriptRefExprClass:
3194 case ObjCBridgedCastExprClass:
3195 case ObjCMessageExprClass:
3196 case ObjCPropertyRefExprClass:
3197 // FIXME: Classify these cases better.
3198 if (IncludePossibleEffects)
3199 return true;
3200 break;
3201 }
3202
3203 // Recurse to children.
3204 for (const Stmt *SubStmt : children())
3205 if (SubStmt &&
3206 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3207 return true;
3208
3209 return false;
3210 }
3211
3212 namespace {
3213 /// \brief Look for a call to a non-trivial function within an expression.
3214 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3215 {
3216 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3217
3218 bool NonTrivial;
3219
3220 public:
NonTrivialCallFinder(const ASTContext & Context)3221 explicit NonTrivialCallFinder(const ASTContext &Context)
3222 : Inherited(Context), NonTrivial(false) { }
3223
hasNonTrivialCall() const3224 bool hasNonTrivialCall() const { return NonTrivial; }
3225
VisitCallExpr(const CallExpr * E)3226 void VisitCallExpr(const CallExpr *E) {
3227 if (const CXXMethodDecl *Method
3228 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3229 if (Method->isTrivial()) {
3230 // Recurse to children of the call.
3231 Inherited::VisitStmt(E);
3232 return;
3233 }
3234 }
3235
3236 NonTrivial = true;
3237 }
3238
VisitCXXConstructExpr(const CXXConstructExpr * E)3239 void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3240 if (E->getConstructor()->isTrivial()) {
3241 // Recurse to children of the call.
3242 Inherited::VisitStmt(E);
3243 return;
3244 }
3245
3246 NonTrivial = true;
3247 }
3248
VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr * E)3249 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3250 if (E->getTemporary()->getDestructor()->isTrivial()) {
3251 Inherited::VisitStmt(E);
3252 return;
3253 }
3254
3255 NonTrivial = true;
3256 }
3257 };
3258 }
3259
hasNonTrivialCall(const ASTContext & Ctx) const3260 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3261 NonTrivialCallFinder Finder(Ctx);
3262 Finder.Visit(this);
3263 return Finder.hasNonTrivialCall();
3264 }
3265
3266 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3267 /// pointer constant or not, as well as the specific kind of constant detected.
3268 /// Null pointer constants can be integer constant expressions with the
3269 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3270 /// (a GNU extension).
3271 Expr::NullPointerConstantKind
isNullPointerConstant(ASTContext & Ctx,NullPointerConstantValueDependence NPC) const3272 Expr::isNullPointerConstant(ASTContext &Ctx,
3273 NullPointerConstantValueDependence NPC) const {
3274 if (isValueDependent() &&
3275 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3276 switch (NPC) {
3277 case NPC_NeverValueDependent:
3278 llvm_unreachable("Unexpected value dependent expression!");
3279 case NPC_ValueDependentIsNull:
3280 if (isTypeDependent() || getType()->isIntegralType(Ctx))
3281 return NPCK_ZeroExpression;
3282 else
3283 return NPCK_NotNull;
3284
3285 case NPC_ValueDependentIsNotNull:
3286 return NPCK_NotNull;
3287 }
3288 }
3289
3290 // Strip off a cast to void*, if it exists. Except in C++.
3291 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3292 if (!Ctx.getLangOpts().CPlusPlus) {
3293 // Check that it is a cast to void*.
3294 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3295 QualType Pointee = PT->getPointeeType();
3296 Qualifiers Q = Pointee.getQualifiers();
3297 // In OpenCL v2.0 generic address space acts as a placeholder
3298 // and should be ignored.
3299 bool IsASValid = true;
3300 if (Ctx.getLangOpts().OpenCLVersion >= 200) {
3301 if (Pointee.getAddressSpace() == LangAS::opencl_generic)
3302 Q.removeAddressSpace();
3303 else
3304 IsASValid = false;
3305 }
3306
3307 if (IsASValid && !Q.hasQualifiers() &&
3308 Pointee->isVoidType() && // to void*
3309 CE->getSubExpr()->getType()->isIntegerType()) // from int.
3310 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3311 }
3312 }
3313 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3314 // Ignore the ImplicitCastExpr type entirely.
3315 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3316 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3317 // Accept ((void*)0) as a null pointer constant, as many other
3318 // implementations do.
3319 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3320 } else if (const GenericSelectionExpr *GE =
3321 dyn_cast<GenericSelectionExpr>(this)) {
3322 if (GE->isResultDependent())
3323 return NPCK_NotNull;
3324 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3325 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3326 if (CE->isConditionDependent())
3327 return NPCK_NotNull;
3328 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3329 } else if (const CXXDefaultArgExpr *DefaultArg
3330 = dyn_cast<CXXDefaultArgExpr>(this)) {
3331 // See through default argument expressions.
3332 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3333 } else if (const CXXDefaultInitExpr *DefaultInit
3334 = dyn_cast<CXXDefaultInitExpr>(this)) {
3335 // See through default initializer expressions.
3336 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3337 } else if (isa<GNUNullExpr>(this)) {
3338 // The GNU __null extension is always a null pointer constant.
3339 return NPCK_GNUNull;
3340 } else if (const MaterializeTemporaryExpr *M
3341 = dyn_cast<MaterializeTemporaryExpr>(this)) {
3342 return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3343 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3344 if (const Expr *Source = OVE->getSourceExpr())
3345 return Source->isNullPointerConstant(Ctx, NPC);
3346 }
3347
3348 // C++11 nullptr_t is always a null pointer constant.
3349 if (getType()->isNullPtrType())
3350 return NPCK_CXX11_nullptr;
3351
3352 if (const RecordType *UT = getType()->getAsUnionType())
3353 if (!Ctx.getLangOpts().CPlusPlus11 &&
3354 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3355 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3356 const Expr *InitExpr = CLE->getInitializer();
3357 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3358 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3359 }
3360 // This expression must be an integer type.
3361 if (!getType()->isIntegerType() ||
3362 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3363 return NPCK_NotNull;
3364
3365 if (Ctx.getLangOpts().CPlusPlus11) {
3366 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3367 // value zero or a prvalue of type std::nullptr_t.
3368 // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3369 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3370 if (Lit && !Lit->getValue())
3371 return NPCK_ZeroLiteral;
3372 else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3373 return NPCK_NotNull;
3374 } else {
3375 // If we have an integer constant expression, we need to *evaluate* it and
3376 // test for the value 0.
3377 if (!isIntegerConstantExpr(Ctx))
3378 return NPCK_NotNull;
3379 }
3380
3381 if (EvaluateKnownConstInt(Ctx) != 0)
3382 return NPCK_NotNull;
3383
3384 if (isa<IntegerLiteral>(this))
3385 return NPCK_ZeroLiteral;
3386 return NPCK_ZeroExpression;
3387 }
3388
3389 /// \brief If this expression is an l-value for an Objective C
3390 /// property, find the underlying property reference expression.
getObjCProperty() const3391 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3392 const Expr *E = this;
3393 while (true) {
3394 assert((E->getValueKind() == VK_LValue &&
3395 E->getObjectKind() == OK_ObjCProperty) &&
3396 "expression is not a property reference");
3397 E = E->IgnoreParenCasts();
3398 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3399 if (BO->getOpcode() == BO_Comma) {
3400 E = BO->getRHS();
3401 continue;
3402 }
3403 }
3404
3405 break;
3406 }
3407
3408 return cast<ObjCPropertyRefExpr>(E);
3409 }
3410
isObjCSelfExpr() const3411 bool Expr::isObjCSelfExpr() const {
3412 const Expr *E = IgnoreParenImpCasts();
3413
3414 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3415 if (!DRE)
3416 return false;
3417
3418 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3419 if (!Param)
3420 return false;
3421
3422 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3423 if (!M)
3424 return false;
3425
3426 return M->getSelfDecl() == Param;
3427 }
3428
getSourceBitField()3429 FieldDecl *Expr::getSourceBitField() {
3430 Expr *E = this->IgnoreParens();
3431
3432 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3433 if (ICE->getCastKind() == CK_LValueToRValue ||
3434 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3435 E = ICE->getSubExpr()->IgnoreParens();
3436 else
3437 break;
3438 }
3439
3440 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3441 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3442 if (Field->isBitField())
3443 return Field;
3444
3445 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E))
3446 if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl()))
3447 if (Ivar->isBitField())
3448 return Ivar;
3449
3450 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
3451 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3452 if (Field->isBitField())
3453 return Field;
3454
3455 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3456 if (BinOp->isAssignmentOp() && BinOp->getLHS())
3457 return BinOp->getLHS()->getSourceBitField();
3458
3459 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3460 return BinOp->getRHS()->getSourceBitField();
3461 }
3462
3463 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
3464 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
3465 return UnOp->getSubExpr()->getSourceBitField();
3466
3467 return nullptr;
3468 }
3469
refersToVectorElement() const3470 bool Expr::refersToVectorElement() const {
3471 const Expr *E = this->IgnoreParens();
3472
3473 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3474 if (ICE->getValueKind() != VK_RValue &&
3475 ICE->getCastKind() == CK_NoOp)
3476 E = ICE->getSubExpr()->IgnoreParens();
3477 else
3478 break;
3479 }
3480
3481 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3482 return ASE->getBase()->getType()->isVectorType();
3483
3484 if (isa<ExtVectorElementExpr>(E))
3485 return true;
3486
3487 return false;
3488 }
3489
refersToGlobalRegisterVar() const3490 bool Expr::refersToGlobalRegisterVar() const {
3491 const Expr *E = this->IgnoreParenImpCasts();
3492
3493 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3494 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
3495 if (VD->getStorageClass() == SC_Register &&
3496 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
3497 return true;
3498
3499 return false;
3500 }
3501
3502 /// isArrow - Return true if the base expression is a pointer to vector,
3503 /// return false if the base expression is a vector.
isArrow() const3504 bool ExtVectorElementExpr::isArrow() const {
3505 return getBase()->getType()->isPointerType();
3506 }
3507
getNumElements() const3508 unsigned ExtVectorElementExpr::getNumElements() const {
3509 if (const VectorType *VT = getType()->getAs<VectorType>())
3510 return VT->getNumElements();
3511 return 1;
3512 }
3513
3514 /// containsDuplicateElements - Return true if any element access is repeated.
containsDuplicateElements() const3515 bool ExtVectorElementExpr::containsDuplicateElements() const {
3516 // FIXME: Refactor this code to an accessor on the AST node which returns the
3517 // "type" of component access, and share with code below and in Sema.
3518 StringRef Comp = Accessor->getName();
3519
3520 // Halving swizzles do not contain duplicate elements.
3521 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3522 return false;
3523
3524 // Advance past s-char prefix on hex swizzles.
3525 if (Comp[0] == 's' || Comp[0] == 'S')
3526 Comp = Comp.substr(1);
3527
3528 for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3529 if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3530 return true;
3531
3532 return false;
3533 }
3534
3535 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
getEncodedElementAccess(SmallVectorImpl<uint32_t> & Elts) const3536 void ExtVectorElementExpr::getEncodedElementAccess(
3537 SmallVectorImpl<uint32_t> &Elts) const {
3538 StringRef Comp = Accessor->getName();
3539 if (Comp[0] == 's' || Comp[0] == 'S')
3540 Comp = Comp.substr(1);
3541
3542 bool isHi = Comp == "hi";
3543 bool isLo = Comp == "lo";
3544 bool isEven = Comp == "even";
3545 bool isOdd = Comp == "odd";
3546
3547 for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3548 uint64_t Index;
3549
3550 if (isHi)
3551 Index = e + i;
3552 else if (isLo)
3553 Index = i;
3554 else if (isEven)
3555 Index = 2 * i;
3556 else if (isOdd)
3557 Index = 2 * i + 1;
3558 else
3559 Index = ExtVectorType::getAccessorIdx(Comp[i]);
3560
3561 Elts.push_back(Index);
3562 }
3563 }
3564
ShuffleVectorExpr(const ASTContext & C,ArrayRef<Expr * > args,QualType Type,SourceLocation BLoc,SourceLocation RP)3565 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
3566 QualType Type, SourceLocation BLoc,
3567 SourceLocation RP)
3568 : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3569 Type->isDependentType(), Type->isDependentType(),
3570 Type->isInstantiationDependentType(),
3571 Type->containsUnexpandedParameterPack()),
3572 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3573 {
3574 SubExprs = new (C) Stmt*[args.size()];
3575 for (unsigned i = 0; i != args.size(); i++) {
3576 if (args[i]->isTypeDependent())
3577 ExprBits.TypeDependent = true;
3578 if (args[i]->isValueDependent())
3579 ExprBits.ValueDependent = true;
3580 if (args[i]->isInstantiationDependent())
3581 ExprBits.InstantiationDependent = true;
3582 if (args[i]->containsUnexpandedParameterPack())
3583 ExprBits.ContainsUnexpandedParameterPack = true;
3584
3585 SubExprs[i] = args[i];
3586 }
3587 }
3588
setExprs(const ASTContext & C,ArrayRef<Expr * > Exprs)3589 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
3590 if (SubExprs) C.Deallocate(SubExprs);
3591
3592 this->NumExprs = Exprs.size();
3593 SubExprs = new (C) Stmt*[NumExprs];
3594 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
3595 }
3596
GenericSelectionExpr(const ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack,unsigned ResultIndex)3597 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3598 SourceLocation GenericLoc, Expr *ControllingExpr,
3599 ArrayRef<TypeSourceInfo*> AssocTypes,
3600 ArrayRef<Expr*> AssocExprs,
3601 SourceLocation DefaultLoc,
3602 SourceLocation RParenLoc,
3603 bool ContainsUnexpandedParameterPack,
3604 unsigned ResultIndex)
3605 : Expr(GenericSelectionExprClass,
3606 AssocExprs[ResultIndex]->getType(),
3607 AssocExprs[ResultIndex]->getValueKind(),
3608 AssocExprs[ResultIndex]->getObjectKind(),
3609 AssocExprs[ResultIndex]->isTypeDependent(),
3610 AssocExprs[ResultIndex]->isValueDependent(),
3611 AssocExprs[ResultIndex]->isInstantiationDependent(),
3612 ContainsUnexpandedParameterPack),
3613 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3614 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3615 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3616 GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3617 SubExprs[CONTROLLING] = ControllingExpr;
3618 assert(AssocTypes.size() == AssocExprs.size());
3619 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3620 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3621 }
3622
GenericSelectionExpr(const ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack)3623 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3624 SourceLocation GenericLoc, Expr *ControllingExpr,
3625 ArrayRef<TypeSourceInfo*> AssocTypes,
3626 ArrayRef<Expr*> AssocExprs,
3627 SourceLocation DefaultLoc,
3628 SourceLocation RParenLoc,
3629 bool ContainsUnexpandedParameterPack)
3630 : Expr(GenericSelectionExprClass,
3631 Context.DependentTy,
3632 VK_RValue,
3633 OK_Ordinary,
3634 /*isTypeDependent=*/true,
3635 /*isValueDependent=*/true,
3636 /*isInstantiationDependent=*/true,
3637 ContainsUnexpandedParameterPack),
3638 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3639 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3640 NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3641 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3642 SubExprs[CONTROLLING] = ControllingExpr;
3643 assert(AssocTypes.size() == AssocExprs.size());
3644 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3645 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3646 }
3647
3648 //===----------------------------------------------------------------------===//
3649 // DesignatedInitExpr
3650 //===----------------------------------------------------------------------===//
3651
getFieldName() const3652 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3653 assert(Kind == FieldDesignator && "Only valid on a field designator");
3654 if (Field.NameOrField & 0x01)
3655 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3656 else
3657 return getField()->getIdentifier();
3658 }
3659
DesignatedInitExpr(const ASTContext & C,QualType Ty,unsigned NumDesignators,const Designator * Designators,SourceLocation EqualOrColonLoc,bool GNUSyntax,ArrayRef<Expr * > IndexExprs,Expr * Init)3660 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
3661 unsigned NumDesignators,
3662 const Designator *Designators,
3663 SourceLocation EqualOrColonLoc,
3664 bool GNUSyntax,
3665 ArrayRef<Expr*> IndexExprs,
3666 Expr *Init)
3667 : Expr(DesignatedInitExprClass, Ty,
3668 Init->getValueKind(), Init->getObjectKind(),
3669 Init->isTypeDependent(), Init->isValueDependent(),
3670 Init->isInstantiationDependent(),
3671 Init->containsUnexpandedParameterPack()),
3672 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3673 NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
3674 this->Designators = new (C) Designator[NumDesignators];
3675
3676 // Record the initializer itself.
3677 child_iterator Child = child_begin();
3678 *Child++ = Init;
3679
3680 // Copy the designators and their subexpressions, computing
3681 // value-dependence along the way.
3682 unsigned IndexIdx = 0;
3683 for (unsigned I = 0; I != NumDesignators; ++I) {
3684 this->Designators[I] = Designators[I];
3685
3686 if (this->Designators[I].isArrayDesignator()) {
3687 // Compute type- and value-dependence.
3688 Expr *Index = IndexExprs[IndexIdx];
3689 if (Index->isTypeDependent() || Index->isValueDependent())
3690 ExprBits.TypeDependent = ExprBits.ValueDependent = true;
3691 if (Index->isInstantiationDependent())
3692 ExprBits.InstantiationDependent = true;
3693 // Propagate unexpanded parameter packs.
3694 if (Index->containsUnexpandedParameterPack())
3695 ExprBits.ContainsUnexpandedParameterPack = true;
3696
3697 // Copy the index expressions into permanent storage.
3698 *Child++ = IndexExprs[IndexIdx++];
3699 } else if (this->Designators[I].isArrayRangeDesignator()) {
3700 // Compute type- and value-dependence.
3701 Expr *Start = IndexExprs[IndexIdx];
3702 Expr *End = IndexExprs[IndexIdx + 1];
3703 if (Start->isTypeDependent() || Start->isValueDependent() ||
3704 End->isTypeDependent() || End->isValueDependent()) {
3705 ExprBits.TypeDependent = ExprBits.ValueDependent = true;
3706 ExprBits.InstantiationDependent = true;
3707 } else if (Start->isInstantiationDependent() ||
3708 End->isInstantiationDependent()) {
3709 ExprBits.InstantiationDependent = true;
3710 }
3711
3712 // Propagate unexpanded parameter packs.
3713 if (Start->containsUnexpandedParameterPack() ||
3714 End->containsUnexpandedParameterPack())
3715 ExprBits.ContainsUnexpandedParameterPack = true;
3716
3717 // Copy the start/end expressions into permanent storage.
3718 *Child++ = IndexExprs[IndexIdx++];
3719 *Child++ = IndexExprs[IndexIdx++];
3720 }
3721 }
3722
3723 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3724 }
3725
3726 DesignatedInitExpr *
Create(const ASTContext & C,Designator * Designators,unsigned NumDesignators,ArrayRef<Expr * > IndexExprs,SourceLocation ColonOrEqualLoc,bool UsesColonSyntax,Expr * Init)3727 DesignatedInitExpr::Create(const ASTContext &C, Designator *Designators,
3728 unsigned NumDesignators,
3729 ArrayRef<Expr*> IndexExprs,
3730 SourceLocation ColonOrEqualLoc,
3731 bool UsesColonSyntax, Expr *Init) {
3732 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3733 sizeof(Stmt *) * (IndexExprs.size() + 1),
3734 llvm::alignOf<DesignatedInitExpr>());
3735 return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3736 ColonOrEqualLoc, UsesColonSyntax,
3737 IndexExprs, Init);
3738 }
3739
CreateEmpty(const ASTContext & C,unsigned NumIndexExprs)3740 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
3741 unsigned NumIndexExprs) {
3742 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3743 sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3744 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3745 }
3746
setDesignators(const ASTContext & C,const Designator * Desigs,unsigned NumDesigs)3747 void DesignatedInitExpr::setDesignators(const ASTContext &C,
3748 const Designator *Desigs,
3749 unsigned NumDesigs) {
3750 Designators = new (C) Designator[NumDesigs];
3751 NumDesignators = NumDesigs;
3752 for (unsigned I = 0; I != NumDesigs; ++I)
3753 Designators[I] = Desigs[I];
3754 }
3755
getDesignatorsSourceRange() const3756 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3757 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3758 if (size() == 1)
3759 return DIE->getDesignator(0)->getSourceRange();
3760 return SourceRange(DIE->getDesignator(0)->getLocStart(),
3761 DIE->getDesignator(size()-1)->getLocEnd());
3762 }
3763
getLocStart() const3764 SourceLocation DesignatedInitExpr::getLocStart() const {
3765 SourceLocation StartLoc;
3766 Designator &First =
3767 *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3768 if (First.isFieldDesignator()) {
3769 if (GNUSyntax)
3770 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3771 else
3772 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3773 } else
3774 StartLoc =
3775 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3776 return StartLoc;
3777 }
3778
getLocEnd() const3779 SourceLocation DesignatedInitExpr::getLocEnd() const {
3780 return getInit()->getLocEnd();
3781 }
3782
getArrayIndex(const Designator & D) const3783 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
3784 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3785 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
3786 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3787 }
3788
getArrayRangeStart(const Designator & D) const3789 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
3790 assert(D.Kind == Designator::ArrayRangeDesignator &&
3791 "Requires array range designator");
3792 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
3793 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3794 }
3795
getArrayRangeEnd(const Designator & D) const3796 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
3797 assert(D.Kind == Designator::ArrayRangeDesignator &&
3798 "Requires array range designator");
3799 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
3800 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3801 }
3802
3803 /// \brief Replaces the designator at index @p Idx with the series
3804 /// of designators in [First, Last).
ExpandDesignator(const ASTContext & C,unsigned Idx,const Designator * First,const Designator * Last)3805 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
3806 const Designator *First,
3807 const Designator *Last) {
3808 unsigned NumNewDesignators = Last - First;
3809 if (NumNewDesignators == 0) {
3810 std::copy_backward(Designators + Idx + 1,
3811 Designators + NumDesignators,
3812 Designators + Idx);
3813 --NumNewDesignators;
3814 return;
3815 } else if (NumNewDesignators == 1) {
3816 Designators[Idx] = *First;
3817 return;
3818 }
3819
3820 Designator *NewDesignators
3821 = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3822 std::copy(Designators, Designators + Idx, NewDesignators);
3823 std::copy(First, Last, NewDesignators + Idx);
3824 std::copy(Designators + Idx + 1, Designators + NumDesignators,
3825 NewDesignators + Idx + NumNewDesignators);
3826 Designators = NewDesignators;
3827 NumDesignators = NumDesignators - 1 + NumNewDesignators;
3828 }
3829
DesignatedInitUpdateExpr(const ASTContext & C,SourceLocation lBraceLoc,Expr * baseExpr,SourceLocation rBraceLoc)3830 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
3831 SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
3832 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
3833 OK_Ordinary, false, false, false, false) {
3834 BaseAndUpdaterExprs[0] = baseExpr;
3835
3836 InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
3837 ILE->setType(baseExpr->getType());
3838 BaseAndUpdaterExprs[1] = ILE;
3839 }
3840
getLocStart() const3841 SourceLocation DesignatedInitUpdateExpr::getLocStart() const {
3842 return getBase()->getLocStart();
3843 }
3844
getLocEnd() const3845 SourceLocation DesignatedInitUpdateExpr::getLocEnd() const {
3846 return getBase()->getLocEnd();
3847 }
3848
ParenListExpr(const ASTContext & C,SourceLocation lparenloc,ArrayRef<Expr * > exprs,SourceLocation rparenloc)3849 ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
3850 ArrayRef<Expr*> exprs,
3851 SourceLocation rparenloc)
3852 : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3853 false, false, false, false),
3854 NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3855 Exprs = new (C) Stmt*[exprs.size()];
3856 for (unsigned i = 0; i != exprs.size(); ++i) {
3857 if (exprs[i]->isTypeDependent())
3858 ExprBits.TypeDependent = true;
3859 if (exprs[i]->isValueDependent())
3860 ExprBits.ValueDependent = true;
3861 if (exprs[i]->isInstantiationDependent())
3862 ExprBits.InstantiationDependent = true;
3863 if (exprs[i]->containsUnexpandedParameterPack())
3864 ExprBits.ContainsUnexpandedParameterPack = true;
3865
3866 Exprs[i] = exprs[i];
3867 }
3868 }
3869
findInCopyConstruct(const Expr * e)3870 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3871 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3872 e = ewc->getSubExpr();
3873 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3874 e = m->GetTemporaryExpr();
3875 e = cast<CXXConstructExpr>(e)->getArg(0);
3876 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3877 e = ice->getSubExpr();
3878 return cast<OpaqueValueExpr>(e);
3879 }
3880
Create(const ASTContext & Context,EmptyShell sh,unsigned numSemanticExprs)3881 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
3882 EmptyShell sh,
3883 unsigned numSemanticExprs) {
3884 void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3885 (1 + numSemanticExprs) * sizeof(Expr*),
3886 llvm::alignOf<PseudoObjectExpr>());
3887 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3888 }
3889
PseudoObjectExpr(EmptyShell shell,unsigned numSemanticExprs)3890 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3891 : Expr(PseudoObjectExprClass, shell) {
3892 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3893 }
3894
Create(const ASTContext & C,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)3895 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
3896 ArrayRef<Expr*> semantics,
3897 unsigned resultIndex) {
3898 assert(syntax && "no syntactic expression!");
3899 assert(semantics.size() && "no semantic expressions!");
3900
3901 QualType type;
3902 ExprValueKind VK;
3903 if (resultIndex == NoResult) {
3904 type = C.VoidTy;
3905 VK = VK_RValue;
3906 } else {
3907 assert(resultIndex < semantics.size());
3908 type = semantics[resultIndex]->getType();
3909 VK = semantics[resultIndex]->getValueKind();
3910 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3911 }
3912
3913 void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3914 (1 + semantics.size()) * sizeof(Expr*),
3915 llvm::alignOf<PseudoObjectExpr>());
3916 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3917 resultIndex);
3918 }
3919
PseudoObjectExpr(QualType type,ExprValueKind VK,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)3920 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3921 Expr *syntax, ArrayRef<Expr*> semantics,
3922 unsigned resultIndex)
3923 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3924 /*filled in at end of ctor*/ false, false, false, false) {
3925 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3926 PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3927
3928 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3929 Expr *E = (i == 0 ? syntax : semantics[i-1]);
3930 getSubExprsBuffer()[i] = E;
3931
3932 if (E->isTypeDependent())
3933 ExprBits.TypeDependent = true;
3934 if (E->isValueDependent())
3935 ExprBits.ValueDependent = true;
3936 if (E->isInstantiationDependent())
3937 ExprBits.InstantiationDependent = true;
3938 if (E->containsUnexpandedParameterPack())
3939 ExprBits.ContainsUnexpandedParameterPack = true;
3940
3941 if (isa<OpaqueValueExpr>(E))
3942 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
3943 "opaque-value semantic expressions for pseudo-object "
3944 "operations must have sources");
3945 }
3946 }
3947
3948 //===----------------------------------------------------------------------===//
3949 // Child Iterators for iterating over subexpressions/substatements
3950 //===----------------------------------------------------------------------===//
3951
3952 // UnaryExprOrTypeTraitExpr
children()3953 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3954 // If this is of a type and the type is a VLA type (and not a typedef), the
3955 // size expression of the VLA needs to be treated as an executable expression.
3956 // Why isn't this weirdness documented better in StmtIterator?
3957 if (isArgumentType()) {
3958 if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3959 getArgumentType().getTypePtr()))
3960 return child_range(child_iterator(T), child_iterator());
3961 return child_range(child_iterator(), child_iterator());
3962 }
3963 return child_range(&Argument.Ex, &Argument.Ex + 1);
3964 }
3965
AtomicExpr(SourceLocation BLoc,ArrayRef<Expr * > args,QualType t,AtomicOp op,SourceLocation RP)3966 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
3967 QualType t, AtomicOp op, SourceLocation RP)
3968 : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
3969 false, false, false, false),
3970 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
3971 {
3972 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
3973 for (unsigned i = 0; i != args.size(); i++) {
3974 if (args[i]->isTypeDependent())
3975 ExprBits.TypeDependent = true;
3976 if (args[i]->isValueDependent())
3977 ExprBits.ValueDependent = true;
3978 if (args[i]->isInstantiationDependent())
3979 ExprBits.InstantiationDependent = true;
3980 if (args[i]->containsUnexpandedParameterPack())
3981 ExprBits.ContainsUnexpandedParameterPack = true;
3982
3983 SubExprs[i] = args[i];
3984 }
3985 }
3986
getNumSubExprs(AtomicOp Op)3987 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
3988 switch (Op) {
3989 case AO__c11_atomic_init:
3990 case AO__c11_atomic_load:
3991 case AO__atomic_load_n:
3992 return 2;
3993
3994 case AO__c11_atomic_store:
3995 case AO__c11_atomic_exchange:
3996 case AO__atomic_load:
3997 case AO__atomic_store:
3998 case AO__atomic_store_n:
3999 case AO__atomic_exchange_n:
4000 case AO__c11_atomic_fetch_add:
4001 case AO__c11_atomic_fetch_sub:
4002 case AO__c11_atomic_fetch_and:
4003 case AO__c11_atomic_fetch_or:
4004 case AO__c11_atomic_fetch_xor:
4005 case AO__atomic_fetch_add:
4006 case AO__atomic_fetch_sub:
4007 case AO__atomic_fetch_and:
4008 case AO__atomic_fetch_or:
4009 case AO__atomic_fetch_xor:
4010 case AO__atomic_fetch_nand:
4011 case AO__atomic_add_fetch:
4012 case AO__atomic_sub_fetch:
4013 case AO__atomic_and_fetch:
4014 case AO__atomic_or_fetch:
4015 case AO__atomic_xor_fetch:
4016 case AO__atomic_nand_fetch:
4017 return 3;
4018
4019 case AO__atomic_exchange:
4020 return 4;
4021
4022 case AO__c11_atomic_compare_exchange_strong:
4023 case AO__c11_atomic_compare_exchange_weak:
4024 return 5;
4025
4026 case AO__atomic_compare_exchange:
4027 case AO__atomic_compare_exchange_n:
4028 return 6;
4029 }
4030 llvm_unreachable("unknown atomic op");
4031 }
4032
getBaseOriginalType(Expr * Base)4033 QualType OMPArraySectionExpr::getBaseOriginalType(Expr *Base) {
4034 unsigned ArraySectionCount = 0;
4035 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
4036 Base = OASE->getBase();
4037 ++ArraySectionCount;
4038 }
4039 while (auto *ASE = dyn_cast<ArraySubscriptExpr>(Base->IgnoreParens())) {
4040 Base = ASE->getBase();
4041 ++ArraySectionCount;
4042 }
4043 auto OriginalTy = Base->getType();
4044 if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
4045 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
4046 OriginalTy = PVD->getOriginalType().getNonReferenceType();
4047
4048 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
4049 if (OriginalTy->isAnyPointerType())
4050 OriginalTy = OriginalTy->getPointeeType();
4051 else {
4052 assert (OriginalTy->isArrayType());
4053 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
4054 }
4055 }
4056 return OriginalTy;
4057 }
4058
4059