1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG.  Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/LoopInfoImpl.h"
21 #include "llvm/Analysis/LoopIterator.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/Metadata.h"
29 #include "llvm/IR/PassManager.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <algorithm>
34 using namespace llvm;
35 
36 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
37 template class llvm::LoopBase<BasicBlock, Loop>;
38 template class llvm::LoopInfoBase<BasicBlock, Loop>;
39 
40 // Always verify loopinfo if expensive checking is enabled.
41 #ifdef XDEBUG
42 static bool VerifyLoopInfo = true;
43 #else
44 static bool VerifyLoopInfo = false;
45 #endif
46 static cl::opt<bool,true>
47 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
48                 cl::desc("Verify loop info (time consuming)"));
49 
50 // Loop identifier metadata name.
51 static const char *const LoopMDName = "llvm.loop";
52 
53 //===----------------------------------------------------------------------===//
54 // Loop implementation
55 //
56 
57 /// isLoopInvariant - Return true if the specified value is loop invariant
58 ///
isLoopInvariant(const Value * V) const59 bool Loop::isLoopInvariant(const Value *V) const {
60   if (const Instruction *I = dyn_cast<Instruction>(V))
61     return !contains(I);
62   return true;  // All non-instructions are loop invariant
63 }
64 
65 /// hasLoopInvariantOperands - Return true if all the operands of the
66 /// specified instruction are loop invariant.
hasLoopInvariantOperands(const Instruction * I) const67 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
68   return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
69 }
70 
71 /// makeLoopInvariant - If the given value is an instruciton inside of the
72 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
73 /// Return true if the value after any hoisting is loop invariant. This
74 /// function can be used as a slightly more aggressive replacement for
75 /// isLoopInvariant.
76 ///
77 /// If InsertPt is specified, it is the point to hoist instructions to.
78 /// If null, the terminator of the loop preheader is used.
79 ///
makeLoopInvariant(Value * V,bool & Changed,Instruction * InsertPt) const80 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
81                              Instruction *InsertPt) const {
82   if (Instruction *I = dyn_cast<Instruction>(V))
83     return makeLoopInvariant(I, Changed, InsertPt);
84   return true;  // All non-instructions are loop-invariant.
85 }
86 
87 /// makeLoopInvariant - If the given instruction is inside of the
88 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
89 /// Return true if the instruction after any hoisting is loop invariant. This
90 /// function can be used as a slightly more aggressive replacement for
91 /// isLoopInvariant.
92 ///
93 /// If InsertPt is specified, it is the point to hoist instructions to.
94 /// If null, the terminator of the loop preheader is used.
95 ///
makeLoopInvariant(Instruction * I,bool & Changed,Instruction * InsertPt) const96 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
97                              Instruction *InsertPt) const {
98   // Test if the value is already loop-invariant.
99   if (isLoopInvariant(I))
100     return true;
101   if (!isSafeToSpeculativelyExecute(I))
102     return false;
103   if (I->mayReadFromMemory())
104     return false;
105   // EH block instructions are immobile.
106   if (I->isEHPad())
107     return false;
108   // Determine the insertion point, unless one was given.
109   if (!InsertPt) {
110     BasicBlock *Preheader = getLoopPreheader();
111     // Without a preheader, hoisting is not feasible.
112     if (!Preheader)
113       return false;
114     InsertPt = Preheader->getTerminator();
115   }
116   // Don't hoist instructions with loop-variant operands.
117   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
118     if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
119       return false;
120 
121   // Hoist.
122   I->moveBefore(InsertPt);
123 
124   // There is possibility of hoisting this instruction above some arbitrary
125   // condition. Any metadata defined on it can be control dependent on this
126   // condition. Conservatively strip it here so that we don't give any wrong
127   // information to the optimizer.
128   I->dropUnknownNonDebugMetadata();
129 
130   Changed = true;
131   return true;
132 }
133 
134 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
135 /// induction variable: an integer recurrence that starts at 0 and increments
136 /// by one each time through the loop.  If so, return the phi node that
137 /// corresponds to it.
138 ///
139 /// The IndVarSimplify pass transforms loops to have a canonical induction
140 /// variable.
141 ///
getCanonicalInductionVariable() const142 PHINode *Loop::getCanonicalInductionVariable() const {
143   BasicBlock *H = getHeader();
144 
145   BasicBlock *Incoming = nullptr, *Backedge = nullptr;
146   pred_iterator PI = pred_begin(H);
147   assert(PI != pred_end(H) &&
148          "Loop must have at least one backedge!");
149   Backedge = *PI++;
150   if (PI == pred_end(H)) return nullptr;  // dead loop
151   Incoming = *PI++;
152   if (PI != pred_end(H)) return nullptr;  // multiple backedges?
153 
154   if (contains(Incoming)) {
155     if (contains(Backedge))
156       return nullptr;
157     std::swap(Incoming, Backedge);
158   } else if (!contains(Backedge))
159     return nullptr;
160 
161   // Loop over all of the PHI nodes, looking for a canonical indvar.
162   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
163     PHINode *PN = cast<PHINode>(I);
164     if (ConstantInt *CI =
165         dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
166       if (CI->isNullValue())
167         if (Instruction *Inc =
168             dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
169           if (Inc->getOpcode() == Instruction::Add &&
170                 Inc->getOperand(0) == PN)
171             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
172               if (CI->equalsInt(1))
173                 return PN;
174   }
175   return nullptr;
176 }
177 
178 /// isLCSSAForm - Return true if the Loop is in LCSSA form
isLCSSAForm(DominatorTree & DT) const179 bool Loop::isLCSSAForm(DominatorTree &DT) const {
180   for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
181     BasicBlock *BB = *BI;
182     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I) {
183       // Tokens can't be used in PHI nodes and live-out tokens prevent loop
184       // optimizations, so for the purposes of considered LCSSA form, we
185       // can ignore them.
186       if (I->getType()->isTokenTy())
187         continue;
188 
189       for (Use &U : I->uses()) {
190         Instruction *UI = cast<Instruction>(U.getUser());
191         BasicBlock *UserBB = UI->getParent();
192         if (PHINode *P = dyn_cast<PHINode>(UI))
193           UserBB = P->getIncomingBlock(U);
194 
195         // Check the current block, as a fast-path, before checking whether
196         // the use is anywhere in the loop.  Most values are used in the same
197         // block they are defined in.  Also, blocks not reachable from the
198         // entry are special; uses in them don't need to go through PHIs.
199         if (UserBB != BB &&
200             !contains(UserBB) &&
201             DT.isReachableFromEntry(UserBB))
202           return false;
203       }
204     }
205   }
206 
207   return true;
208 }
209 
isRecursivelyLCSSAForm(DominatorTree & DT) const210 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT) const {
211   if (!isLCSSAForm(DT))
212     return false;
213 
214   return std::all_of(begin(), end(), [&](const Loop *L) {
215     return L->isRecursivelyLCSSAForm(DT);
216   });
217 }
218 
219 /// isLoopSimplifyForm - Return true if the Loop is in the form that
220 /// the LoopSimplify form transforms loops to, which is sometimes called
221 /// normal form.
isLoopSimplifyForm() const222 bool Loop::isLoopSimplifyForm() const {
223   // Normal-form loops have a preheader, a single backedge, and all of their
224   // exits have all their predecessors inside the loop.
225   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
226 }
227 
228 /// isSafeToClone - Return true if the loop body is safe to clone in practice.
229 /// Routines that reform the loop CFG and split edges often fail on indirectbr.
isSafeToClone() const230 bool Loop::isSafeToClone() const {
231   // Return false if any loop blocks contain indirectbrs, or there are any calls
232   // to noduplicate functions.
233   for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
234     if (isa<IndirectBrInst>((*I)->getTerminator()))
235       return false;
236 
237     if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator())) {
238       if (II->cannotDuplicate())
239         return false;
240       // Return false if any loop blocks contain invokes to EH-pads other than
241       // landingpads;  we don't know how to split those edges yet.
242       auto *FirstNonPHI = II->getUnwindDest()->getFirstNonPHI();
243       if (FirstNonPHI->isEHPad() && !isa<LandingPadInst>(FirstNonPHI))
244         return false;
245     }
246 
247     for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) {
248       if (const CallInst *CI = dyn_cast<CallInst>(BI)) {
249         if (CI->cannotDuplicate())
250           return false;
251       }
252       if (BI->getType()->isTokenTy() && BI->isUsedOutsideOfBlock(*I))
253         return false;
254     }
255   }
256   return true;
257 }
258 
getLoopID() const259 MDNode *Loop::getLoopID() const {
260   MDNode *LoopID = nullptr;
261   if (isLoopSimplifyForm()) {
262     LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName);
263   } else {
264     // Go through each predecessor of the loop header and check the
265     // terminator for the metadata.
266     BasicBlock *H = getHeader();
267     for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
268       TerminatorInst *TI = (*I)->getTerminator();
269       MDNode *MD = nullptr;
270 
271       // Check if this terminator branches to the loop header.
272       for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
273         if (TI->getSuccessor(i) == H) {
274           MD = TI->getMetadata(LoopMDName);
275           break;
276         }
277       }
278       if (!MD)
279         return nullptr;
280 
281       if (!LoopID)
282         LoopID = MD;
283       else if (MD != LoopID)
284         return nullptr;
285     }
286   }
287   if (!LoopID || LoopID->getNumOperands() == 0 ||
288       LoopID->getOperand(0) != LoopID)
289     return nullptr;
290   return LoopID;
291 }
292 
setLoopID(MDNode * LoopID) const293 void Loop::setLoopID(MDNode *LoopID) const {
294   assert(LoopID && "Loop ID should not be null");
295   assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
296   assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
297 
298   if (isLoopSimplifyForm()) {
299     getLoopLatch()->getTerminator()->setMetadata(LoopMDName, LoopID);
300     return;
301   }
302 
303   BasicBlock *H = getHeader();
304   for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
305     TerminatorInst *TI = (*I)->getTerminator();
306     for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
307       if (TI->getSuccessor(i) == H)
308         TI->setMetadata(LoopMDName, LoopID);
309     }
310   }
311 }
312 
isAnnotatedParallel() const313 bool Loop::isAnnotatedParallel() const {
314   MDNode *desiredLoopIdMetadata = getLoopID();
315 
316   if (!desiredLoopIdMetadata)
317       return false;
318 
319   // The loop branch contains the parallel loop metadata. In order to ensure
320   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
321   // dependencies (thus converted the loop back to a sequential loop), check
322   // that all the memory instructions in the loop contain parallelism metadata
323   // that point to the same unique "loop id metadata" the loop branch does.
324   for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) {
325     for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end();
326          II != EE; II++) {
327 
328       if (!II->mayReadOrWriteMemory())
329         continue;
330 
331       // The memory instruction can refer to the loop identifier metadata
332       // directly or indirectly through another list metadata (in case of
333       // nested parallel loops). The loop identifier metadata refers to
334       // itself so we can check both cases with the same routine.
335       MDNode *loopIdMD =
336           II->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
337 
338       if (!loopIdMD)
339         return false;
340 
341       bool loopIdMDFound = false;
342       for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) {
343         if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) {
344           loopIdMDFound = true;
345           break;
346         }
347       }
348 
349       if (!loopIdMDFound)
350         return false;
351     }
352   }
353   return true;
354 }
355 
356 
357 /// hasDedicatedExits - Return true if no exit block for the loop
358 /// has a predecessor that is outside the loop.
hasDedicatedExits() const359 bool Loop::hasDedicatedExits() const {
360   // Each predecessor of each exit block of a normal loop is contained
361   // within the loop.
362   SmallVector<BasicBlock *, 4> ExitBlocks;
363   getExitBlocks(ExitBlocks);
364   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
365     for (pred_iterator PI = pred_begin(ExitBlocks[i]),
366          PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
367       if (!contains(*PI))
368         return false;
369   // All the requirements are met.
370   return true;
371 }
372 
373 /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
374 /// These are the blocks _outside of the current loop_ which are branched to.
375 /// This assumes that loop exits are in canonical form.
376 ///
377 void
getUniqueExitBlocks(SmallVectorImpl<BasicBlock * > & ExitBlocks) const378 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
379   assert(hasDedicatedExits() &&
380          "getUniqueExitBlocks assumes the loop has canonical form exits!");
381 
382   SmallVector<BasicBlock *, 32> switchExitBlocks;
383 
384   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
385 
386     BasicBlock *current = *BI;
387     switchExitBlocks.clear();
388 
389     for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
390       // If block is inside the loop then it is not a exit block.
391       if (contains(*I))
392         continue;
393 
394       pred_iterator PI = pred_begin(*I);
395       BasicBlock *firstPred = *PI;
396 
397       // If current basic block is this exit block's first predecessor
398       // then only insert exit block in to the output ExitBlocks vector.
399       // This ensures that same exit block is not inserted twice into
400       // ExitBlocks vector.
401       if (current != firstPred)
402         continue;
403 
404       // If a terminator has more then two successors, for example SwitchInst,
405       // then it is possible that there are multiple edges from current block
406       // to one exit block.
407       if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
408         ExitBlocks.push_back(*I);
409         continue;
410       }
411 
412       // In case of multiple edges from current block to exit block, collect
413       // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
414       // duplicate edges.
415       if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
416           == switchExitBlocks.end()) {
417         switchExitBlocks.push_back(*I);
418         ExitBlocks.push_back(*I);
419       }
420     }
421   }
422 }
423 
424 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
425 /// block, return that block. Otherwise return null.
getUniqueExitBlock() const426 BasicBlock *Loop::getUniqueExitBlock() const {
427   SmallVector<BasicBlock *, 8> UniqueExitBlocks;
428   getUniqueExitBlocks(UniqueExitBlocks);
429   if (UniqueExitBlocks.size() == 1)
430     return UniqueExitBlocks[0];
431   return nullptr;
432 }
433 
434 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const435 void Loop::dump() const {
436   print(dbgs());
437 }
438 #endif
439 
440 //===----------------------------------------------------------------------===//
441 // UnloopUpdater implementation
442 //
443 
444 namespace {
445 /// Find the new parent loop for all blocks within the "unloop" whose last
446 /// backedges has just been removed.
447 class UnloopUpdater {
448   Loop *Unloop;
449   LoopInfo *LI;
450 
451   LoopBlocksDFS DFS;
452 
453   // Map unloop's immediate subloops to their nearest reachable parents. Nested
454   // loops within these subloops will not change parents. However, an immediate
455   // subloop's new parent will be the nearest loop reachable from either its own
456   // exits *or* any of its nested loop's exits.
457   DenseMap<Loop*, Loop*> SubloopParents;
458 
459   // Flag the presence of an irreducible backedge whose destination is a block
460   // directly contained by the original unloop.
461   bool FoundIB;
462 
463 public:
UnloopUpdater(Loop * UL,LoopInfo * LInfo)464   UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
465     Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
466 
467   void updateBlockParents();
468 
469   void removeBlocksFromAncestors();
470 
471   void updateSubloopParents();
472 
473 protected:
474   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
475 };
476 } // end anonymous namespace
477 
478 /// updateBlockParents - Update the parent loop for all blocks that are directly
479 /// contained within the original "unloop".
updateBlockParents()480 void UnloopUpdater::updateBlockParents() {
481   if (Unloop->getNumBlocks()) {
482     // Perform a post order CFG traversal of all blocks within this loop,
483     // propagating the nearest loop from sucessors to predecessors.
484     LoopBlocksTraversal Traversal(DFS, LI);
485     for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
486            POE = Traversal.end(); POI != POE; ++POI) {
487 
488       Loop *L = LI->getLoopFor(*POI);
489       Loop *NL = getNearestLoop(*POI, L);
490 
491       if (NL != L) {
492         // For reducible loops, NL is now an ancestor of Unloop.
493         assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
494                "uninitialized successor");
495         LI->changeLoopFor(*POI, NL);
496       }
497       else {
498         // Or the current block is part of a subloop, in which case its parent
499         // is unchanged.
500         assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
501       }
502     }
503   }
504   // Each irreducible loop within the unloop induces a round of iteration using
505   // the DFS result cached by Traversal.
506   bool Changed = FoundIB;
507   for (unsigned NIters = 0; Changed; ++NIters) {
508     assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
509 
510     // Iterate over the postorder list of blocks, propagating the nearest loop
511     // from successors to predecessors as before.
512     Changed = false;
513     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
514            POE = DFS.endPostorder(); POI != POE; ++POI) {
515 
516       Loop *L = LI->getLoopFor(*POI);
517       Loop *NL = getNearestLoop(*POI, L);
518       if (NL != L) {
519         assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
520                "uninitialized successor");
521         LI->changeLoopFor(*POI, NL);
522         Changed = true;
523       }
524     }
525   }
526 }
527 
528 /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
529 /// their new parents.
removeBlocksFromAncestors()530 void UnloopUpdater::removeBlocksFromAncestors() {
531   // Remove all unloop's blocks (including those in nested subloops) from
532   // ancestors below the new parent loop.
533   for (Loop::block_iterator BI = Unloop->block_begin(),
534          BE = Unloop->block_end(); BI != BE; ++BI) {
535     Loop *OuterParent = LI->getLoopFor(*BI);
536     if (Unloop->contains(OuterParent)) {
537       while (OuterParent->getParentLoop() != Unloop)
538         OuterParent = OuterParent->getParentLoop();
539       OuterParent = SubloopParents[OuterParent];
540     }
541     // Remove blocks from former Ancestors except Unloop itself which will be
542     // deleted.
543     for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
544          OldParent = OldParent->getParentLoop()) {
545       assert(OldParent && "new loop is not an ancestor of the original");
546       OldParent->removeBlockFromLoop(*BI);
547     }
548   }
549 }
550 
551 /// updateSubloopParents - Update the parent loop for all subloops directly
552 /// nested within unloop.
updateSubloopParents()553 void UnloopUpdater::updateSubloopParents() {
554   while (!Unloop->empty()) {
555     Loop *Subloop = *std::prev(Unloop->end());
556     Unloop->removeChildLoop(std::prev(Unloop->end()));
557 
558     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
559     if (Loop *Parent = SubloopParents[Subloop])
560       Parent->addChildLoop(Subloop);
561     else
562       LI->addTopLevelLoop(Subloop);
563   }
564 }
565 
566 /// getNearestLoop - Return the nearest parent loop among this block's
567 /// successors. If a successor is a subloop header, consider its parent to be
568 /// the nearest parent of the subloop's exits.
569 ///
570 /// For subloop blocks, simply update SubloopParents and return NULL.
getNearestLoop(BasicBlock * BB,Loop * BBLoop)571 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
572 
573   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
574   // is considered uninitialized.
575   Loop *NearLoop = BBLoop;
576 
577   Loop *Subloop = nullptr;
578   if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
579     Subloop = NearLoop;
580     // Find the subloop ancestor that is directly contained within Unloop.
581     while (Subloop->getParentLoop() != Unloop) {
582       Subloop = Subloop->getParentLoop();
583       assert(Subloop && "subloop is not an ancestor of the original loop");
584     }
585     // Get the current nearest parent of the Subloop exits, initially Unloop.
586     NearLoop =
587       SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second;
588   }
589 
590   succ_iterator I = succ_begin(BB), E = succ_end(BB);
591   if (I == E) {
592     assert(!Subloop && "subloop blocks must have a successor");
593     NearLoop = nullptr; // unloop blocks may now exit the function.
594   }
595   for (; I != E; ++I) {
596     if (*I == BB)
597       continue; // self loops are uninteresting
598 
599     Loop *L = LI->getLoopFor(*I);
600     if (L == Unloop) {
601       // This successor has not been processed. This path must lead to an
602       // irreducible backedge.
603       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
604       FoundIB = true;
605     }
606     if (L != Unloop && Unloop->contains(L)) {
607       // Successor is in a subloop.
608       if (Subloop)
609         continue; // Branching within subloops. Ignore it.
610 
611       // BB branches from the original into a subloop header.
612       assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
613 
614       // Get the current nearest parent of the Subloop's exits.
615       L = SubloopParents[L];
616       // L could be Unloop if the only exit was an irreducible backedge.
617     }
618     if (L == Unloop) {
619       continue;
620     }
621     // Handle critical edges from Unloop into a sibling loop.
622     if (L && !L->contains(Unloop)) {
623       L = L->getParentLoop();
624     }
625     // Remember the nearest parent loop among successors or subloop exits.
626     if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
627       NearLoop = L;
628   }
629   if (Subloop) {
630     SubloopParents[Subloop] = NearLoop;
631     return BBLoop;
632   }
633   return NearLoop;
634 }
635 
LoopInfo(const DominatorTreeBase<BasicBlock> & DomTree)636 LoopInfo::LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree) {
637   analyze(DomTree);
638 }
639 
updateUnloop(Loop * Unloop)640 void LoopInfo::updateUnloop(Loop *Unloop) {
641   Unloop->markUnlooped();
642 
643   // First handle the special case of no parent loop to simplify the algorithm.
644   if (!Unloop->getParentLoop()) {
645     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
646     for (Loop::block_iterator I = Unloop->block_begin(),
647                               E = Unloop->block_end();
648          I != E; ++I) {
649 
650       // Don't reparent blocks in subloops.
651       if (getLoopFor(*I) != Unloop)
652         continue;
653 
654       // Blocks no longer have a parent but are still referenced by Unloop until
655       // the Unloop object is deleted.
656       changeLoopFor(*I, nullptr);
657     }
658 
659     // Remove the loop from the top-level LoopInfo object.
660     for (iterator I = begin();; ++I) {
661       assert(I != end() && "Couldn't find loop");
662       if (*I == Unloop) {
663         removeLoop(I);
664         break;
665       }
666     }
667 
668     // Move all of the subloops to the top-level.
669     while (!Unloop->empty())
670       addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
671 
672     return;
673   }
674 
675   // Update the parent loop for all blocks within the loop. Blocks within
676   // subloops will not change parents.
677   UnloopUpdater Updater(Unloop, this);
678   Updater.updateBlockParents();
679 
680   // Remove blocks from former ancestor loops.
681   Updater.removeBlocksFromAncestors();
682 
683   // Add direct subloops as children in their new parent loop.
684   Updater.updateSubloopParents();
685 
686   // Remove unloop from its parent loop.
687   Loop *ParentLoop = Unloop->getParentLoop();
688   for (Loop::iterator I = ParentLoop->begin();; ++I) {
689     assert(I != ParentLoop->end() && "Couldn't find loop");
690     if (*I == Unloop) {
691       ParentLoop->removeChildLoop(I);
692       break;
693     }
694   }
695 }
696 
697 char LoopAnalysis::PassID;
698 
run(Function & F,AnalysisManager<Function> * AM)699 LoopInfo LoopAnalysis::run(Function &F, AnalysisManager<Function> *AM) {
700   // FIXME: Currently we create a LoopInfo from scratch for every function.
701   // This may prove to be too wasteful due to deallocating and re-allocating
702   // memory each time for the underlying map and vector datastructures. At some
703   // point it may prove worthwhile to use a freelist and recycle LoopInfo
704   // objects. I don't want to add that kind of complexity until the scope of
705   // the problem is better understood.
706   LoopInfo LI;
707   LI.analyze(AM->getResult<DominatorTreeAnalysis>(F));
708   return LI;
709 }
710 
run(Function & F,AnalysisManager<Function> * AM)711 PreservedAnalyses LoopPrinterPass::run(Function &F,
712                                        AnalysisManager<Function> *AM) {
713   AM->getResult<LoopAnalysis>(F).print(OS);
714   return PreservedAnalyses::all();
715 }
716 
PrintLoopPass()717 PrintLoopPass::PrintLoopPass() : OS(dbgs()) {}
PrintLoopPass(raw_ostream & OS,const std::string & Banner)718 PrintLoopPass::PrintLoopPass(raw_ostream &OS, const std::string &Banner)
719     : OS(OS), Banner(Banner) {}
720 
run(Loop & L)721 PreservedAnalyses PrintLoopPass::run(Loop &L) {
722   OS << Banner;
723   for (auto *Block : L.blocks())
724     if (Block)
725       Block->print(OS);
726     else
727       OS << "Printing <null> block";
728   return PreservedAnalyses::all();
729 }
730 
731 //===----------------------------------------------------------------------===//
732 // LoopInfo implementation
733 //
734 
735 char LoopInfoWrapperPass::ID = 0;
736 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
737                       true, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)738 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
739 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
740                     true, true)
741 
742 bool LoopInfoWrapperPass::runOnFunction(Function &) {
743   releaseMemory();
744   LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
745   return false;
746 }
747 
verifyAnalysis() const748 void LoopInfoWrapperPass::verifyAnalysis() const {
749   // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
750   // function each time verifyAnalysis is called is very expensive. The
751   // -verify-loop-info option can enable this. In order to perform some
752   // checking by default, LoopPass has been taught to call verifyLoop manually
753   // during loop pass sequences.
754   if (VerifyLoopInfo)
755     LI.verify();
756 }
757 
getAnalysisUsage(AnalysisUsage & AU) const758 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
759   AU.setPreservesAll();
760   AU.addRequired<DominatorTreeWrapperPass>();
761 }
762 
print(raw_ostream & OS,const Module *) const763 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
764   LI.print(OS);
765 }
766 
767 //===----------------------------------------------------------------------===//
768 // LoopBlocksDFS implementation
769 //
770 
771 /// Traverse the loop blocks and store the DFS result.
772 /// Useful for clients that just want the final DFS result and don't need to
773 /// visit blocks during the initial traversal.
perform(LoopInfo * LI)774 void LoopBlocksDFS::perform(LoopInfo *LI) {
775   LoopBlocksTraversal Traversal(*this, LI);
776   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
777          POE = Traversal.end(); POI != POE; ++POI) ;
778 }
779