1 //===-------------------- Graph.h - PBQP Graph ------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // PBQP Graph class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 
15 #ifndef LLVM_CODEGEN_PBQP_GRAPH_H
16 #define LLVM_CODEGEN_PBQP_GRAPH_H
17 
18 #include "llvm/ADT/ilist.h"
19 #include "llvm/ADT/ilist_node.h"
20 #include "llvm/Support/Debug.h"
21 #include <list>
22 #include <map>
23 #include <set>
24 #include <vector>
25 
26 namespace llvm {
27 namespace PBQP {
28 
29   class GraphBase {
30   public:
31     typedef unsigned NodeId;
32     typedef unsigned EdgeId;
33 
34     /// @brief Returns a value representing an invalid (non-existent) node.
invalidNodeId()35     static NodeId invalidNodeId() {
36       return std::numeric_limits<NodeId>::max();
37     }
38 
39     /// @brief Returns a value representing an invalid (non-existent) edge.
invalidEdgeId()40     static EdgeId invalidEdgeId() {
41       return std::numeric_limits<EdgeId>::max();
42     }
43   };
44 
45   /// PBQP Graph class.
46   /// Instances of this class describe PBQP problems.
47   ///
48   template <typename SolverT>
49   class Graph : public GraphBase {
50   private:
51     typedef typename SolverT::CostAllocator CostAllocator;
52   public:
53     typedef typename SolverT::RawVector RawVector;
54     typedef typename SolverT::RawMatrix RawMatrix;
55     typedef typename SolverT::Vector Vector;
56     typedef typename SolverT::Matrix Matrix;
57     typedef typename CostAllocator::VectorPtr VectorPtr;
58     typedef typename CostAllocator::MatrixPtr MatrixPtr;
59     typedef typename SolverT::NodeMetadata NodeMetadata;
60     typedef typename SolverT::EdgeMetadata EdgeMetadata;
61     typedef typename SolverT::GraphMetadata GraphMetadata;
62 
63   private:
64 
65     class NodeEntry {
66     public:
67       typedef std::vector<EdgeId> AdjEdgeList;
68       typedef AdjEdgeList::size_type AdjEdgeIdx;
69       typedef AdjEdgeList::const_iterator AdjEdgeItr;
70 
getInvalidAdjEdgeIdx()71       static AdjEdgeIdx getInvalidAdjEdgeIdx() {
72         return std::numeric_limits<AdjEdgeIdx>::max();
73       }
74 
NodeEntry(VectorPtr Costs)75       NodeEntry(VectorPtr Costs) : Costs(Costs) {}
76 
addAdjEdgeId(EdgeId EId)77       AdjEdgeIdx addAdjEdgeId(EdgeId EId) {
78         AdjEdgeIdx Idx = AdjEdgeIds.size();
79         AdjEdgeIds.push_back(EId);
80         return Idx;
81       }
82 
removeAdjEdgeId(Graph & G,NodeId ThisNId,AdjEdgeIdx Idx)83       void removeAdjEdgeId(Graph &G, NodeId ThisNId, AdjEdgeIdx Idx) {
84         // Swap-and-pop for fast removal.
85         //   1) Update the adj index of the edge currently at back().
86         //   2) Move last Edge down to Idx.
87         //   3) pop_back()
88         // If Idx == size() - 1 then the setAdjEdgeIdx and swap are
89         // redundant, but both operations are cheap.
90         G.getEdge(AdjEdgeIds.back()).setAdjEdgeIdx(ThisNId, Idx);
91         AdjEdgeIds[Idx] = AdjEdgeIds.back();
92         AdjEdgeIds.pop_back();
93       }
94 
getAdjEdgeIds()95       const AdjEdgeList& getAdjEdgeIds() const { return AdjEdgeIds; }
96 
97       VectorPtr Costs;
98       NodeMetadata Metadata;
99     private:
100       AdjEdgeList AdjEdgeIds;
101     };
102 
103     class EdgeEntry {
104     public:
EdgeEntry(NodeId N1Id,NodeId N2Id,MatrixPtr Costs)105       EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs)
106         : Costs(Costs) {
107         NIds[0] = N1Id;
108         NIds[1] = N2Id;
109         ThisEdgeAdjIdxs[0] = NodeEntry::getInvalidAdjEdgeIdx();
110         ThisEdgeAdjIdxs[1] = NodeEntry::getInvalidAdjEdgeIdx();
111       }
112 
invalidate()113       void invalidate() {
114         NIds[0] = NIds[1] = Graph::invalidNodeId();
115         ThisEdgeAdjIdxs[0] = ThisEdgeAdjIdxs[1] =
116           NodeEntry::getInvalidAdjEdgeIdx();
117         Costs = nullptr;
118       }
119 
connectToN(Graph & G,EdgeId ThisEdgeId,unsigned NIdx)120       void connectToN(Graph &G, EdgeId ThisEdgeId, unsigned NIdx) {
121         assert(ThisEdgeAdjIdxs[NIdx] == NodeEntry::getInvalidAdjEdgeIdx() &&
122                "Edge already connected to NIds[NIdx].");
123         NodeEntry &N = G.getNode(NIds[NIdx]);
124         ThisEdgeAdjIdxs[NIdx] = N.addAdjEdgeId(ThisEdgeId);
125       }
126 
connectTo(Graph & G,EdgeId ThisEdgeId,NodeId NId)127       void connectTo(Graph &G, EdgeId ThisEdgeId, NodeId NId) {
128         if (NId == NIds[0])
129           connectToN(G, ThisEdgeId, 0);
130         else {
131           assert(NId == NIds[1] && "Edge does not connect NId.");
132           connectToN(G, ThisEdgeId, 1);
133         }
134       }
135 
connect(Graph & G,EdgeId ThisEdgeId)136       void connect(Graph &G, EdgeId ThisEdgeId) {
137         connectToN(G, ThisEdgeId, 0);
138         connectToN(G, ThisEdgeId, 1);
139       }
140 
setAdjEdgeIdx(NodeId NId,typename NodeEntry::AdjEdgeIdx NewIdx)141       void setAdjEdgeIdx(NodeId NId, typename NodeEntry::AdjEdgeIdx NewIdx) {
142         if (NId == NIds[0])
143           ThisEdgeAdjIdxs[0] = NewIdx;
144         else {
145           assert(NId == NIds[1] && "Edge not connected to NId");
146           ThisEdgeAdjIdxs[1] = NewIdx;
147         }
148       }
149 
disconnectFromN(Graph & G,unsigned NIdx)150       void disconnectFromN(Graph &G, unsigned NIdx) {
151         assert(ThisEdgeAdjIdxs[NIdx] != NodeEntry::getInvalidAdjEdgeIdx() &&
152                "Edge not connected to NIds[NIdx].");
153         NodeEntry &N = G.getNode(NIds[NIdx]);
154         N.removeAdjEdgeId(G, NIds[NIdx], ThisEdgeAdjIdxs[NIdx]);
155         ThisEdgeAdjIdxs[NIdx] = NodeEntry::getInvalidAdjEdgeIdx();
156       }
157 
disconnectFrom(Graph & G,NodeId NId)158       void disconnectFrom(Graph &G, NodeId NId) {
159         if (NId == NIds[0])
160           disconnectFromN(G, 0);
161         else {
162           assert(NId == NIds[1] && "Edge does not connect NId");
163           disconnectFromN(G, 1);
164         }
165       }
166 
getN1Id()167       NodeId getN1Id() const { return NIds[0]; }
getN2Id()168       NodeId getN2Id() const { return NIds[1]; }
169       MatrixPtr Costs;
170       EdgeMetadata Metadata;
171     private:
172       NodeId NIds[2];
173       typename NodeEntry::AdjEdgeIdx ThisEdgeAdjIdxs[2];
174     };
175 
176     // ----- MEMBERS -----
177 
178     GraphMetadata Metadata;
179     CostAllocator CostAlloc;
180     SolverT *Solver;
181 
182     typedef std::vector<NodeEntry> NodeVector;
183     typedef std::vector<NodeId> FreeNodeVector;
184     NodeVector Nodes;
185     FreeNodeVector FreeNodeIds;
186 
187     typedef std::vector<EdgeEntry> EdgeVector;
188     typedef std::vector<EdgeId> FreeEdgeVector;
189     EdgeVector Edges;
190     FreeEdgeVector FreeEdgeIds;
191 
192     // ----- INTERNAL METHODS -----
193 
getNode(NodeId NId)194     NodeEntry &getNode(NodeId NId) {
195       assert(NId < Nodes.size() && "Out of bound NodeId");
196       return Nodes[NId];
197     }
getNode(NodeId NId)198     const NodeEntry &getNode(NodeId NId) const {
199       assert(NId < Nodes.size() && "Out of bound NodeId");
200       return Nodes[NId];
201     }
202 
getEdge(EdgeId EId)203     EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; }
getEdge(EdgeId EId)204     const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; }
205 
addConstructedNode(NodeEntry N)206     NodeId addConstructedNode(NodeEntry N) {
207       NodeId NId = 0;
208       if (!FreeNodeIds.empty()) {
209         NId = FreeNodeIds.back();
210         FreeNodeIds.pop_back();
211         Nodes[NId] = std::move(N);
212       } else {
213         NId = Nodes.size();
214         Nodes.push_back(std::move(N));
215       }
216       return NId;
217     }
218 
addConstructedEdge(EdgeEntry E)219     EdgeId addConstructedEdge(EdgeEntry E) {
220       assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() &&
221              "Attempt to add duplicate edge.");
222       EdgeId EId = 0;
223       if (!FreeEdgeIds.empty()) {
224         EId = FreeEdgeIds.back();
225         FreeEdgeIds.pop_back();
226         Edges[EId] = std::move(E);
227       } else {
228         EId = Edges.size();
229         Edges.push_back(std::move(E));
230       }
231 
232       EdgeEntry &NE = getEdge(EId);
233 
234       // Add the edge to the adjacency sets of its nodes.
235       NE.connect(*this, EId);
236       return EId;
237     }
238 
Graph(const Graph & Other)239     Graph(const Graph &Other) {}
240     void operator=(const Graph &Other) {}
241 
242   public:
243 
244     typedef typename NodeEntry::AdjEdgeItr AdjEdgeItr;
245 
246     class NodeItr {
247     public:
248       typedef std::forward_iterator_tag iterator_category;
249       typedef NodeId value_type;
250       typedef int difference_type;
251       typedef NodeId* pointer;
252       typedef NodeId& reference;
253 
NodeItr(NodeId CurNId,const Graph & G)254       NodeItr(NodeId CurNId, const Graph &G)
255         : CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) {
256         this->CurNId = findNextInUse(CurNId); // Move to first in-use node id
257       }
258 
259       bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; }
260       bool operator!=(const NodeItr &O) const { return !(*this == O); }
261       NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; }
262       NodeId operator*() const { return CurNId; }
263 
264     private:
findNextInUse(NodeId NId)265       NodeId findNextInUse(NodeId NId) const {
266         while (NId < EndNId &&
267                std::find(FreeNodeIds.begin(), FreeNodeIds.end(), NId) !=
268                FreeNodeIds.end()) {
269           ++NId;
270         }
271         return NId;
272       }
273 
274       NodeId CurNId, EndNId;
275       const FreeNodeVector &FreeNodeIds;
276     };
277 
278     class EdgeItr {
279     public:
EdgeItr(EdgeId CurEId,const Graph & G)280       EdgeItr(EdgeId CurEId, const Graph &G)
281         : CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) {
282         this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id
283       }
284 
285       bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; }
286       bool operator!=(const EdgeItr &O) const { return !(*this == O); }
287       EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; }
288       EdgeId operator*() const { return CurEId; }
289 
290     private:
findNextInUse(EdgeId EId)291       EdgeId findNextInUse(EdgeId EId) const {
292         while (EId < EndEId &&
293                std::find(FreeEdgeIds.begin(), FreeEdgeIds.end(), EId) !=
294                FreeEdgeIds.end()) {
295           ++EId;
296         }
297         return EId;
298       }
299 
300       EdgeId CurEId, EndEId;
301       const FreeEdgeVector &FreeEdgeIds;
302     };
303 
304     class NodeIdSet {
305     public:
NodeIdSet(const Graph & G)306       NodeIdSet(const Graph &G) : G(G) { }
begin()307       NodeItr begin() const { return NodeItr(0, G); }
end()308       NodeItr end() const { return NodeItr(G.Nodes.size(), G); }
empty()309       bool empty() const { return G.Nodes.empty(); }
size()310       typename NodeVector::size_type size() const {
311         return G.Nodes.size() - G.FreeNodeIds.size();
312       }
313     private:
314       const Graph& G;
315     };
316 
317     class EdgeIdSet {
318     public:
EdgeIdSet(const Graph & G)319       EdgeIdSet(const Graph &G) : G(G) { }
begin()320       EdgeItr begin() const { return EdgeItr(0, G); }
end()321       EdgeItr end() const { return EdgeItr(G.Edges.size(), G); }
empty()322       bool empty() const { return G.Edges.empty(); }
size()323       typename NodeVector::size_type size() const {
324         return G.Edges.size() - G.FreeEdgeIds.size();
325       }
326     private:
327       const Graph& G;
328     };
329 
330     class AdjEdgeIdSet {
331     public:
AdjEdgeIdSet(const NodeEntry & NE)332       AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) { }
begin()333       typename NodeEntry::AdjEdgeItr begin() const {
334         return NE.getAdjEdgeIds().begin();
335       }
end()336       typename NodeEntry::AdjEdgeItr end() const {
337         return NE.getAdjEdgeIds().end();
338       }
empty()339       bool empty() const { return NE.getAdjEdgeIds().empty(); }
size()340       typename NodeEntry::AdjEdgeList::size_type size() const {
341         return NE.getAdjEdgeIds().size();
342       }
343     private:
344       const NodeEntry &NE;
345     };
346 
347     /// @brief Construct an empty PBQP graph.
Graph()348     Graph() : Solver(nullptr) {}
349 
350     /// @brief Construct an empty PBQP graph with the given graph metadata.
Graph(GraphMetadata Metadata)351     Graph(GraphMetadata Metadata) : Metadata(Metadata), Solver(nullptr) {}
352 
353     /// @brief Get a reference to the graph metadata.
getMetadata()354     GraphMetadata& getMetadata() { return Metadata; }
355 
356     /// @brief Get a const-reference to the graph metadata.
getMetadata()357     const GraphMetadata& getMetadata() const { return Metadata; }
358 
359     /// @brief Lock this graph to the given solver instance in preparation
360     /// for running the solver. This method will call solver.handleAddNode for
361     /// each node in the graph, and handleAddEdge for each edge, to give the
362     /// solver an opportunity to set up any requried metadata.
setSolver(SolverT & S)363     void setSolver(SolverT &S) {
364       assert(!Solver && "Solver already set. Call unsetSolver().");
365       Solver = &S;
366       for (auto NId : nodeIds())
367         Solver->handleAddNode(NId);
368       for (auto EId : edgeIds())
369         Solver->handleAddEdge(EId);
370     }
371 
372     /// @brief Release from solver instance.
unsetSolver()373     void unsetSolver() {
374       assert(Solver && "Solver not set.");
375       Solver = nullptr;
376     }
377 
378     /// @brief Add a node with the given costs.
379     /// @param Costs Cost vector for the new node.
380     /// @return Node iterator for the added node.
381     template <typename OtherVectorT>
addNode(OtherVectorT Costs)382     NodeId addNode(OtherVectorT Costs) {
383       // Get cost vector from the problem domain
384       VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
385       NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts));
386       if (Solver)
387         Solver->handleAddNode(NId);
388       return NId;
389     }
390 
391     /// @brief Add a node bypassing the cost allocator.
392     /// @param Costs Cost vector ptr for the new node (must be convertible to
393     ///        VectorPtr).
394     /// @return Node iterator for the added node.
395     ///
396     ///   This method allows for fast addition of a node whose costs don't need
397     /// to be passed through the cost allocator. The most common use case for
398     /// this is when duplicating costs from an existing node (when using a
399     /// pooling allocator). These have already been uniqued, so we can avoid
400     /// re-constructing and re-uniquing them by attaching them directly to the
401     /// new node.
402     template <typename OtherVectorPtrT>
addNodeBypassingCostAllocator(OtherVectorPtrT Costs)403     NodeId addNodeBypassingCostAllocator(OtherVectorPtrT Costs) {
404       NodeId NId = addConstructedNode(NodeEntry(Costs));
405       if (Solver)
406         Solver->handleAddNode(NId);
407       return NId;
408     }
409 
410     /// @brief Add an edge between the given nodes with the given costs.
411     /// @param N1Id First node.
412     /// @param N2Id Second node.
413     /// @param Costs Cost matrix for new edge.
414     /// @return Edge iterator for the added edge.
415     template <typename OtherVectorT>
addEdge(NodeId N1Id,NodeId N2Id,OtherVectorT Costs)416     EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) {
417       assert(getNodeCosts(N1Id).getLength() == Costs.getRows() &&
418              getNodeCosts(N2Id).getLength() == Costs.getCols() &&
419              "Matrix dimensions mismatch.");
420       // Get cost matrix from the problem domain.
421       MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
422       EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts));
423       if (Solver)
424         Solver->handleAddEdge(EId);
425       return EId;
426     }
427 
428     /// @brief Add an edge bypassing the cost allocator.
429     /// @param N1Id First node.
430     /// @param N2Id Second node.
431     /// @param Costs Cost matrix for new edge.
432     /// @return Edge iterator for the added edge.
433     ///
434     ///   This method allows for fast addition of an edge whose costs don't need
435     /// to be passed through the cost allocator. The most common use case for
436     /// this is when duplicating costs from an existing edge (when using a
437     /// pooling allocator). These have already been uniqued, so we can avoid
438     /// re-constructing and re-uniquing them by attaching them directly to the
439     /// new edge.
440     template <typename OtherMatrixPtrT>
addEdgeBypassingCostAllocator(NodeId N1Id,NodeId N2Id,OtherMatrixPtrT Costs)441     NodeId addEdgeBypassingCostAllocator(NodeId N1Id, NodeId N2Id,
442                                          OtherMatrixPtrT Costs) {
443       assert(getNodeCosts(N1Id).getLength() == Costs->getRows() &&
444              getNodeCosts(N2Id).getLength() == Costs->getCols() &&
445              "Matrix dimensions mismatch.");
446       // Get cost matrix from the problem domain.
447       EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, Costs));
448       if (Solver)
449         Solver->handleAddEdge(EId);
450       return EId;
451     }
452 
453     /// @brief Returns true if the graph is empty.
empty()454     bool empty() const { return NodeIdSet(*this).empty(); }
455 
nodeIds()456     NodeIdSet nodeIds() const { return NodeIdSet(*this); }
edgeIds()457     EdgeIdSet edgeIds() const { return EdgeIdSet(*this); }
458 
adjEdgeIds(NodeId NId)459     AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); }
460 
461     /// @brief Get the number of nodes in the graph.
462     /// @return Number of nodes in the graph.
getNumNodes()463     unsigned getNumNodes() const { return NodeIdSet(*this).size(); }
464 
465     /// @brief Get the number of edges in the graph.
466     /// @return Number of edges in the graph.
getNumEdges()467     unsigned getNumEdges() const { return EdgeIdSet(*this).size(); }
468 
469     /// @brief Set a node's cost vector.
470     /// @param NId Node to update.
471     /// @param Costs New costs to set.
472     template <typename OtherVectorT>
setNodeCosts(NodeId NId,OtherVectorT Costs)473     void setNodeCosts(NodeId NId, OtherVectorT Costs) {
474       VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
475       if (Solver)
476         Solver->handleSetNodeCosts(NId, *AllocatedCosts);
477       getNode(NId).Costs = AllocatedCosts;
478     }
479 
480     /// @brief Get a VectorPtr to a node's cost vector. Rarely useful - use
481     ///        getNodeCosts where possible.
482     /// @param NId Node id.
483     /// @return VectorPtr to node cost vector.
484     ///
485     ///   This method is primarily useful for duplicating costs quickly by
486     /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer
487     /// getNodeCosts when dealing with node cost values.
getNodeCostsPtr(NodeId NId)488     const VectorPtr& getNodeCostsPtr(NodeId NId) const {
489       return getNode(NId).Costs;
490     }
491 
492     /// @brief Get a node's cost vector.
493     /// @param NId Node id.
494     /// @return Node cost vector.
getNodeCosts(NodeId NId)495     const Vector& getNodeCosts(NodeId NId) const {
496       return *getNodeCostsPtr(NId);
497     }
498 
getNodeMetadata(NodeId NId)499     NodeMetadata& getNodeMetadata(NodeId NId) {
500       return getNode(NId).Metadata;
501     }
502 
getNodeMetadata(NodeId NId)503     const NodeMetadata& getNodeMetadata(NodeId NId) const {
504       return getNode(NId).Metadata;
505     }
506 
getNodeDegree(NodeId NId)507     typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const {
508       return getNode(NId).getAdjEdgeIds().size();
509     }
510 
511     /// @brief Update an edge's cost matrix.
512     /// @param EId Edge id.
513     /// @param Costs New cost matrix.
514     template <typename OtherMatrixT>
updateEdgeCosts(EdgeId EId,OtherMatrixT Costs)515     void updateEdgeCosts(EdgeId EId, OtherMatrixT Costs) {
516       MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
517       if (Solver)
518         Solver->handleUpdateCosts(EId, *AllocatedCosts);
519       getEdge(EId).Costs = AllocatedCosts;
520     }
521 
522     /// @brief Get a MatrixPtr to a node's cost matrix. Rarely useful - use
523     ///        getEdgeCosts where possible.
524     /// @param EId Edge id.
525     /// @return MatrixPtr to edge cost matrix.
526     ///
527     ///   This method is primarily useful for duplicating costs quickly by
528     /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer
529     /// getEdgeCosts when dealing with edge cost values.
getEdgeCostsPtr(EdgeId EId)530     const MatrixPtr& getEdgeCostsPtr(EdgeId EId) const {
531       return getEdge(EId).Costs;
532     }
533 
534     /// @brief Get an edge's cost matrix.
535     /// @param EId Edge id.
536     /// @return Edge cost matrix.
getEdgeCosts(EdgeId EId)537     const Matrix& getEdgeCosts(EdgeId EId) const {
538       return *getEdge(EId).Costs;
539     }
540 
getEdgeMetadata(EdgeId EId)541     EdgeMetadata& getEdgeMetadata(EdgeId EId) {
542       return getEdge(EId).Metadata;
543     }
544 
getEdgeMetadata(EdgeId EId)545     const EdgeMetadata& getEdgeMetadata(EdgeId EId) const {
546       return getEdge(EId).Metadata;
547     }
548 
549     /// @brief Get the first node connected to this edge.
550     /// @param EId Edge id.
551     /// @return The first node connected to the given edge.
getEdgeNode1Id(EdgeId EId)552     NodeId getEdgeNode1Id(EdgeId EId) const {
553       return getEdge(EId).getN1Id();
554     }
555 
556     /// @brief Get the second node connected to this edge.
557     /// @param EId Edge id.
558     /// @return The second node connected to the given edge.
getEdgeNode2Id(EdgeId EId)559     NodeId getEdgeNode2Id(EdgeId EId) const {
560       return getEdge(EId).getN2Id();
561     }
562 
563     /// @brief Get the "other" node connected to this edge.
564     /// @param EId Edge id.
565     /// @param NId Node id for the "given" node.
566     /// @return The iterator for the "other" node connected to this edge.
getEdgeOtherNodeId(EdgeId EId,NodeId NId)567     NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) {
568       EdgeEntry &E = getEdge(EId);
569       if (E.getN1Id() == NId) {
570         return E.getN2Id();
571       } // else
572       return E.getN1Id();
573     }
574 
575     /// @brief Get the edge connecting two nodes.
576     /// @param N1Id First node id.
577     /// @param N2Id Second node id.
578     /// @return An id for edge (N1Id, N2Id) if such an edge exists,
579     ///         otherwise returns an invalid edge id.
findEdge(NodeId N1Id,NodeId N2Id)580     EdgeId findEdge(NodeId N1Id, NodeId N2Id) {
581       for (auto AEId : adjEdgeIds(N1Id)) {
582         if ((getEdgeNode1Id(AEId) == N2Id) ||
583             (getEdgeNode2Id(AEId) == N2Id)) {
584           return AEId;
585         }
586       }
587       return invalidEdgeId();
588     }
589 
590     /// @brief Remove a node from the graph.
591     /// @param NId Node id.
removeNode(NodeId NId)592     void removeNode(NodeId NId) {
593       if (Solver)
594         Solver->handleRemoveNode(NId);
595       NodeEntry &N = getNode(NId);
596       // TODO: Can this be for-each'd?
597       for (AdjEdgeItr AEItr = N.adjEdgesBegin(),
598              AEEnd = N.adjEdgesEnd();
599            AEItr != AEEnd;) {
600         EdgeId EId = *AEItr;
601         ++AEItr;
602         removeEdge(EId);
603       }
604       FreeNodeIds.push_back(NId);
605     }
606 
607     /// @brief Disconnect an edge from the given node.
608     ///
609     /// Removes the given edge from the adjacency list of the given node.
610     /// This operation leaves the edge in an 'asymmetric' state: It will no
611     /// longer appear in an iteration over the given node's (NId's) edges, but
612     /// will appear in an iteration over the 'other', unnamed node's edges.
613     ///
614     /// This does not correspond to any normal graph operation, but exists to
615     /// support efficient PBQP graph-reduction based solvers. It is used to
616     /// 'effectively' remove the unnamed node from the graph while the solver
617     /// is performing the reduction. The solver will later call reconnectNode
618     /// to restore the edge in the named node's adjacency list.
619     ///
620     /// Since the degree of a node is the number of connected edges,
621     /// disconnecting an edge from a node 'u' will cause the degree of 'u' to
622     /// drop by 1.
623     ///
624     /// A disconnected edge WILL still appear in an iteration over the graph
625     /// edges.
626     ///
627     /// A disconnected edge should not be removed from the graph, it should be
628     /// reconnected first.
629     ///
630     /// A disconnected edge can be reconnected by calling the reconnectEdge
631     /// method.
disconnectEdge(EdgeId EId,NodeId NId)632     void disconnectEdge(EdgeId EId, NodeId NId) {
633       if (Solver)
634         Solver->handleDisconnectEdge(EId, NId);
635 
636       EdgeEntry &E = getEdge(EId);
637       E.disconnectFrom(*this, NId);
638     }
639 
640     /// @brief Convenience method to disconnect all neighbours from the given
641     ///        node.
disconnectAllNeighborsFromNode(NodeId NId)642     void disconnectAllNeighborsFromNode(NodeId NId) {
643       for (auto AEId : adjEdgeIds(NId))
644         disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId));
645     }
646 
647     /// @brief Re-attach an edge to its nodes.
648     ///
649     /// Adds an edge that had been previously disconnected back into the
650     /// adjacency set of the nodes that the edge connects.
reconnectEdge(EdgeId EId,NodeId NId)651     void reconnectEdge(EdgeId EId, NodeId NId) {
652       EdgeEntry &E = getEdge(EId);
653       E.connectTo(*this, EId, NId);
654       if (Solver)
655         Solver->handleReconnectEdge(EId, NId);
656     }
657 
658     /// @brief Remove an edge from the graph.
659     /// @param EId Edge id.
removeEdge(EdgeId EId)660     void removeEdge(EdgeId EId) {
661       if (Solver)
662         Solver->handleRemoveEdge(EId);
663       EdgeEntry &E = getEdge(EId);
664       E.disconnect();
665       FreeEdgeIds.push_back(EId);
666       Edges[EId].invalidate();
667     }
668 
669     /// @brief Remove all nodes and edges from the graph.
clear()670     void clear() {
671       Nodes.clear();
672       FreeNodeIds.clear();
673       Edges.clear();
674       FreeEdgeIds.clear();
675     }
676   };
677 
678 }  // namespace PBQP
679 }  // namespace llvm
680 
681 #endif // LLVM_CODEGEN_PBQP_GRAPH_HPP
682