1 /*
2 *******************************************************************************
3 * Copyright (C) 1997-2015, International Business Machines Corporation and
4 * others. All Rights Reserved.
5 *******************************************************************************
6 *
7 * File GREGOCAL.CPP
8 *
9 * Modification History:
10 *
11 *   Date        Name        Description
12 *   02/05/97    clhuang     Creation.
13 *   03/28/97    aliu        Made highly questionable fix to computeFields to
14 *                           handle DST correctly.
15 *   04/22/97    aliu        Cleaned up code drastically.  Added monthLength().
16 *                           Finished unimplemented parts of computeTime() for
17 *                           week-based date determination.  Removed quetionable
18 *                           fix and wrote correct fix for computeFields() and
19 *                           daylight time handling.  Rewrote inDaylightTime()
20 *                           and computeFields() to handle sensitive Daylight to
21 *                           Standard time transitions correctly.
22 *   05/08/97    aliu        Added code review changes.  Fixed isLeapYear() to
23 *                           not cutover.
24 *   08/12/97    aliu        Added equivalentTo.  Misc other fixes.  Updated
25 *                           add() from Java source.
26 *    07/28/98    stephen        Sync up with JDK 1.2
27 *    09/14/98    stephen        Changed type of kOneDay, kOneWeek to double.
28 *                            Fixed bug in roll()
29 *   10/15/99    aliu        Fixed j31, incorrect WEEK_OF_YEAR computation.
30 *   10/15/99    aliu        Fixed j32, cannot set date to Feb 29 2000 AD.
31 *                           {JDK bug 4210209 4209272}
32 *   11/15/99    weiv        Added YEAR_WOY and DOW_LOCAL computation
33 *                           to timeToFields method, updated kMinValues, kMaxValues & kLeastMaxValues
34 *   12/09/99    aliu        Fixed j81, calculation errors and roll bugs
35 *                           in year of cutover.
36 *   01/24/2000  aliu        Revised computeJulianDay for YEAR YEAR_WOY WOY.
37 ********************************************************************************
38 */
39 
40 #include "unicode/utypes.h"
41 #include <float.h>
42 
43 #if !UCONFIG_NO_FORMATTING
44 
45 #include "unicode/gregocal.h"
46 #include "gregoimp.h"
47 #include "umutex.h"
48 #include "uassert.h"
49 
50 // *****************************************************************************
51 // class GregorianCalendar
52 // *****************************************************************************
53 
54 /**
55 * Note that the Julian date used here is not a true Julian date, since
56 * it is measured from midnight, not noon.  This value is the Julian
57 * day number of January 1, 1970 (Gregorian calendar) at noon UTC. [LIU]
58 */
59 
60 static const int16_t kNumDays[]
61 = {0,31,59,90,120,151,181,212,243,273,304,334}; // 0-based, for day-in-year
62 static const int16_t kLeapNumDays[]
63 = {0,31,60,91,121,152,182,213,244,274,305,335}; // 0-based, for day-in-year
64 static const int8_t kMonthLength[]
65 = {31,28,31,30,31,30,31,31,30,31,30,31}; // 0-based
66 static const int8_t kLeapMonthLength[]
67 = {31,29,31,30,31,30,31,31,30,31,30,31}; // 0-based
68 
69 // setTimeInMillis() limits the Julian day range to +/-7F000000.
70 // This would seem to limit the year range to:
71 //  ms=+183882168921600000  jd=7f000000  December 20, 5828963 AD
72 //  ms=-184303902528000000  jd=81000000  September 20, 5838270 BC
73 // HOWEVER, CalendarRegressionTest/Test4167060 shows that the actual
74 // range limit on the year field is smaller (~ +/-140000). [alan 3.0]
75 
76 static const int32_t kGregorianCalendarLimits[UCAL_FIELD_COUNT][4] = {
77     // Minimum  Greatest    Least  Maximum
78     //           Minimum  Maximum
79     {        0,        0,        1,        1}, // ERA
80     {        1,        1,   140742,   144683}, // YEAR
81     {        0,        0,       11,       11}, // MONTH
82     {        1,        1,       52,       53}, // WEEK_OF_YEAR
83     {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH
84     {        1,        1,       28,       31}, // DAY_OF_MONTH
85     {        1,        1,      365,      366}, // DAY_OF_YEAR
86     {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK
87     {       -1,       -1,        4,        5}, // DAY_OF_WEEK_IN_MONTH
88     {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM
89     {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR
90     {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY
91     {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE
92     {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND
93     {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND
94     {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET
95     {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET
96     {  -140742,  -140742,   140742,   144683}, // YEAR_WOY
97     {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL
98     {  -140742,  -140742,   140742,   144683}, // EXTENDED_YEAR
99     {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY
100     {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY
101     {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // IS_LEAP_MONTH
102 };
103 
104 /*
105 * <pre>
106 *                            Greatest       Least
107 * Field name        Minimum   Minimum     Maximum     Maximum
108 * ----------        -------   -------     -------     -------
109 * ERA                     0         0           1           1
110 * YEAR                    1         1      140742      144683
111 * MONTH                   0         0          11          11
112 * WEEK_OF_YEAR            1         1          52          53
113 * WEEK_OF_MONTH           0         0           4           6
114 * DAY_OF_MONTH            1         1          28          31
115 * DAY_OF_YEAR             1         1         365         366
116 * DAY_OF_WEEK             1         1           7           7
117 * DAY_OF_WEEK_IN_MONTH   -1        -1           4           5
118 * AM_PM                   0         0           1           1
119 * HOUR                    0         0          11          11
120 * HOUR_OF_DAY             0         0          23          23
121 * MINUTE                  0         0          59          59
122 * SECOND                  0         0          59          59
123 * MILLISECOND             0         0         999         999
124 * ZONE_OFFSET           -12*      -12*         12*         12*
125 * DST_OFFSET              0         0           1*          1*
126 * YEAR_WOY                1         1      140742      144683
127 * DOW_LOCAL               1         1           7           7
128 * </pre>
129 * (*) In units of one-hour
130 */
131 
132 #if defined( U_DEBUG_CALSVC ) || defined (U_DEBUG_CAL)
133 #include <stdio.h>
134 #endif
135 
136 U_NAMESPACE_BEGIN
137 
138 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(GregorianCalendar)
139 
140 // 00:00:00 UTC, October 15, 1582, expressed in ms from the epoch.
141 // Note that only Italy and other Catholic countries actually
142 // observed this cutover.  Most other countries followed in
143 // the next few centuries, some as late as 1928. [LIU]
144 // in Java, -12219292800000L
145 //const UDate GregorianCalendar::kPapalCutover = -12219292800000L;
146 static const uint32_t kCutoverJulianDay = 2299161;
147 static const UDate kPapalCutover = (2299161.0 - kEpochStartAsJulianDay) * U_MILLIS_PER_DAY;
148 //static const UDate kPapalCutoverJulian = (2299161.0 - kEpochStartAsJulianDay);
149 
150 // -------------------------------------
151 
GregorianCalendar(UErrorCode & status)152 GregorianCalendar::GregorianCalendar(UErrorCode& status)
153 :   Calendar(status),
154 fGregorianCutover(kPapalCutover),
155 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
156 fIsGregorian(TRUE), fInvertGregorian(FALSE)
157 {
158     setTimeInMillis(getNow(), status);
159 }
160 
161 // -------------------------------------
162 
GregorianCalendar(TimeZone * zone,UErrorCode & status)163 GregorianCalendar::GregorianCalendar(TimeZone* zone, UErrorCode& status)
164 :   Calendar(zone, Locale::getDefault(), status),
165 fGregorianCutover(kPapalCutover),
166 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
167 fIsGregorian(TRUE), fInvertGregorian(FALSE)
168 {
169     setTimeInMillis(getNow(), status);
170 }
171 
172 // -------------------------------------
173 
GregorianCalendar(const TimeZone & zone,UErrorCode & status)174 GregorianCalendar::GregorianCalendar(const TimeZone& zone, UErrorCode& status)
175 :   Calendar(zone, Locale::getDefault(), status),
176 fGregorianCutover(kPapalCutover),
177 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
178 fIsGregorian(TRUE), fInvertGregorian(FALSE)
179 {
180     setTimeInMillis(getNow(), status);
181 }
182 
183 // -------------------------------------
184 
GregorianCalendar(const Locale & aLocale,UErrorCode & status)185 GregorianCalendar::GregorianCalendar(const Locale& aLocale, UErrorCode& status)
186 :   Calendar(TimeZone::createDefault(), aLocale, status),
187 fGregorianCutover(kPapalCutover),
188 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
189 fIsGregorian(TRUE), fInvertGregorian(FALSE)
190 {
191     setTimeInMillis(getNow(), status);
192 }
193 
194 // -------------------------------------
195 
GregorianCalendar(TimeZone * zone,const Locale & aLocale,UErrorCode & status)196 GregorianCalendar::GregorianCalendar(TimeZone* zone, const Locale& aLocale,
197                                      UErrorCode& status)
198                                      :   Calendar(zone, aLocale, status),
199                                      fGregorianCutover(kPapalCutover),
200                                      fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
201                                      fIsGregorian(TRUE), fInvertGregorian(FALSE)
202 {
203     setTimeInMillis(getNow(), status);
204 }
205 
206 // -------------------------------------
207 
GregorianCalendar(const TimeZone & zone,const Locale & aLocale,UErrorCode & status)208 GregorianCalendar::GregorianCalendar(const TimeZone& zone, const Locale& aLocale,
209                                      UErrorCode& status)
210                                      :   Calendar(zone, aLocale, status),
211                                      fGregorianCutover(kPapalCutover),
212                                      fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
213                                      fIsGregorian(TRUE), fInvertGregorian(FALSE)
214 {
215     setTimeInMillis(getNow(), status);
216 }
217 
218 // -------------------------------------
219 
GregorianCalendar(int32_t year,int32_t month,int32_t date,UErrorCode & status)220 GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date,
221                                      UErrorCode& status)
222                                      :   Calendar(TimeZone::createDefault(), Locale::getDefault(), status),
223                                      fGregorianCutover(kPapalCutover),
224                                      fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
225                                      fIsGregorian(TRUE), fInvertGregorian(FALSE)
226 {
227     set(UCAL_ERA, AD);
228     set(UCAL_YEAR, year);
229     set(UCAL_MONTH, month);
230     set(UCAL_DATE, date);
231 }
232 
233 // -------------------------------------
234 
GregorianCalendar(int32_t year,int32_t month,int32_t date,int32_t hour,int32_t minute,UErrorCode & status)235 GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date,
236                                      int32_t hour, int32_t minute, UErrorCode& status)
237                                      :   Calendar(TimeZone::createDefault(), Locale::getDefault(), status),
238                                      fGregorianCutover(kPapalCutover),
239                                      fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
240                                      fIsGregorian(TRUE), fInvertGregorian(FALSE)
241 {
242     set(UCAL_ERA, AD);
243     set(UCAL_YEAR, year);
244     set(UCAL_MONTH, month);
245     set(UCAL_DATE, date);
246     set(UCAL_HOUR_OF_DAY, hour);
247     set(UCAL_MINUTE, minute);
248 }
249 
250 // -------------------------------------
251 
GregorianCalendar(int32_t year,int32_t month,int32_t date,int32_t hour,int32_t minute,int32_t second,UErrorCode & status)252 GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date,
253                                      int32_t hour, int32_t minute, int32_t second,
254                                      UErrorCode& status)
255                                      :   Calendar(TimeZone::createDefault(), Locale::getDefault(), status),
256                                      fGregorianCutover(kPapalCutover),
257                                      fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
258                                      fIsGregorian(TRUE), fInvertGregorian(FALSE)
259 {
260     set(UCAL_ERA, AD);
261     set(UCAL_YEAR, year);
262     set(UCAL_MONTH, month);
263     set(UCAL_DATE, date);
264     set(UCAL_HOUR_OF_DAY, hour);
265     set(UCAL_MINUTE, minute);
266     set(UCAL_SECOND, second);
267 }
268 
269 // -------------------------------------
270 
~GregorianCalendar()271 GregorianCalendar::~GregorianCalendar()
272 {
273 }
274 
275 // -------------------------------------
276 
GregorianCalendar(const GregorianCalendar & source)277 GregorianCalendar::GregorianCalendar(const GregorianCalendar &source)
278 :   Calendar(source),
279 fGregorianCutover(source.fGregorianCutover),
280 fCutoverJulianDay(source.fCutoverJulianDay), fNormalizedGregorianCutover(source.fNormalizedGregorianCutover), fGregorianCutoverYear(source.fGregorianCutoverYear),
281 fIsGregorian(source.fIsGregorian), fInvertGregorian(source.fInvertGregorian)
282 {
283 }
284 
285 // -------------------------------------
286 
clone() const287 Calendar* GregorianCalendar::clone() const
288 {
289     return new GregorianCalendar(*this);
290 }
291 
292 // -------------------------------------
293 
294 GregorianCalendar &
operator =(const GregorianCalendar & right)295 GregorianCalendar::operator=(const GregorianCalendar &right)
296 {
297     if (this != &right)
298     {
299         Calendar::operator=(right);
300         fGregorianCutover = right.fGregorianCutover;
301         fNormalizedGregorianCutover = right.fNormalizedGregorianCutover;
302         fGregorianCutoverYear = right.fGregorianCutoverYear;
303         fCutoverJulianDay = right.fCutoverJulianDay;
304     }
305     return *this;
306 }
307 
308 // -------------------------------------
309 
isEquivalentTo(const Calendar & other) const310 UBool GregorianCalendar::isEquivalentTo(const Calendar& other) const
311 {
312     // Calendar override.
313     return Calendar::isEquivalentTo(other) &&
314         fGregorianCutover == ((GregorianCalendar*)&other)->fGregorianCutover;
315 }
316 
317 // -------------------------------------
318 
319 void
setGregorianChange(UDate date,UErrorCode & status)320 GregorianCalendar::setGregorianChange(UDate date, UErrorCode& status)
321 {
322     if (U_FAILURE(status))
323         return;
324 
325     fGregorianCutover = date;
326 
327     // Precompute two internal variables which we use to do the actual
328     // cutover computations.  These are the normalized cutover, which is the
329     // midnight at or before the cutover, and the cutover year.  The
330     // normalized cutover is in pure date milliseconds; it contains no time
331     // of day or timezone component, and it used to compare against other
332     // pure date values.
333     int32_t cutoverDay = (int32_t)ClockMath::floorDivide(fGregorianCutover, (double)kOneDay);
334     fNormalizedGregorianCutover = cutoverDay * kOneDay;
335 
336     // Handle the rare case of numeric overflow.  If the user specifies a
337     // change of UDate(Long.MIN_VALUE), in order to get a pure Gregorian
338     // calendar, then the epoch day is -106751991168, which when multiplied
339     // by ONE_DAY gives 9223372036794351616 -- the negative value is too
340     // large for 64 bits, and overflows into a positive value.  We correct
341     // this by using the next day, which for all intents is semantically
342     // equivalent.
343     if (cutoverDay < 0 && fNormalizedGregorianCutover > 0) {
344         fNormalizedGregorianCutover = (cutoverDay + 1) * kOneDay;
345     }
346 
347     // Normalize the year so BC values are represented as 0 and negative
348     // values.
349     GregorianCalendar *cal = new GregorianCalendar(getTimeZone(), status);
350     /* test for NULL */
351     if (cal == 0) {
352         status = U_MEMORY_ALLOCATION_ERROR;
353         return;
354     }
355     if(U_FAILURE(status))
356         return;
357     cal->setTime(date, status);
358     fGregorianCutoverYear = cal->get(UCAL_YEAR, status);
359     if (cal->get(UCAL_ERA, status) == BC)
360         fGregorianCutoverYear = 1 - fGregorianCutoverYear;
361     fCutoverJulianDay = cutoverDay;
362     delete cal;
363 }
364 
365 
handleComputeFields(int32_t julianDay,UErrorCode & status)366 void GregorianCalendar::handleComputeFields(int32_t julianDay, UErrorCode& status) {
367     int32_t eyear, month, dayOfMonth, dayOfYear, unusedRemainder;
368 
369 
370     if(U_FAILURE(status)) {
371         return;
372     }
373 
374 #if defined (U_DEBUG_CAL)
375     fprintf(stderr, "%s:%d: jd%d- (greg's %d)- [cut=%d]\n",
376         __FILE__, __LINE__, julianDay, getGregorianDayOfYear(), fCutoverJulianDay);
377 #endif
378 
379 
380     if (julianDay >= fCutoverJulianDay) {
381         month = getGregorianMonth();
382         dayOfMonth = getGregorianDayOfMonth();
383         dayOfYear = getGregorianDayOfYear();
384         eyear = getGregorianYear();
385     } else {
386         // The Julian epoch day (not the same as Julian Day)
387         // is zero on Saturday December 30, 0 (Gregorian).
388         int32_t julianEpochDay = julianDay - (kJan1_1JulianDay - 2);
389 		eyear = (int32_t) ClockMath::floorDivide((4.0*julianEpochDay) + 1464.0, (int32_t) 1461, unusedRemainder);
390 
391         // Compute the Julian calendar day number for January 1, eyear
392         int32_t january1 = 365*(eyear-1) + ClockMath::floorDivide(eyear-1, (int32_t)4);
393         dayOfYear = (julianEpochDay - january1); // 0-based
394 
395         // Julian leap years occurred historically every 4 years starting
396         // with 8 AD.  Before 8 AD the spacing is irregular; every 3 years
397         // from 45 BC to 9 BC, and then none until 8 AD.  However, we don't
398         // implement this historical detail; instead, we implement the
399         // computatinally cleaner proleptic calendar, which assumes
400         // consistent 4-year cycles throughout time.
401         UBool isLeap = ((eyear&0x3) == 0); // equiv. to (eyear%4 == 0)
402 
403         // Common Julian/Gregorian calculation
404         int32_t correction = 0;
405         int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1
406         if (dayOfYear >= march1) {
407             correction = isLeap ? 1 : 2;
408         }
409         month = (12 * (dayOfYear + correction) + 6) / 367; // zero-based month
410         dayOfMonth = dayOfYear - (isLeap?kLeapNumDays[month]:kNumDays[month]) + 1; // one-based DOM
411         ++dayOfYear;
412 #if defined (U_DEBUG_CAL)
413         //     fprintf(stderr, "%d - %d[%d] + 1\n", dayOfYear, isLeap?kLeapNumDays[month]:kNumDays[month], month );
414         //           fprintf(stderr, "%s:%d:  greg's HCF %d -> %d/%d/%d not %d/%d/%d\n",
415         //                   __FILE__, __LINE__,julianDay,
416         //          eyear,month,dayOfMonth,
417         //          getGregorianYear(), getGregorianMonth(), getGregorianDayOfMonth()  );
418         fprintf(stderr, "%s:%d: doy %d (greg's %d)- [cut=%d]\n",
419             __FILE__, __LINE__, dayOfYear, getGregorianDayOfYear(), fCutoverJulianDay);
420 #endif
421 
422     }
423 
424     // [j81] if we are after the cutover in its year, shift the day of the year
425     if((eyear == fGregorianCutoverYear) && (julianDay >= fCutoverJulianDay)) {
426         //from handleComputeMonthStart
427         int32_t gregShift = Grego::gregorianShift(eyear);
428 #if defined (U_DEBUG_CAL)
429         fprintf(stderr, "%s:%d:  gregorian shift %d :::  doy%d => %d [cut=%d]\n",
430             __FILE__, __LINE__,gregShift, dayOfYear, dayOfYear+gregShift, fCutoverJulianDay);
431 #endif
432         dayOfYear += gregShift;
433     }
434 
435     internalSet(UCAL_MONTH, month);
436     internalSet(UCAL_DAY_OF_MONTH, dayOfMonth);
437     internalSet(UCAL_DAY_OF_YEAR, dayOfYear);
438     internalSet(UCAL_EXTENDED_YEAR, eyear);
439     int32_t era = AD;
440     if (eyear < 1) {
441         era = BC;
442         eyear = 1 - eyear;
443     }
444     internalSet(UCAL_ERA, era);
445     internalSet(UCAL_YEAR, eyear);
446 }
447 
448 
449 // -------------------------------------
450 
451 UDate
getGregorianChange() const452 GregorianCalendar::getGregorianChange() const
453 {
454     return fGregorianCutover;
455 }
456 
457 // -------------------------------------
458 
459 UBool
isLeapYear(int32_t year) const460 GregorianCalendar::isLeapYear(int32_t year) const
461 {
462     // MSVC complains bitterly if we try to use Grego::isLeapYear here
463     // NOTE: year&0x3 == year%4
464     return (year >= fGregorianCutoverYear ?
465         (((year&0x3) == 0) && ((year%100 != 0) || (year%400 == 0))) : // Gregorian
466     ((year&0x3) == 0)); // Julian
467 }
468 
469 // -------------------------------------
470 
handleComputeJulianDay(UCalendarDateFields bestField)471 int32_t GregorianCalendar::handleComputeJulianDay(UCalendarDateFields bestField)
472 {
473     fInvertGregorian = FALSE;
474 
475     int32_t jd = Calendar::handleComputeJulianDay(bestField);
476 
477     if((bestField == UCAL_WEEK_OF_YEAR) &&  // if we are doing WOY calculations, we are counting relative to Jan 1 *julian*
478         (internalGet(UCAL_EXTENDED_YEAR)==fGregorianCutoverYear) &&
479         jd >= fCutoverJulianDay) {
480             fInvertGregorian = TRUE;  // So that the Julian Jan 1 will be used in handleComputeMonthStart
481             return Calendar::handleComputeJulianDay(bestField);
482         }
483 
484 
485         // The following check handles portions of the cutover year BEFORE the
486         // cutover itself happens.
487         //if ((fIsGregorian==TRUE) != (jd >= fCutoverJulianDay)) {  /*  cutoverJulianDay)) { */
488         if ((fIsGregorian==TRUE) != (jd >= fCutoverJulianDay)) {  /*  cutoverJulianDay)) { */
489 #if defined (U_DEBUG_CAL)
490             fprintf(stderr, "%s:%d: jd [invert] %d\n",
491                 __FILE__, __LINE__, jd);
492 #endif
493             fInvertGregorian = TRUE;
494             jd = Calendar::handleComputeJulianDay(bestField);
495 #if defined (U_DEBUG_CAL)
496             fprintf(stderr, "%s:%d:  fIsGregorian %s, fInvertGregorian %s - ",
497                 __FILE__, __LINE__,fIsGregorian?"T":"F", fInvertGregorian?"T":"F");
498             fprintf(stderr, " jd NOW %d\n",
499                 jd);
500 #endif
501         } else {
502 #if defined (U_DEBUG_CAL)
503             fprintf(stderr, "%s:%d: jd [==] %d - %sfIsGregorian %sfInvertGregorian, %d\n",
504                 __FILE__, __LINE__, jd, fIsGregorian?"T":"F", fInvertGregorian?"T":"F", bestField);
505 #endif
506         }
507 
508         if(fIsGregorian && (internalGet(UCAL_EXTENDED_YEAR) == fGregorianCutoverYear)) {
509             int32_t gregShift = Grego::gregorianShift(internalGet(UCAL_EXTENDED_YEAR));
510             if (bestField == UCAL_DAY_OF_YEAR) {
511 #if defined (U_DEBUG_CAL)
512                 fprintf(stderr, "%s:%d: [DOY%d] gregorian shift of JD %d += %d\n",
513                     __FILE__, __LINE__, fFields[bestField],jd, gregShift);
514 #endif
515                 jd -= gregShift;
516             } else if ( bestField == UCAL_WEEK_OF_MONTH ) {
517                 int32_t weekShift = 14;
518 #if defined (U_DEBUG_CAL)
519                 fprintf(stderr, "%s:%d: [WOY/WOM] gregorian week shift of %d += %d\n",
520                     __FILE__, __LINE__, jd, weekShift);
521 #endif
522                 jd += weekShift; // shift by weeks for week based fields.
523             }
524         }
525 
526         return jd;
527 }
528 
handleComputeMonthStart(int32_t eyear,int32_t month,UBool) const529 int32_t GregorianCalendar::handleComputeMonthStart(int32_t eyear, int32_t month,
530 
531                                                    UBool /* useMonth */) const
532 {
533     GregorianCalendar *nonConstThis = (GregorianCalendar*)this; // cast away const
534 
535     // If the month is out of range, adjust it into range, and
536     // modify the extended year value accordingly.
537     if (month < 0 || month > 11) {
538         eyear += ClockMath::floorDivide(month, 12, month);
539     }
540 
541     UBool isLeap = eyear%4 == 0;
542     int32_t y = eyear-1;
543     int32_t julianDay = 365*y + ClockMath::floorDivide(y, 4) + (kJan1_1JulianDay - 3);
544 
545     nonConstThis->fIsGregorian = (eyear >= fGregorianCutoverYear);
546 #if defined (U_DEBUG_CAL)
547     fprintf(stderr, "%s:%d: (hcms%d/%d) fIsGregorian %s, fInvertGregorian %s\n",
548         __FILE__, __LINE__, eyear,month, fIsGregorian?"T":"F", fInvertGregorian?"T":"F");
549 #endif
550     if (fInvertGregorian) {
551         nonConstThis->fIsGregorian = !fIsGregorian;
552     }
553     if (fIsGregorian) {
554         isLeap = isLeap && ((eyear%100 != 0) || (eyear%400 == 0));
555         // Add 2 because Gregorian calendar starts 2 days after
556         // Julian calendar
557         int32_t gregShift = Grego::gregorianShift(eyear);
558 #if defined (U_DEBUG_CAL)
559         fprintf(stderr, "%s:%d: (hcms%d/%d) gregorian shift of %d += %d\n",
560             __FILE__, __LINE__, eyear, month, julianDay, gregShift);
561 #endif
562         julianDay += gregShift;
563     }
564 
565     // At this point julianDay indicates the day BEFORE the first
566     // day of January 1, <eyear> of either the Julian or Gregorian
567     // calendar.
568 
569     if (month != 0) {
570         julianDay += isLeap?kLeapNumDays[month]:kNumDays[month];
571     }
572 
573     return julianDay;
574 }
575 
handleGetMonthLength(int32_t extendedYear,int32_t month) const576 int32_t GregorianCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month)  const
577 {
578     // If the month is out of range, adjust it into range, and
579     // modify the extended year value accordingly.
580     if (month < 0 || month > 11) {
581         extendedYear += ClockMath::floorDivide(month, 12, month);
582     }
583 
584     return isLeapYear(extendedYear) ? kLeapMonthLength[month] : kMonthLength[month];
585 }
586 
handleGetYearLength(int32_t eyear) const587 int32_t GregorianCalendar::handleGetYearLength(int32_t eyear) const {
588     return isLeapYear(eyear) ? 366 : 365;
589 }
590 
591 
592 int32_t
monthLength(int32_t month) const593 GregorianCalendar::monthLength(int32_t month) const
594 {
595     int32_t year = internalGet(UCAL_EXTENDED_YEAR);
596     return handleGetMonthLength(year, month);
597 }
598 
599 // -------------------------------------
600 
601 int32_t
monthLength(int32_t month,int32_t year) const602 GregorianCalendar::monthLength(int32_t month, int32_t year) const
603 {
604     return isLeapYear(year) ? kLeapMonthLength[month] : kMonthLength[month];
605 }
606 
607 // -------------------------------------
608 
609 int32_t
yearLength(int32_t year) const610 GregorianCalendar::yearLength(int32_t year) const
611 {
612     return isLeapYear(year) ? 366 : 365;
613 }
614 
615 // -------------------------------------
616 
617 int32_t
yearLength() const618 GregorianCalendar::yearLength() const
619 {
620     return isLeapYear(internalGet(UCAL_YEAR)) ? 366 : 365;
621 }
622 
623 // -------------------------------------
624 
625 /**
626 * After adjustments such as add(MONTH), add(YEAR), we don't want the
627 * month to jump around.  E.g., we don't want Jan 31 + 1 month to go to Mar
628 * 3, we want it to go to Feb 28.  Adjustments which might run into this
629 * problem call this method to retain the proper month.
630 */
631 void
pinDayOfMonth()632 GregorianCalendar::pinDayOfMonth()
633 {
634     int32_t monthLen = monthLength(internalGet(UCAL_MONTH));
635     int32_t dom = internalGet(UCAL_DATE);
636     if(dom > monthLen)
637         set(UCAL_DATE, monthLen);
638 }
639 
640 // -------------------------------------
641 
642 
643 UBool
validateFields() const644 GregorianCalendar::validateFields() const
645 {
646     for (int32_t field = 0; field < UCAL_FIELD_COUNT; field++) {
647         // Ignore DATE and DAY_OF_YEAR which are handled below
648         if (field != UCAL_DATE &&
649             field != UCAL_DAY_OF_YEAR &&
650             isSet((UCalendarDateFields)field) &&
651             ! boundsCheck(internalGet((UCalendarDateFields)field), (UCalendarDateFields)field))
652             return FALSE;
653     }
654 
655     // Values differ in Least-Maximum and Maximum should be handled
656     // specially.
657     if (isSet(UCAL_DATE)) {
658         int32_t date = internalGet(UCAL_DATE);
659         if (date < getMinimum(UCAL_DATE) ||
660             date > monthLength(internalGet(UCAL_MONTH))) {
661                 return FALSE;
662             }
663     }
664 
665     if (isSet(UCAL_DAY_OF_YEAR)) {
666         int32_t days = internalGet(UCAL_DAY_OF_YEAR);
667         if (days < 1 || days > yearLength()) {
668             return FALSE;
669         }
670     }
671 
672     // Handle DAY_OF_WEEK_IN_MONTH, which must not have the value zero.
673     // We've checked against minimum and maximum above already.
674     if (isSet(UCAL_DAY_OF_WEEK_IN_MONTH) &&
675         0 == internalGet(UCAL_DAY_OF_WEEK_IN_MONTH)) {
676             return FALSE;
677         }
678 
679         return TRUE;
680 }
681 
682 // -------------------------------------
683 
684 UBool
boundsCheck(int32_t value,UCalendarDateFields field) const685 GregorianCalendar::boundsCheck(int32_t value, UCalendarDateFields field) const
686 {
687     return value >= getMinimum(field) && value <= getMaximum(field);
688 }
689 
690 // -------------------------------------
691 
692 UDate
getEpochDay(UErrorCode & status)693 GregorianCalendar::getEpochDay(UErrorCode& status)
694 {
695     complete(status);
696     // Divide by 1000 (convert to seconds) in order to prevent overflow when
697     // dealing with UDate(Long.MIN_VALUE) and UDate(Long.MAX_VALUE).
698     double wallSec = internalGetTime()/1000 + (internalGet(UCAL_ZONE_OFFSET) + internalGet(UCAL_DST_OFFSET))/1000;
699 
700     return ClockMath::floorDivide(wallSec, kOneDay/1000.0);
701 }
702 
703 // -------------------------------------
704 
705 
706 // -------------------------------------
707 
708 /**
709 * Compute the julian day number of the day BEFORE the first day of
710 * January 1, year 1 of the given calendar.  If julianDay == 0, it
711 * specifies (Jan. 1, 1) - 1, in whatever calendar we are using (Julian
712 * or Gregorian).
713 */
computeJulianDayOfYear(UBool isGregorian,int32_t year,UBool & isLeap)714 double GregorianCalendar::computeJulianDayOfYear(UBool isGregorian,
715                                                  int32_t year, UBool& isLeap)
716 {
717     isLeap = year%4 == 0;
718     int32_t y = year - 1;
719     double julianDay = 365.0*y + ClockMath::floorDivide(y, 4) + (kJan1_1JulianDay - 3);
720 
721     if (isGregorian) {
722         isLeap = isLeap && ((year%100 != 0) || (year%400 == 0));
723         // Add 2 because Gregorian calendar starts 2 days after Julian calendar
724         julianDay += Grego::gregorianShift(year);
725     }
726 
727     return julianDay;
728 }
729 
730 // /**
731 //  * Compute the day of week, relative to the first day of week, from
732 //  * 0..6, of the current DOW_LOCAL or DAY_OF_WEEK fields.  This is
733 //  * equivalent to get(DOW_LOCAL) - 1.
734 //  */
735 // int32_t GregorianCalendar::computeRelativeDOW() const {
736 //     int32_t relDow = 0;
737 //     if (fStamp[UCAL_DOW_LOCAL] > fStamp[UCAL_DAY_OF_WEEK]) {
738 //         relDow = internalGet(UCAL_DOW_LOCAL) - 1; // 1-based
739 //     } else if (fStamp[UCAL_DAY_OF_WEEK] != kUnset) {
740 //         relDow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek();
741 //         if (relDow < 0) relDow += 7;
742 //     }
743 //     return relDow;
744 // }
745 
746 // /**
747 //  * Compute the day of week, relative to the first day of week,
748 //  * from 0..6 of the given julian day.
749 //  */
750 // int32_t GregorianCalendar::computeRelativeDOW(double julianDay) const {
751 //   int32_t relDow = julianDayToDayOfWeek(julianDay) - getFirstDayOfWeek();
752 //     if (relDow < 0) {
753 //         relDow += 7;
754 //     }
755 //     return relDow;
756 // }
757 
758 // /**
759 //  * Compute the DOY using the WEEK_OF_YEAR field and the julian day
760 //  * of the day BEFORE January 1 of a year (a return value from
761 //  * computeJulianDayOfYear).
762 //  */
763 // int32_t GregorianCalendar::computeDOYfromWOY(double julianDayOfYear) const {
764 //     // Compute DOY from day of week plus week of year
765 
766 //     // Find the day of the week for the first of this year.  This
767 //     // is zero-based, with 0 being the locale-specific first day of
768 //     // the week.  Add 1 to get first day of year.
769 //     int32_t fdy = computeRelativeDOW(julianDayOfYear + 1);
770 
771 //     return
772 //         // Compute doy of first (relative) DOW of WOY 1
773 //         (((7 - fdy) < getMinimalDaysInFirstWeek())
774 //          ? (8 - fdy) : (1 - fdy))
775 
776 //         // Adjust for the week number.
777 //         + (7 * (internalGet(UCAL_WEEK_OF_YEAR) - 1))
778 
779 //         // Adjust for the DOW
780 //         + computeRelativeDOW();
781 // }
782 
783 // -------------------------------------
784 
785 double
millisToJulianDay(UDate millis)786 GregorianCalendar::millisToJulianDay(UDate millis)
787 {
788     return (double)kEpochStartAsJulianDay + ClockMath::floorDivide(millis, (double)kOneDay);
789 }
790 
791 // -------------------------------------
792 
793 UDate
julianDayToMillis(double julian)794 GregorianCalendar::julianDayToMillis(double julian)
795 {
796     return (UDate) ((julian - kEpochStartAsJulianDay) * (double) kOneDay);
797 }
798 
799 // -------------------------------------
800 
801 int32_t
aggregateStamp(int32_t stamp_a,int32_t stamp_b)802 GregorianCalendar::aggregateStamp(int32_t stamp_a, int32_t stamp_b)
803 {
804     return (((stamp_a != kUnset && stamp_b != kUnset)
805         ? uprv_max(stamp_a, stamp_b)
806         : (int32_t)kUnset));
807 }
808 
809 // -------------------------------------
810 
811 /**
812 * Roll a field by a signed amount.
813 * Note: This will be made public later. [LIU]
814 */
815 
816 void
roll(EDateFields field,int32_t amount,UErrorCode & status)817 GregorianCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) {
818     roll((UCalendarDateFields) field, amount, status);
819 }
820 
821 void
roll(UCalendarDateFields field,int32_t amount,UErrorCode & status)822 GregorianCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status)
823 {
824     if((amount == 0) || U_FAILURE(status)) {
825         return;
826     }
827 
828     // J81 processing. (gregorian cutover)
829     UBool inCutoverMonth = FALSE;
830     int32_t cMonthLen=0; // 'c' for cutover; in days
831     int32_t cDayOfMonth=0; // no discontinuity: [0, cMonthLen)
832     double cMonthStart=0.0; // in ms
833 
834     // Common code - see if we're in the cutover month of the cutover year
835     if(get(UCAL_EXTENDED_YEAR, status) == fGregorianCutoverYear) {
836         switch (field) {
837         case UCAL_DAY_OF_MONTH:
838         case UCAL_WEEK_OF_MONTH:
839             {
840                 int32_t max = monthLength(internalGet(UCAL_MONTH));
841                 UDate t = internalGetTime();
842                 // We subtract 1 from the DAY_OF_MONTH to make it zero-based, and an
843                 // additional 10 if we are after the cutover. Thus the monthStart
844                 // value will be correct iff we actually are in the cutover month.
845                 cDayOfMonth = internalGet(UCAL_DAY_OF_MONTH) - ((t >= fGregorianCutover) ? 10 : 0);
846                 cMonthStart = t - ((cDayOfMonth - 1) * kOneDay);
847                 // A month containing the cutover is 10 days shorter.
848                 if ((cMonthStart < fGregorianCutover) &&
849                     (cMonthStart + (cMonthLen=(max-10))*kOneDay >= fGregorianCutover)) {
850                         inCutoverMonth = TRUE;
851                     }
852             }
853         default:
854             ;
855         }
856     }
857 
858     switch (field) {
859     case UCAL_WEEK_OF_YEAR: {
860         // Unlike WEEK_OF_MONTH, WEEK_OF_YEAR never shifts the day of the
861         // week.  Also, rolling the week of the year can have seemingly
862         // strange effects simply because the year of the week of year
863         // may be different from the calendar year.  For example, the
864         // date Dec 28, 1997 is the first day of week 1 of 1998 (if
865         // weeks start on Sunday and the minimal days in first week is
866         // <= 3).
867         int32_t woy = get(UCAL_WEEK_OF_YEAR, status);
868         // Get the ISO year, which matches the week of year.  This
869         // may be one year before or after the calendar year.
870         int32_t isoYear = get(UCAL_YEAR_WOY, status);
871         int32_t isoDoy = internalGet(UCAL_DAY_OF_YEAR);
872         if (internalGet(UCAL_MONTH) == UCAL_JANUARY) {
873             if (woy >= 52) {
874                 isoDoy += handleGetYearLength(isoYear);
875             }
876         } else {
877             if (woy == 1) {
878                 isoDoy -= handleGetYearLength(isoYear - 1);
879             }
880         }
881         woy += amount;
882         // Do fast checks to avoid unnecessary computation:
883         if (woy < 1 || woy > 52) {
884             // Determine the last week of the ISO year.
885             // We do this using the standard formula we use
886             // everywhere in this file.  If we can see that the
887             // days at the end of the year are going to fall into
888             // week 1 of the next year, we drop the last week by
889             // subtracting 7 from the last day of the year.
890             int32_t lastDoy = handleGetYearLength(isoYear);
891             int32_t lastRelDow = (lastDoy - isoDoy + internalGet(UCAL_DAY_OF_WEEK) -
892                 getFirstDayOfWeek()) % 7;
893             if (lastRelDow < 0) lastRelDow += 7;
894             if ((6 - lastRelDow) >= getMinimalDaysInFirstWeek()) lastDoy -= 7;
895             int32_t lastWoy = weekNumber(lastDoy, lastRelDow + 1);
896             woy = ((woy + lastWoy - 1) % lastWoy) + 1;
897         }
898         set(UCAL_WEEK_OF_YEAR, woy);
899         set(UCAL_YEAR_WOY,isoYear);
900         return;
901                             }
902 
903     case UCAL_DAY_OF_MONTH:
904         if( !inCutoverMonth ) {
905             Calendar::roll(field, amount, status);
906             return;
907         } else {
908             // [j81] 1582 special case for DOM
909             // The default computation works except when the current month
910             // contains the Gregorian cutover.  We handle this special case
911             // here.  [j81 - aliu]
912             double monthLen = cMonthLen * kOneDay;
913             double msIntoMonth = uprv_fmod(internalGetTime() - cMonthStart +
914                 amount * kOneDay, monthLen);
915             if (msIntoMonth < 0) {
916                 msIntoMonth += monthLen;
917             }
918 #if defined (U_DEBUG_CAL)
919             fprintf(stderr, "%s:%d: roll DOM %d  -> %.0lf ms  \n",
920                 __FILE__, __LINE__,amount, cMonthLen, cMonthStart+msIntoMonth);
921 #endif
922             setTimeInMillis(cMonthStart + msIntoMonth, status);
923             return;
924         }
925 
926     case UCAL_WEEK_OF_MONTH:
927         if( !inCutoverMonth ) {
928             Calendar::roll(field, amount, status);
929             return;
930         } else {
931 #if defined (U_DEBUG_CAL)
932             fprintf(stderr, "%s:%d: roll WOM %d ??????????????????? \n",
933                 __FILE__, __LINE__,amount);
934 #endif
935             // NOTE: following copied from  the old
936             //     GregorianCalendar::roll( WEEK_OF_MONTH )  code
937 
938             // This is tricky, because during the roll we may have to shift
939             // to a different day of the week.  For example:
940 
941             //    s  m  t  w  r  f  s
942             //          1  2  3  4  5
943             //    6  7  8  9 10 11 12
944 
945             // When rolling from the 6th or 7th back one week, we go to the
946             // 1st (assuming that the first partial week counts).  The same
947             // thing happens at the end of the month.
948 
949             // The other tricky thing is that we have to figure out whether
950             // the first partial week actually counts or not, based on the
951             // minimal first days in the week.  And we have to use the
952             // correct first day of the week to delineate the week
953             // boundaries.
954 
955             // Here's our algorithm.  First, we find the real boundaries of
956             // the month.  Then we discard the first partial week if it
957             // doesn't count in this locale.  Then we fill in the ends with
958             // phantom days, so that the first partial week and the last
959             // partial week are full weeks.  We then have a nice square
960             // block of weeks.  We do the usual rolling within this block,
961             // as is done elsewhere in this method.  If we wind up on one of
962             // the phantom days that we added, we recognize this and pin to
963             // the first or the last day of the month.  Easy, eh?
964 
965             // Another wrinkle: To fix jitterbug 81, we have to make all this
966             // work in the oddball month containing the Gregorian cutover.
967             // This month is 10 days shorter than usual, and also contains
968             // a discontinuity in the days; e.g., the default cutover month
969             // is Oct 1582, and goes from day of month 4 to day of month 15.
970 
971             // Normalize the DAY_OF_WEEK so that 0 is the first day of the week
972             // in this locale.  We have dow in 0..6.
973             int32_t dow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek();
974             if (dow < 0)
975                 dow += 7;
976 
977             // Find the day of month, compensating for cutover discontinuity.
978             int32_t dom = cDayOfMonth;
979 
980             // Find the day of the week (normalized for locale) for the first
981             // of the month.
982             int32_t fdm = (dow - dom + 1) % 7;
983             if (fdm < 0)
984                 fdm += 7;
985 
986             // Get the first day of the first full week of the month,
987             // including phantom days, if any.  Figure out if the first week
988             // counts or not; if it counts, then fill in phantom days.  If
989             // not, advance to the first real full week (skip the partial week).
990             int32_t start;
991             if ((7 - fdm) < getMinimalDaysInFirstWeek())
992                 start = 8 - fdm; // Skip the first partial week
993             else
994                 start = 1 - fdm; // This may be zero or negative
995 
996             // Get the day of the week (normalized for locale) for the last
997             // day of the month.
998             int32_t monthLen = cMonthLen;
999             int32_t ldm = (monthLen - dom + dow) % 7;
1000             // We know monthLen >= DAY_OF_MONTH so we skip the += 7 step here.
1001 
1002             // Get the limit day for the blocked-off rectangular month; that
1003             // is, the day which is one past the last day of the month,
1004             // after the month has already been filled in with phantom days
1005             // to fill out the last week.  This day has a normalized DOW of 0.
1006             int32_t limit = monthLen + 7 - ldm;
1007 
1008             // Now roll between start and (limit - 1).
1009             int32_t gap = limit - start;
1010             int32_t newDom = (dom + amount*7 - start) % gap;
1011             if (newDom < 0)
1012                 newDom += gap;
1013             newDom += start;
1014 
1015             // Finally, pin to the real start and end of the month.
1016             if (newDom < 1)
1017                 newDom = 1;
1018             if (newDom > monthLen)
1019                 newDom = monthLen;
1020 
1021             // Set the DAY_OF_MONTH.  We rely on the fact that this field
1022             // takes precedence over everything else (since all other fields
1023             // are also set at this point).  If this fact changes (if the
1024             // disambiguation algorithm changes) then we will have to unset
1025             // the appropriate fields here so that DAY_OF_MONTH is attended
1026             // to.
1027 
1028             // If we are in the cutover month, manipulate ms directly.  Don't do
1029             // this in general because it doesn't work across DST boundaries
1030             // (details, details).  This takes care of the discontinuity.
1031             setTimeInMillis(cMonthStart + (newDom-1)*kOneDay, status);
1032             return;
1033         }
1034 
1035     default:
1036         Calendar::roll(field, amount, status);
1037         return;
1038     }
1039 }
1040 
1041 // -------------------------------------
1042 
1043 
1044 /**
1045 * Return the minimum value that this field could have, given the current date.
1046 * For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum().
1047 * @param field    the time field.
1048 * @return         the minimum value that this field could have, given the current date.
1049 * @deprecated ICU 2.6. Use getActualMinimum(UCalendarDateFields field) instead.
1050 */
getActualMinimum(EDateFields field) const1051 int32_t GregorianCalendar::getActualMinimum(EDateFields field) const
1052 {
1053     return getMinimum((UCalendarDateFields)field);
1054 }
1055 
getActualMinimum(EDateFields field,UErrorCode &) const1056 int32_t GregorianCalendar::getActualMinimum(EDateFields field, UErrorCode& /* status */) const
1057 {
1058     return getMinimum((UCalendarDateFields)field);
1059 }
1060 
1061 /**
1062 * Return the minimum value that this field could have, given the current date.
1063 * For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum().
1064 * @param field    the time field.
1065 * @return         the minimum value that this field could have, given the current date.
1066 * @draft ICU 2.6.
1067 */
getActualMinimum(UCalendarDateFields field,UErrorCode &) const1068 int32_t GregorianCalendar::getActualMinimum(UCalendarDateFields field, UErrorCode& /* status */) const
1069 {
1070     return getMinimum(field);
1071 }
1072 
1073 
1074 // ------------------------------------
1075 
1076 /**
1077 * Old year limits were least max 292269054, max 292278994.
1078 */
1079 
1080 /**
1081 * @stable ICU 2.0
1082 */
handleGetLimit(UCalendarDateFields field,ELimitType limitType) const1083 int32_t GregorianCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const {
1084     return kGregorianCalendarLimits[field][limitType];
1085 }
1086 
1087 /**
1088 * Return the maximum value that this field could have, given the current date.
1089 * For example, with the date "Feb 3, 1997" and the DAY_OF_MONTH field, the actual
1090 * maximum would be 28; for "Feb 3, 1996" it s 29.  Similarly for a Hebrew calendar,
1091 * for some years the actual maximum for MONTH is 12, and for others 13.
1092 * @stable ICU 2.0
1093 */
getActualMaximum(UCalendarDateFields field,UErrorCode & status) const1094 int32_t GregorianCalendar::getActualMaximum(UCalendarDateFields field, UErrorCode& status) const
1095 {
1096     /* It is a known limitation that the code here (and in getActualMinimum)
1097     * won't behave properly at the extreme limits of GregorianCalendar's
1098     * representable range (except for the code that handles the YEAR
1099     * field).  That's because the ends of the representable range are at
1100     * odd spots in the year.  For calendars with the default Gregorian
1101     * cutover, these limits are Sun Dec 02 16:47:04 GMT 292269055 BC to Sun
1102     * Aug 17 07:12:55 GMT 292278994 AD, somewhat different for non-GMT
1103     * zones.  As a result, if the calendar is set to Aug 1 292278994 AD,
1104     * the actual maximum of DAY_OF_MONTH is 17, not 30.  If the date is Mar
1105     * 31 in that year, the actual maximum month might be Jul, whereas is
1106     * the date is Mar 15, the actual maximum might be Aug -- depending on
1107     * the precise semantics that are desired.  Similar considerations
1108     * affect all fields.  Nonetheless, this effect is sufficiently arcane
1109     * that we permit it, rather than complicating the code to handle such
1110     * intricacies. - liu 8/20/98
1111 
1112     * UPDATE: No longer true, since we have pulled in the limit values on
1113     * the year. - Liu 11/6/00 */
1114 
1115     switch (field) {
1116 
1117     case UCAL_YEAR:
1118         /* The year computation is no different, in principle, from the
1119         * others, however, the range of possible maxima is large.  In
1120         * addition, the way we know we've exceeded the range is different.
1121         * For these reasons, we use the special case code below to handle
1122         * this field.
1123         *
1124         * The actual maxima for YEAR depend on the type of calendar:
1125         *
1126         *     Gregorian = May 17, 292275056 BC - Aug 17, 292278994 AD
1127         *     Julian    = Dec  2, 292269055 BC - Jan  3, 292272993 AD
1128         *     Hybrid    = Dec  2, 292269055 BC - Aug 17, 292278994 AD
1129         *
1130         * We know we've exceeded the maximum when either the month, date,
1131         * time, or era changes in response to setting the year.  We don't
1132         * check for month, date, and time here because the year and era are
1133         * sufficient to detect an invalid year setting.  NOTE: If code is
1134         * added to check the month and date in the future for some reason,
1135         * Feb 29 must be allowed to shift to Mar 1 when setting the year.
1136         */
1137         {
1138             if(U_FAILURE(status)) return 0;
1139             Calendar *cal = clone();
1140             if(!cal) {
1141                 status = U_MEMORY_ALLOCATION_ERROR;
1142                 return 0;
1143             }
1144 
1145             cal->setLenient(TRUE);
1146 
1147             int32_t era = cal->get(UCAL_ERA, status);
1148             UDate d = cal->getTime(status);
1149 
1150             /* Perform a binary search, with the invariant that lowGood is a
1151             * valid year, and highBad is an out of range year.
1152             */
1153             int32_t lowGood = kGregorianCalendarLimits[UCAL_YEAR][1];
1154             int32_t highBad = kGregorianCalendarLimits[UCAL_YEAR][2]+1;
1155             while ((lowGood + 1) < highBad) {
1156                 int32_t y = (lowGood + highBad) / 2;
1157                 cal->set(UCAL_YEAR, y);
1158                 if (cal->get(UCAL_YEAR, status) == y && cal->get(UCAL_ERA, status) == era) {
1159                     lowGood = y;
1160                 } else {
1161                     highBad = y;
1162                     cal->setTime(d, status); // Restore original fields
1163                 }
1164             }
1165 
1166             delete cal;
1167             return lowGood;
1168         }
1169 
1170     default:
1171         return Calendar::getActualMaximum(field,status);
1172     }
1173 }
1174 
1175 
handleGetExtendedYear()1176 int32_t GregorianCalendar::handleGetExtendedYear() {
1177     // the year to return
1178     int32_t year = kEpochYear;
1179 
1180     // year field to use
1181     int32_t yearField = UCAL_EXTENDED_YEAR;
1182 
1183     // There are three separate fields which could be used to
1184     // derive the proper year.  Use the one most recently set.
1185     if (fStamp[yearField] < fStamp[UCAL_YEAR])
1186         yearField = UCAL_YEAR;
1187     if (fStamp[yearField] < fStamp[UCAL_YEAR_WOY])
1188         yearField = UCAL_YEAR_WOY;
1189 
1190     // based on the "best" year field, get the year
1191     switch(yearField) {
1192     case UCAL_EXTENDED_YEAR:
1193         year = internalGet(UCAL_EXTENDED_YEAR, kEpochYear);
1194         break;
1195 
1196     case UCAL_YEAR:
1197         {
1198             // The year defaults to the epoch start, the era to AD
1199             int32_t era = internalGet(UCAL_ERA, AD);
1200             if (era == BC) {
1201                 year = 1 - internalGet(UCAL_YEAR, 1); // Convert to extended year
1202             } else {
1203                 year = internalGet(UCAL_YEAR, kEpochYear);
1204             }
1205         }
1206         break;
1207 
1208     case UCAL_YEAR_WOY:
1209         year = handleGetExtendedYearFromWeekFields(internalGet(UCAL_YEAR_WOY), internalGet(UCAL_WEEK_OF_YEAR));
1210 #if defined (U_DEBUG_CAL)
1211         //    if(internalGet(UCAL_YEAR_WOY) != year) {
1212         fprintf(stderr, "%s:%d: hGEYFWF[%d,%d] ->  %d\n",
1213             __FILE__, __LINE__,internalGet(UCAL_YEAR_WOY),internalGet(UCAL_WEEK_OF_YEAR),year);
1214         //}
1215 #endif
1216         break;
1217 
1218     default:
1219         year = kEpochYear;
1220     }
1221     return year;
1222 }
1223 
handleGetExtendedYearFromWeekFields(int32_t yearWoy,int32_t woy)1224 int32_t GregorianCalendar::handleGetExtendedYearFromWeekFields(int32_t yearWoy, int32_t woy)
1225 {
1226     // convert year to extended form
1227     int32_t era = internalGet(UCAL_ERA, AD);
1228     if(era == BC) {
1229         yearWoy = 1 - yearWoy;
1230     }
1231     return Calendar::handleGetExtendedYearFromWeekFields(yearWoy, woy);
1232 }
1233 
1234 
1235 // -------------------------------------
1236 
1237 UBool
inDaylightTime(UErrorCode & status) const1238 GregorianCalendar::inDaylightTime(UErrorCode& status) const
1239 {
1240     if (U_FAILURE(status) || !getTimeZone().useDaylightTime())
1241         return FALSE;
1242 
1243     // Force an update of the state of the Calendar.
1244     ((GregorianCalendar*)this)->complete(status); // cast away const
1245 
1246     return (UBool)(U_SUCCESS(status) ? (internalGet(UCAL_DST_OFFSET) != 0) : FALSE);
1247 }
1248 
1249 // -------------------------------------
1250 
1251 /**
1252 * Return the ERA.  We need a special method for this because the
1253 * default ERA is AD, but a zero (unset) ERA is BC.
1254 */
1255 int32_t
internalGetEra() const1256 GregorianCalendar::internalGetEra() const {
1257     return isSet(UCAL_ERA) ? internalGet(UCAL_ERA) : (int32_t)AD;
1258 }
1259 
1260 const char *
getType() const1261 GregorianCalendar::getType() const {
1262     //static const char kGregorianType = "gregorian";
1263 
1264     return "gregorian";
1265 }
1266 
1267 /**
1268  * The system maintains a static default century start date and Year.  They are
1269  * initialized the first time they are used.  Once the system default century date
1270  * and year are set, they do not change.
1271  */
1272 static UDate           gSystemDefaultCenturyStart       = DBL_MIN;
1273 static int32_t         gSystemDefaultCenturyStartYear   = -1;
1274 static icu::UInitOnce  gSystemDefaultCenturyInit        = U_INITONCE_INITIALIZER;
1275 
1276 
haveDefaultCentury() const1277 UBool GregorianCalendar::haveDefaultCentury() const
1278 {
1279     return TRUE;
1280 }
1281 
1282 static void U_CALLCONV
initializeSystemDefaultCentury()1283 initializeSystemDefaultCentury()
1284 {
1285     // initialize systemDefaultCentury and systemDefaultCenturyYear based
1286     // on the current time.  They'll be set to 80 years before
1287     // the current time.
1288     UErrorCode status = U_ZERO_ERROR;
1289     GregorianCalendar calendar(status);
1290     if (U_SUCCESS(status)) {
1291         calendar.setTime(Calendar::getNow(), status);
1292         calendar.add(UCAL_YEAR, -80, status);
1293 
1294         gSystemDefaultCenturyStart = calendar.getTime(status);
1295         gSystemDefaultCenturyStartYear = calendar.get(UCAL_YEAR, status);
1296     }
1297     // We have no recourse upon failure unless we want to propagate the failure
1298     // out.
1299 }
1300 
defaultCenturyStart() const1301 UDate GregorianCalendar::defaultCenturyStart() const {
1302     // lazy-evaluate systemDefaultCenturyStart
1303     umtx_initOnce(gSystemDefaultCenturyInit, &initializeSystemDefaultCentury);
1304     return gSystemDefaultCenturyStart;
1305 }
1306 
defaultCenturyStartYear() const1307 int32_t GregorianCalendar::defaultCenturyStartYear() const {
1308     // lazy-evaluate systemDefaultCenturyStartYear
1309     umtx_initOnce(gSystemDefaultCenturyInit, &initializeSystemDefaultCentury);
1310     return gSystemDefaultCenturyStartYear;
1311 }
1312 
1313 U_NAMESPACE_END
1314 
1315 #endif /* #if !UCONFIG_NO_FORMATTING */
1316 
1317 //eof
1318