1 //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ASTContext interface.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/ASTContext.h"
15 #include "CXXABI.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Comment.h"
20 #include "clang/AST/CommentCommandTraits.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExternalASTSource.h"
27 #include "clang/AST/Mangle.h"
28 #include "clang/AST/MangleNumberingContext.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/AST/RecursiveASTVisitor.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/AST/VTableBuilder.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/SmallString.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/ADT/Triple.h"
39 #include "llvm/Support/Capacity.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <map>
43
44 using namespace clang;
45
46 unsigned ASTContext::NumImplicitDefaultConstructors;
47 unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
48 unsigned ASTContext::NumImplicitCopyConstructors;
49 unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
50 unsigned ASTContext::NumImplicitMoveConstructors;
51 unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
52 unsigned ASTContext::NumImplicitCopyAssignmentOperators;
53 unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
54 unsigned ASTContext::NumImplicitMoveAssignmentOperators;
55 unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
56 unsigned ASTContext::NumImplicitDestructors;
57 unsigned ASTContext::NumImplicitDestructorsDeclared;
58
59 enum FloatingRank {
60 HalfRank, FloatRank, DoubleRank, LongDoubleRank
61 };
62
getRawCommentForDeclNoCache(const Decl * D) const63 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
64 if (!CommentsLoaded && ExternalSource) {
65 ExternalSource->ReadComments();
66
67 #ifndef NDEBUG
68 ArrayRef<RawComment *> RawComments = Comments.getComments();
69 assert(std::is_sorted(RawComments.begin(), RawComments.end(),
70 BeforeThanCompare<RawComment>(SourceMgr)));
71 #endif
72
73 CommentsLoaded = true;
74 }
75
76 assert(D);
77
78 // User can not attach documentation to implicit declarations.
79 if (D->isImplicit())
80 return nullptr;
81
82 // User can not attach documentation to implicit instantiations.
83 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
84 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85 return nullptr;
86 }
87
88 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
89 if (VD->isStaticDataMember() &&
90 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
91 return nullptr;
92 }
93
94 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
95 if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
96 return nullptr;
97 }
98
99 if (const ClassTemplateSpecializationDecl *CTSD =
100 dyn_cast<ClassTemplateSpecializationDecl>(D)) {
101 TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
102 if (TSK == TSK_ImplicitInstantiation ||
103 TSK == TSK_Undeclared)
104 return nullptr;
105 }
106
107 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
108 if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
109 return nullptr;
110 }
111 if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
112 // When tag declaration (but not definition!) is part of the
113 // decl-specifier-seq of some other declaration, it doesn't get comment
114 if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
115 return nullptr;
116 }
117 // TODO: handle comments for function parameters properly.
118 if (isa<ParmVarDecl>(D))
119 return nullptr;
120
121 // TODO: we could look up template parameter documentation in the template
122 // documentation.
123 if (isa<TemplateTypeParmDecl>(D) ||
124 isa<NonTypeTemplateParmDecl>(D) ||
125 isa<TemplateTemplateParmDecl>(D))
126 return nullptr;
127
128 ArrayRef<RawComment *> RawComments = Comments.getComments();
129
130 // If there are no comments anywhere, we won't find anything.
131 if (RawComments.empty())
132 return nullptr;
133
134 // Find declaration location.
135 // For Objective-C declarations we generally don't expect to have multiple
136 // declarators, thus use declaration starting location as the "declaration
137 // location".
138 // For all other declarations multiple declarators are used quite frequently,
139 // so we use the location of the identifier as the "declaration location".
140 SourceLocation DeclLoc;
141 if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
142 isa<ObjCPropertyDecl>(D) ||
143 isa<RedeclarableTemplateDecl>(D) ||
144 isa<ClassTemplateSpecializationDecl>(D))
145 DeclLoc = D->getLocStart();
146 else {
147 DeclLoc = D->getLocation();
148 if (DeclLoc.isMacroID()) {
149 if (isa<TypedefDecl>(D)) {
150 // If location of the typedef name is in a macro, it is because being
151 // declared via a macro. Try using declaration's starting location as
152 // the "declaration location".
153 DeclLoc = D->getLocStart();
154 } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
155 // If location of the tag decl is inside a macro, but the spelling of
156 // the tag name comes from a macro argument, it looks like a special
157 // macro like NS_ENUM is being used to define the tag decl. In that
158 // case, adjust the source location to the expansion loc so that we can
159 // attach the comment to the tag decl.
160 if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
161 TD->isCompleteDefinition())
162 DeclLoc = SourceMgr.getExpansionLoc(DeclLoc);
163 }
164 }
165 }
166
167 // If the declaration doesn't map directly to a location in a file, we
168 // can't find the comment.
169 if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
170 return nullptr;
171
172 // Find the comment that occurs just after this declaration.
173 ArrayRef<RawComment *>::iterator Comment;
174 {
175 // When searching for comments during parsing, the comment we are looking
176 // for is usually among the last two comments we parsed -- check them
177 // first.
178 RawComment CommentAtDeclLoc(
179 SourceMgr, SourceRange(DeclLoc), false,
180 LangOpts.CommentOpts.ParseAllComments);
181 BeforeThanCompare<RawComment> Compare(SourceMgr);
182 ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
183 bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
184 if (!Found && RawComments.size() >= 2) {
185 MaybeBeforeDecl--;
186 Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
187 }
188
189 if (Found) {
190 Comment = MaybeBeforeDecl + 1;
191 assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
192 &CommentAtDeclLoc, Compare));
193 } else {
194 // Slow path.
195 Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
196 &CommentAtDeclLoc, Compare);
197 }
198 }
199
200 // Decompose the location for the declaration and find the beginning of the
201 // file buffer.
202 std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
203
204 // First check whether we have a trailing comment.
205 if (Comment != RawComments.end() &&
206 (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
207 (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
208 isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
209 std::pair<FileID, unsigned> CommentBeginDecomp
210 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
211 // Check that Doxygen trailing comment comes after the declaration, starts
212 // on the same line and in the same file as the declaration.
213 if (DeclLocDecomp.first == CommentBeginDecomp.first &&
214 SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
215 == SourceMgr.getLineNumber(CommentBeginDecomp.first,
216 CommentBeginDecomp.second)) {
217 return *Comment;
218 }
219 }
220
221 // The comment just after the declaration was not a trailing comment.
222 // Let's look at the previous comment.
223 if (Comment == RawComments.begin())
224 return nullptr;
225 --Comment;
226
227 // Check that we actually have a non-member Doxygen comment.
228 if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
229 return nullptr;
230
231 // Decompose the end of the comment.
232 std::pair<FileID, unsigned> CommentEndDecomp
233 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
234
235 // If the comment and the declaration aren't in the same file, then they
236 // aren't related.
237 if (DeclLocDecomp.first != CommentEndDecomp.first)
238 return nullptr;
239
240 // Get the corresponding buffer.
241 bool Invalid = false;
242 const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
243 &Invalid).data();
244 if (Invalid)
245 return nullptr;
246
247 // Extract text between the comment and declaration.
248 StringRef Text(Buffer + CommentEndDecomp.second,
249 DeclLocDecomp.second - CommentEndDecomp.second);
250
251 // There should be no other declarations or preprocessor directives between
252 // comment and declaration.
253 if (Text.find_first_of(";{}#@") != StringRef::npos)
254 return nullptr;
255
256 return *Comment;
257 }
258
259 namespace {
260 /// If we have a 'templated' declaration for a template, adjust 'D' to
261 /// refer to the actual template.
262 /// If we have an implicit instantiation, adjust 'D' to refer to template.
adjustDeclToTemplate(const Decl * D)263 const Decl *adjustDeclToTemplate(const Decl *D) {
264 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
265 // Is this function declaration part of a function template?
266 if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
267 return FTD;
268
269 // Nothing to do if function is not an implicit instantiation.
270 if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
271 return D;
272
273 // Function is an implicit instantiation of a function template?
274 if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
275 return FTD;
276
277 // Function is instantiated from a member definition of a class template?
278 if (const FunctionDecl *MemberDecl =
279 FD->getInstantiatedFromMemberFunction())
280 return MemberDecl;
281
282 return D;
283 }
284 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
285 // Static data member is instantiated from a member definition of a class
286 // template?
287 if (VD->isStaticDataMember())
288 if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
289 return MemberDecl;
290
291 return D;
292 }
293 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
294 // Is this class declaration part of a class template?
295 if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
296 return CTD;
297
298 // Class is an implicit instantiation of a class template or partial
299 // specialization?
300 if (const ClassTemplateSpecializationDecl *CTSD =
301 dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
302 if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
303 return D;
304 llvm::PointerUnion<ClassTemplateDecl *,
305 ClassTemplatePartialSpecializationDecl *>
306 PU = CTSD->getSpecializedTemplateOrPartial();
307 return PU.is<ClassTemplateDecl*>() ?
308 static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
309 static_cast<const Decl*>(
310 PU.get<ClassTemplatePartialSpecializationDecl *>());
311 }
312
313 // Class is instantiated from a member definition of a class template?
314 if (const MemberSpecializationInfo *Info =
315 CRD->getMemberSpecializationInfo())
316 return Info->getInstantiatedFrom();
317
318 return D;
319 }
320 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
321 // Enum is instantiated from a member definition of a class template?
322 if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
323 return MemberDecl;
324
325 return D;
326 }
327 // FIXME: Adjust alias templates?
328 return D;
329 }
330 } // anonymous namespace
331
getRawCommentForAnyRedecl(const Decl * D,const Decl ** OriginalDecl) const332 const RawComment *ASTContext::getRawCommentForAnyRedecl(
333 const Decl *D,
334 const Decl **OriginalDecl) const {
335 D = adjustDeclToTemplate(D);
336
337 // Check whether we have cached a comment for this declaration already.
338 {
339 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
340 RedeclComments.find(D);
341 if (Pos != RedeclComments.end()) {
342 const RawCommentAndCacheFlags &Raw = Pos->second;
343 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
344 if (OriginalDecl)
345 *OriginalDecl = Raw.getOriginalDecl();
346 return Raw.getRaw();
347 }
348 }
349 }
350
351 // Search for comments attached to declarations in the redeclaration chain.
352 const RawComment *RC = nullptr;
353 const Decl *OriginalDeclForRC = nullptr;
354 for (auto I : D->redecls()) {
355 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
356 RedeclComments.find(I);
357 if (Pos != RedeclComments.end()) {
358 const RawCommentAndCacheFlags &Raw = Pos->second;
359 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
360 RC = Raw.getRaw();
361 OriginalDeclForRC = Raw.getOriginalDecl();
362 break;
363 }
364 } else {
365 RC = getRawCommentForDeclNoCache(I);
366 OriginalDeclForRC = I;
367 RawCommentAndCacheFlags Raw;
368 if (RC) {
369 // Call order swapped to work around ICE in VS2015 RTM (Release Win32)
370 // https://connect.microsoft.com/VisualStudio/feedback/details/1741530
371 Raw.setKind(RawCommentAndCacheFlags::FromDecl);
372 Raw.setRaw(RC);
373 } else
374 Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
375 Raw.setOriginalDecl(I);
376 RedeclComments[I] = Raw;
377 if (RC)
378 break;
379 }
380 }
381
382 // If we found a comment, it should be a documentation comment.
383 assert(!RC || RC->isDocumentation());
384
385 if (OriginalDecl)
386 *OriginalDecl = OriginalDeclForRC;
387
388 // Update cache for every declaration in the redeclaration chain.
389 RawCommentAndCacheFlags Raw;
390 Raw.setRaw(RC);
391 Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
392 Raw.setOriginalDecl(OriginalDeclForRC);
393
394 for (auto I : D->redecls()) {
395 RawCommentAndCacheFlags &R = RedeclComments[I];
396 if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
397 R = Raw;
398 }
399
400 return RC;
401 }
402
addRedeclaredMethods(const ObjCMethodDecl * ObjCMethod,SmallVectorImpl<const NamedDecl * > & Redeclared)403 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
404 SmallVectorImpl<const NamedDecl *> &Redeclared) {
405 const DeclContext *DC = ObjCMethod->getDeclContext();
406 if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
407 const ObjCInterfaceDecl *ID = IMD->getClassInterface();
408 if (!ID)
409 return;
410 // Add redeclared method here.
411 for (const auto *Ext : ID->known_extensions()) {
412 if (ObjCMethodDecl *RedeclaredMethod =
413 Ext->getMethod(ObjCMethod->getSelector(),
414 ObjCMethod->isInstanceMethod()))
415 Redeclared.push_back(RedeclaredMethod);
416 }
417 }
418 }
419
cloneFullComment(comments::FullComment * FC,const Decl * D) const420 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
421 const Decl *D) const {
422 comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
423 ThisDeclInfo->CommentDecl = D;
424 ThisDeclInfo->IsFilled = false;
425 ThisDeclInfo->fill();
426 ThisDeclInfo->CommentDecl = FC->getDecl();
427 if (!ThisDeclInfo->TemplateParameters)
428 ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
429 comments::FullComment *CFC =
430 new (*this) comments::FullComment(FC->getBlocks(),
431 ThisDeclInfo);
432 return CFC;
433 }
434
getLocalCommentForDeclUncached(const Decl * D) const435 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
436 const RawComment *RC = getRawCommentForDeclNoCache(D);
437 return RC ? RC->parse(*this, nullptr, D) : nullptr;
438 }
439
getCommentForDecl(const Decl * D,const Preprocessor * PP) const440 comments::FullComment *ASTContext::getCommentForDecl(
441 const Decl *D,
442 const Preprocessor *PP) const {
443 if (D->isInvalidDecl())
444 return nullptr;
445 D = adjustDeclToTemplate(D);
446
447 const Decl *Canonical = D->getCanonicalDecl();
448 llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
449 ParsedComments.find(Canonical);
450
451 if (Pos != ParsedComments.end()) {
452 if (Canonical != D) {
453 comments::FullComment *FC = Pos->second;
454 comments::FullComment *CFC = cloneFullComment(FC, D);
455 return CFC;
456 }
457 return Pos->second;
458 }
459
460 const Decl *OriginalDecl;
461
462 const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
463 if (!RC) {
464 if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
465 SmallVector<const NamedDecl*, 8> Overridden;
466 const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
467 if (OMD && OMD->isPropertyAccessor())
468 if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
469 if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
470 return cloneFullComment(FC, D);
471 if (OMD)
472 addRedeclaredMethods(OMD, Overridden);
473 getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
474 for (unsigned i = 0, e = Overridden.size(); i < e; i++)
475 if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
476 return cloneFullComment(FC, D);
477 }
478 else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
479 // Attach any tag type's documentation to its typedef if latter
480 // does not have one of its own.
481 QualType QT = TD->getUnderlyingType();
482 if (const TagType *TT = QT->getAs<TagType>())
483 if (const Decl *TD = TT->getDecl())
484 if (comments::FullComment *FC = getCommentForDecl(TD, PP))
485 return cloneFullComment(FC, D);
486 }
487 else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
488 while (IC->getSuperClass()) {
489 IC = IC->getSuperClass();
490 if (comments::FullComment *FC = getCommentForDecl(IC, PP))
491 return cloneFullComment(FC, D);
492 }
493 }
494 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
495 if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
496 if (comments::FullComment *FC = getCommentForDecl(IC, PP))
497 return cloneFullComment(FC, D);
498 }
499 else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
500 if (!(RD = RD->getDefinition()))
501 return nullptr;
502 // Check non-virtual bases.
503 for (const auto &I : RD->bases()) {
504 if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
505 continue;
506 QualType Ty = I.getType();
507 if (Ty.isNull())
508 continue;
509 if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
510 if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
511 continue;
512
513 if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
514 return cloneFullComment(FC, D);
515 }
516 }
517 // Check virtual bases.
518 for (const auto &I : RD->vbases()) {
519 if (I.getAccessSpecifier() != AS_public)
520 continue;
521 QualType Ty = I.getType();
522 if (Ty.isNull())
523 continue;
524 if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
525 if (!(VirtualBase= VirtualBase->getDefinition()))
526 continue;
527 if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
528 return cloneFullComment(FC, D);
529 }
530 }
531 }
532 return nullptr;
533 }
534
535 // If the RawComment was attached to other redeclaration of this Decl, we
536 // should parse the comment in context of that other Decl. This is important
537 // because comments can contain references to parameter names which can be
538 // different across redeclarations.
539 if (D != OriginalDecl)
540 return getCommentForDecl(OriginalDecl, PP);
541
542 comments::FullComment *FC = RC->parse(*this, PP, D);
543 ParsedComments[Canonical] = FC;
544 return FC;
545 }
546
547 void
Profile(llvm::FoldingSetNodeID & ID,TemplateTemplateParmDecl * Parm)548 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
549 TemplateTemplateParmDecl *Parm) {
550 ID.AddInteger(Parm->getDepth());
551 ID.AddInteger(Parm->getPosition());
552 ID.AddBoolean(Parm->isParameterPack());
553
554 TemplateParameterList *Params = Parm->getTemplateParameters();
555 ID.AddInteger(Params->size());
556 for (TemplateParameterList::const_iterator P = Params->begin(),
557 PEnd = Params->end();
558 P != PEnd; ++P) {
559 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
560 ID.AddInteger(0);
561 ID.AddBoolean(TTP->isParameterPack());
562 continue;
563 }
564
565 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
566 ID.AddInteger(1);
567 ID.AddBoolean(NTTP->isParameterPack());
568 ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
569 if (NTTP->isExpandedParameterPack()) {
570 ID.AddBoolean(true);
571 ID.AddInteger(NTTP->getNumExpansionTypes());
572 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
573 QualType T = NTTP->getExpansionType(I);
574 ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
575 }
576 } else
577 ID.AddBoolean(false);
578 continue;
579 }
580
581 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
582 ID.AddInteger(2);
583 Profile(ID, TTP);
584 }
585 }
586
587 TemplateTemplateParmDecl *
getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl * TTP) const588 ASTContext::getCanonicalTemplateTemplateParmDecl(
589 TemplateTemplateParmDecl *TTP) const {
590 // Check if we already have a canonical template template parameter.
591 llvm::FoldingSetNodeID ID;
592 CanonicalTemplateTemplateParm::Profile(ID, TTP);
593 void *InsertPos = nullptr;
594 CanonicalTemplateTemplateParm *Canonical
595 = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
596 if (Canonical)
597 return Canonical->getParam();
598
599 // Build a canonical template parameter list.
600 TemplateParameterList *Params = TTP->getTemplateParameters();
601 SmallVector<NamedDecl *, 4> CanonParams;
602 CanonParams.reserve(Params->size());
603 for (TemplateParameterList::const_iterator P = Params->begin(),
604 PEnd = Params->end();
605 P != PEnd; ++P) {
606 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
607 CanonParams.push_back(
608 TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
609 SourceLocation(),
610 SourceLocation(),
611 TTP->getDepth(),
612 TTP->getIndex(), nullptr, false,
613 TTP->isParameterPack()));
614 else if (NonTypeTemplateParmDecl *NTTP
615 = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
616 QualType T = getCanonicalType(NTTP->getType());
617 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
618 NonTypeTemplateParmDecl *Param;
619 if (NTTP->isExpandedParameterPack()) {
620 SmallVector<QualType, 2> ExpandedTypes;
621 SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
622 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
623 ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
624 ExpandedTInfos.push_back(
625 getTrivialTypeSourceInfo(ExpandedTypes.back()));
626 }
627
628 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
629 SourceLocation(),
630 SourceLocation(),
631 NTTP->getDepth(),
632 NTTP->getPosition(), nullptr,
633 T,
634 TInfo,
635 ExpandedTypes.data(),
636 ExpandedTypes.size(),
637 ExpandedTInfos.data());
638 } else {
639 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
640 SourceLocation(),
641 SourceLocation(),
642 NTTP->getDepth(),
643 NTTP->getPosition(), nullptr,
644 T,
645 NTTP->isParameterPack(),
646 TInfo);
647 }
648 CanonParams.push_back(Param);
649
650 } else
651 CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
652 cast<TemplateTemplateParmDecl>(*P)));
653 }
654
655 TemplateTemplateParmDecl *CanonTTP
656 = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
657 SourceLocation(), TTP->getDepth(),
658 TTP->getPosition(),
659 TTP->isParameterPack(),
660 nullptr,
661 TemplateParameterList::Create(*this, SourceLocation(),
662 SourceLocation(),
663 CanonParams.data(),
664 CanonParams.size(),
665 SourceLocation()));
666
667 // Get the new insert position for the node we care about.
668 Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
669 assert(!Canonical && "Shouldn't be in the map!");
670 (void)Canonical;
671
672 // Create the canonical template template parameter entry.
673 Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
674 CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
675 return CanonTTP;
676 }
677
createCXXABI(const TargetInfo & T)678 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
679 if (!LangOpts.CPlusPlus) return nullptr;
680
681 switch (T.getCXXABI().getKind()) {
682 case TargetCXXABI::GenericARM: // Same as Itanium at this level
683 case TargetCXXABI::iOS:
684 case TargetCXXABI::iOS64:
685 case TargetCXXABI::WatchOS:
686 case TargetCXXABI::GenericAArch64:
687 case TargetCXXABI::GenericMIPS:
688 case TargetCXXABI::GenericItanium:
689 case TargetCXXABI::WebAssembly:
690 return CreateItaniumCXXABI(*this);
691 case TargetCXXABI::Microsoft:
692 return CreateMicrosoftCXXABI(*this);
693 }
694 llvm_unreachable("Invalid CXXABI type!");
695 }
696
getAddressSpaceMap(const TargetInfo & T,const LangOptions & LOpts)697 static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
698 const LangOptions &LOpts) {
699 if (LOpts.FakeAddressSpaceMap) {
700 // The fake address space map must have a distinct entry for each
701 // language-specific address space.
702 static const unsigned FakeAddrSpaceMap[] = {
703 1, // opencl_global
704 2, // opencl_local
705 3, // opencl_constant
706 4, // opencl_generic
707 5, // cuda_device
708 6, // cuda_constant
709 7 // cuda_shared
710 };
711 return &FakeAddrSpaceMap;
712 } else {
713 return &T.getAddressSpaceMap();
714 }
715 }
716
isAddrSpaceMapManglingEnabled(const TargetInfo & TI,const LangOptions & LangOpts)717 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
718 const LangOptions &LangOpts) {
719 switch (LangOpts.getAddressSpaceMapMangling()) {
720 case LangOptions::ASMM_Target:
721 return TI.useAddressSpaceMapMangling();
722 case LangOptions::ASMM_On:
723 return true;
724 case LangOptions::ASMM_Off:
725 return false;
726 }
727 llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
728 }
729
ASTContext(LangOptions & LOpts,SourceManager & SM,IdentifierTable & idents,SelectorTable & sels,Builtin::Context & builtins)730 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
731 IdentifierTable &idents, SelectorTable &sels,
732 Builtin::Context &builtins)
733 : FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()),
734 DependentTemplateSpecializationTypes(this_()),
735 SubstTemplateTemplateParmPacks(this_()),
736 GlobalNestedNameSpecifier(nullptr), Int128Decl(nullptr),
737 UInt128Decl(nullptr), Float128StubDecl(nullptr),
738 BuiltinVaListDecl(nullptr), BuiltinMSVaListDecl(nullptr),
739 ObjCIdDecl(nullptr), ObjCSelDecl(nullptr), ObjCClassDecl(nullptr),
740 ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr),
741 CFConstantStringTypeDecl(nullptr), ObjCInstanceTypeDecl(nullptr),
742 FILEDecl(nullptr), jmp_bufDecl(nullptr), sigjmp_bufDecl(nullptr),
743 ucontext_tDecl(nullptr), BlockDescriptorType(nullptr),
744 BlockDescriptorExtendedType(nullptr), cudaConfigureCallDecl(nullptr),
745 FirstLocalImport(), LastLocalImport(), ExternCContext(nullptr),
746 MakeIntegerSeqDecl(nullptr), SourceMgr(SM), LangOpts(LOpts),
747 SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
748 AddrSpaceMap(nullptr), Target(nullptr), AuxTarget(nullptr),
749 PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
750 BuiltinInfo(builtins), DeclarationNames(*this), ExternalSource(nullptr),
751 Listener(nullptr), Comments(SM), CommentsLoaded(false),
752 CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), LastSDM(nullptr, 0) {
753 TUDecl = TranslationUnitDecl::Create(*this);
754 }
755
~ASTContext()756 ASTContext::~ASTContext() {
757 ReleaseParentMapEntries();
758
759 // Release the DenseMaps associated with DeclContext objects.
760 // FIXME: Is this the ideal solution?
761 ReleaseDeclContextMaps();
762
763 // Call all of the deallocation functions on all of their targets.
764 for (DeallocationMap::const_iterator I = Deallocations.begin(),
765 E = Deallocations.end(); I != E; ++I)
766 for (unsigned J = 0, N = I->second.size(); J != N; ++J)
767 (I->first)((I->second)[J]);
768
769 // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
770 // because they can contain DenseMaps.
771 for (llvm::DenseMap<const ObjCContainerDecl*,
772 const ASTRecordLayout*>::iterator
773 I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
774 // Increment in loop to prevent using deallocated memory.
775 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
776 R->Destroy(*this);
777
778 for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
779 I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
780 // Increment in loop to prevent using deallocated memory.
781 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
782 R->Destroy(*this);
783 }
784
785 for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
786 AEnd = DeclAttrs.end();
787 A != AEnd; ++A)
788 A->second->~AttrVec();
789
790 for (std::pair<const MaterializeTemporaryExpr *, APValue *> &MTVPair :
791 MaterializedTemporaryValues)
792 MTVPair.second->~APValue();
793
794 llvm::DeleteContainerSeconds(MangleNumberingContexts);
795 }
796
ReleaseParentMapEntries()797 void ASTContext::ReleaseParentMapEntries() {
798 if (!PointerParents) return;
799 for (const auto &Entry : *PointerParents) {
800 if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
801 delete Entry.second.get<ast_type_traits::DynTypedNode *>();
802 } else if (Entry.second.is<ParentVector *>()) {
803 delete Entry.second.get<ParentVector *>();
804 }
805 }
806 for (const auto &Entry : *OtherParents) {
807 if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
808 delete Entry.second.get<ast_type_traits::DynTypedNode *>();
809 } else if (Entry.second.is<ParentVector *>()) {
810 delete Entry.second.get<ParentVector *>();
811 }
812 }
813 }
814
AddDeallocation(void (* Callback)(void *),void * Data)815 void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
816 Deallocations[Callback].push_back(Data);
817 }
818
819 void
setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source)820 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
821 ExternalSource = Source;
822 }
823
PrintStats() const824 void ASTContext::PrintStats() const {
825 llvm::errs() << "\n*** AST Context Stats:\n";
826 llvm::errs() << " " << Types.size() << " types total.\n";
827
828 unsigned counts[] = {
829 #define TYPE(Name, Parent) 0,
830 #define ABSTRACT_TYPE(Name, Parent)
831 #include "clang/AST/TypeNodes.def"
832 0 // Extra
833 };
834
835 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
836 Type *T = Types[i];
837 counts[(unsigned)T->getTypeClass()]++;
838 }
839
840 unsigned Idx = 0;
841 unsigned TotalBytes = 0;
842 #define TYPE(Name, Parent) \
843 if (counts[Idx]) \
844 llvm::errs() << " " << counts[Idx] << " " << #Name \
845 << " types\n"; \
846 TotalBytes += counts[Idx] * sizeof(Name##Type); \
847 ++Idx;
848 #define ABSTRACT_TYPE(Name, Parent)
849 #include "clang/AST/TypeNodes.def"
850
851 llvm::errs() << "Total bytes = " << TotalBytes << "\n";
852
853 // Implicit special member functions.
854 llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
855 << NumImplicitDefaultConstructors
856 << " implicit default constructors created\n";
857 llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
858 << NumImplicitCopyConstructors
859 << " implicit copy constructors created\n";
860 if (getLangOpts().CPlusPlus)
861 llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
862 << NumImplicitMoveConstructors
863 << " implicit move constructors created\n";
864 llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
865 << NumImplicitCopyAssignmentOperators
866 << " implicit copy assignment operators created\n";
867 if (getLangOpts().CPlusPlus)
868 llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
869 << NumImplicitMoveAssignmentOperators
870 << " implicit move assignment operators created\n";
871 llvm::errs() << NumImplicitDestructorsDeclared << "/"
872 << NumImplicitDestructors
873 << " implicit destructors created\n";
874
875 if (ExternalSource) {
876 llvm::errs() << "\n";
877 ExternalSource->PrintStats();
878 }
879
880 BumpAlloc.PrintStats();
881 }
882
mergeDefinitionIntoModule(NamedDecl * ND,Module * M,bool NotifyListeners)883 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
884 bool NotifyListeners) {
885 if (NotifyListeners)
886 if (auto *Listener = getASTMutationListener())
887 Listener->RedefinedHiddenDefinition(ND, M);
888
889 if (getLangOpts().ModulesLocalVisibility)
890 MergedDefModules[ND].push_back(M);
891 else
892 ND->setHidden(false);
893 }
894
deduplicateMergedDefinitonsFor(NamedDecl * ND)895 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
896 auto It = MergedDefModules.find(ND);
897 if (It == MergedDefModules.end())
898 return;
899
900 auto &Merged = It->second;
901 llvm::DenseSet<Module*> Found;
902 for (Module *&M : Merged)
903 if (!Found.insert(M).second)
904 M = nullptr;
905 Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
906 }
907
getExternCContextDecl() const908 ExternCContextDecl *ASTContext::getExternCContextDecl() const {
909 if (!ExternCContext)
910 ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
911
912 return ExternCContext;
913 }
914
915 BuiltinTemplateDecl *
buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,const IdentifierInfo * II) const916 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
917 const IdentifierInfo *II) const {
918 auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK);
919 BuiltinTemplate->setImplicit();
920 TUDecl->addDecl(BuiltinTemplate);
921
922 return BuiltinTemplate;
923 }
924
925 BuiltinTemplateDecl *
getMakeIntegerSeqDecl() const926 ASTContext::getMakeIntegerSeqDecl() const {
927 if (!MakeIntegerSeqDecl)
928 MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
929 getMakeIntegerSeqName());
930 return MakeIntegerSeqDecl;
931 }
932
buildImplicitRecord(StringRef Name,RecordDecl::TagKind TK) const933 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
934 RecordDecl::TagKind TK) const {
935 SourceLocation Loc;
936 RecordDecl *NewDecl;
937 if (getLangOpts().CPlusPlus)
938 NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
939 Loc, &Idents.get(Name));
940 else
941 NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
942 &Idents.get(Name));
943 NewDecl->setImplicit();
944 NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
945 const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
946 return NewDecl;
947 }
948
buildImplicitTypedef(QualType T,StringRef Name) const949 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
950 StringRef Name) const {
951 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
952 TypedefDecl *NewDecl = TypedefDecl::Create(
953 const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
954 SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
955 NewDecl->setImplicit();
956 return NewDecl;
957 }
958
getInt128Decl() const959 TypedefDecl *ASTContext::getInt128Decl() const {
960 if (!Int128Decl)
961 Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
962 return Int128Decl;
963 }
964
getUInt128Decl() const965 TypedefDecl *ASTContext::getUInt128Decl() const {
966 if (!UInt128Decl)
967 UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
968 return UInt128Decl;
969 }
970
getFloat128StubType() const971 TypeDecl *ASTContext::getFloat128StubType() const {
972 assert(LangOpts.CPlusPlus && "should only be called for c++");
973 if (!Float128StubDecl)
974 Float128StubDecl = buildImplicitRecord("__float128");
975
976 return Float128StubDecl;
977 }
978
InitBuiltinType(CanQualType & R,BuiltinType::Kind K)979 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
980 BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
981 R = CanQualType::CreateUnsafe(QualType(Ty, 0));
982 Types.push_back(Ty);
983 }
984
InitBuiltinTypes(const TargetInfo & Target,const TargetInfo * AuxTarget)985 void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
986 const TargetInfo *AuxTarget) {
987 assert((!this->Target || this->Target == &Target) &&
988 "Incorrect target reinitialization");
989 assert(VoidTy.isNull() && "Context reinitialized?");
990
991 this->Target = &Target;
992 this->AuxTarget = AuxTarget;
993
994 ABI.reset(createCXXABI(Target));
995 AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
996 AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
997
998 // C99 6.2.5p19.
999 InitBuiltinType(VoidTy, BuiltinType::Void);
1000
1001 // C99 6.2.5p2.
1002 InitBuiltinType(BoolTy, BuiltinType::Bool);
1003 // C99 6.2.5p3.
1004 if (LangOpts.CharIsSigned)
1005 InitBuiltinType(CharTy, BuiltinType::Char_S);
1006 else
1007 InitBuiltinType(CharTy, BuiltinType::Char_U);
1008 // C99 6.2.5p4.
1009 InitBuiltinType(SignedCharTy, BuiltinType::SChar);
1010 InitBuiltinType(ShortTy, BuiltinType::Short);
1011 InitBuiltinType(IntTy, BuiltinType::Int);
1012 InitBuiltinType(LongTy, BuiltinType::Long);
1013 InitBuiltinType(LongLongTy, BuiltinType::LongLong);
1014
1015 // C99 6.2.5p6.
1016 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
1017 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
1018 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
1019 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
1020 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
1021
1022 // C99 6.2.5p10.
1023 InitBuiltinType(FloatTy, BuiltinType::Float);
1024 InitBuiltinType(DoubleTy, BuiltinType::Double);
1025 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
1026
1027 // GNU extension, 128-bit integers.
1028 InitBuiltinType(Int128Ty, BuiltinType::Int128);
1029 InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
1030
1031 // C++ 3.9.1p5
1032 if (TargetInfo::isTypeSigned(Target.getWCharType()))
1033 InitBuiltinType(WCharTy, BuiltinType::WChar_S);
1034 else // -fshort-wchar makes wchar_t be unsigned.
1035 InitBuiltinType(WCharTy, BuiltinType::WChar_U);
1036 if (LangOpts.CPlusPlus && LangOpts.WChar)
1037 WideCharTy = WCharTy;
1038 else {
1039 // C99 (or C++ using -fno-wchar).
1040 WideCharTy = getFromTargetType(Target.getWCharType());
1041 }
1042
1043 WIntTy = getFromTargetType(Target.getWIntType());
1044
1045 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1046 InitBuiltinType(Char16Ty, BuiltinType::Char16);
1047 else // C99
1048 Char16Ty = getFromTargetType(Target.getChar16Type());
1049
1050 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1051 InitBuiltinType(Char32Ty, BuiltinType::Char32);
1052 else // C99
1053 Char32Ty = getFromTargetType(Target.getChar32Type());
1054
1055 // Placeholder type for type-dependent expressions whose type is
1056 // completely unknown. No code should ever check a type against
1057 // DependentTy and users should never see it; however, it is here to
1058 // help diagnose failures to properly check for type-dependent
1059 // expressions.
1060 InitBuiltinType(DependentTy, BuiltinType::Dependent);
1061
1062 // Placeholder type for functions.
1063 InitBuiltinType(OverloadTy, BuiltinType::Overload);
1064
1065 // Placeholder type for bound members.
1066 InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember);
1067
1068 // Placeholder type for pseudo-objects.
1069 InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject);
1070
1071 // "any" type; useful for debugger-like clients.
1072 InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny);
1073
1074 // Placeholder type for unbridged ARC casts.
1075 InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast);
1076
1077 // Placeholder type for builtin functions.
1078 InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn);
1079
1080 // Placeholder type for OMP array sections.
1081 if (LangOpts.OpenMP)
1082 InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1083
1084 // C99 6.2.5p11.
1085 FloatComplexTy = getComplexType(FloatTy);
1086 DoubleComplexTy = getComplexType(DoubleTy);
1087 LongDoubleComplexTy = getComplexType(LongDoubleTy);
1088
1089 // Builtin types for 'id', 'Class', and 'SEL'.
1090 InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1091 InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1092 InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1093
1094 if (LangOpts.OpenCL) {
1095 InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
1096 InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
1097 InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
1098 InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
1099 InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
1100 InitBuiltinType(OCLImage2dDepthTy, BuiltinType::OCLImage2dDepth);
1101 InitBuiltinType(OCLImage2dArrayDepthTy, BuiltinType::OCLImage2dArrayDepth);
1102 InitBuiltinType(OCLImage2dMSAATy, BuiltinType::OCLImage2dMSAA);
1103 InitBuiltinType(OCLImage2dArrayMSAATy, BuiltinType::OCLImage2dArrayMSAA);
1104 InitBuiltinType(OCLImage2dMSAADepthTy, BuiltinType::OCLImage2dMSAADepth);
1105 InitBuiltinType(OCLImage2dArrayMSAADepthTy,
1106 BuiltinType::OCLImage2dArrayMSAADepth);
1107 InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
1108
1109 InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1110 InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1111 InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1112 InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1113 InitBuiltinType(OCLNDRangeTy, BuiltinType::OCLNDRange);
1114 InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1115 }
1116
1117 // Builtin type for __objc_yes and __objc_no
1118 ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1119 SignedCharTy : BoolTy);
1120
1121 ObjCConstantStringType = QualType();
1122
1123 ObjCSuperType = QualType();
1124
1125 // void * type
1126 VoidPtrTy = getPointerType(VoidTy);
1127
1128 // nullptr type (C++0x 2.14.7)
1129 InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
1130
1131 // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1132 InitBuiltinType(HalfTy, BuiltinType::Half);
1133
1134 // Builtin type used to help define __builtin_va_list.
1135 VaListTagDecl = nullptr;
1136 }
1137
getDiagnostics() const1138 DiagnosticsEngine &ASTContext::getDiagnostics() const {
1139 return SourceMgr.getDiagnostics();
1140 }
1141
getDeclAttrs(const Decl * D)1142 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1143 AttrVec *&Result = DeclAttrs[D];
1144 if (!Result) {
1145 void *Mem = Allocate(sizeof(AttrVec));
1146 Result = new (Mem) AttrVec;
1147 }
1148
1149 return *Result;
1150 }
1151
1152 /// \brief Erase the attributes corresponding to the given declaration.
eraseDeclAttrs(const Decl * D)1153 void ASTContext::eraseDeclAttrs(const Decl *D) {
1154 llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1155 if (Pos != DeclAttrs.end()) {
1156 Pos->second->~AttrVec();
1157 DeclAttrs.erase(Pos);
1158 }
1159 }
1160
1161 // FIXME: Remove ?
1162 MemberSpecializationInfo *
getInstantiatedFromStaticDataMember(const VarDecl * Var)1163 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1164 assert(Var->isStaticDataMember() && "Not a static data member");
1165 return getTemplateOrSpecializationInfo(Var)
1166 .dyn_cast<MemberSpecializationInfo *>();
1167 }
1168
1169 ASTContext::TemplateOrSpecializationInfo
getTemplateOrSpecializationInfo(const VarDecl * Var)1170 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1171 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1172 TemplateOrInstantiation.find(Var);
1173 if (Pos == TemplateOrInstantiation.end())
1174 return TemplateOrSpecializationInfo();
1175
1176 return Pos->second;
1177 }
1178
1179 void
setInstantiatedFromStaticDataMember(VarDecl * Inst,VarDecl * Tmpl,TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)1180 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1181 TemplateSpecializationKind TSK,
1182 SourceLocation PointOfInstantiation) {
1183 assert(Inst->isStaticDataMember() && "Not a static data member");
1184 assert(Tmpl->isStaticDataMember() && "Not a static data member");
1185 setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1186 Tmpl, TSK, PointOfInstantiation));
1187 }
1188
1189 void
setTemplateOrSpecializationInfo(VarDecl * Inst,TemplateOrSpecializationInfo TSI)1190 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1191 TemplateOrSpecializationInfo TSI) {
1192 assert(!TemplateOrInstantiation[Inst] &&
1193 "Already noted what the variable was instantiated from");
1194 TemplateOrInstantiation[Inst] = TSI;
1195 }
1196
getClassScopeSpecializationPattern(const FunctionDecl * FD)1197 FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1198 const FunctionDecl *FD){
1199 assert(FD && "Specialization is 0");
1200 llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1201 = ClassScopeSpecializationPattern.find(FD);
1202 if (Pos == ClassScopeSpecializationPattern.end())
1203 return nullptr;
1204
1205 return Pos->second;
1206 }
1207
setClassScopeSpecializationPattern(FunctionDecl * FD,FunctionDecl * Pattern)1208 void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1209 FunctionDecl *Pattern) {
1210 assert(FD && "Specialization is 0");
1211 assert(Pattern && "Class scope specialization pattern is 0");
1212 ClassScopeSpecializationPattern[FD] = Pattern;
1213 }
1214
1215 NamedDecl *
getInstantiatedFromUsingDecl(UsingDecl * UUD)1216 ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1217 llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1218 = InstantiatedFromUsingDecl.find(UUD);
1219 if (Pos == InstantiatedFromUsingDecl.end())
1220 return nullptr;
1221
1222 return Pos->second;
1223 }
1224
1225 void
setInstantiatedFromUsingDecl(UsingDecl * Inst,NamedDecl * Pattern)1226 ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1227 assert((isa<UsingDecl>(Pattern) ||
1228 isa<UnresolvedUsingValueDecl>(Pattern) ||
1229 isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1230 "pattern decl is not a using decl");
1231 assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1232 InstantiatedFromUsingDecl[Inst] = Pattern;
1233 }
1234
1235 UsingShadowDecl *
getInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst)1236 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1237 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1238 = InstantiatedFromUsingShadowDecl.find(Inst);
1239 if (Pos == InstantiatedFromUsingShadowDecl.end())
1240 return nullptr;
1241
1242 return Pos->second;
1243 }
1244
1245 void
setInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst,UsingShadowDecl * Pattern)1246 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1247 UsingShadowDecl *Pattern) {
1248 assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1249 InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1250 }
1251
getInstantiatedFromUnnamedFieldDecl(FieldDecl * Field)1252 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1253 llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1254 = InstantiatedFromUnnamedFieldDecl.find(Field);
1255 if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1256 return nullptr;
1257
1258 return Pos->second;
1259 }
1260
setInstantiatedFromUnnamedFieldDecl(FieldDecl * Inst,FieldDecl * Tmpl)1261 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1262 FieldDecl *Tmpl) {
1263 assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1264 assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1265 assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1266 "Already noted what unnamed field was instantiated from");
1267
1268 InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1269 }
1270
1271 ASTContext::overridden_cxx_method_iterator
overridden_methods_begin(const CXXMethodDecl * Method) const1272 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1273 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1274 = OverriddenMethods.find(Method->getCanonicalDecl());
1275 if (Pos == OverriddenMethods.end())
1276 return nullptr;
1277
1278 return Pos->second.begin();
1279 }
1280
1281 ASTContext::overridden_cxx_method_iterator
overridden_methods_end(const CXXMethodDecl * Method) const1282 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1283 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1284 = OverriddenMethods.find(Method->getCanonicalDecl());
1285 if (Pos == OverriddenMethods.end())
1286 return nullptr;
1287
1288 return Pos->second.end();
1289 }
1290
1291 unsigned
overridden_methods_size(const CXXMethodDecl * Method) const1292 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1293 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1294 = OverriddenMethods.find(Method->getCanonicalDecl());
1295 if (Pos == OverriddenMethods.end())
1296 return 0;
1297
1298 return Pos->second.size();
1299 }
1300
addOverriddenMethod(const CXXMethodDecl * Method,const CXXMethodDecl * Overridden)1301 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1302 const CXXMethodDecl *Overridden) {
1303 assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1304 OverriddenMethods[Method].push_back(Overridden);
1305 }
1306
getOverriddenMethods(const NamedDecl * D,SmallVectorImpl<const NamedDecl * > & Overridden) const1307 void ASTContext::getOverriddenMethods(
1308 const NamedDecl *D,
1309 SmallVectorImpl<const NamedDecl *> &Overridden) const {
1310 assert(D);
1311
1312 if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1313 Overridden.append(overridden_methods_begin(CXXMethod),
1314 overridden_methods_end(CXXMethod));
1315 return;
1316 }
1317
1318 const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1319 if (!Method)
1320 return;
1321
1322 SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1323 Method->getOverriddenMethods(OverDecls);
1324 Overridden.append(OverDecls.begin(), OverDecls.end());
1325 }
1326
addedLocalImportDecl(ImportDecl * Import)1327 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1328 assert(!Import->NextLocalImport && "Import declaration already in the chain");
1329 assert(!Import->isFromASTFile() && "Non-local import declaration");
1330 if (!FirstLocalImport) {
1331 FirstLocalImport = Import;
1332 LastLocalImport = Import;
1333 return;
1334 }
1335
1336 LastLocalImport->NextLocalImport = Import;
1337 LastLocalImport = Import;
1338 }
1339
1340 //===----------------------------------------------------------------------===//
1341 // Type Sizing and Analysis
1342 //===----------------------------------------------------------------------===//
1343
1344 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1345 /// scalar floating point type.
getFloatTypeSemantics(QualType T) const1346 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1347 const BuiltinType *BT = T->getAs<BuiltinType>();
1348 assert(BT && "Not a floating point type!");
1349 switch (BT->getKind()) {
1350 default: llvm_unreachable("Not a floating point type!");
1351 case BuiltinType::Half: return Target->getHalfFormat();
1352 case BuiltinType::Float: return Target->getFloatFormat();
1353 case BuiltinType::Double: return Target->getDoubleFormat();
1354 case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1355 }
1356 }
1357
getDeclAlign(const Decl * D,bool ForAlignof) const1358 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1359 unsigned Align = Target->getCharWidth();
1360
1361 bool UseAlignAttrOnly = false;
1362 if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1363 Align = AlignFromAttr;
1364
1365 // __attribute__((aligned)) can increase or decrease alignment
1366 // *except* on a struct or struct member, where it only increases
1367 // alignment unless 'packed' is also specified.
1368 //
1369 // It is an error for alignas to decrease alignment, so we can
1370 // ignore that possibility; Sema should diagnose it.
1371 if (isa<FieldDecl>(D)) {
1372 UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1373 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1374 } else {
1375 UseAlignAttrOnly = true;
1376 }
1377 }
1378 else if (isa<FieldDecl>(D))
1379 UseAlignAttrOnly =
1380 D->hasAttr<PackedAttr>() ||
1381 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1382
1383 // If we're using the align attribute only, just ignore everything
1384 // else about the declaration and its type.
1385 if (UseAlignAttrOnly) {
1386 // do nothing
1387
1388 } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1389 QualType T = VD->getType();
1390 if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
1391 if (ForAlignof)
1392 T = RT->getPointeeType();
1393 else
1394 T = getPointerType(RT->getPointeeType());
1395 }
1396 QualType BaseT = getBaseElementType(T);
1397 if (!BaseT->isIncompleteType() && !T->isFunctionType()) {
1398 // Adjust alignments of declarations with array type by the
1399 // large-array alignment on the target.
1400 if (const ArrayType *arrayType = getAsArrayType(T)) {
1401 unsigned MinWidth = Target->getLargeArrayMinWidth();
1402 if (!ForAlignof && MinWidth) {
1403 if (isa<VariableArrayType>(arrayType))
1404 Align = std::max(Align, Target->getLargeArrayAlign());
1405 else if (isa<ConstantArrayType>(arrayType) &&
1406 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1407 Align = std::max(Align, Target->getLargeArrayAlign());
1408 }
1409 }
1410 Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1411 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1412 if (VD->hasGlobalStorage() && !ForAlignof)
1413 Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1414 }
1415 }
1416
1417 // Fields can be subject to extra alignment constraints, like if
1418 // the field is packed, the struct is packed, or the struct has a
1419 // a max-field-alignment constraint (#pragma pack). So calculate
1420 // the actual alignment of the field within the struct, and then
1421 // (as we're expected to) constrain that by the alignment of the type.
1422 if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
1423 const RecordDecl *Parent = Field->getParent();
1424 // We can only produce a sensible answer if the record is valid.
1425 if (!Parent->isInvalidDecl()) {
1426 const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1427
1428 // Start with the record's overall alignment.
1429 unsigned FieldAlign = toBits(Layout.getAlignment());
1430
1431 // Use the GCD of that and the offset within the record.
1432 uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1433 if (Offset > 0) {
1434 // Alignment is always a power of 2, so the GCD will be a power of 2,
1435 // which means we get to do this crazy thing instead of Euclid's.
1436 uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1437 if (LowBitOfOffset < FieldAlign)
1438 FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1439 }
1440
1441 Align = std::min(Align, FieldAlign);
1442 }
1443 }
1444 }
1445
1446 return toCharUnitsFromBits(Align);
1447 }
1448
1449 // getTypeInfoDataSizeInChars - Return the size of a type, in
1450 // chars. If the type is a record, its data size is returned. This is
1451 // the size of the memcpy that's performed when assigning this type
1452 // using a trivial copy/move assignment operator.
1453 std::pair<CharUnits, CharUnits>
getTypeInfoDataSizeInChars(QualType T) const1454 ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1455 std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1456
1457 // In C++, objects can sometimes be allocated into the tail padding
1458 // of a base-class subobject. We decide whether that's possible
1459 // during class layout, so here we can just trust the layout results.
1460 if (getLangOpts().CPlusPlus) {
1461 if (const RecordType *RT = T->getAs<RecordType>()) {
1462 const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1463 sizeAndAlign.first = layout.getDataSize();
1464 }
1465 }
1466
1467 return sizeAndAlign;
1468 }
1469
1470 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1471 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1472 std::pair<CharUnits, CharUnits>
getConstantArrayInfoInChars(const ASTContext & Context,const ConstantArrayType * CAT)1473 static getConstantArrayInfoInChars(const ASTContext &Context,
1474 const ConstantArrayType *CAT) {
1475 std::pair<CharUnits, CharUnits> EltInfo =
1476 Context.getTypeInfoInChars(CAT->getElementType());
1477 uint64_t Size = CAT->getSize().getZExtValue();
1478 assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1479 (uint64_t)(-1)/Size) &&
1480 "Overflow in array type char size evaluation");
1481 uint64_t Width = EltInfo.first.getQuantity() * Size;
1482 unsigned Align = EltInfo.second.getQuantity();
1483 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1484 Context.getTargetInfo().getPointerWidth(0) == 64)
1485 Width = llvm::RoundUpToAlignment(Width, Align);
1486 return std::make_pair(CharUnits::fromQuantity(Width),
1487 CharUnits::fromQuantity(Align));
1488 }
1489
1490 std::pair<CharUnits, CharUnits>
getTypeInfoInChars(const Type * T) const1491 ASTContext::getTypeInfoInChars(const Type *T) const {
1492 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
1493 return getConstantArrayInfoInChars(*this, CAT);
1494 TypeInfo Info = getTypeInfo(T);
1495 return std::make_pair(toCharUnitsFromBits(Info.Width),
1496 toCharUnitsFromBits(Info.Align));
1497 }
1498
1499 std::pair<CharUnits, CharUnits>
getTypeInfoInChars(QualType T) const1500 ASTContext::getTypeInfoInChars(QualType T) const {
1501 return getTypeInfoInChars(T.getTypePtr());
1502 }
1503
isAlignmentRequired(const Type * T) const1504 bool ASTContext::isAlignmentRequired(const Type *T) const {
1505 return getTypeInfo(T).AlignIsRequired;
1506 }
1507
isAlignmentRequired(QualType T) const1508 bool ASTContext::isAlignmentRequired(QualType T) const {
1509 return isAlignmentRequired(T.getTypePtr());
1510 }
1511
getTypeInfo(const Type * T) const1512 TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1513 TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1514 if (I != MemoizedTypeInfo.end())
1515 return I->second;
1516
1517 // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1518 TypeInfo TI = getTypeInfoImpl(T);
1519 MemoizedTypeInfo[T] = TI;
1520 return TI;
1521 }
1522
1523 /// getTypeInfoImpl - Return the size of the specified type, in bits. This
1524 /// method does not work on incomplete types.
1525 ///
1526 /// FIXME: Pointers into different addr spaces could have different sizes and
1527 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1528 /// should take a QualType, &c.
getTypeInfoImpl(const Type * T) const1529 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1530 uint64_t Width = 0;
1531 unsigned Align = 8;
1532 bool AlignIsRequired = false;
1533 switch (T->getTypeClass()) {
1534 #define TYPE(Class, Base)
1535 #define ABSTRACT_TYPE(Class, Base)
1536 #define NON_CANONICAL_TYPE(Class, Base)
1537 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1538 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \
1539 case Type::Class: \
1540 assert(!T->isDependentType() && "should not see dependent types here"); \
1541 return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1542 #include "clang/AST/TypeNodes.def"
1543 llvm_unreachable("Should not see dependent types");
1544
1545 case Type::FunctionNoProto:
1546 case Type::FunctionProto:
1547 // GCC extension: alignof(function) = 32 bits
1548 Width = 0;
1549 Align = 32;
1550 break;
1551
1552 case Type::IncompleteArray:
1553 case Type::VariableArray:
1554 Width = 0;
1555 Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1556 break;
1557
1558 case Type::ConstantArray: {
1559 const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1560
1561 TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
1562 uint64_t Size = CAT->getSize().getZExtValue();
1563 assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1564 "Overflow in array type bit size evaluation");
1565 Width = EltInfo.Width * Size;
1566 Align = EltInfo.Align;
1567 if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1568 getTargetInfo().getPointerWidth(0) == 64)
1569 Width = llvm::RoundUpToAlignment(Width, Align);
1570 break;
1571 }
1572 case Type::ExtVector:
1573 case Type::Vector: {
1574 const VectorType *VT = cast<VectorType>(T);
1575 TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1576 Width = EltInfo.Width * VT->getNumElements();
1577 Align = Width;
1578 // If the alignment is not a power of 2, round up to the next power of 2.
1579 // This happens for non-power-of-2 length vectors.
1580 if (Align & (Align-1)) {
1581 Align = llvm::NextPowerOf2(Align);
1582 Width = llvm::RoundUpToAlignment(Width, Align);
1583 }
1584 // Adjust the alignment based on the target max.
1585 uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1586 if (TargetVectorAlign && TargetVectorAlign < Align)
1587 Align = TargetVectorAlign;
1588 break;
1589 }
1590
1591 case Type::Builtin:
1592 switch (cast<BuiltinType>(T)->getKind()) {
1593 default: llvm_unreachable("Unknown builtin type!");
1594 case BuiltinType::Void:
1595 // GCC extension: alignof(void) = 8 bits.
1596 Width = 0;
1597 Align = 8;
1598 break;
1599
1600 case BuiltinType::Bool:
1601 Width = Target->getBoolWidth();
1602 Align = Target->getBoolAlign();
1603 break;
1604 case BuiltinType::Char_S:
1605 case BuiltinType::Char_U:
1606 case BuiltinType::UChar:
1607 case BuiltinType::SChar:
1608 Width = Target->getCharWidth();
1609 Align = Target->getCharAlign();
1610 break;
1611 case BuiltinType::WChar_S:
1612 case BuiltinType::WChar_U:
1613 Width = Target->getWCharWidth();
1614 Align = Target->getWCharAlign();
1615 break;
1616 case BuiltinType::Char16:
1617 Width = Target->getChar16Width();
1618 Align = Target->getChar16Align();
1619 break;
1620 case BuiltinType::Char32:
1621 Width = Target->getChar32Width();
1622 Align = Target->getChar32Align();
1623 break;
1624 case BuiltinType::UShort:
1625 case BuiltinType::Short:
1626 Width = Target->getShortWidth();
1627 Align = Target->getShortAlign();
1628 break;
1629 case BuiltinType::UInt:
1630 case BuiltinType::Int:
1631 Width = Target->getIntWidth();
1632 Align = Target->getIntAlign();
1633 break;
1634 case BuiltinType::ULong:
1635 case BuiltinType::Long:
1636 Width = Target->getLongWidth();
1637 Align = Target->getLongAlign();
1638 break;
1639 case BuiltinType::ULongLong:
1640 case BuiltinType::LongLong:
1641 Width = Target->getLongLongWidth();
1642 Align = Target->getLongLongAlign();
1643 break;
1644 case BuiltinType::Int128:
1645 case BuiltinType::UInt128:
1646 Width = 128;
1647 Align = 128; // int128_t is 128-bit aligned on all targets.
1648 break;
1649 case BuiltinType::Half:
1650 Width = Target->getHalfWidth();
1651 Align = Target->getHalfAlign();
1652 break;
1653 case BuiltinType::Float:
1654 Width = Target->getFloatWidth();
1655 Align = Target->getFloatAlign();
1656 break;
1657 case BuiltinType::Double:
1658 Width = Target->getDoubleWidth();
1659 Align = Target->getDoubleAlign();
1660 break;
1661 case BuiltinType::LongDouble:
1662 Width = Target->getLongDoubleWidth();
1663 Align = Target->getLongDoubleAlign();
1664 break;
1665 case BuiltinType::NullPtr:
1666 Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1667 Align = Target->getPointerAlign(0); // == sizeof(void*)
1668 break;
1669 case BuiltinType::ObjCId:
1670 case BuiltinType::ObjCClass:
1671 case BuiltinType::ObjCSel:
1672 Width = Target->getPointerWidth(0);
1673 Align = Target->getPointerAlign(0);
1674 break;
1675 case BuiltinType::OCLSampler:
1676 // Samplers are modeled as integers.
1677 Width = Target->getIntWidth();
1678 Align = Target->getIntAlign();
1679 break;
1680 case BuiltinType::OCLEvent:
1681 case BuiltinType::OCLClkEvent:
1682 case BuiltinType::OCLQueue:
1683 case BuiltinType::OCLNDRange:
1684 case BuiltinType::OCLReserveID:
1685 case BuiltinType::OCLImage1d:
1686 case BuiltinType::OCLImage1dArray:
1687 case BuiltinType::OCLImage1dBuffer:
1688 case BuiltinType::OCLImage2d:
1689 case BuiltinType::OCLImage2dArray:
1690 case BuiltinType::OCLImage2dDepth:
1691 case BuiltinType::OCLImage2dArrayDepth:
1692 case BuiltinType::OCLImage2dMSAA:
1693 case BuiltinType::OCLImage2dArrayMSAA:
1694 case BuiltinType::OCLImage2dMSAADepth:
1695 case BuiltinType::OCLImage2dArrayMSAADepth:
1696 case BuiltinType::OCLImage3d:
1697 // Currently these types are pointers to opaque types.
1698 Width = Target->getPointerWidth(0);
1699 Align = Target->getPointerAlign(0);
1700 break;
1701 }
1702 break;
1703 case Type::ObjCObjectPointer:
1704 Width = Target->getPointerWidth(0);
1705 Align = Target->getPointerAlign(0);
1706 break;
1707 case Type::BlockPointer: {
1708 unsigned AS = getTargetAddressSpace(
1709 cast<BlockPointerType>(T)->getPointeeType());
1710 Width = Target->getPointerWidth(AS);
1711 Align = Target->getPointerAlign(AS);
1712 break;
1713 }
1714 case Type::LValueReference:
1715 case Type::RValueReference: {
1716 // alignof and sizeof should never enter this code path here, so we go
1717 // the pointer route.
1718 unsigned AS = getTargetAddressSpace(
1719 cast<ReferenceType>(T)->getPointeeType());
1720 Width = Target->getPointerWidth(AS);
1721 Align = Target->getPointerAlign(AS);
1722 break;
1723 }
1724 case Type::Pointer: {
1725 unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1726 Width = Target->getPointerWidth(AS);
1727 Align = Target->getPointerAlign(AS);
1728 break;
1729 }
1730 case Type::MemberPointer: {
1731 const MemberPointerType *MPT = cast<MemberPointerType>(T);
1732 std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1733 break;
1734 }
1735 case Type::Complex: {
1736 // Complex types have the same alignment as their elements, but twice the
1737 // size.
1738 TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
1739 Width = EltInfo.Width * 2;
1740 Align = EltInfo.Align;
1741 break;
1742 }
1743 case Type::ObjCObject:
1744 return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1745 case Type::Adjusted:
1746 case Type::Decayed:
1747 return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
1748 case Type::ObjCInterface: {
1749 const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1750 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1751 Width = toBits(Layout.getSize());
1752 Align = toBits(Layout.getAlignment());
1753 break;
1754 }
1755 case Type::Record:
1756 case Type::Enum: {
1757 const TagType *TT = cast<TagType>(T);
1758
1759 if (TT->getDecl()->isInvalidDecl()) {
1760 Width = 8;
1761 Align = 8;
1762 break;
1763 }
1764
1765 if (const EnumType *ET = dyn_cast<EnumType>(TT)) {
1766 const EnumDecl *ED = ET->getDecl();
1767 TypeInfo Info =
1768 getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
1769 if (unsigned AttrAlign = ED->getMaxAlignment()) {
1770 Info.Align = AttrAlign;
1771 Info.AlignIsRequired = true;
1772 }
1773 return Info;
1774 }
1775
1776 const RecordType *RT = cast<RecordType>(TT);
1777 const RecordDecl *RD = RT->getDecl();
1778 const ASTRecordLayout &Layout = getASTRecordLayout(RD);
1779 Width = toBits(Layout.getSize());
1780 Align = toBits(Layout.getAlignment());
1781 AlignIsRequired = RD->hasAttr<AlignedAttr>();
1782 break;
1783 }
1784
1785 case Type::SubstTemplateTypeParm:
1786 return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1787 getReplacementType().getTypePtr());
1788
1789 case Type::Auto: {
1790 const AutoType *A = cast<AutoType>(T);
1791 assert(!A->getDeducedType().isNull() &&
1792 "cannot request the size of an undeduced or dependent auto type");
1793 return getTypeInfo(A->getDeducedType().getTypePtr());
1794 }
1795
1796 case Type::Paren:
1797 return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1798
1799 case Type::Typedef: {
1800 const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1801 TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1802 // If the typedef has an aligned attribute on it, it overrides any computed
1803 // alignment we have. This violates the GCC documentation (which says that
1804 // attribute(aligned) can only round up) but matches its implementation.
1805 if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
1806 Align = AttrAlign;
1807 AlignIsRequired = true;
1808 } else {
1809 Align = Info.Align;
1810 AlignIsRequired = Info.AlignIsRequired;
1811 }
1812 Width = Info.Width;
1813 break;
1814 }
1815
1816 case Type::Elaborated:
1817 return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1818
1819 case Type::Attributed:
1820 return getTypeInfo(
1821 cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1822
1823 case Type::Atomic: {
1824 // Start with the base type information.
1825 TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
1826 Width = Info.Width;
1827 Align = Info.Align;
1828
1829 // If the size of the type doesn't exceed the platform's max
1830 // atomic promotion width, make the size and alignment more
1831 // favorable to atomic operations:
1832 if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1833 // Round the size up to a power of 2.
1834 if (!llvm::isPowerOf2_64(Width))
1835 Width = llvm::NextPowerOf2(Width);
1836
1837 // Set the alignment equal to the size.
1838 Align = static_cast<unsigned>(Width);
1839 }
1840 }
1841
1842 }
1843
1844 assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1845 return TypeInfo(Width, Align, AlignIsRequired);
1846 }
1847
getOpenMPDefaultSimdAlign(QualType T) const1848 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
1849 unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
1850 // Target ppc64 with QPX: simd default alignment for pointer to double is 32.
1851 if ((getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64 ||
1852 getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64le) &&
1853 getTargetInfo().getABI() == "elfv1-qpx" &&
1854 T->isSpecificBuiltinType(BuiltinType::Double))
1855 SimdAlign = 256;
1856 return SimdAlign;
1857 }
1858
1859 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
toCharUnitsFromBits(int64_t BitSize) const1860 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1861 return CharUnits::fromQuantity(BitSize / getCharWidth());
1862 }
1863
1864 /// toBits - Convert a size in characters to a size in characters.
toBits(CharUnits CharSize) const1865 int64_t ASTContext::toBits(CharUnits CharSize) const {
1866 return CharSize.getQuantity() * getCharWidth();
1867 }
1868
1869 /// getTypeSizeInChars - Return the size of the specified type, in characters.
1870 /// This method does not work on incomplete types.
getTypeSizeInChars(QualType T) const1871 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1872 return getTypeInfoInChars(T).first;
1873 }
getTypeSizeInChars(const Type * T) const1874 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1875 return getTypeInfoInChars(T).first;
1876 }
1877
1878 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1879 /// characters. This method does not work on incomplete types.
getTypeAlignInChars(QualType T) const1880 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1881 return toCharUnitsFromBits(getTypeAlign(T));
1882 }
getTypeAlignInChars(const Type * T) const1883 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1884 return toCharUnitsFromBits(getTypeAlign(T));
1885 }
1886
1887 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1888 /// type for the current target in bits. This can be different than the ABI
1889 /// alignment in cases where it is beneficial for performance to overalign
1890 /// a data type.
getPreferredTypeAlign(const Type * T) const1891 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1892 TypeInfo TI = getTypeInfo(T);
1893 unsigned ABIAlign = TI.Align;
1894
1895 T = T->getBaseElementTypeUnsafe();
1896
1897 // The preferred alignment of member pointers is that of a pointer.
1898 if (T->isMemberPointerType())
1899 return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
1900
1901 if (Target->getTriple().getArch() == llvm::Triple::xcore)
1902 return ABIAlign; // Never overalign on XCore.
1903
1904 // Double and long long should be naturally aligned if possible.
1905 if (const ComplexType *CT = T->getAs<ComplexType>())
1906 T = CT->getElementType().getTypePtr();
1907 if (const EnumType *ET = T->getAs<EnumType>())
1908 T = ET->getDecl()->getIntegerType().getTypePtr();
1909 if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1910 T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1911 T->isSpecificBuiltinType(BuiltinType::ULongLong))
1912 // Don't increase the alignment if an alignment attribute was specified on a
1913 // typedef declaration.
1914 if (!TI.AlignIsRequired)
1915 return std::max(ABIAlign, (unsigned)getTypeSize(T));
1916
1917 return ABIAlign;
1918 }
1919
1920 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment
1921 /// for __attribute__((aligned)) on this target, to be used if no alignment
1922 /// value is specified.
getTargetDefaultAlignForAttributeAligned() const1923 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
1924 return getTargetInfo().getDefaultAlignForAttributeAligned();
1925 }
1926
1927 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
1928 /// to a global variable of the specified type.
getAlignOfGlobalVar(QualType T) const1929 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
1930 return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
1931 }
1932
1933 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
1934 /// should be given to a global variable of the specified type.
getAlignOfGlobalVarInChars(QualType T) const1935 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
1936 return toCharUnitsFromBits(getAlignOfGlobalVar(T));
1937 }
1938
getOffsetOfBaseWithVBPtr(const CXXRecordDecl * RD) const1939 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
1940 CharUnits Offset = CharUnits::Zero();
1941 const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
1942 while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
1943 Offset += Layout->getBaseClassOffset(Base);
1944 Layout = &getASTRecordLayout(Base);
1945 }
1946 return Offset;
1947 }
1948
1949 /// DeepCollectObjCIvars -
1950 /// This routine first collects all declared, but not synthesized, ivars in
1951 /// super class and then collects all ivars, including those synthesized for
1952 /// current class. This routine is used for implementation of current class
1953 /// when all ivars, declared and synthesized are known.
1954 ///
DeepCollectObjCIvars(const ObjCInterfaceDecl * OI,bool leafClass,SmallVectorImpl<const ObjCIvarDecl * > & Ivars) const1955 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1956 bool leafClass,
1957 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1958 if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1959 DeepCollectObjCIvars(SuperClass, false, Ivars);
1960 if (!leafClass) {
1961 for (const auto *I : OI->ivars())
1962 Ivars.push_back(I);
1963 } else {
1964 ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1965 for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1966 Iv= Iv->getNextIvar())
1967 Ivars.push_back(Iv);
1968 }
1969 }
1970
1971 /// CollectInheritedProtocols - Collect all protocols in current class and
1972 /// those inherited by it.
CollectInheritedProtocols(const Decl * CDecl,llvm::SmallPtrSet<ObjCProtocolDecl *,8> & Protocols)1973 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1974 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1975 if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1976 // We can use protocol_iterator here instead of
1977 // all_referenced_protocol_iterator since we are walking all categories.
1978 for (auto *Proto : OI->all_referenced_protocols()) {
1979 CollectInheritedProtocols(Proto, Protocols);
1980 }
1981
1982 // Categories of this Interface.
1983 for (const auto *Cat : OI->visible_categories())
1984 CollectInheritedProtocols(Cat, Protocols);
1985
1986 if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1987 while (SD) {
1988 CollectInheritedProtocols(SD, Protocols);
1989 SD = SD->getSuperClass();
1990 }
1991 } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1992 for (auto *Proto : OC->protocols()) {
1993 CollectInheritedProtocols(Proto, Protocols);
1994 }
1995 } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1996 // Insert the protocol.
1997 if (!Protocols.insert(
1998 const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
1999 return;
2000
2001 for (auto *Proto : OP->protocols())
2002 CollectInheritedProtocols(Proto, Protocols);
2003 }
2004 }
2005
CountNonClassIvars(const ObjCInterfaceDecl * OI) const2006 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2007 unsigned count = 0;
2008 // Count ivars declared in class extension.
2009 for (const auto *Ext : OI->known_extensions())
2010 count += Ext->ivar_size();
2011
2012 // Count ivar defined in this class's implementation. This
2013 // includes synthesized ivars.
2014 if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2015 count += ImplDecl->ivar_size();
2016
2017 return count;
2018 }
2019
isSentinelNullExpr(const Expr * E)2020 bool ASTContext::isSentinelNullExpr(const Expr *E) {
2021 if (!E)
2022 return false;
2023
2024 // nullptr_t is always treated as null.
2025 if (E->getType()->isNullPtrType()) return true;
2026
2027 if (E->getType()->isAnyPointerType() &&
2028 E->IgnoreParenCasts()->isNullPointerConstant(*this,
2029 Expr::NPC_ValueDependentIsNull))
2030 return true;
2031
2032 // Unfortunately, __null has type 'int'.
2033 if (isa<GNUNullExpr>(E)) return true;
2034
2035 return false;
2036 }
2037
2038 /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
getObjCImplementation(ObjCInterfaceDecl * D)2039 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2040 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2041 I = ObjCImpls.find(D);
2042 if (I != ObjCImpls.end())
2043 return cast<ObjCImplementationDecl>(I->second);
2044 return nullptr;
2045 }
2046 /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
getObjCImplementation(ObjCCategoryDecl * D)2047 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2048 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2049 I = ObjCImpls.find(D);
2050 if (I != ObjCImpls.end())
2051 return cast<ObjCCategoryImplDecl>(I->second);
2052 return nullptr;
2053 }
2054
2055 /// \brief Set the implementation of ObjCInterfaceDecl.
setObjCImplementation(ObjCInterfaceDecl * IFaceD,ObjCImplementationDecl * ImplD)2056 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2057 ObjCImplementationDecl *ImplD) {
2058 assert(IFaceD && ImplD && "Passed null params");
2059 ObjCImpls[IFaceD] = ImplD;
2060 }
2061 /// \brief Set the implementation of ObjCCategoryDecl.
setObjCImplementation(ObjCCategoryDecl * CatD,ObjCCategoryImplDecl * ImplD)2062 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2063 ObjCCategoryImplDecl *ImplD) {
2064 assert(CatD && ImplD && "Passed null params");
2065 ObjCImpls[CatD] = ImplD;
2066 }
2067
getObjContainingInterface(const NamedDecl * ND) const2068 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2069 const NamedDecl *ND) const {
2070 if (const ObjCInterfaceDecl *ID =
2071 dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2072 return ID;
2073 if (const ObjCCategoryDecl *CD =
2074 dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2075 return CD->getClassInterface();
2076 if (const ObjCImplDecl *IMD =
2077 dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2078 return IMD->getClassInterface();
2079
2080 return nullptr;
2081 }
2082
2083 /// \brief Get the copy initialization expression of VarDecl,or NULL if
2084 /// none exists.
getBlockVarCopyInits(const VarDecl * VD)2085 Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
2086 assert(VD && "Passed null params");
2087 assert(VD->hasAttr<BlocksAttr>() &&
2088 "getBlockVarCopyInits - not __block var");
2089 llvm::DenseMap<const VarDecl*, Expr*>::iterator
2090 I = BlockVarCopyInits.find(VD);
2091 return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr;
2092 }
2093
2094 /// \brief Set the copy inialization expression of a block var decl.
setBlockVarCopyInits(VarDecl * VD,Expr * Init)2095 void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
2096 assert(VD && Init && "Passed null params");
2097 assert(VD->hasAttr<BlocksAttr>() &&
2098 "setBlockVarCopyInits - not __block var");
2099 BlockVarCopyInits[VD] = Init;
2100 }
2101
CreateTypeSourceInfo(QualType T,unsigned DataSize) const2102 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2103 unsigned DataSize) const {
2104 if (!DataSize)
2105 DataSize = TypeLoc::getFullDataSizeForType(T);
2106 else
2107 assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2108 "incorrect data size provided to CreateTypeSourceInfo!");
2109
2110 TypeSourceInfo *TInfo =
2111 (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2112 new (TInfo) TypeSourceInfo(T);
2113 return TInfo;
2114 }
2115
getTrivialTypeSourceInfo(QualType T,SourceLocation L) const2116 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2117 SourceLocation L) const {
2118 TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2119 DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2120 return DI;
2121 }
2122
2123 const ASTRecordLayout &
getASTObjCInterfaceLayout(const ObjCInterfaceDecl * D) const2124 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2125 return getObjCLayout(D, nullptr);
2126 }
2127
2128 const ASTRecordLayout &
getASTObjCImplementationLayout(const ObjCImplementationDecl * D) const2129 ASTContext::getASTObjCImplementationLayout(
2130 const ObjCImplementationDecl *D) const {
2131 return getObjCLayout(D->getClassInterface(), D);
2132 }
2133
2134 //===----------------------------------------------------------------------===//
2135 // Type creation/memoization methods
2136 //===----------------------------------------------------------------------===//
2137
2138 QualType
getExtQualType(const Type * baseType,Qualifiers quals) const2139 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2140 unsigned fastQuals = quals.getFastQualifiers();
2141 quals.removeFastQualifiers();
2142
2143 // Check if we've already instantiated this type.
2144 llvm::FoldingSetNodeID ID;
2145 ExtQuals::Profile(ID, baseType, quals);
2146 void *insertPos = nullptr;
2147 if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2148 assert(eq->getQualifiers() == quals);
2149 return QualType(eq, fastQuals);
2150 }
2151
2152 // If the base type is not canonical, make the appropriate canonical type.
2153 QualType canon;
2154 if (!baseType->isCanonicalUnqualified()) {
2155 SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2156 canonSplit.Quals.addConsistentQualifiers(quals);
2157 canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2158
2159 // Re-find the insert position.
2160 (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2161 }
2162
2163 ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2164 ExtQualNodes.InsertNode(eq, insertPos);
2165 return QualType(eq, fastQuals);
2166 }
2167
2168 QualType
getAddrSpaceQualType(QualType T,unsigned AddressSpace) const2169 ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
2170 QualType CanT = getCanonicalType(T);
2171 if (CanT.getAddressSpace() == AddressSpace)
2172 return T;
2173
2174 // If we are composing extended qualifiers together, merge together
2175 // into one ExtQuals node.
2176 QualifierCollector Quals;
2177 const Type *TypeNode = Quals.strip(T);
2178
2179 // If this type already has an address space specified, it cannot get
2180 // another one.
2181 assert(!Quals.hasAddressSpace() &&
2182 "Type cannot be in multiple addr spaces!");
2183 Quals.addAddressSpace(AddressSpace);
2184
2185 return getExtQualType(TypeNode, Quals);
2186 }
2187
getObjCGCQualType(QualType T,Qualifiers::GC GCAttr) const2188 QualType ASTContext::getObjCGCQualType(QualType T,
2189 Qualifiers::GC GCAttr) const {
2190 QualType CanT = getCanonicalType(T);
2191 if (CanT.getObjCGCAttr() == GCAttr)
2192 return T;
2193
2194 if (const PointerType *ptr = T->getAs<PointerType>()) {
2195 QualType Pointee = ptr->getPointeeType();
2196 if (Pointee->isAnyPointerType()) {
2197 QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2198 return getPointerType(ResultType);
2199 }
2200 }
2201
2202 // If we are composing extended qualifiers together, merge together
2203 // into one ExtQuals node.
2204 QualifierCollector Quals;
2205 const Type *TypeNode = Quals.strip(T);
2206
2207 // If this type already has an ObjCGC specified, it cannot get
2208 // another one.
2209 assert(!Quals.hasObjCGCAttr() &&
2210 "Type cannot have multiple ObjCGCs!");
2211 Quals.addObjCGCAttr(GCAttr);
2212
2213 return getExtQualType(TypeNode, Quals);
2214 }
2215
adjustFunctionType(const FunctionType * T,FunctionType::ExtInfo Info)2216 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2217 FunctionType::ExtInfo Info) {
2218 if (T->getExtInfo() == Info)
2219 return T;
2220
2221 QualType Result;
2222 if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2223 Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
2224 } else {
2225 const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2226 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2227 EPI.ExtInfo = Info;
2228 Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
2229 }
2230
2231 return cast<FunctionType>(Result.getTypePtr());
2232 }
2233
adjustDeducedFunctionResultType(FunctionDecl * FD,QualType ResultType)2234 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2235 QualType ResultType) {
2236 FD = FD->getMostRecentDecl();
2237 while (true) {
2238 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2239 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2240 FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
2241 if (FunctionDecl *Next = FD->getPreviousDecl())
2242 FD = Next;
2243 else
2244 break;
2245 }
2246 if (ASTMutationListener *L = getASTMutationListener())
2247 L->DeducedReturnType(FD, ResultType);
2248 }
2249
2250 /// Get a function type and produce the equivalent function type with the
2251 /// specified exception specification. Type sugar that can be present on a
2252 /// declaration of a function with an exception specification is permitted
2253 /// and preserved. Other type sugar (for instance, typedefs) is not.
getFunctionTypeWithExceptionSpec(ASTContext & Context,QualType Orig,const FunctionProtoType::ExceptionSpecInfo & ESI)2254 static QualType getFunctionTypeWithExceptionSpec(
2255 ASTContext &Context, QualType Orig,
2256 const FunctionProtoType::ExceptionSpecInfo &ESI) {
2257 // Might have some parens.
2258 if (auto *PT = dyn_cast<ParenType>(Orig))
2259 return Context.getParenType(
2260 getFunctionTypeWithExceptionSpec(Context, PT->getInnerType(), ESI));
2261
2262 // Might have a calling-convention attribute.
2263 if (auto *AT = dyn_cast<AttributedType>(Orig))
2264 return Context.getAttributedType(
2265 AT->getAttrKind(),
2266 getFunctionTypeWithExceptionSpec(Context, AT->getModifiedType(), ESI),
2267 getFunctionTypeWithExceptionSpec(Context, AT->getEquivalentType(),
2268 ESI));
2269
2270 // Anything else must be a function type. Rebuild it with the new exception
2271 // specification.
2272 const FunctionProtoType *Proto = cast<FunctionProtoType>(Orig);
2273 return Context.getFunctionType(
2274 Proto->getReturnType(), Proto->getParamTypes(),
2275 Proto->getExtProtoInfo().withExceptionSpec(ESI));
2276 }
2277
adjustExceptionSpec(FunctionDecl * FD,const FunctionProtoType::ExceptionSpecInfo & ESI,bool AsWritten)2278 void ASTContext::adjustExceptionSpec(
2279 FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
2280 bool AsWritten) {
2281 // Update the type.
2282 QualType Updated =
2283 getFunctionTypeWithExceptionSpec(*this, FD->getType(), ESI);
2284 FD->setType(Updated);
2285
2286 if (!AsWritten)
2287 return;
2288
2289 // Update the type in the type source information too.
2290 if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
2291 // If the type and the type-as-written differ, we may need to update
2292 // the type-as-written too.
2293 if (TSInfo->getType() != FD->getType())
2294 Updated = getFunctionTypeWithExceptionSpec(*this, TSInfo->getType(), ESI);
2295
2296 // FIXME: When we get proper type location information for exceptions,
2297 // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
2298 // up the TypeSourceInfo;
2299 assert(TypeLoc::getFullDataSizeForType(Updated) ==
2300 TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
2301 "TypeLoc size mismatch from updating exception specification");
2302 TSInfo->overrideType(Updated);
2303 }
2304 }
2305
2306 /// getComplexType - Return the uniqued reference to the type for a complex
2307 /// number with the specified element type.
getComplexType(QualType T) const2308 QualType ASTContext::getComplexType(QualType T) const {
2309 // Unique pointers, to guarantee there is only one pointer of a particular
2310 // structure.
2311 llvm::FoldingSetNodeID ID;
2312 ComplexType::Profile(ID, T);
2313
2314 void *InsertPos = nullptr;
2315 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2316 return QualType(CT, 0);
2317
2318 // If the pointee type isn't canonical, this won't be a canonical type either,
2319 // so fill in the canonical type field.
2320 QualType Canonical;
2321 if (!T.isCanonical()) {
2322 Canonical = getComplexType(getCanonicalType(T));
2323
2324 // Get the new insert position for the node we care about.
2325 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2326 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2327 }
2328 ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2329 Types.push_back(New);
2330 ComplexTypes.InsertNode(New, InsertPos);
2331 return QualType(New, 0);
2332 }
2333
2334 /// getPointerType - Return the uniqued reference to the type for a pointer to
2335 /// the specified type.
getPointerType(QualType T) const2336 QualType ASTContext::getPointerType(QualType T) const {
2337 // Unique pointers, to guarantee there is only one pointer of a particular
2338 // structure.
2339 llvm::FoldingSetNodeID ID;
2340 PointerType::Profile(ID, T);
2341
2342 void *InsertPos = nullptr;
2343 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2344 return QualType(PT, 0);
2345
2346 // If the pointee type isn't canonical, this won't be a canonical type either,
2347 // so fill in the canonical type field.
2348 QualType Canonical;
2349 if (!T.isCanonical()) {
2350 Canonical = getPointerType(getCanonicalType(T));
2351
2352 // Get the new insert position for the node we care about.
2353 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2354 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2355 }
2356 PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2357 Types.push_back(New);
2358 PointerTypes.InsertNode(New, InsertPos);
2359 return QualType(New, 0);
2360 }
2361
getAdjustedType(QualType Orig,QualType New) const2362 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
2363 llvm::FoldingSetNodeID ID;
2364 AdjustedType::Profile(ID, Orig, New);
2365 void *InsertPos = nullptr;
2366 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2367 if (AT)
2368 return QualType(AT, 0);
2369
2370 QualType Canonical = getCanonicalType(New);
2371
2372 // Get the new insert position for the node we care about.
2373 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2374 assert(!AT && "Shouldn't be in the map!");
2375
2376 AT = new (*this, TypeAlignment)
2377 AdjustedType(Type::Adjusted, Orig, New, Canonical);
2378 Types.push_back(AT);
2379 AdjustedTypes.InsertNode(AT, InsertPos);
2380 return QualType(AT, 0);
2381 }
2382
getDecayedType(QualType T) const2383 QualType ASTContext::getDecayedType(QualType T) const {
2384 assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
2385
2386 QualType Decayed;
2387
2388 // C99 6.7.5.3p7:
2389 // A declaration of a parameter as "array of type" shall be
2390 // adjusted to "qualified pointer to type", where the type
2391 // qualifiers (if any) are those specified within the [ and ] of
2392 // the array type derivation.
2393 if (T->isArrayType())
2394 Decayed = getArrayDecayedType(T);
2395
2396 // C99 6.7.5.3p8:
2397 // A declaration of a parameter as "function returning type"
2398 // shall be adjusted to "pointer to function returning type", as
2399 // in 6.3.2.1.
2400 if (T->isFunctionType())
2401 Decayed = getPointerType(T);
2402
2403 llvm::FoldingSetNodeID ID;
2404 AdjustedType::Profile(ID, T, Decayed);
2405 void *InsertPos = nullptr;
2406 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2407 if (AT)
2408 return QualType(AT, 0);
2409
2410 QualType Canonical = getCanonicalType(Decayed);
2411
2412 // Get the new insert position for the node we care about.
2413 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2414 assert(!AT && "Shouldn't be in the map!");
2415
2416 AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
2417 Types.push_back(AT);
2418 AdjustedTypes.InsertNode(AT, InsertPos);
2419 return QualType(AT, 0);
2420 }
2421
2422 /// getBlockPointerType - Return the uniqued reference to the type for
2423 /// a pointer to the specified block.
getBlockPointerType(QualType T) const2424 QualType ASTContext::getBlockPointerType(QualType T) const {
2425 assert(T->isFunctionType() && "block of function types only");
2426 // Unique pointers, to guarantee there is only one block of a particular
2427 // structure.
2428 llvm::FoldingSetNodeID ID;
2429 BlockPointerType::Profile(ID, T);
2430
2431 void *InsertPos = nullptr;
2432 if (BlockPointerType *PT =
2433 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2434 return QualType(PT, 0);
2435
2436 // If the block pointee type isn't canonical, this won't be a canonical
2437 // type either so fill in the canonical type field.
2438 QualType Canonical;
2439 if (!T.isCanonical()) {
2440 Canonical = getBlockPointerType(getCanonicalType(T));
2441
2442 // Get the new insert position for the node we care about.
2443 BlockPointerType *NewIP =
2444 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2445 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2446 }
2447 BlockPointerType *New
2448 = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2449 Types.push_back(New);
2450 BlockPointerTypes.InsertNode(New, InsertPos);
2451 return QualType(New, 0);
2452 }
2453
2454 /// getLValueReferenceType - Return the uniqued reference to the type for an
2455 /// lvalue reference to the specified type.
2456 QualType
getLValueReferenceType(QualType T,bool SpelledAsLValue) const2457 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2458 assert(getCanonicalType(T) != OverloadTy &&
2459 "Unresolved overloaded function type");
2460
2461 // Unique pointers, to guarantee there is only one pointer of a particular
2462 // structure.
2463 llvm::FoldingSetNodeID ID;
2464 ReferenceType::Profile(ID, T, SpelledAsLValue);
2465
2466 void *InsertPos = nullptr;
2467 if (LValueReferenceType *RT =
2468 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2469 return QualType(RT, 0);
2470
2471 const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2472
2473 // If the referencee type isn't canonical, this won't be a canonical type
2474 // either, so fill in the canonical type field.
2475 QualType Canonical;
2476 if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2477 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2478 Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2479
2480 // Get the new insert position for the node we care about.
2481 LValueReferenceType *NewIP =
2482 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2483 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2484 }
2485
2486 LValueReferenceType *New
2487 = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2488 SpelledAsLValue);
2489 Types.push_back(New);
2490 LValueReferenceTypes.InsertNode(New, InsertPos);
2491
2492 return QualType(New, 0);
2493 }
2494
2495 /// getRValueReferenceType - Return the uniqued reference to the type for an
2496 /// rvalue reference to the specified type.
getRValueReferenceType(QualType T) const2497 QualType ASTContext::getRValueReferenceType(QualType T) const {
2498 // Unique pointers, to guarantee there is only one pointer of a particular
2499 // structure.
2500 llvm::FoldingSetNodeID ID;
2501 ReferenceType::Profile(ID, T, false);
2502
2503 void *InsertPos = nullptr;
2504 if (RValueReferenceType *RT =
2505 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2506 return QualType(RT, 0);
2507
2508 const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2509
2510 // If the referencee type isn't canonical, this won't be a canonical type
2511 // either, so fill in the canonical type field.
2512 QualType Canonical;
2513 if (InnerRef || !T.isCanonical()) {
2514 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2515 Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2516
2517 // Get the new insert position for the node we care about.
2518 RValueReferenceType *NewIP =
2519 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2520 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2521 }
2522
2523 RValueReferenceType *New
2524 = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2525 Types.push_back(New);
2526 RValueReferenceTypes.InsertNode(New, InsertPos);
2527 return QualType(New, 0);
2528 }
2529
2530 /// getMemberPointerType - Return the uniqued reference to the type for a
2531 /// member pointer to the specified type, in the specified class.
getMemberPointerType(QualType T,const Type * Cls) const2532 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2533 // Unique pointers, to guarantee there is only one pointer of a particular
2534 // structure.
2535 llvm::FoldingSetNodeID ID;
2536 MemberPointerType::Profile(ID, T, Cls);
2537
2538 void *InsertPos = nullptr;
2539 if (MemberPointerType *PT =
2540 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2541 return QualType(PT, 0);
2542
2543 // If the pointee or class type isn't canonical, this won't be a canonical
2544 // type either, so fill in the canonical type field.
2545 QualType Canonical;
2546 if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2547 Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2548
2549 // Get the new insert position for the node we care about.
2550 MemberPointerType *NewIP =
2551 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2552 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2553 }
2554 MemberPointerType *New
2555 = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2556 Types.push_back(New);
2557 MemberPointerTypes.InsertNode(New, InsertPos);
2558 return QualType(New, 0);
2559 }
2560
2561 /// getConstantArrayType - Return the unique reference to the type for an
2562 /// array of the specified element type.
getConstantArrayType(QualType EltTy,const llvm::APInt & ArySizeIn,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals) const2563 QualType ASTContext::getConstantArrayType(QualType EltTy,
2564 const llvm::APInt &ArySizeIn,
2565 ArrayType::ArraySizeModifier ASM,
2566 unsigned IndexTypeQuals) const {
2567 assert((EltTy->isDependentType() ||
2568 EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2569 "Constant array of VLAs is illegal!");
2570
2571 // Convert the array size into a canonical width matching the pointer size for
2572 // the target.
2573 llvm::APInt ArySize(ArySizeIn);
2574 ArySize =
2575 ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2576
2577 llvm::FoldingSetNodeID ID;
2578 ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2579
2580 void *InsertPos = nullptr;
2581 if (ConstantArrayType *ATP =
2582 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2583 return QualType(ATP, 0);
2584
2585 // If the element type isn't canonical or has qualifiers, this won't
2586 // be a canonical type either, so fill in the canonical type field.
2587 QualType Canon;
2588 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2589 SplitQualType canonSplit = getCanonicalType(EltTy).split();
2590 Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2591 ASM, IndexTypeQuals);
2592 Canon = getQualifiedType(Canon, canonSplit.Quals);
2593
2594 // Get the new insert position for the node we care about.
2595 ConstantArrayType *NewIP =
2596 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2597 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2598 }
2599
2600 ConstantArrayType *New = new(*this,TypeAlignment)
2601 ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2602 ConstantArrayTypes.InsertNode(New, InsertPos);
2603 Types.push_back(New);
2604 return QualType(New, 0);
2605 }
2606
2607 /// getVariableArrayDecayedType - Turns the given type, which may be
2608 /// variably-modified, into the corresponding type with all the known
2609 /// sizes replaced with [*].
getVariableArrayDecayedType(QualType type) const2610 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2611 // Vastly most common case.
2612 if (!type->isVariablyModifiedType()) return type;
2613
2614 QualType result;
2615
2616 SplitQualType split = type.getSplitDesugaredType();
2617 const Type *ty = split.Ty;
2618 switch (ty->getTypeClass()) {
2619 #define TYPE(Class, Base)
2620 #define ABSTRACT_TYPE(Class, Base)
2621 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2622 #include "clang/AST/TypeNodes.def"
2623 llvm_unreachable("didn't desugar past all non-canonical types?");
2624
2625 // These types should never be variably-modified.
2626 case Type::Builtin:
2627 case Type::Complex:
2628 case Type::Vector:
2629 case Type::ExtVector:
2630 case Type::DependentSizedExtVector:
2631 case Type::ObjCObject:
2632 case Type::ObjCInterface:
2633 case Type::ObjCObjectPointer:
2634 case Type::Record:
2635 case Type::Enum:
2636 case Type::UnresolvedUsing:
2637 case Type::TypeOfExpr:
2638 case Type::TypeOf:
2639 case Type::Decltype:
2640 case Type::UnaryTransform:
2641 case Type::DependentName:
2642 case Type::InjectedClassName:
2643 case Type::TemplateSpecialization:
2644 case Type::DependentTemplateSpecialization:
2645 case Type::TemplateTypeParm:
2646 case Type::SubstTemplateTypeParmPack:
2647 case Type::Auto:
2648 case Type::PackExpansion:
2649 llvm_unreachable("type should never be variably-modified");
2650
2651 // These types can be variably-modified but should never need to
2652 // further decay.
2653 case Type::FunctionNoProto:
2654 case Type::FunctionProto:
2655 case Type::BlockPointer:
2656 case Type::MemberPointer:
2657 return type;
2658
2659 // These types can be variably-modified. All these modifications
2660 // preserve structure except as noted by comments.
2661 // TODO: if we ever care about optimizing VLAs, there are no-op
2662 // optimizations available here.
2663 case Type::Pointer:
2664 result = getPointerType(getVariableArrayDecayedType(
2665 cast<PointerType>(ty)->getPointeeType()));
2666 break;
2667
2668 case Type::LValueReference: {
2669 const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2670 result = getLValueReferenceType(
2671 getVariableArrayDecayedType(lv->getPointeeType()),
2672 lv->isSpelledAsLValue());
2673 break;
2674 }
2675
2676 case Type::RValueReference: {
2677 const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2678 result = getRValueReferenceType(
2679 getVariableArrayDecayedType(lv->getPointeeType()));
2680 break;
2681 }
2682
2683 case Type::Atomic: {
2684 const AtomicType *at = cast<AtomicType>(ty);
2685 result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2686 break;
2687 }
2688
2689 case Type::ConstantArray: {
2690 const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2691 result = getConstantArrayType(
2692 getVariableArrayDecayedType(cat->getElementType()),
2693 cat->getSize(),
2694 cat->getSizeModifier(),
2695 cat->getIndexTypeCVRQualifiers());
2696 break;
2697 }
2698
2699 case Type::DependentSizedArray: {
2700 const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2701 result = getDependentSizedArrayType(
2702 getVariableArrayDecayedType(dat->getElementType()),
2703 dat->getSizeExpr(),
2704 dat->getSizeModifier(),
2705 dat->getIndexTypeCVRQualifiers(),
2706 dat->getBracketsRange());
2707 break;
2708 }
2709
2710 // Turn incomplete types into [*] types.
2711 case Type::IncompleteArray: {
2712 const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2713 result = getVariableArrayType(
2714 getVariableArrayDecayedType(iat->getElementType()),
2715 /*size*/ nullptr,
2716 ArrayType::Normal,
2717 iat->getIndexTypeCVRQualifiers(),
2718 SourceRange());
2719 break;
2720 }
2721
2722 // Turn VLA types into [*] types.
2723 case Type::VariableArray: {
2724 const VariableArrayType *vat = cast<VariableArrayType>(ty);
2725 result = getVariableArrayType(
2726 getVariableArrayDecayedType(vat->getElementType()),
2727 /*size*/ nullptr,
2728 ArrayType::Star,
2729 vat->getIndexTypeCVRQualifiers(),
2730 vat->getBracketsRange());
2731 break;
2732 }
2733 }
2734
2735 // Apply the top-level qualifiers from the original.
2736 return getQualifiedType(result, split.Quals);
2737 }
2738
2739 /// getVariableArrayType - Returns a non-unique reference to the type for a
2740 /// variable array of the specified element type.
getVariableArrayType(QualType EltTy,Expr * NumElts,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals,SourceRange Brackets) const2741 QualType ASTContext::getVariableArrayType(QualType EltTy,
2742 Expr *NumElts,
2743 ArrayType::ArraySizeModifier ASM,
2744 unsigned IndexTypeQuals,
2745 SourceRange Brackets) const {
2746 // Since we don't unique expressions, it isn't possible to unique VLA's
2747 // that have an expression provided for their size.
2748 QualType Canon;
2749
2750 // Be sure to pull qualifiers off the element type.
2751 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2752 SplitQualType canonSplit = getCanonicalType(EltTy).split();
2753 Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2754 IndexTypeQuals, Brackets);
2755 Canon = getQualifiedType(Canon, canonSplit.Quals);
2756 }
2757
2758 VariableArrayType *New = new(*this, TypeAlignment)
2759 VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2760
2761 VariableArrayTypes.push_back(New);
2762 Types.push_back(New);
2763 return QualType(New, 0);
2764 }
2765
2766 /// getDependentSizedArrayType - Returns a non-unique reference to
2767 /// the type for a dependently-sized array of the specified element
2768 /// type.
getDependentSizedArrayType(QualType elementType,Expr * numElements,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals,SourceRange brackets) const2769 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2770 Expr *numElements,
2771 ArrayType::ArraySizeModifier ASM,
2772 unsigned elementTypeQuals,
2773 SourceRange brackets) const {
2774 assert((!numElements || numElements->isTypeDependent() ||
2775 numElements->isValueDependent()) &&
2776 "Size must be type- or value-dependent!");
2777
2778 // Dependently-sized array types that do not have a specified number
2779 // of elements will have their sizes deduced from a dependent
2780 // initializer. We do no canonicalization here at all, which is okay
2781 // because they can't be used in most locations.
2782 if (!numElements) {
2783 DependentSizedArrayType *newType
2784 = new (*this, TypeAlignment)
2785 DependentSizedArrayType(*this, elementType, QualType(),
2786 numElements, ASM, elementTypeQuals,
2787 brackets);
2788 Types.push_back(newType);
2789 return QualType(newType, 0);
2790 }
2791
2792 // Otherwise, we actually build a new type every time, but we
2793 // also build a canonical type.
2794
2795 SplitQualType canonElementType = getCanonicalType(elementType).split();
2796
2797 void *insertPos = nullptr;
2798 llvm::FoldingSetNodeID ID;
2799 DependentSizedArrayType::Profile(ID, *this,
2800 QualType(canonElementType.Ty, 0),
2801 ASM, elementTypeQuals, numElements);
2802
2803 // Look for an existing type with these properties.
2804 DependentSizedArrayType *canonTy =
2805 DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2806
2807 // If we don't have one, build one.
2808 if (!canonTy) {
2809 canonTy = new (*this, TypeAlignment)
2810 DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2811 QualType(), numElements, ASM, elementTypeQuals,
2812 brackets);
2813 DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2814 Types.push_back(canonTy);
2815 }
2816
2817 // Apply qualifiers from the element type to the array.
2818 QualType canon = getQualifiedType(QualType(canonTy,0),
2819 canonElementType.Quals);
2820
2821 // If we didn't need extra canonicalization for the element type or the size
2822 // expression, then just use that as our result.
2823 if (QualType(canonElementType.Ty, 0) == elementType &&
2824 canonTy->getSizeExpr() == numElements)
2825 return canon;
2826
2827 // Otherwise, we need to build a type which follows the spelling
2828 // of the element type.
2829 DependentSizedArrayType *sugaredType
2830 = new (*this, TypeAlignment)
2831 DependentSizedArrayType(*this, elementType, canon, numElements,
2832 ASM, elementTypeQuals, brackets);
2833 Types.push_back(sugaredType);
2834 return QualType(sugaredType, 0);
2835 }
2836
getIncompleteArrayType(QualType elementType,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals) const2837 QualType ASTContext::getIncompleteArrayType(QualType elementType,
2838 ArrayType::ArraySizeModifier ASM,
2839 unsigned elementTypeQuals) const {
2840 llvm::FoldingSetNodeID ID;
2841 IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2842
2843 void *insertPos = nullptr;
2844 if (IncompleteArrayType *iat =
2845 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2846 return QualType(iat, 0);
2847
2848 // If the element type isn't canonical, this won't be a canonical type
2849 // either, so fill in the canonical type field. We also have to pull
2850 // qualifiers off the element type.
2851 QualType canon;
2852
2853 if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2854 SplitQualType canonSplit = getCanonicalType(elementType).split();
2855 canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2856 ASM, elementTypeQuals);
2857 canon = getQualifiedType(canon, canonSplit.Quals);
2858
2859 // Get the new insert position for the node we care about.
2860 IncompleteArrayType *existing =
2861 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2862 assert(!existing && "Shouldn't be in the map!"); (void) existing;
2863 }
2864
2865 IncompleteArrayType *newType = new (*this, TypeAlignment)
2866 IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2867
2868 IncompleteArrayTypes.InsertNode(newType, insertPos);
2869 Types.push_back(newType);
2870 return QualType(newType, 0);
2871 }
2872
2873 /// getVectorType - Return the unique reference to a vector type of
2874 /// the specified element type and size. VectorType must be a built-in type.
getVectorType(QualType vecType,unsigned NumElts,VectorType::VectorKind VecKind) const2875 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2876 VectorType::VectorKind VecKind) const {
2877 assert(vecType->isBuiltinType());
2878
2879 // Check if we've already instantiated a vector of this type.
2880 llvm::FoldingSetNodeID ID;
2881 VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2882
2883 void *InsertPos = nullptr;
2884 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2885 return QualType(VTP, 0);
2886
2887 // If the element type isn't canonical, this won't be a canonical type either,
2888 // so fill in the canonical type field.
2889 QualType Canonical;
2890 if (!vecType.isCanonical()) {
2891 Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2892
2893 // Get the new insert position for the node we care about.
2894 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2895 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2896 }
2897 VectorType *New = new (*this, TypeAlignment)
2898 VectorType(vecType, NumElts, Canonical, VecKind);
2899 VectorTypes.InsertNode(New, InsertPos);
2900 Types.push_back(New);
2901 return QualType(New, 0);
2902 }
2903
2904 /// getExtVectorType - Return the unique reference to an extended vector type of
2905 /// the specified element type and size. VectorType must be a built-in type.
2906 QualType
getExtVectorType(QualType vecType,unsigned NumElts) const2907 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2908 assert(vecType->isBuiltinType() || vecType->isDependentType());
2909
2910 // Check if we've already instantiated a vector of this type.
2911 llvm::FoldingSetNodeID ID;
2912 VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2913 VectorType::GenericVector);
2914 void *InsertPos = nullptr;
2915 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2916 return QualType(VTP, 0);
2917
2918 // If the element type isn't canonical, this won't be a canonical type either,
2919 // so fill in the canonical type field.
2920 QualType Canonical;
2921 if (!vecType.isCanonical()) {
2922 Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2923
2924 // Get the new insert position for the node we care about.
2925 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2926 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2927 }
2928 ExtVectorType *New = new (*this, TypeAlignment)
2929 ExtVectorType(vecType, NumElts, Canonical);
2930 VectorTypes.InsertNode(New, InsertPos);
2931 Types.push_back(New);
2932 return QualType(New, 0);
2933 }
2934
2935 QualType
getDependentSizedExtVectorType(QualType vecType,Expr * SizeExpr,SourceLocation AttrLoc) const2936 ASTContext::getDependentSizedExtVectorType(QualType vecType,
2937 Expr *SizeExpr,
2938 SourceLocation AttrLoc) const {
2939 llvm::FoldingSetNodeID ID;
2940 DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2941 SizeExpr);
2942
2943 void *InsertPos = nullptr;
2944 DependentSizedExtVectorType *Canon
2945 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2946 DependentSizedExtVectorType *New;
2947 if (Canon) {
2948 // We already have a canonical version of this array type; use it as
2949 // the canonical type for a newly-built type.
2950 New = new (*this, TypeAlignment)
2951 DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2952 SizeExpr, AttrLoc);
2953 } else {
2954 QualType CanonVecTy = getCanonicalType(vecType);
2955 if (CanonVecTy == vecType) {
2956 New = new (*this, TypeAlignment)
2957 DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2958 AttrLoc);
2959
2960 DependentSizedExtVectorType *CanonCheck
2961 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2962 assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2963 (void)CanonCheck;
2964 DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2965 } else {
2966 QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2967 SourceLocation());
2968 New = new (*this, TypeAlignment)
2969 DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2970 }
2971 }
2972
2973 Types.push_back(New);
2974 return QualType(New, 0);
2975 }
2976
2977 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2978 ///
2979 QualType
getFunctionNoProtoType(QualType ResultTy,const FunctionType::ExtInfo & Info) const2980 ASTContext::getFunctionNoProtoType(QualType ResultTy,
2981 const FunctionType::ExtInfo &Info) const {
2982 const CallingConv CallConv = Info.getCC();
2983
2984 // Unique functions, to guarantee there is only one function of a particular
2985 // structure.
2986 llvm::FoldingSetNodeID ID;
2987 FunctionNoProtoType::Profile(ID, ResultTy, Info);
2988
2989 void *InsertPos = nullptr;
2990 if (FunctionNoProtoType *FT =
2991 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2992 return QualType(FT, 0);
2993
2994 QualType Canonical;
2995 if (!ResultTy.isCanonical()) {
2996 Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), Info);
2997
2998 // Get the new insert position for the node we care about.
2999 FunctionNoProtoType *NewIP =
3000 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
3001 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3002 }
3003
3004 FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
3005 FunctionNoProtoType *New = new (*this, TypeAlignment)
3006 FunctionNoProtoType(ResultTy, Canonical, newInfo);
3007 Types.push_back(New);
3008 FunctionNoProtoTypes.InsertNode(New, InsertPos);
3009 return QualType(New, 0);
3010 }
3011
3012 /// \brief Determine whether \p T is canonical as the result type of a function.
isCanonicalResultType(QualType T)3013 static bool isCanonicalResultType(QualType T) {
3014 return T.isCanonical() &&
3015 (T.getObjCLifetime() == Qualifiers::OCL_None ||
3016 T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
3017 }
3018
3019 CanQualType
getCanonicalFunctionResultType(QualType ResultType) const3020 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
3021 CanQualType CanResultType = getCanonicalType(ResultType);
3022
3023 // Canonical result types do not have ARC lifetime qualifiers.
3024 if (CanResultType.getQualifiers().hasObjCLifetime()) {
3025 Qualifiers Qs = CanResultType.getQualifiers();
3026 Qs.removeObjCLifetime();
3027 return CanQualType::CreateUnsafe(
3028 getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
3029 }
3030
3031 return CanResultType;
3032 }
3033
3034 QualType
getFunctionType(QualType ResultTy,ArrayRef<QualType> ArgArray,const FunctionProtoType::ExtProtoInfo & EPI) const3035 ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
3036 const FunctionProtoType::ExtProtoInfo &EPI) const {
3037 size_t NumArgs = ArgArray.size();
3038
3039 // Unique functions, to guarantee there is only one function of a particular
3040 // structure.
3041 llvm::FoldingSetNodeID ID;
3042 FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
3043 *this);
3044
3045 void *InsertPos = nullptr;
3046 if (FunctionProtoType *FTP =
3047 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
3048 return QualType(FTP, 0);
3049
3050 // Determine whether the type being created is already canonical or not.
3051 bool isCanonical =
3052 EPI.ExceptionSpec.Type == EST_None && isCanonicalResultType(ResultTy) &&
3053 !EPI.HasTrailingReturn;
3054 for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
3055 if (!ArgArray[i].isCanonicalAsParam())
3056 isCanonical = false;
3057
3058 // If this type isn't canonical, get the canonical version of it.
3059 // The exception spec is not part of the canonical type.
3060 QualType Canonical;
3061 if (!isCanonical) {
3062 SmallVector<QualType, 16> CanonicalArgs;
3063 CanonicalArgs.reserve(NumArgs);
3064 for (unsigned i = 0; i != NumArgs; ++i)
3065 CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
3066
3067 FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
3068 CanonicalEPI.HasTrailingReturn = false;
3069 CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
3070
3071 // Adjust the canonical function result type.
3072 CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
3073 Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
3074
3075 // Get the new insert position for the node we care about.
3076 FunctionProtoType *NewIP =
3077 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
3078 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3079 }
3080
3081 // FunctionProtoType objects are allocated with extra bytes after
3082 // them for three variable size arrays at the end:
3083 // - parameter types
3084 // - exception types
3085 // - consumed-arguments flags
3086 // Instead of the exception types, there could be a noexcept
3087 // expression, or information used to resolve the exception
3088 // specification.
3089 size_t Size = sizeof(FunctionProtoType) +
3090 NumArgs * sizeof(QualType);
3091 if (EPI.ExceptionSpec.Type == EST_Dynamic) {
3092 Size += EPI.ExceptionSpec.Exceptions.size() * sizeof(QualType);
3093 } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) {
3094 Size += sizeof(Expr*);
3095 } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
3096 Size += 2 * sizeof(FunctionDecl*);
3097 } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
3098 Size += sizeof(FunctionDecl*);
3099 }
3100 if (EPI.ConsumedParameters)
3101 Size += NumArgs * sizeof(bool);
3102
3103 FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
3104 FunctionProtoType::ExtProtoInfo newEPI = EPI;
3105 new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
3106 Types.push_back(FTP);
3107 FunctionProtoTypes.InsertNode(FTP, InsertPos);
3108 return QualType(FTP, 0);
3109 }
3110
3111 #ifndef NDEBUG
NeedsInjectedClassNameType(const RecordDecl * D)3112 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
3113 if (!isa<CXXRecordDecl>(D)) return false;
3114 const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
3115 if (isa<ClassTemplatePartialSpecializationDecl>(RD))
3116 return true;
3117 if (RD->getDescribedClassTemplate() &&
3118 !isa<ClassTemplateSpecializationDecl>(RD))
3119 return true;
3120 return false;
3121 }
3122 #endif
3123
3124 /// getInjectedClassNameType - Return the unique reference to the
3125 /// injected class name type for the specified templated declaration.
getInjectedClassNameType(CXXRecordDecl * Decl,QualType TST) const3126 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
3127 QualType TST) const {
3128 assert(NeedsInjectedClassNameType(Decl));
3129 if (Decl->TypeForDecl) {
3130 assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
3131 } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
3132 assert(PrevDecl->TypeForDecl && "previous declaration has no type");
3133 Decl->TypeForDecl = PrevDecl->TypeForDecl;
3134 assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
3135 } else {
3136 Type *newType =
3137 new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
3138 Decl->TypeForDecl = newType;
3139 Types.push_back(newType);
3140 }
3141 return QualType(Decl->TypeForDecl, 0);
3142 }
3143
3144 /// getTypeDeclType - Return the unique reference to the type for the
3145 /// specified type declaration.
getTypeDeclTypeSlow(const TypeDecl * Decl) const3146 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
3147 assert(Decl && "Passed null for Decl param");
3148 assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
3149
3150 if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
3151 return getTypedefType(Typedef);
3152
3153 assert(!isa<TemplateTypeParmDecl>(Decl) &&
3154 "Template type parameter types are always available.");
3155
3156 if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
3157 assert(Record->isFirstDecl() && "struct/union has previous declaration");
3158 assert(!NeedsInjectedClassNameType(Record));
3159 return getRecordType(Record);
3160 } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
3161 assert(Enum->isFirstDecl() && "enum has previous declaration");
3162 return getEnumType(Enum);
3163 } else if (const UnresolvedUsingTypenameDecl *Using =
3164 dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
3165 Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
3166 Decl->TypeForDecl = newType;
3167 Types.push_back(newType);
3168 } else
3169 llvm_unreachable("TypeDecl without a type?");
3170
3171 return QualType(Decl->TypeForDecl, 0);
3172 }
3173
3174 /// getTypedefType - Return the unique reference to the type for the
3175 /// specified typedef name decl.
3176 QualType
getTypedefType(const TypedefNameDecl * Decl,QualType Canonical) const3177 ASTContext::getTypedefType(const TypedefNameDecl *Decl,
3178 QualType Canonical) const {
3179 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3180
3181 if (Canonical.isNull())
3182 Canonical = getCanonicalType(Decl->getUnderlyingType());
3183 TypedefType *newType = new(*this, TypeAlignment)
3184 TypedefType(Type::Typedef, Decl, Canonical);
3185 Decl->TypeForDecl = newType;
3186 Types.push_back(newType);
3187 return QualType(newType, 0);
3188 }
3189
getRecordType(const RecordDecl * Decl) const3190 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
3191 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3192
3193 if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
3194 if (PrevDecl->TypeForDecl)
3195 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3196
3197 RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
3198 Decl->TypeForDecl = newType;
3199 Types.push_back(newType);
3200 return QualType(newType, 0);
3201 }
3202
getEnumType(const EnumDecl * Decl) const3203 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
3204 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3205
3206 if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
3207 if (PrevDecl->TypeForDecl)
3208 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3209
3210 EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
3211 Decl->TypeForDecl = newType;
3212 Types.push_back(newType);
3213 return QualType(newType, 0);
3214 }
3215
getAttributedType(AttributedType::Kind attrKind,QualType modifiedType,QualType equivalentType)3216 QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
3217 QualType modifiedType,
3218 QualType equivalentType) {
3219 llvm::FoldingSetNodeID id;
3220 AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
3221
3222 void *insertPos = nullptr;
3223 AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
3224 if (type) return QualType(type, 0);
3225
3226 QualType canon = getCanonicalType(equivalentType);
3227 type = new (*this, TypeAlignment)
3228 AttributedType(canon, attrKind, modifiedType, equivalentType);
3229
3230 Types.push_back(type);
3231 AttributedTypes.InsertNode(type, insertPos);
3232
3233 return QualType(type, 0);
3234 }
3235
3236 /// \brief Retrieve a substitution-result type.
3237 QualType
getSubstTemplateTypeParmType(const TemplateTypeParmType * Parm,QualType Replacement) const3238 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
3239 QualType Replacement) const {
3240 assert(Replacement.isCanonical()
3241 && "replacement types must always be canonical");
3242
3243 llvm::FoldingSetNodeID ID;
3244 SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
3245 void *InsertPos = nullptr;
3246 SubstTemplateTypeParmType *SubstParm
3247 = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3248
3249 if (!SubstParm) {
3250 SubstParm = new (*this, TypeAlignment)
3251 SubstTemplateTypeParmType(Parm, Replacement);
3252 Types.push_back(SubstParm);
3253 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3254 }
3255
3256 return QualType(SubstParm, 0);
3257 }
3258
3259 /// \brief Retrieve a
getSubstTemplateTypeParmPackType(const TemplateTypeParmType * Parm,const TemplateArgument & ArgPack)3260 QualType ASTContext::getSubstTemplateTypeParmPackType(
3261 const TemplateTypeParmType *Parm,
3262 const TemplateArgument &ArgPack) {
3263 #ifndef NDEBUG
3264 for (const auto &P : ArgPack.pack_elements()) {
3265 assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
3266 assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
3267 }
3268 #endif
3269
3270 llvm::FoldingSetNodeID ID;
3271 SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
3272 void *InsertPos = nullptr;
3273 if (SubstTemplateTypeParmPackType *SubstParm
3274 = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
3275 return QualType(SubstParm, 0);
3276
3277 QualType Canon;
3278 if (!Parm->isCanonicalUnqualified()) {
3279 Canon = getCanonicalType(QualType(Parm, 0));
3280 Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3281 ArgPack);
3282 SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3283 }
3284
3285 SubstTemplateTypeParmPackType *SubstParm
3286 = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3287 ArgPack);
3288 Types.push_back(SubstParm);
3289 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3290 return QualType(SubstParm, 0);
3291 }
3292
3293 /// \brief Retrieve the template type parameter type for a template
3294 /// parameter or parameter pack with the given depth, index, and (optionally)
3295 /// name.
getTemplateTypeParmType(unsigned Depth,unsigned Index,bool ParameterPack,TemplateTypeParmDecl * TTPDecl) const3296 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3297 bool ParameterPack,
3298 TemplateTypeParmDecl *TTPDecl) const {
3299 llvm::FoldingSetNodeID ID;
3300 TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3301 void *InsertPos = nullptr;
3302 TemplateTypeParmType *TypeParm
3303 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3304
3305 if (TypeParm)
3306 return QualType(TypeParm, 0);
3307
3308 if (TTPDecl) {
3309 QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3310 TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3311
3312 TemplateTypeParmType *TypeCheck
3313 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3314 assert(!TypeCheck && "Template type parameter canonical type broken");
3315 (void)TypeCheck;
3316 } else
3317 TypeParm = new (*this, TypeAlignment)
3318 TemplateTypeParmType(Depth, Index, ParameterPack);
3319
3320 Types.push_back(TypeParm);
3321 TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3322
3323 return QualType(TypeParm, 0);
3324 }
3325
3326 TypeSourceInfo *
getTemplateSpecializationTypeInfo(TemplateName Name,SourceLocation NameLoc,const TemplateArgumentListInfo & Args,QualType Underlying) const3327 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3328 SourceLocation NameLoc,
3329 const TemplateArgumentListInfo &Args,
3330 QualType Underlying) const {
3331 assert(!Name.getAsDependentTemplateName() &&
3332 "No dependent template names here!");
3333 QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3334
3335 TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3336 TemplateSpecializationTypeLoc TL =
3337 DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3338 TL.setTemplateKeywordLoc(SourceLocation());
3339 TL.setTemplateNameLoc(NameLoc);
3340 TL.setLAngleLoc(Args.getLAngleLoc());
3341 TL.setRAngleLoc(Args.getRAngleLoc());
3342 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3343 TL.setArgLocInfo(i, Args[i].getLocInfo());
3344 return DI;
3345 }
3346
3347 QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgumentListInfo & Args,QualType Underlying) const3348 ASTContext::getTemplateSpecializationType(TemplateName Template,
3349 const TemplateArgumentListInfo &Args,
3350 QualType Underlying) const {
3351 assert(!Template.getAsDependentTemplateName() &&
3352 "No dependent template names here!");
3353
3354 unsigned NumArgs = Args.size();
3355
3356 SmallVector<TemplateArgument, 4> ArgVec;
3357 ArgVec.reserve(NumArgs);
3358 for (unsigned i = 0; i != NumArgs; ++i)
3359 ArgVec.push_back(Args[i].getArgument());
3360
3361 return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3362 Underlying);
3363 }
3364
3365 #ifndef NDEBUG
hasAnyPackExpansions(const TemplateArgument * Args,unsigned NumArgs)3366 static bool hasAnyPackExpansions(const TemplateArgument *Args,
3367 unsigned NumArgs) {
3368 for (unsigned I = 0; I != NumArgs; ++I)
3369 if (Args[I].isPackExpansion())
3370 return true;
3371
3372 return true;
3373 }
3374 #endif
3375
3376 QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgument * Args,unsigned NumArgs,QualType Underlying) const3377 ASTContext::getTemplateSpecializationType(TemplateName Template,
3378 const TemplateArgument *Args,
3379 unsigned NumArgs,
3380 QualType Underlying) const {
3381 assert(!Template.getAsDependentTemplateName() &&
3382 "No dependent template names here!");
3383 // Look through qualified template names.
3384 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3385 Template = TemplateName(QTN->getTemplateDecl());
3386
3387 bool IsTypeAlias =
3388 Template.getAsTemplateDecl() &&
3389 isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3390 QualType CanonType;
3391 if (!Underlying.isNull())
3392 CanonType = getCanonicalType(Underlying);
3393 else {
3394 // We can get here with an alias template when the specialization contains
3395 // a pack expansion that does not match up with a parameter pack.
3396 assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3397 "Caller must compute aliased type");
3398 IsTypeAlias = false;
3399 CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3400 NumArgs);
3401 }
3402
3403 // Allocate the (non-canonical) template specialization type, but don't
3404 // try to unique it: these types typically have location information that
3405 // we don't unique and don't want to lose.
3406 void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3407 sizeof(TemplateArgument) * NumArgs +
3408 (IsTypeAlias? sizeof(QualType) : 0),
3409 TypeAlignment);
3410 TemplateSpecializationType *Spec
3411 = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3412 IsTypeAlias ? Underlying : QualType());
3413
3414 Types.push_back(Spec);
3415 return QualType(Spec, 0);
3416 }
3417
3418 QualType
getCanonicalTemplateSpecializationType(TemplateName Template,const TemplateArgument * Args,unsigned NumArgs) const3419 ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3420 const TemplateArgument *Args,
3421 unsigned NumArgs) const {
3422 assert(!Template.getAsDependentTemplateName() &&
3423 "No dependent template names here!");
3424
3425 // Look through qualified template names.
3426 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3427 Template = TemplateName(QTN->getTemplateDecl());
3428
3429 // Build the canonical template specialization type.
3430 TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3431 SmallVector<TemplateArgument, 4> CanonArgs;
3432 CanonArgs.reserve(NumArgs);
3433 for (unsigned I = 0; I != NumArgs; ++I)
3434 CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3435
3436 // Determine whether this canonical template specialization type already
3437 // exists.
3438 llvm::FoldingSetNodeID ID;
3439 TemplateSpecializationType::Profile(ID, CanonTemplate,
3440 CanonArgs.data(), NumArgs, *this);
3441
3442 void *InsertPos = nullptr;
3443 TemplateSpecializationType *Spec
3444 = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3445
3446 if (!Spec) {
3447 // Allocate a new canonical template specialization type.
3448 void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3449 sizeof(TemplateArgument) * NumArgs),
3450 TypeAlignment);
3451 Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3452 CanonArgs.data(), NumArgs,
3453 QualType(), QualType());
3454 Types.push_back(Spec);
3455 TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3456 }
3457
3458 assert(Spec->isDependentType() &&
3459 "Non-dependent template-id type must have a canonical type");
3460 return QualType(Spec, 0);
3461 }
3462
3463 QualType
getElaboratedType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,QualType NamedType) const3464 ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3465 NestedNameSpecifier *NNS,
3466 QualType NamedType) const {
3467 llvm::FoldingSetNodeID ID;
3468 ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3469
3470 void *InsertPos = nullptr;
3471 ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3472 if (T)
3473 return QualType(T, 0);
3474
3475 QualType Canon = NamedType;
3476 if (!Canon.isCanonical()) {
3477 Canon = getCanonicalType(NamedType);
3478 ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3479 assert(!CheckT && "Elaborated canonical type broken");
3480 (void)CheckT;
3481 }
3482
3483 T = new (*this, TypeAlignment) ElaboratedType(Keyword, NNS, NamedType, Canon);
3484 Types.push_back(T);
3485 ElaboratedTypes.InsertNode(T, InsertPos);
3486 return QualType(T, 0);
3487 }
3488
3489 QualType
getParenType(QualType InnerType) const3490 ASTContext::getParenType(QualType InnerType) const {
3491 llvm::FoldingSetNodeID ID;
3492 ParenType::Profile(ID, InnerType);
3493
3494 void *InsertPos = nullptr;
3495 ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3496 if (T)
3497 return QualType(T, 0);
3498
3499 QualType Canon = InnerType;
3500 if (!Canon.isCanonical()) {
3501 Canon = getCanonicalType(InnerType);
3502 ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3503 assert(!CheckT && "Paren canonical type broken");
3504 (void)CheckT;
3505 }
3506
3507 T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
3508 Types.push_back(T);
3509 ParenTypes.InsertNode(T, InsertPos);
3510 return QualType(T, 0);
3511 }
3512
getDependentNameType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,QualType Canon) const3513 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3514 NestedNameSpecifier *NNS,
3515 const IdentifierInfo *Name,
3516 QualType Canon) const {
3517 if (Canon.isNull()) {
3518 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3519 ElaboratedTypeKeyword CanonKeyword = Keyword;
3520 if (Keyword == ETK_None)
3521 CanonKeyword = ETK_Typename;
3522
3523 if (CanonNNS != NNS || CanonKeyword != Keyword)
3524 Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3525 }
3526
3527 llvm::FoldingSetNodeID ID;
3528 DependentNameType::Profile(ID, Keyword, NNS, Name);
3529
3530 void *InsertPos = nullptr;
3531 DependentNameType *T
3532 = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3533 if (T)
3534 return QualType(T, 0);
3535
3536 T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
3537 Types.push_back(T);
3538 DependentNameTypes.InsertNode(T, InsertPos);
3539 return QualType(T, 0);
3540 }
3541
3542 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,const TemplateArgumentListInfo & Args) const3543 ASTContext::getDependentTemplateSpecializationType(
3544 ElaboratedTypeKeyword Keyword,
3545 NestedNameSpecifier *NNS,
3546 const IdentifierInfo *Name,
3547 const TemplateArgumentListInfo &Args) const {
3548 // TODO: avoid this copy
3549 SmallVector<TemplateArgument, 16> ArgCopy;
3550 for (unsigned I = 0, E = Args.size(); I != E; ++I)
3551 ArgCopy.push_back(Args[I].getArgument());
3552 return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3553 ArgCopy.size(),
3554 ArgCopy.data());
3555 }
3556
3557 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,unsigned NumArgs,const TemplateArgument * Args) const3558 ASTContext::getDependentTemplateSpecializationType(
3559 ElaboratedTypeKeyword Keyword,
3560 NestedNameSpecifier *NNS,
3561 const IdentifierInfo *Name,
3562 unsigned NumArgs,
3563 const TemplateArgument *Args) const {
3564 assert((!NNS || NNS->isDependent()) &&
3565 "nested-name-specifier must be dependent");
3566
3567 llvm::FoldingSetNodeID ID;
3568 DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3569 Name, NumArgs, Args);
3570
3571 void *InsertPos = nullptr;
3572 DependentTemplateSpecializationType *T
3573 = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3574 if (T)
3575 return QualType(T, 0);
3576
3577 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3578
3579 ElaboratedTypeKeyword CanonKeyword = Keyword;
3580 if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3581
3582 bool AnyNonCanonArgs = false;
3583 SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3584 for (unsigned I = 0; I != NumArgs; ++I) {
3585 CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3586 if (!CanonArgs[I].structurallyEquals(Args[I]))
3587 AnyNonCanonArgs = true;
3588 }
3589
3590 QualType Canon;
3591 if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3592 Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3593 Name, NumArgs,
3594 CanonArgs.data());
3595
3596 // Find the insert position again.
3597 DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3598 }
3599
3600 void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3601 sizeof(TemplateArgument) * NumArgs),
3602 TypeAlignment);
3603 T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3604 Name, NumArgs, Args, Canon);
3605 Types.push_back(T);
3606 DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3607 return QualType(T, 0);
3608 }
3609
getPackExpansionType(QualType Pattern,Optional<unsigned> NumExpansions)3610 QualType ASTContext::getPackExpansionType(QualType Pattern,
3611 Optional<unsigned> NumExpansions) {
3612 llvm::FoldingSetNodeID ID;
3613 PackExpansionType::Profile(ID, Pattern, NumExpansions);
3614
3615 assert(Pattern->containsUnexpandedParameterPack() &&
3616 "Pack expansions must expand one or more parameter packs");
3617 void *InsertPos = nullptr;
3618 PackExpansionType *T
3619 = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3620 if (T)
3621 return QualType(T, 0);
3622
3623 QualType Canon;
3624 if (!Pattern.isCanonical()) {
3625 Canon = getCanonicalType(Pattern);
3626 // The canonical type might not contain an unexpanded parameter pack, if it
3627 // contains an alias template specialization which ignores one of its
3628 // parameters.
3629 if (Canon->containsUnexpandedParameterPack()) {
3630 Canon = getPackExpansionType(Canon, NumExpansions);
3631
3632 // Find the insert position again, in case we inserted an element into
3633 // PackExpansionTypes and invalidated our insert position.
3634 PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3635 }
3636 }
3637
3638 T = new (*this, TypeAlignment)
3639 PackExpansionType(Pattern, Canon, NumExpansions);
3640 Types.push_back(T);
3641 PackExpansionTypes.InsertNode(T, InsertPos);
3642 return QualType(T, 0);
3643 }
3644
3645 /// CmpProtocolNames - Comparison predicate for sorting protocols
3646 /// alphabetically.
CmpProtocolNames(ObjCProtocolDecl * const * LHS,ObjCProtocolDecl * const * RHS)3647 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
3648 ObjCProtocolDecl *const *RHS) {
3649 return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
3650 }
3651
areSortedAndUniqued(ObjCProtocolDecl * const * Protocols,unsigned NumProtocols)3652 static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3653 unsigned NumProtocols) {
3654 if (NumProtocols == 0) return true;
3655
3656 if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3657 return false;
3658
3659 for (unsigned i = 1; i != NumProtocols; ++i)
3660 if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
3661 Protocols[i]->getCanonicalDecl() != Protocols[i])
3662 return false;
3663 return true;
3664 }
3665
3666 static void
SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl * > & Protocols)3667 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
3668 // Sort protocols, keyed by name.
3669 llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
3670
3671 // Canonicalize.
3672 for (ObjCProtocolDecl *&P : Protocols)
3673 P = P->getCanonicalDecl();
3674
3675 // Remove duplicates.
3676 auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
3677 Protocols.erase(ProtocolsEnd, Protocols.end());
3678 }
3679
getObjCObjectType(QualType BaseType,ObjCProtocolDecl * const * Protocols,unsigned NumProtocols) const3680 QualType ASTContext::getObjCObjectType(QualType BaseType,
3681 ObjCProtocolDecl * const *Protocols,
3682 unsigned NumProtocols) const {
3683 return getObjCObjectType(BaseType, { },
3684 llvm::makeArrayRef(Protocols, NumProtocols),
3685 /*isKindOf=*/false);
3686 }
3687
getObjCObjectType(QualType baseType,ArrayRef<QualType> typeArgs,ArrayRef<ObjCProtocolDecl * > protocols,bool isKindOf) const3688 QualType ASTContext::getObjCObjectType(
3689 QualType baseType,
3690 ArrayRef<QualType> typeArgs,
3691 ArrayRef<ObjCProtocolDecl *> protocols,
3692 bool isKindOf) const {
3693 // If the base type is an interface and there aren't any protocols or
3694 // type arguments to add, then the interface type will do just fine.
3695 if (typeArgs.empty() && protocols.empty() && !isKindOf &&
3696 isa<ObjCInterfaceType>(baseType))
3697 return baseType;
3698
3699 // Look in the folding set for an existing type.
3700 llvm::FoldingSetNodeID ID;
3701 ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
3702 void *InsertPos = nullptr;
3703 if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3704 return QualType(QT, 0);
3705
3706 // Determine the type arguments to be used for canonicalization,
3707 // which may be explicitly specified here or written on the base
3708 // type.
3709 ArrayRef<QualType> effectiveTypeArgs = typeArgs;
3710 if (effectiveTypeArgs.empty()) {
3711 if (auto baseObject = baseType->getAs<ObjCObjectType>())
3712 effectiveTypeArgs = baseObject->getTypeArgs();
3713 }
3714
3715 // Build the canonical type, which has the canonical base type and a
3716 // sorted-and-uniqued list of protocols and the type arguments
3717 // canonicalized.
3718 QualType canonical;
3719 bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
3720 effectiveTypeArgs.end(),
3721 [&](QualType type) {
3722 return type.isCanonical();
3723 });
3724 bool protocolsSorted = areSortedAndUniqued(protocols.data(),
3725 protocols.size());
3726 if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
3727 // Determine the canonical type arguments.
3728 ArrayRef<QualType> canonTypeArgs;
3729 SmallVector<QualType, 4> canonTypeArgsVec;
3730 if (!typeArgsAreCanonical) {
3731 canonTypeArgsVec.reserve(effectiveTypeArgs.size());
3732 for (auto typeArg : effectiveTypeArgs)
3733 canonTypeArgsVec.push_back(getCanonicalType(typeArg));
3734 canonTypeArgs = canonTypeArgsVec;
3735 } else {
3736 canonTypeArgs = effectiveTypeArgs;
3737 }
3738
3739 ArrayRef<ObjCProtocolDecl *> canonProtocols;
3740 SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
3741 if (!protocolsSorted) {
3742 canonProtocolsVec.append(protocols.begin(), protocols.end());
3743 SortAndUniqueProtocols(canonProtocolsVec);
3744 canonProtocols = canonProtocolsVec;
3745 } else {
3746 canonProtocols = protocols;
3747 }
3748
3749 canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
3750 canonProtocols, isKindOf);
3751
3752 // Regenerate InsertPos.
3753 ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3754 }
3755
3756 unsigned size = sizeof(ObjCObjectTypeImpl);
3757 size += typeArgs.size() * sizeof(QualType);
3758 size += protocols.size() * sizeof(ObjCProtocolDecl *);
3759 void *mem = Allocate(size, TypeAlignment);
3760 ObjCObjectTypeImpl *T =
3761 new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
3762 isKindOf);
3763
3764 Types.push_back(T);
3765 ObjCObjectTypes.InsertNode(T, InsertPos);
3766 return QualType(T, 0);
3767 }
3768
3769 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
3770 /// protocol list adopt all protocols in QT's qualified-id protocol
3771 /// list.
ObjCObjectAdoptsQTypeProtocols(QualType QT,ObjCInterfaceDecl * IC)3772 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
3773 ObjCInterfaceDecl *IC) {
3774 if (!QT->isObjCQualifiedIdType())
3775 return false;
3776
3777 if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) {
3778 // If both the right and left sides have qualifiers.
3779 for (auto *Proto : OPT->quals()) {
3780 if (!IC->ClassImplementsProtocol(Proto, false))
3781 return false;
3782 }
3783 return true;
3784 }
3785 return false;
3786 }
3787
3788 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
3789 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
3790 /// of protocols.
QIdProtocolsAdoptObjCObjectProtocols(QualType QT,ObjCInterfaceDecl * IDecl)3791 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
3792 ObjCInterfaceDecl *IDecl) {
3793 if (!QT->isObjCQualifiedIdType())
3794 return false;
3795 const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
3796 if (!OPT)
3797 return false;
3798 if (!IDecl->hasDefinition())
3799 return false;
3800 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
3801 CollectInheritedProtocols(IDecl, InheritedProtocols);
3802 if (InheritedProtocols.empty())
3803 return false;
3804 // Check that if every protocol in list of id<plist> conforms to a protcol
3805 // of IDecl's, then bridge casting is ok.
3806 bool Conforms = false;
3807 for (auto *Proto : OPT->quals()) {
3808 Conforms = false;
3809 for (auto *PI : InheritedProtocols) {
3810 if (ProtocolCompatibleWithProtocol(Proto, PI)) {
3811 Conforms = true;
3812 break;
3813 }
3814 }
3815 if (!Conforms)
3816 break;
3817 }
3818 if (Conforms)
3819 return true;
3820
3821 for (auto *PI : InheritedProtocols) {
3822 // If both the right and left sides have qualifiers.
3823 bool Adopts = false;
3824 for (auto *Proto : OPT->quals()) {
3825 // return 'true' if 'PI' is in the inheritance hierarchy of Proto
3826 if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
3827 break;
3828 }
3829 if (!Adopts)
3830 return false;
3831 }
3832 return true;
3833 }
3834
3835 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3836 /// the given object type.
getObjCObjectPointerType(QualType ObjectT) const3837 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3838 llvm::FoldingSetNodeID ID;
3839 ObjCObjectPointerType::Profile(ID, ObjectT);
3840
3841 void *InsertPos = nullptr;
3842 if (ObjCObjectPointerType *QT =
3843 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3844 return QualType(QT, 0);
3845
3846 // Find the canonical object type.
3847 QualType Canonical;
3848 if (!ObjectT.isCanonical()) {
3849 Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3850
3851 // Regenerate InsertPos.
3852 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3853 }
3854
3855 // No match.
3856 void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3857 ObjCObjectPointerType *QType =
3858 new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3859
3860 Types.push_back(QType);
3861 ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3862 return QualType(QType, 0);
3863 }
3864
3865 /// getObjCInterfaceType - Return the unique reference to the type for the
3866 /// specified ObjC interface decl. The list of protocols is optional.
getObjCInterfaceType(const ObjCInterfaceDecl * Decl,ObjCInterfaceDecl * PrevDecl) const3867 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3868 ObjCInterfaceDecl *PrevDecl) const {
3869 if (Decl->TypeForDecl)
3870 return QualType(Decl->TypeForDecl, 0);
3871
3872 if (PrevDecl) {
3873 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3874 Decl->TypeForDecl = PrevDecl->TypeForDecl;
3875 return QualType(PrevDecl->TypeForDecl, 0);
3876 }
3877
3878 // Prefer the definition, if there is one.
3879 if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3880 Decl = Def;
3881
3882 void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3883 ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3884 Decl->TypeForDecl = T;
3885 Types.push_back(T);
3886 return QualType(T, 0);
3887 }
3888
3889 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3890 /// TypeOfExprType AST's (since expression's are never shared). For example,
3891 /// multiple declarations that refer to "typeof(x)" all contain different
3892 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
3893 /// on canonical type's (which are always unique).
getTypeOfExprType(Expr * tofExpr) const3894 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3895 TypeOfExprType *toe;
3896 if (tofExpr->isTypeDependent()) {
3897 llvm::FoldingSetNodeID ID;
3898 DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3899
3900 void *InsertPos = nullptr;
3901 DependentTypeOfExprType *Canon
3902 = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3903 if (Canon) {
3904 // We already have a "canonical" version of an identical, dependent
3905 // typeof(expr) type. Use that as our canonical type.
3906 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3907 QualType((TypeOfExprType*)Canon, 0));
3908 } else {
3909 // Build a new, canonical typeof(expr) type.
3910 Canon
3911 = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3912 DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3913 toe = Canon;
3914 }
3915 } else {
3916 QualType Canonical = getCanonicalType(tofExpr->getType());
3917 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3918 }
3919 Types.push_back(toe);
3920 return QualType(toe, 0);
3921 }
3922
3923 /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
3924 /// TypeOfType nodes. The only motivation to unique these nodes would be
3925 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3926 /// an issue. This doesn't affect the type checker, since it operates
3927 /// on canonical types (which are always unique).
getTypeOfType(QualType tofType) const3928 QualType ASTContext::getTypeOfType(QualType tofType) const {
3929 QualType Canonical = getCanonicalType(tofType);
3930 TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3931 Types.push_back(tot);
3932 return QualType(tot, 0);
3933 }
3934
3935 /// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType
3936 /// nodes. This would never be helpful, since each such type has its own
3937 /// expression, and would not give a significant memory saving, since there
3938 /// is an Expr tree under each such type.
getDecltypeType(Expr * e,QualType UnderlyingType) const3939 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3940 DecltypeType *dt;
3941
3942 // C++11 [temp.type]p2:
3943 // If an expression e involves a template parameter, decltype(e) denotes a
3944 // unique dependent type. Two such decltype-specifiers refer to the same
3945 // type only if their expressions are equivalent (14.5.6.1).
3946 if (e->isInstantiationDependent()) {
3947 llvm::FoldingSetNodeID ID;
3948 DependentDecltypeType::Profile(ID, *this, e);
3949
3950 void *InsertPos = nullptr;
3951 DependentDecltypeType *Canon
3952 = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3953 if (!Canon) {
3954 // Build a new, canonical typeof(expr) type.
3955 Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3956 DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3957 }
3958 dt = new (*this, TypeAlignment)
3959 DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
3960 } else {
3961 dt = new (*this, TypeAlignment)
3962 DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
3963 }
3964 Types.push_back(dt);
3965 return QualType(dt, 0);
3966 }
3967
3968 /// getUnaryTransformationType - We don't unique these, since the memory
3969 /// savings are minimal and these are rare.
getUnaryTransformType(QualType BaseType,QualType UnderlyingType,UnaryTransformType::UTTKind Kind) const3970 QualType ASTContext::getUnaryTransformType(QualType BaseType,
3971 QualType UnderlyingType,
3972 UnaryTransformType::UTTKind Kind)
3973 const {
3974 UnaryTransformType *Ty =
3975 new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3976 Kind,
3977 UnderlyingType->isDependentType() ?
3978 QualType() : getCanonicalType(UnderlyingType));
3979 Types.push_back(Ty);
3980 return QualType(Ty, 0);
3981 }
3982
3983 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
3984 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
3985 /// canonical deduced-but-dependent 'auto' type.
getAutoType(QualType DeducedType,AutoTypeKeyword Keyword,bool IsDependent) const3986 QualType ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
3987 bool IsDependent) const {
3988 if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && !IsDependent)
3989 return getAutoDeductType();
3990
3991 // Look in the folding set for an existing type.
3992 void *InsertPos = nullptr;
3993 llvm::FoldingSetNodeID ID;
3994 AutoType::Profile(ID, DeducedType, Keyword, IsDependent);
3995 if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3996 return QualType(AT, 0);
3997
3998 AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
3999 Keyword,
4000 IsDependent);
4001 Types.push_back(AT);
4002 if (InsertPos)
4003 AutoTypes.InsertNode(AT, InsertPos);
4004 return QualType(AT, 0);
4005 }
4006
4007 /// getAtomicType - Return the uniqued reference to the atomic type for
4008 /// the given value type.
getAtomicType(QualType T) const4009 QualType ASTContext::getAtomicType(QualType T) const {
4010 // Unique pointers, to guarantee there is only one pointer of a particular
4011 // structure.
4012 llvm::FoldingSetNodeID ID;
4013 AtomicType::Profile(ID, T);
4014
4015 void *InsertPos = nullptr;
4016 if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
4017 return QualType(AT, 0);
4018
4019 // If the atomic value type isn't canonical, this won't be a canonical type
4020 // either, so fill in the canonical type field.
4021 QualType Canonical;
4022 if (!T.isCanonical()) {
4023 Canonical = getAtomicType(getCanonicalType(T));
4024
4025 // Get the new insert position for the node we care about.
4026 AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
4027 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4028 }
4029 AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
4030 Types.push_back(New);
4031 AtomicTypes.InsertNode(New, InsertPos);
4032 return QualType(New, 0);
4033 }
4034
4035 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
getAutoDeductType() const4036 QualType ASTContext::getAutoDeductType() const {
4037 if (AutoDeductTy.isNull())
4038 AutoDeductTy = QualType(
4039 new (*this, TypeAlignment) AutoType(QualType(), AutoTypeKeyword::Auto,
4040 /*dependent*/false),
4041 0);
4042 return AutoDeductTy;
4043 }
4044
4045 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
getAutoRRefDeductType() const4046 QualType ASTContext::getAutoRRefDeductType() const {
4047 if (AutoRRefDeductTy.isNull())
4048 AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
4049 assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
4050 return AutoRRefDeductTy;
4051 }
4052
4053 /// getTagDeclType - Return the unique reference to the type for the
4054 /// specified TagDecl (struct/union/class/enum) decl.
getTagDeclType(const TagDecl * Decl) const4055 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
4056 assert (Decl);
4057 // FIXME: What is the design on getTagDeclType when it requires casting
4058 // away const? mutable?
4059 return getTypeDeclType(const_cast<TagDecl*>(Decl));
4060 }
4061
4062 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
4063 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
4064 /// needs to agree with the definition in <stddef.h>.
getSizeType() const4065 CanQualType ASTContext::getSizeType() const {
4066 return getFromTargetType(Target->getSizeType());
4067 }
4068
4069 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
getIntMaxType() const4070 CanQualType ASTContext::getIntMaxType() const {
4071 return getFromTargetType(Target->getIntMaxType());
4072 }
4073
4074 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
getUIntMaxType() const4075 CanQualType ASTContext::getUIntMaxType() const {
4076 return getFromTargetType(Target->getUIntMaxType());
4077 }
4078
4079 /// getSignedWCharType - Return the type of "signed wchar_t".
4080 /// Used when in C++, as a GCC extension.
getSignedWCharType() const4081 QualType ASTContext::getSignedWCharType() const {
4082 // FIXME: derive from "Target" ?
4083 return WCharTy;
4084 }
4085
4086 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
4087 /// Used when in C++, as a GCC extension.
getUnsignedWCharType() const4088 QualType ASTContext::getUnsignedWCharType() const {
4089 // FIXME: derive from "Target" ?
4090 return UnsignedIntTy;
4091 }
4092
getIntPtrType() const4093 QualType ASTContext::getIntPtrType() const {
4094 return getFromTargetType(Target->getIntPtrType());
4095 }
4096
getUIntPtrType() const4097 QualType ASTContext::getUIntPtrType() const {
4098 return getCorrespondingUnsignedType(getIntPtrType());
4099 }
4100
4101 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
4102 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
getPointerDiffType() const4103 QualType ASTContext::getPointerDiffType() const {
4104 return getFromTargetType(Target->getPtrDiffType(0));
4105 }
4106
4107 /// \brief Return the unique type for "pid_t" defined in
4108 /// <sys/types.h>. We need this to compute the correct type for vfork().
getProcessIDType() const4109 QualType ASTContext::getProcessIDType() const {
4110 return getFromTargetType(Target->getProcessIDType());
4111 }
4112
4113 //===----------------------------------------------------------------------===//
4114 // Type Operators
4115 //===----------------------------------------------------------------------===//
4116
getCanonicalParamType(QualType T) const4117 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
4118 // Push qualifiers into arrays, and then discard any remaining
4119 // qualifiers.
4120 T = getCanonicalType(T);
4121 T = getVariableArrayDecayedType(T);
4122 const Type *Ty = T.getTypePtr();
4123 QualType Result;
4124 if (isa<ArrayType>(Ty)) {
4125 Result = getArrayDecayedType(QualType(Ty,0));
4126 } else if (isa<FunctionType>(Ty)) {
4127 Result = getPointerType(QualType(Ty, 0));
4128 } else {
4129 Result = QualType(Ty, 0);
4130 }
4131
4132 return CanQualType::CreateUnsafe(Result);
4133 }
4134
getUnqualifiedArrayType(QualType type,Qualifiers & quals)4135 QualType ASTContext::getUnqualifiedArrayType(QualType type,
4136 Qualifiers &quals) {
4137 SplitQualType splitType = type.getSplitUnqualifiedType();
4138
4139 // FIXME: getSplitUnqualifiedType() actually walks all the way to
4140 // the unqualified desugared type and then drops it on the floor.
4141 // We then have to strip that sugar back off with
4142 // getUnqualifiedDesugaredType(), which is silly.
4143 const ArrayType *AT =
4144 dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
4145
4146 // If we don't have an array, just use the results in splitType.
4147 if (!AT) {
4148 quals = splitType.Quals;
4149 return QualType(splitType.Ty, 0);
4150 }
4151
4152 // Otherwise, recurse on the array's element type.
4153 QualType elementType = AT->getElementType();
4154 QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
4155
4156 // If that didn't change the element type, AT has no qualifiers, so we
4157 // can just use the results in splitType.
4158 if (elementType == unqualElementType) {
4159 assert(quals.empty()); // from the recursive call
4160 quals = splitType.Quals;
4161 return QualType(splitType.Ty, 0);
4162 }
4163
4164 // Otherwise, add in the qualifiers from the outermost type, then
4165 // build the type back up.
4166 quals.addConsistentQualifiers(splitType.Quals);
4167
4168 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4169 return getConstantArrayType(unqualElementType, CAT->getSize(),
4170 CAT->getSizeModifier(), 0);
4171 }
4172
4173 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
4174 return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
4175 }
4176
4177 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
4178 return getVariableArrayType(unqualElementType,
4179 VAT->getSizeExpr(),
4180 VAT->getSizeModifier(),
4181 VAT->getIndexTypeCVRQualifiers(),
4182 VAT->getBracketsRange());
4183 }
4184
4185 const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
4186 return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
4187 DSAT->getSizeModifier(), 0,
4188 SourceRange());
4189 }
4190
4191 /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types that
4192 /// may be similar (C++ 4.4), replaces T1 and T2 with the type that
4193 /// they point to and return true. If T1 and T2 aren't pointer types
4194 /// or pointer-to-member types, or if they are not similar at this
4195 /// level, returns false and leaves T1 and T2 unchanged. Top-level
4196 /// qualifiers on T1 and T2 are ignored. This function will typically
4197 /// be called in a loop that successively "unwraps" pointer and
4198 /// pointer-to-member types to compare them at each level.
UnwrapSimilarPointerTypes(QualType & T1,QualType & T2)4199 bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
4200 const PointerType *T1PtrType = T1->getAs<PointerType>(),
4201 *T2PtrType = T2->getAs<PointerType>();
4202 if (T1PtrType && T2PtrType) {
4203 T1 = T1PtrType->getPointeeType();
4204 T2 = T2PtrType->getPointeeType();
4205 return true;
4206 }
4207
4208 const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
4209 *T2MPType = T2->getAs<MemberPointerType>();
4210 if (T1MPType && T2MPType &&
4211 hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
4212 QualType(T2MPType->getClass(), 0))) {
4213 T1 = T1MPType->getPointeeType();
4214 T2 = T2MPType->getPointeeType();
4215 return true;
4216 }
4217
4218 if (getLangOpts().ObjC1) {
4219 const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
4220 *T2OPType = T2->getAs<ObjCObjectPointerType>();
4221 if (T1OPType && T2OPType) {
4222 T1 = T1OPType->getPointeeType();
4223 T2 = T2OPType->getPointeeType();
4224 return true;
4225 }
4226 }
4227
4228 // FIXME: Block pointers, too?
4229
4230 return false;
4231 }
4232
4233 DeclarationNameInfo
getNameForTemplate(TemplateName Name,SourceLocation NameLoc) const4234 ASTContext::getNameForTemplate(TemplateName Name,
4235 SourceLocation NameLoc) const {
4236 switch (Name.getKind()) {
4237 case TemplateName::QualifiedTemplate:
4238 case TemplateName::Template:
4239 // DNInfo work in progress: CHECKME: what about DNLoc?
4240 return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
4241 NameLoc);
4242
4243 case TemplateName::OverloadedTemplate: {
4244 OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
4245 // DNInfo work in progress: CHECKME: what about DNLoc?
4246 return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
4247 }
4248
4249 case TemplateName::DependentTemplate: {
4250 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4251 DeclarationName DName;
4252 if (DTN->isIdentifier()) {
4253 DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
4254 return DeclarationNameInfo(DName, NameLoc);
4255 } else {
4256 DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
4257 // DNInfo work in progress: FIXME: source locations?
4258 DeclarationNameLoc DNLoc;
4259 DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
4260 DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
4261 return DeclarationNameInfo(DName, NameLoc, DNLoc);
4262 }
4263 }
4264
4265 case TemplateName::SubstTemplateTemplateParm: {
4266 SubstTemplateTemplateParmStorage *subst
4267 = Name.getAsSubstTemplateTemplateParm();
4268 return DeclarationNameInfo(subst->getParameter()->getDeclName(),
4269 NameLoc);
4270 }
4271
4272 case TemplateName::SubstTemplateTemplateParmPack: {
4273 SubstTemplateTemplateParmPackStorage *subst
4274 = Name.getAsSubstTemplateTemplateParmPack();
4275 return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
4276 NameLoc);
4277 }
4278 }
4279
4280 llvm_unreachable("bad template name kind!");
4281 }
4282
getCanonicalTemplateName(TemplateName Name) const4283 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
4284 switch (Name.getKind()) {
4285 case TemplateName::QualifiedTemplate:
4286 case TemplateName::Template: {
4287 TemplateDecl *Template = Name.getAsTemplateDecl();
4288 if (TemplateTemplateParmDecl *TTP
4289 = dyn_cast<TemplateTemplateParmDecl>(Template))
4290 Template = getCanonicalTemplateTemplateParmDecl(TTP);
4291
4292 // The canonical template name is the canonical template declaration.
4293 return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
4294 }
4295
4296 case TemplateName::OverloadedTemplate:
4297 llvm_unreachable("cannot canonicalize overloaded template");
4298
4299 case TemplateName::DependentTemplate: {
4300 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4301 assert(DTN && "Non-dependent template names must refer to template decls.");
4302 return DTN->CanonicalTemplateName;
4303 }
4304
4305 case TemplateName::SubstTemplateTemplateParm: {
4306 SubstTemplateTemplateParmStorage *subst
4307 = Name.getAsSubstTemplateTemplateParm();
4308 return getCanonicalTemplateName(subst->getReplacement());
4309 }
4310
4311 case TemplateName::SubstTemplateTemplateParmPack: {
4312 SubstTemplateTemplateParmPackStorage *subst
4313 = Name.getAsSubstTemplateTemplateParmPack();
4314 TemplateTemplateParmDecl *canonParameter
4315 = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
4316 TemplateArgument canonArgPack
4317 = getCanonicalTemplateArgument(subst->getArgumentPack());
4318 return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
4319 }
4320 }
4321
4322 llvm_unreachable("bad template name!");
4323 }
4324
hasSameTemplateName(TemplateName X,TemplateName Y)4325 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
4326 X = getCanonicalTemplateName(X);
4327 Y = getCanonicalTemplateName(Y);
4328 return X.getAsVoidPointer() == Y.getAsVoidPointer();
4329 }
4330
4331 TemplateArgument
getCanonicalTemplateArgument(const TemplateArgument & Arg) const4332 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
4333 switch (Arg.getKind()) {
4334 case TemplateArgument::Null:
4335 return Arg;
4336
4337 case TemplateArgument::Expression:
4338 return Arg;
4339
4340 case TemplateArgument::Declaration: {
4341 ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
4342 return TemplateArgument(D, Arg.getParamTypeForDecl());
4343 }
4344
4345 case TemplateArgument::NullPtr:
4346 return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
4347 /*isNullPtr*/true);
4348
4349 case TemplateArgument::Template:
4350 return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
4351
4352 case TemplateArgument::TemplateExpansion:
4353 return TemplateArgument(getCanonicalTemplateName(
4354 Arg.getAsTemplateOrTemplatePattern()),
4355 Arg.getNumTemplateExpansions());
4356
4357 case TemplateArgument::Integral:
4358 return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
4359
4360 case TemplateArgument::Type:
4361 return TemplateArgument(getCanonicalType(Arg.getAsType()));
4362
4363 case TemplateArgument::Pack: {
4364 if (Arg.pack_size() == 0)
4365 return Arg;
4366
4367 TemplateArgument *CanonArgs
4368 = new (*this) TemplateArgument[Arg.pack_size()];
4369 unsigned Idx = 0;
4370 for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
4371 AEnd = Arg.pack_end();
4372 A != AEnd; (void)++A, ++Idx)
4373 CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
4374
4375 return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
4376 }
4377 }
4378
4379 // Silence GCC warning
4380 llvm_unreachable("Unhandled template argument kind");
4381 }
4382
4383 NestedNameSpecifier *
getCanonicalNestedNameSpecifier(NestedNameSpecifier * NNS) const4384 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
4385 if (!NNS)
4386 return nullptr;
4387
4388 switch (NNS->getKind()) {
4389 case NestedNameSpecifier::Identifier:
4390 // Canonicalize the prefix but keep the identifier the same.
4391 return NestedNameSpecifier::Create(*this,
4392 getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4393 NNS->getAsIdentifier());
4394
4395 case NestedNameSpecifier::Namespace:
4396 // A namespace is canonical; build a nested-name-specifier with
4397 // this namespace and no prefix.
4398 return NestedNameSpecifier::Create(*this, nullptr,
4399 NNS->getAsNamespace()->getOriginalNamespace());
4400
4401 case NestedNameSpecifier::NamespaceAlias:
4402 // A namespace is canonical; build a nested-name-specifier with
4403 // this namespace and no prefix.
4404 return NestedNameSpecifier::Create(*this, nullptr,
4405 NNS->getAsNamespaceAlias()->getNamespace()
4406 ->getOriginalNamespace());
4407
4408 case NestedNameSpecifier::TypeSpec:
4409 case NestedNameSpecifier::TypeSpecWithTemplate: {
4410 QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4411
4412 // If we have some kind of dependent-named type (e.g., "typename T::type"),
4413 // break it apart into its prefix and identifier, then reconsititute those
4414 // as the canonical nested-name-specifier. This is required to canonicalize
4415 // a dependent nested-name-specifier involving typedefs of dependent-name
4416 // types, e.g.,
4417 // typedef typename T::type T1;
4418 // typedef typename T1::type T2;
4419 if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4420 return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4421 const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4422
4423 // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4424 // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4425 // first place?
4426 return NestedNameSpecifier::Create(*this, nullptr, false,
4427 const_cast<Type *>(T.getTypePtr()));
4428 }
4429
4430 case NestedNameSpecifier::Global:
4431 case NestedNameSpecifier::Super:
4432 // The global specifier and __super specifer are canonical and unique.
4433 return NNS;
4434 }
4435
4436 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4437 }
4438
getAsArrayType(QualType T) const4439 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4440 // Handle the non-qualified case efficiently.
4441 if (!T.hasLocalQualifiers()) {
4442 // Handle the common positive case fast.
4443 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4444 return AT;
4445 }
4446
4447 // Handle the common negative case fast.
4448 if (!isa<ArrayType>(T.getCanonicalType()))
4449 return nullptr;
4450
4451 // Apply any qualifiers from the array type to the element type. This
4452 // implements C99 6.7.3p8: "If the specification of an array type includes
4453 // any type qualifiers, the element type is so qualified, not the array type."
4454
4455 // If we get here, we either have type qualifiers on the type, or we have
4456 // sugar such as a typedef in the way. If we have type qualifiers on the type
4457 // we must propagate them down into the element type.
4458
4459 SplitQualType split = T.getSplitDesugaredType();
4460 Qualifiers qs = split.Quals;
4461
4462 // If we have a simple case, just return now.
4463 const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4464 if (!ATy || qs.empty())
4465 return ATy;
4466
4467 // Otherwise, we have an array and we have qualifiers on it. Push the
4468 // qualifiers into the array element type and return a new array type.
4469 QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4470
4471 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4472 return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4473 CAT->getSizeModifier(),
4474 CAT->getIndexTypeCVRQualifiers()));
4475 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4476 return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4477 IAT->getSizeModifier(),
4478 IAT->getIndexTypeCVRQualifiers()));
4479
4480 if (const DependentSizedArrayType *DSAT
4481 = dyn_cast<DependentSizedArrayType>(ATy))
4482 return cast<ArrayType>(
4483 getDependentSizedArrayType(NewEltTy,
4484 DSAT->getSizeExpr(),
4485 DSAT->getSizeModifier(),
4486 DSAT->getIndexTypeCVRQualifiers(),
4487 DSAT->getBracketsRange()));
4488
4489 const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4490 return cast<ArrayType>(getVariableArrayType(NewEltTy,
4491 VAT->getSizeExpr(),
4492 VAT->getSizeModifier(),
4493 VAT->getIndexTypeCVRQualifiers(),
4494 VAT->getBracketsRange()));
4495 }
4496
getAdjustedParameterType(QualType T) const4497 QualType ASTContext::getAdjustedParameterType(QualType T) const {
4498 if (T->isArrayType() || T->isFunctionType())
4499 return getDecayedType(T);
4500 return T;
4501 }
4502
getSignatureParameterType(QualType T) const4503 QualType ASTContext::getSignatureParameterType(QualType T) const {
4504 T = getVariableArrayDecayedType(T);
4505 T = getAdjustedParameterType(T);
4506 return T.getUnqualifiedType();
4507 }
4508
getExceptionObjectType(QualType T) const4509 QualType ASTContext::getExceptionObjectType(QualType T) const {
4510 // C++ [except.throw]p3:
4511 // A throw-expression initializes a temporary object, called the exception
4512 // object, the type of which is determined by removing any top-level
4513 // cv-qualifiers from the static type of the operand of throw and adjusting
4514 // the type from "array of T" or "function returning T" to "pointer to T"
4515 // or "pointer to function returning T", [...]
4516 T = getVariableArrayDecayedType(T);
4517 if (T->isArrayType() || T->isFunctionType())
4518 T = getDecayedType(T);
4519 return T.getUnqualifiedType();
4520 }
4521
4522 /// getArrayDecayedType - Return the properly qualified result of decaying the
4523 /// specified array type to a pointer. This operation is non-trivial when
4524 /// handling typedefs etc. The canonical type of "T" must be an array type,
4525 /// this returns a pointer to a properly qualified element of the array.
4526 ///
4527 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
getArrayDecayedType(QualType Ty) const4528 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4529 // Get the element type with 'getAsArrayType' so that we don't lose any
4530 // typedefs in the element type of the array. This also handles propagation
4531 // of type qualifiers from the array type into the element type if present
4532 // (C99 6.7.3p8).
4533 const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4534 assert(PrettyArrayType && "Not an array type!");
4535
4536 QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4537
4538 // int x[restrict 4] -> int *restrict
4539 return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4540 }
4541
getBaseElementType(const ArrayType * array) const4542 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4543 return getBaseElementType(array->getElementType());
4544 }
4545
getBaseElementType(QualType type) const4546 QualType ASTContext::getBaseElementType(QualType type) const {
4547 Qualifiers qs;
4548 while (true) {
4549 SplitQualType split = type.getSplitDesugaredType();
4550 const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4551 if (!array) break;
4552
4553 type = array->getElementType();
4554 qs.addConsistentQualifiers(split.Quals);
4555 }
4556
4557 return getQualifiedType(type, qs);
4558 }
4559
4560 /// getConstantArrayElementCount - Returns number of constant array elements.
4561 uint64_t
getConstantArrayElementCount(const ConstantArrayType * CA) const4562 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const {
4563 uint64_t ElementCount = 1;
4564 do {
4565 ElementCount *= CA->getSize().getZExtValue();
4566 CA = dyn_cast_or_null<ConstantArrayType>(
4567 CA->getElementType()->getAsArrayTypeUnsafe());
4568 } while (CA);
4569 return ElementCount;
4570 }
4571
4572 /// getFloatingRank - Return a relative rank for floating point types.
4573 /// This routine will assert if passed a built-in type that isn't a float.
getFloatingRank(QualType T)4574 static FloatingRank getFloatingRank(QualType T) {
4575 if (const ComplexType *CT = T->getAs<ComplexType>())
4576 return getFloatingRank(CT->getElementType());
4577
4578 assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4579 switch (T->getAs<BuiltinType>()->getKind()) {
4580 default: llvm_unreachable("getFloatingRank(): not a floating type");
4581 case BuiltinType::Half: return HalfRank;
4582 case BuiltinType::Float: return FloatRank;
4583 case BuiltinType::Double: return DoubleRank;
4584 case BuiltinType::LongDouble: return LongDoubleRank;
4585 }
4586 }
4587
4588 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4589 /// point or a complex type (based on typeDomain/typeSize).
4590 /// 'typeDomain' is a real floating point or complex type.
4591 /// 'typeSize' is a real floating point or complex type.
getFloatingTypeOfSizeWithinDomain(QualType Size,QualType Domain) const4592 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4593 QualType Domain) const {
4594 FloatingRank EltRank = getFloatingRank(Size);
4595 if (Domain->isComplexType()) {
4596 switch (EltRank) {
4597 case HalfRank: llvm_unreachable("Complex half is not supported");
4598 case FloatRank: return FloatComplexTy;
4599 case DoubleRank: return DoubleComplexTy;
4600 case LongDoubleRank: return LongDoubleComplexTy;
4601 }
4602 }
4603
4604 assert(Domain->isRealFloatingType() && "Unknown domain!");
4605 switch (EltRank) {
4606 case HalfRank: return HalfTy;
4607 case FloatRank: return FloatTy;
4608 case DoubleRank: return DoubleTy;
4609 case LongDoubleRank: return LongDoubleTy;
4610 }
4611 llvm_unreachable("getFloatingRank(): illegal value for rank");
4612 }
4613
4614 /// getFloatingTypeOrder - Compare the rank of the two specified floating
4615 /// point types, ignoring the domain of the type (i.e. 'double' ==
4616 /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
4617 /// LHS < RHS, return -1.
getFloatingTypeOrder(QualType LHS,QualType RHS) const4618 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4619 FloatingRank LHSR = getFloatingRank(LHS);
4620 FloatingRank RHSR = getFloatingRank(RHS);
4621
4622 if (LHSR == RHSR)
4623 return 0;
4624 if (LHSR > RHSR)
4625 return 1;
4626 return -1;
4627 }
4628
4629 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4630 /// routine will assert if passed a built-in type that isn't an integer or enum,
4631 /// or if it is not canonicalized.
getIntegerRank(const Type * T) const4632 unsigned ASTContext::getIntegerRank(const Type *T) const {
4633 assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4634
4635 switch (cast<BuiltinType>(T)->getKind()) {
4636 default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4637 case BuiltinType::Bool:
4638 return 1 + (getIntWidth(BoolTy) << 3);
4639 case BuiltinType::Char_S:
4640 case BuiltinType::Char_U:
4641 case BuiltinType::SChar:
4642 case BuiltinType::UChar:
4643 return 2 + (getIntWidth(CharTy) << 3);
4644 case BuiltinType::Short:
4645 case BuiltinType::UShort:
4646 return 3 + (getIntWidth(ShortTy) << 3);
4647 case BuiltinType::Int:
4648 case BuiltinType::UInt:
4649 return 4 + (getIntWidth(IntTy) << 3);
4650 case BuiltinType::Long:
4651 case BuiltinType::ULong:
4652 return 5 + (getIntWidth(LongTy) << 3);
4653 case BuiltinType::LongLong:
4654 case BuiltinType::ULongLong:
4655 return 6 + (getIntWidth(LongLongTy) << 3);
4656 case BuiltinType::Int128:
4657 case BuiltinType::UInt128:
4658 return 7 + (getIntWidth(Int128Ty) << 3);
4659 }
4660 }
4661
4662 /// \brief Whether this is a promotable bitfield reference according
4663 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4664 ///
4665 /// \returns the type this bit-field will promote to, or NULL if no
4666 /// promotion occurs.
isPromotableBitField(Expr * E) const4667 QualType ASTContext::isPromotableBitField(Expr *E) const {
4668 if (E->isTypeDependent() || E->isValueDependent())
4669 return QualType();
4670
4671 // FIXME: We should not do this unless E->refersToBitField() is true. This
4672 // matters in C where getSourceBitField() will find bit-fields for various
4673 // cases where the source expression is not a bit-field designator.
4674
4675 FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
4676 if (!Field)
4677 return QualType();
4678
4679 QualType FT = Field->getType();
4680
4681 uint64_t BitWidth = Field->getBitWidthValue(*this);
4682 uint64_t IntSize = getTypeSize(IntTy);
4683 // C++ [conv.prom]p5:
4684 // A prvalue for an integral bit-field can be converted to a prvalue of type
4685 // int if int can represent all the values of the bit-field; otherwise, it
4686 // can be converted to unsigned int if unsigned int can represent all the
4687 // values of the bit-field. If the bit-field is larger yet, no integral
4688 // promotion applies to it.
4689 // C11 6.3.1.1/2:
4690 // [For a bit-field of type _Bool, int, signed int, or unsigned int:]
4691 // If an int can represent all values of the original type (as restricted by
4692 // the width, for a bit-field), the value is converted to an int; otherwise,
4693 // it is converted to an unsigned int.
4694 //
4695 // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
4696 // We perform that promotion here to match GCC and C++.
4697 if (BitWidth < IntSize)
4698 return IntTy;
4699
4700 if (BitWidth == IntSize)
4701 return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4702
4703 // Types bigger than int are not subject to promotions, and therefore act
4704 // like the base type. GCC has some weird bugs in this area that we
4705 // deliberately do not follow (GCC follows a pre-standard resolution to
4706 // C's DR315 which treats bit-width as being part of the type, and this leaks
4707 // into their semantics in some cases).
4708 return QualType();
4709 }
4710
4711 /// getPromotedIntegerType - Returns the type that Promotable will
4712 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4713 /// integer type.
getPromotedIntegerType(QualType Promotable) const4714 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4715 assert(!Promotable.isNull());
4716 assert(Promotable->isPromotableIntegerType());
4717 if (const EnumType *ET = Promotable->getAs<EnumType>())
4718 return ET->getDecl()->getPromotionType();
4719
4720 if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4721 // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4722 // (3.9.1) can be converted to a prvalue of the first of the following
4723 // types that can represent all the values of its underlying type:
4724 // int, unsigned int, long int, unsigned long int, long long int, or
4725 // unsigned long long int [...]
4726 // FIXME: Is there some better way to compute this?
4727 if (BT->getKind() == BuiltinType::WChar_S ||
4728 BT->getKind() == BuiltinType::WChar_U ||
4729 BT->getKind() == BuiltinType::Char16 ||
4730 BT->getKind() == BuiltinType::Char32) {
4731 bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4732 uint64_t FromSize = getTypeSize(BT);
4733 QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4734 LongLongTy, UnsignedLongLongTy };
4735 for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4736 uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4737 if (FromSize < ToSize ||
4738 (FromSize == ToSize &&
4739 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4740 return PromoteTypes[Idx];
4741 }
4742 llvm_unreachable("char type should fit into long long");
4743 }
4744 }
4745
4746 // At this point, we should have a signed or unsigned integer type.
4747 if (Promotable->isSignedIntegerType())
4748 return IntTy;
4749 uint64_t PromotableSize = getIntWidth(Promotable);
4750 uint64_t IntSize = getIntWidth(IntTy);
4751 assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4752 return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4753 }
4754
4755 /// \brief Recurses in pointer/array types until it finds an objc retainable
4756 /// type and returns its ownership.
getInnerObjCOwnership(QualType T) const4757 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4758 while (!T.isNull()) {
4759 if (T.getObjCLifetime() != Qualifiers::OCL_None)
4760 return T.getObjCLifetime();
4761 if (T->isArrayType())
4762 T = getBaseElementType(T);
4763 else if (const PointerType *PT = T->getAs<PointerType>())
4764 T = PT->getPointeeType();
4765 else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4766 T = RT->getPointeeType();
4767 else
4768 break;
4769 }
4770
4771 return Qualifiers::OCL_None;
4772 }
4773
getIntegerTypeForEnum(const EnumType * ET)4774 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
4775 // Incomplete enum types are not treated as integer types.
4776 // FIXME: In C++, enum types are never integer types.
4777 if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
4778 return ET->getDecl()->getIntegerType().getTypePtr();
4779 return nullptr;
4780 }
4781
4782 /// getIntegerTypeOrder - Returns the highest ranked integer type:
4783 /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
4784 /// LHS < RHS, return -1.
getIntegerTypeOrder(QualType LHS,QualType RHS) const4785 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4786 const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4787 const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4788
4789 // Unwrap enums to their underlying type.
4790 if (const EnumType *ET = dyn_cast<EnumType>(LHSC))
4791 LHSC = getIntegerTypeForEnum(ET);
4792 if (const EnumType *ET = dyn_cast<EnumType>(RHSC))
4793 RHSC = getIntegerTypeForEnum(ET);
4794
4795 if (LHSC == RHSC) return 0;
4796
4797 bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4798 bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4799
4800 unsigned LHSRank = getIntegerRank(LHSC);
4801 unsigned RHSRank = getIntegerRank(RHSC);
4802
4803 if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
4804 if (LHSRank == RHSRank) return 0;
4805 return LHSRank > RHSRank ? 1 : -1;
4806 }
4807
4808 // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4809 if (LHSUnsigned) {
4810 // If the unsigned [LHS] type is larger, return it.
4811 if (LHSRank >= RHSRank)
4812 return 1;
4813
4814 // If the signed type can represent all values of the unsigned type, it
4815 // wins. Because we are dealing with 2's complement and types that are
4816 // powers of two larger than each other, this is always safe.
4817 return -1;
4818 }
4819
4820 // If the unsigned [RHS] type is larger, return it.
4821 if (RHSRank >= LHSRank)
4822 return -1;
4823
4824 // If the signed type can represent all values of the unsigned type, it
4825 // wins. Because we are dealing with 2's complement and types that are
4826 // powers of two larger than each other, this is always safe.
4827 return 1;
4828 }
4829
4830 // getCFConstantStringType - Return the type used for constant CFStrings.
getCFConstantStringType() const4831 QualType ASTContext::getCFConstantStringType() const {
4832 if (!CFConstantStringTypeDecl) {
4833 CFConstantStringTypeDecl = buildImplicitRecord("NSConstantString");
4834 CFConstantStringTypeDecl->startDefinition();
4835
4836 QualType FieldTypes[4];
4837
4838 // const int *isa;
4839 FieldTypes[0] = getPointerType(IntTy.withConst());
4840 // int flags;
4841 FieldTypes[1] = IntTy;
4842 // const char *str;
4843 FieldTypes[2] = getPointerType(CharTy.withConst());
4844 // long length;
4845 FieldTypes[3] = LongTy;
4846
4847 // Create fields
4848 for (unsigned i = 0; i < 4; ++i) {
4849 FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4850 SourceLocation(),
4851 SourceLocation(), nullptr,
4852 FieldTypes[i], /*TInfo=*/nullptr,
4853 /*BitWidth=*/nullptr,
4854 /*Mutable=*/false,
4855 ICIS_NoInit);
4856 Field->setAccess(AS_public);
4857 CFConstantStringTypeDecl->addDecl(Field);
4858 }
4859
4860 CFConstantStringTypeDecl->completeDefinition();
4861 }
4862
4863 return getTagDeclType(CFConstantStringTypeDecl);
4864 }
4865
getObjCSuperType() const4866 QualType ASTContext::getObjCSuperType() const {
4867 if (ObjCSuperType.isNull()) {
4868 RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
4869 TUDecl->addDecl(ObjCSuperTypeDecl);
4870 ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4871 }
4872 return ObjCSuperType;
4873 }
4874
setCFConstantStringType(QualType T)4875 void ASTContext::setCFConstantStringType(QualType T) {
4876 const RecordType *Rec = T->getAs<RecordType>();
4877 assert(Rec && "Invalid CFConstantStringType");
4878 CFConstantStringTypeDecl = Rec->getDecl();
4879 }
4880
getBlockDescriptorType() const4881 QualType ASTContext::getBlockDescriptorType() const {
4882 if (BlockDescriptorType)
4883 return getTagDeclType(BlockDescriptorType);
4884
4885 RecordDecl *RD;
4886 // FIXME: Needs the FlagAppleBlock bit.
4887 RD = buildImplicitRecord("__block_descriptor");
4888 RD->startDefinition();
4889
4890 QualType FieldTypes[] = {
4891 UnsignedLongTy,
4892 UnsignedLongTy,
4893 };
4894
4895 static const char *const FieldNames[] = {
4896 "reserved",
4897 "Size"
4898 };
4899
4900 for (size_t i = 0; i < 2; ++i) {
4901 FieldDecl *Field = FieldDecl::Create(
4902 *this, RD, SourceLocation(), SourceLocation(),
4903 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4904 /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
4905 Field->setAccess(AS_public);
4906 RD->addDecl(Field);
4907 }
4908
4909 RD->completeDefinition();
4910
4911 BlockDescriptorType = RD;
4912
4913 return getTagDeclType(BlockDescriptorType);
4914 }
4915
getBlockDescriptorExtendedType() const4916 QualType ASTContext::getBlockDescriptorExtendedType() const {
4917 if (BlockDescriptorExtendedType)
4918 return getTagDeclType(BlockDescriptorExtendedType);
4919
4920 RecordDecl *RD;
4921 // FIXME: Needs the FlagAppleBlock bit.
4922 RD = buildImplicitRecord("__block_descriptor_withcopydispose");
4923 RD->startDefinition();
4924
4925 QualType FieldTypes[] = {
4926 UnsignedLongTy,
4927 UnsignedLongTy,
4928 getPointerType(VoidPtrTy),
4929 getPointerType(VoidPtrTy)
4930 };
4931
4932 static const char *const FieldNames[] = {
4933 "reserved",
4934 "Size",
4935 "CopyFuncPtr",
4936 "DestroyFuncPtr"
4937 };
4938
4939 for (size_t i = 0; i < 4; ++i) {
4940 FieldDecl *Field = FieldDecl::Create(
4941 *this, RD, SourceLocation(), SourceLocation(),
4942 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4943 /*BitWidth=*/nullptr,
4944 /*Mutable=*/false, ICIS_NoInit);
4945 Field->setAccess(AS_public);
4946 RD->addDecl(Field);
4947 }
4948
4949 RD->completeDefinition();
4950
4951 BlockDescriptorExtendedType = RD;
4952 return getTagDeclType(BlockDescriptorExtendedType);
4953 }
4954
4955 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4956 /// requires copy/dispose. Note that this must match the logic
4957 /// in buildByrefHelpers.
BlockRequiresCopying(QualType Ty,const VarDecl * D)4958 bool ASTContext::BlockRequiresCopying(QualType Ty,
4959 const VarDecl *D) {
4960 if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4961 const Expr *copyExpr = getBlockVarCopyInits(D);
4962 if (!copyExpr && record->hasTrivialDestructor()) return false;
4963
4964 return true;
4965 }
4966
4967 if (!Ty->isObjCRetainableType()) return false;
4968
4969 Qualifiers qs = Ty.getQualifiers();
4970
4971 // If we have lifetime, that dominates.
4972 if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4973 switch (lifetime) {
4974 case Qualifiers::OCL_None: llvm_unreachable("impossible");
4975
4976 // These are just bits as far as the runtime is concerned.
4977 case Qualifiers::OCL_ExplicitNone:
4978 case Qualifiers::OCL_Autoreleasing:
4979 return false;
4980
4981 // Tell the runtime that this is ARC __weak, called by the
4982 // byref routines.
4983 case Qualifiers::OCL_Weak:
4984 // ARC __strong __block variables need to be retained.
4985 case Qualifiers::OCL_Strong:
4986 return true;
4987 }
4988 llvm_unreachable("fell out of lifetime switch!");
4989 }
4990 return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4991 Ty->isObjCObjectPointerType());
4992 }
4993
getByrefLifetime(QualType Ty,Qualifiers::ObjCLifetime & LifeTime,bool & HasByrefExtendedLayout) const4994 bool ASTContext::getByrefLifetime(QualType Ty,
4995 Qualifiers::ObjCLifetime &LifeTime,
4996 bool &HasByrefExtendedLayout) const {
4997
4998 if (!getLangOpts().ObjC1 ||
4999 getLangOpts().getGC() != LangOptions::NonGC)
5000 return false;
5001
5002 HasByrefExtendedLayout = false;
5003 if (Ty->isRecordType()) {
5004 HasByrefExtendedLayout = true;
5005 LifeTime = Qualifiers::OCL_None;
5006 } else if ((LifeTime = Ty.getObjCLifetime())) {
5007 // Honor the ARC qualifiers.
5008 } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
5009 // The MRR rule.
5010 LifeTime = Qualifiers::OCL_ExplicitNone;
5011 } else {
5012 LifeTime = Qualifiers::OCL_None;
5013 }
5014 return true;
5015 }
5016
getObjCInstanceTypeDecl()5017 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
5018 if (!ObjCInstanceTypeDecl)
5019 ObjCInstanceTypeDecl =
5020 buildImplicitTypedef(getObjCIdType(), "instancetype");
5021 return ObjCInstanceTypeDecl;
5022 }
5023
5024 // This returns true if a type has been typedefed to BOOL:
5025 // typedef <type> BOOL;
isTypeTypedefedAsBOOL(QualType T)5026 static bool isTypeTypedefedAsBOOL(QualType T) {
5027 if (const TypedefType *TT = dyn_cast<TypedefType>(T))
5028 if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
5029 return II->isStr("BOOL");
5030
5031 return false;
5032 }
5033
5034 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
5035 /// purpose.
getObjCEncodingTypeSize(QualType type) const5036 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
5037 if (!type->isIncompleteArrayType() && type->isIncompleteType())
5038 return CharUnits::Zero();
5039
5040 CharUnits sz = getTypeSizeInChars(type);
5041
5042 // Make all integer and enum types at least as large as an int
5043 if (sz.isPositive() && type->isIntegralOrEnumerationType())
5044 sz = std::max(sz, getTypeSizeInChars(IntTy));
5045 // Treat arrays as pointers, since that's how they're passed in.
5046 else if (type->isArrayType())
5047 sz = getTypeSizeInChars(VoidPtrTy);
5048 return sz;
5049 }
5050
isMSStaticDataMemberInlineDefinition(const VarDecl * VD) const5051 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
5052 return getTargetInfo().getCXXABI().isMicrosoft() &&
5053 VD->isStaticDataMember() &&
5054 VD->getType()->isIntegralOrEnumerationType() &&
5055 !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
5056 }
5057
5058 static inline
charUnitsToString(const CharUnits & CU)5059 std::string charUnitsToString(const CharUnits &CU) {
5060 return llvm::itostr(CU.getQuantity());
5061 }
5062
5063 /// getObjCEncodingForBlock - Return the encoded type for this block
5064 /// declaration.
getObjCEncodingForBlock(const BlockExpr * Expr) const5065 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
5066 std::string S;
5067
5068 const BlockDecl *Decl = Expr->getBlockDecl();
5069 QualType BlockTy =
5070 Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
5071 // Encode result type.
5072 if (getLangOpts().EncodeExtendedBlockSig)
5073 getObjCEncodingForMethodParameter(
5074 Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S,
5075 true /*Extended*/);
5076 else
5077 getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S);
5078 // Compute size of all parameters.
5079 // Start with computing size of a pointer in number of bytes.
5080 // FIXME: There might(should) be a better way of doing this computation!
5081 SourceLocation Loc;
5082 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
5083 CharUnits ParmOffset = PtrSize;
5084 for (auto PI : Decl->params()) {
5085 QualType PType = PI->getType();
5086 CharUnits sz = getObjCEncodingTypeSize(PType);
5087 if (sz.isZero())
5088 continue;
5089 assert (sz.isPositive() && "BlockExpr - Incomplete param type");
5090 ParmOffset += sz;
5091 }
5092 // Size of the argument frame
5093 S += charUnitsToString(ParmOffset);
5094 // Block pointer and offset.
5095 S += "@?0";
5096
5097 // Argument types.
5098 ParmOffset = PtrSize;
5099 for (auto PVDecl : Decl->params()) {
5100 QualType PType = PVDecl->getOriginalType();
5101 if (const ArrayType *AT =
5102 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
5103 // Use array's original type only if it has known number of
5104 // elements.
5105 if (!isa<ConstantArrayType>(AT))
5106 PType = PVDecl->getType();
5107 } else if (PType->isFunctionType())
5108 PType = PVDecl->getType();
5109 if (getLangOpts().EncodeExtendedBlockSig)
5110 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
5111 S, true /*Extended*/);
5112 else
5113 getObjCEncodingForType(PType, S);
5114 S += charUnitsToString(ParmOffset);
5115 ParmOffset += getObjCEncodingTypeSize(PType);
5116 }
5117
5118 return S;
5119 }
5120
getObjCEncodingForFunctionDecl(const FunctionDecl * Decl,std::string & S)5121 bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
5122 std::string& S) {
5123 // Encode result type.
5124 getObjCEncodingForType(Decl->getReturnType(), S);
5125 CharUnits ParmOffset;
5126 // Compute size of all parameters.
5127 for (auto PI : Decl->params()) {
5128 QualType PType = PI->getType();
5129 CharUnits sz = getObjCEncodingTypeSize(PType);
5130 if (sz.isZero())
5131 continue;
5132
5133 assert (sz.isPositive() &&
5134 "getObjCEncodingForFunctionDecl - Incomplete param type");
5135 ParmOffset += sz;
5136 }
5137 S += charUnitsToString(ParmOffset);
5138 ParmOffset = CharUnits::Zero();
5139
5140 // Argument types.
5141 for (auto PVDecl : Decl->params()) {
5142 QualType PType = PVDecl->getOriginalType();
5143 if (const ArrayType *AT =
5144 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
5145 // Use array's original type only if it has known number of
5146 // elements.
5147 if (!isa<ConstantArrayType>(AT))
5148 PType = PVDecl->getType();
5149 } else if (PType->isFunctionType())
5150 PType = PVDecl->getType();
5151 getObjCEncodingForType(PType, S);
5152 S += charUnitsToString(ParmOffset);
5153 ParmOffset += getObjCEncodingTypeSize(PType);
5154 }
5155
5156 return false;
5157 }
5158
5159 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
5160 /// method parameter or return type. If Extended, include class names and
5161 /// block object types.
getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,QualType T,std::string & S,bool Extended) const5162 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
5163 QualType T, std::string& S,
5164 bool Extended) const {
5165 // Encode type qualifer, 'in', 'inout', etc. for the parameter.
5166 getObjCEncodingForTypeQualifier(QT, S);
5167 // Encode parameter type.
5168 getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
5169 true /*OutermostType*/,
5170 false /*EncodingProperty*/,
5171 false /*StructField*/,
5172 Extended /*EncodeBlockParameters*/,
5173 Extended /*EncodeClassNames*/);
5174 }
5175
5176 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
5177 /// declaration.
getObjCEncodingForMethodDecl(const ObjCMethodDecl * Decl,std::string & S,bool Extended) const5178 bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
5179 std::string& S,
5180 bool Extended) const {
5181 // FIXME: This is not very efficient.
5182 // Encode return type.
5183 getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
5184 Decl->getReturnType(), S, Extended);
5185 // Compute size of all parameters.
5186 // Start with computing size of a pointer in number of bytes.
5187 // FIXME: There might(should) be a better way of doing this computation!
5188 SourceLocation Loc;
5189 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
5190 // The first two arguments (self and _cmd) are pointers; account for
5191 // their size.
5192 CharUnits ParmOffset = 2 * PtrSize;
5193 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
5194 E = Decl->sel_param_end(); PI != E; ++PI) {
5195 QualType PType = (*PI)->getType();
5196 CharUnits sz = getObjCEncodingTypeSize(PType);
5197 if (sz.isZero())
5198 continue;
5199
5200 assert (sz.isPositive() &&
5201 "getObjCEncodingForMethodDecl - Incomplete param type");
5202 ParmOffset += sz;
5203 }
5204 S += charUnitsToString(ParmOffset);
5205 S += "@0:";
5206 S += charUnitsToString(PtrSize);
5207
5208 // Argument types.
5209 ParmOffset = 2 * PtrSize;
5210 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
5211 E = Decl->sel_param_end(); PI != E; ++PI) {
5212 const ParmVarDecl *PVDecl = *PI;
5213 QualType PType = PVDecl->getOriginalType();
5214 if (const ArrayType *AT =
5215 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
5216 // Use array's original type only if it has known number of
5217 // elements.
5218 if (!isa<ConstantArrayType>(AT))
5219 PType = PVDecl->getType();
5220 } else if (PType->isFunctionType())
5221 PType = PVDecl->getType();
5222 getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
5223 PType, S, Extended);
5224 S += charUnitsToString(ParmOffset);
5225 ParmOffset += getObjCEncodingTypeSize(PType);
5226 }
5227
5228 return false;
5229 }
5230
5231 ObjCPropertyImplDecl *
getObjCPropertyImplDeclForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container) const5232 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
5233 const ObjCPropertyDecl *PD,
5234 const Decl *Container) const {
5235 if (!Container)
5236 return nullptr;
5237 if (const ObjCCategoryImplDecl *CID =
5238 dyn_cast<ObjCCategoryImplDecl>(Container)) {
5239 for (auto *PID : CID->property_impls())
5240 if (PID->getPropertyDecl() == PD)
5241 return PID;
5242 } else {
5243 const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
5244 for (auto *PID : OID->property_impls())
5245 if (PID->getPropertyDecl() == PD)
5246 return PID;
5247 }
5248 return nullptr;
5249 }
5250
5251 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
5252 /// property declaration. If non-NULL, Container must be either an
5253 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
5254 /// NULL when getting encodings for protocol properties.
5255 /// Property attributes are stored as a comma-delimited C string. The simple
5256 /// attributes readonly and bycopy are encoded as single characters. The
5257 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
5258 /// encoded as single characters, followed by an identifier. Property types
5259 /// are also encoded as a parametrized attribute. The characters used to encode
5260 /// these attributes are defined by the following enumeration:
5261 /// @code
5262 /// enum PropertyAttributes {
5263 /// kPropertyReadOnly = 'R', // property is read-only.
5264 /// kPropertyBycopy = 'C', // property is a copy of the value last assigned
5265 /// kPropertyByref = '&', // property is a reference to the value last assigned
5266 /// kPropertyDynamic = 'D', // property is dynamic
5267 /// kPropertyGetter = 'G', // followed by getter selector name
5268 /// kPropertySetter = 'S', // followed by setter selector name
5269 /// kPropertyInstanceVariable = 'V' // followed by instance variable name
5270 /// kPropertyType = 'T' // followed by old-style type encoding.
5271 /// kPropertyWeak = 'W' // 'weak' property
5272 /// kPropertyStrong = 'P' // property GC'able
5273 /// kPropertyNonAtomic = 'N' // property non-atomic
5274 /// };
5275 /// @endcode
getObjCEncodingForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container,std::string & S) const5276 void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
5277 const Decl *Container,
5278 std::string& S) const {
5279 // Collect information from the property implementation decl(s).
5280 bool Dynamic = false;
5281 ObjCPropertyImplDecl *SynthesizePID = nullptr;
5282
5283 if (ObjCPropertyImplDecl *PropertyImpDecl =
5284 getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
5285 if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
5286 Dynamic = true;
5287 else
5288 SynthesizePID = PropertyImpDecl;
5289 }
5290
5291 // FIXME: This is not very efficient.
5292 S = "T";
5293
5294 // Encode result type.
5295 // GCC has some special rules regarding encoding of properties which
5296 // closely resembles encoding of ivars.
5297 getObjCEncodingForPropertyType(PD->getType(), S);
5298
5299 if (PD->isReadOnly()) {
5300 S += ",R";
5301 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
5302 S += ",C";
5303 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
5304 S += ",&";
5305 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
5306 S += ",W";
5307 } else {
5308 switch (PD->getSetterKind()) {
5309 case ObjCPropertyDecl::Assign: break;
5310 case ObjCPropertyDecl::Copy: S += ",C"; break;
5311 case ObjCPropertyDecl::Retain: S += ",&"; break;
5312 case ObjCPropertyDecl::Weak: S += ",W"; break;
5313 }
5314 }
5315
5316 // It really isn't clear at all what this means, since properties
5317 // are "dynamic by default".
5318 if (Dynamic)
5319 S += ",D";
5320
5321 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
5322 S += ",N";
5323
5324 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
5325 S += ",G";
5326 S += PD->getGetterName().getAsString();
5327 }
5328
5329 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
5330 S += ",S";
5331 S += PD->getSetterName().getAsString();
5332 }
5333
5334 if (SynthesizePID) {
5335 const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
5336 S += ",V";
5337 S += OID->getNameAsString();
5338 }
5339
5340 // FIXME: OBJCGC: weak & strong
5341 }
5342
5343 /// getLegacyIntegralTypeEncoding -
5344 /// Another legacy compatibility encoding: 32-bit longs are encoded as
5345 /// 'l' or 'L' , but not always. For typedefs, we need to use
5346 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
5347 ///
getLegacyIntegralTypeEncoding(QualType & PointeeTy) const5348 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
5349 if (isa<TypedefType>(PointeeTy.getTypePtr())) {
5350 if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
5351 if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
5352 PointeeTy = UnsignedIntTy;
5353 else
5354 if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
5355 PointeeTy = IntTy;
5356 }
5357 }
5358 }
5359
getObjCEncodingForType(QualType T,std::string & S,const FieldDecl * Field,QualType * NotEncodedT) const5360 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
5361 const FieldDecl *Field,
5362 QualType *NotEncodedT) const {
5363 // We follow the behavior of gcc, expanding structures which are
5364 // directly pointed to, and expanding embedded structures. Note that
5365 // these rules are sufficient to prevent recursive encoding of the
5366 // same type.
5367 getObjCEncodingForTypeImpl(T, S, true, true, Field,
5368 true /* outermost type */, false, false,
5369 false, false, false, NotEncodedT);
5370 }
5371
getObjCEncodingForPropertyType(QualType T,std::string & S) const5372 void ASTContext::getObjCEncodingForPropertyType(QualType T,
5373 std::string& S) const {
5374 // Encode result type.
5375 // GCC has some special rules regarding encoding of properties which
5376 // closely resembles encoding of ivars.
5377 getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
5378 true /* outermost type */,
5379 true /* encoding property */);
5380 }
5381
getObjCEncodingForPrimitiveKind(const ASTContext * C,BuiltinType::Kind kind)5382 static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
5383 BuiltinType::Kind kind) {
5384 switch (kind) {
5385 case BuiltinType::Void: return 'v';
5386 case BuiltinType::Bool: return 'B';
5387 case BuiltinType::Char_U:
5388 case BuiltinType::UChar: return 'C';
5389 case BuiltinType::Char16:
5390 case BuiltinType::UShort: return 'S';
5391 case BuiltinType::Char32:
5392 case BuiltinType::UInt: return 'I';
5393 case BuiltinType::ULong:
5394 return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
5395 case BuiltinType::UInt128: return 'T';
5396 case BuiltinType::ULongLong: return 'Q';
5397 case BuiltinType::Char_S:
5398 case BuiltinType::SChar: return 'c';
5399 case BuiltinType::Short: return 's';
5400 case BuiltinType::WChar_S:
5401 case BuiltinType::WChar_U:
5402 case BuiltinType::Int: return 'i';
5403 case BuiltinType::Long:
5404 return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
5405 case BuiltinType::LongLong: return 'q';
5406 case BuiltinType::Int128: return 't';
5407 case BuiltinType::Float: return 'f';
5408 case BuiltinType::Double: return 'd';
5409 case BuiltinType::LongDouble: return 'D';
5410 case BuiltinType::NullPtr: return '*'; // like char*
5411
5412 case BuiltinType::Half:
5413 // FIXME: potentially need @encodes for these!
5414 return ' ';
5415
5416 case BuiltinType::ObjCId:
5417 case BuiltinType::ObjCClass:
5418 case BuiltinType::ObjCSel:
5419 llvm_unreachable("@encoding ObjC primitive type");
5420
5421 // OpenCL and placeholder types don't need @encodings.
5422 case BuiltinType::OCLImage1d:
5423 case BuiltinType::OCLImage1dArray:
5424 case BuiltinType::OCLImage1dBuffer:
5425 case BuiltinType::OCLImage2d:
5426 case BuiltinType::OCLImage2dArray:
5427 case BuiltinType::OCLImage2dDepth:
5428 case BuiltinType::OCLImage2dArrayDepth:
5429 case BuiltinType::OCLImage2dMSAA:
5430 case BuiltinType::OCLImage2dArrayMSAA:
5431 case BuiltinType::OCLImage2dMSAADepth:
5432 case BuiltinType::OCLImage2dArrayMSAADepth:
5433 case BuiltinType::OCLImage3d:
5434 case BuiltinType::OCLEvent:
5435 case BuiltinType::OCLClkEvent:
5436 case BuiltinType::OCLQueue:
5437 case BuiltinType::OCLNDRange:
5438 case BuiltinType::OCLReserveID:
5439 case BuiltinType::OCLSampler:
5440 case BuiltinType::Dependent:
5441 #define BUILTIN_TYPE(KIND, ID)
5442 #define PLACEHOLDER_TYPE(KIND, ID) \
5443 case BuiltinType::KIND:
5444 #include "clang/AST/BuiltinTypes.def"
5445 llvm_unreachable("invalid builtin type for @encode");
5446 }
5447 llvm_unreachable("invalid BuiltinType::Kind value");
5448 }
5449
ObjCEncodingForEnumType(const ASTContext * C,const EnumType * ET)5450 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
5451 EnumDecl *Enum = ET->getDecl();
5452
5453 // The encoding of an non-fixed enum type is always 'i', regardless of size.
5454 if (!Enum->isFixed())
5455 return 'i';
5456
5457 // The encoding of a fixed enum type matches its fixed underlying type.
5458 const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
5459 return getObjCEncodingForPrimitiveKind(C, BT->getKind());
5460 }
5461
EncodeBitField(const ASTContext * Ctx,std::string & S,QualType T,const FieldDecl * FD)5462 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
5463 QualType T, const FieldDecl *FD) {
5464 assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
5465 S += 'b';
5466 // The NeXT runtime encodes bit fields as b followed by the number of bits.
5467 // The GNU runtime requires more information; bitfields are encoded as b,
5468 // then the offset (in bits) of the first element, then the type of the
5469 // bitfield, then the size in bits. For example, in this structure:
5470 //
5471 // struct
5472 // {
5473 // int integer;
5474 // int flags:2;
5475 // };
5476 // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5477 // runtime, but b32i2 for the GNU runtime. The reason for this extra
5478 // information is not especially sensible, but we're stuck with it for
5479 // compatibility with GCC, although providing it breaks anything that
5480 // actually uses runtime introspection and wants to work on both runtimes...
5481 if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5482 const RecordDecl *RD = FD->getParent();
5483 const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5484 S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5485 if (const EnumType *ET = T->getAs<EnumType>())
5486 S += ObjCEncodingForEnumType(Ctx, ET);
5487 else {
5488 const BuiltinType *BT = T->castAs<BuiltinType>();
5489 S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5490 }
5491 }
5492 S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5493 }
5494
5495 // FIXME: Use SmallString for accumulating string.
getObjCEncodingForTypeImpl(QualType T,std::string & S,bool ExpandPointedToStructures,bool ExpandStructures,const FieldDecl * FD,bool OutermostType,bool EncodingProperty,bool StructField,bool EncodeBlockParameters,bool EncodeClassNames,bool EncodePointerToObjCTypedef,QualType * NotEncodedT) const5496 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5497 bool ExpandPointedToStructures,
5498 bool ExpandStructures,
5499 const FieldDecl *FD,
5500 bool OutermostType,
5501 bool EncodingProperty,
5502 bool StructField,
5503 bool EncodeBlockParameters,
5504 bool EncodeClassNames,
5505 bool EncodePointerToObjCTypedef,
5506 QualType *NotEncodedT) const {
5507 CanQualType CT = getCanonicalType(T);
5508 switch (CT->getTypeClass()) {
5509 case Type::Builtin:
5510 case Type::Enum:
5511 if (FD && FD->isBitField())
5512 return EncodeBitField(this, S, T, FD);
5513 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5514 S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5515 else
5516 S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5517 return;
5518
5519 case Type::Complex: {
5520 const ComplexType *CT = T->castAs<ComplexType>();
5521 S += 'j';
5522 getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr);
5523 return;
5524 }
5525
5526 case Type::Atomic: {
5527 const AtomicType *AT = T->castAs<AtomicType>();
5528 S += 'A';
5529 getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr);
5530 return;
5531 }
5532
5533 // encoding for pointer or reference types.
5534 case Type::Pointer:
5535 case Type::LValueReference:
5536 case Type::RValueReference: {
5537 QualType PointeeTy;
5538 if (isa<PointerType>(CT)) {
5539 const PointerType *PT = T->castAs<PointerType>();
5540 if (PT->isObjCSelType()) {
5541 S += ':';
5542 return;
5543 }
5544 PointeeTy = PT->getPointeeType();
5545 } else {
5546 PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5547 }
5548
5549 bool isReadOnly = false;
5550 // For historical/compatibility reasons, the read-only qualifier of the
5551 // pointee gets emitted _before_ the '^'. The read-only qualifier of
5552 // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5553 // Also, do not emit the 'r' for anything but the outermost type!
5554 if (isa<TypedefType>(T.getTypePtr())) {
5555 if (OutermostType && T.isConstQualified()) {
5556 isReadOnly = true;
5557 S += 'r';
5558 }
5559 } else if (OutermostType) {
5560 QualType P = PointeeTy;
5561 while (P->getAs<PointerType>())
5562 P = P->getAs<PointerType>()->getPointeeType();
5563 if (P.isConstQualified()) {
5564 isReadOnly = true;
5565 S += 'r';
5566 }
5567 }
5568 if (isReadOnly) {
5569 // Another legacy compatibility encoding. Some ObjC qualifier and type
5570 // combinations need to be rearranged.
5571 // Rewrite "in const" from "nr" to "rn"
5572 if (StringRef(S).endswith("nr"))
5573 S.replace(S.end()-2, S.end(), "rn");
5574 }
5575
5576 if (PointeeTy->isCharType()) {
5577 // char pointer types should be encoded as '*' unless it is a
5578 // type that has been typedef'd to 'BOOL'.
5579 if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5580 S += '*';
5581 return;
5582 }
5583 } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5584 // GCC binary compat: Need to convert "struct objc_class *" to "#".
5585 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5586 S += '#';
5587 return;
5588 }
5589 // GCC binary compat: Need to convert "struct objc_object *" to "@".
5590 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5591 S += '@';
5592 return;
5593 }
5594 // fall through...
5595 }
5596 S += '^';
5597 getLegacyIntegralTypeEncoding(PointeeTy);
5598
5599 getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5600 nullptr, false, false, false, false, false, false,
5601 NotEncodedT);
5602 return;
5603 }
5604
5605 case Type::ConstantArray:
5606 case Type::IncompleteArray:
5607 case Type::VariableArray: {
5608 const ArrayType *AT = cast<ArrayType>(CT);
5609
5610 if (isa<IncompleteArrayType>(AT) && !StructField) {
5611 // Incomplete arrays are encoded as a pointer to the array element.
5612 S += '^';
5613
5614 getObjCEncodingForTypeImpl(AT->getElementType(), S,
5615 false, ExpandStructures, FD);
5616 } else {
5617 S += '[';
5618
5619 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
5620 S += llvm::utostr(CAT->getSize().getZExtValue());
5621 else {
5622 //Variable length arrays are encoded as a regular array with 0 elements.
5623 assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5624 "Unknown array type!");
5625 S += '0';
5626 }
5627
5628 getObjCEncodingForTypeImpl(AT->getElementType(), S,
5629 false, ExpandStructures, FD,
5630 false, false, false, false, false, false,
5631 NotEncodedT);
5632 S += ']';
5633 }
5634 return;
5635 }
5636
5637 case Type::FunctionNoProto:
5638 case Type::FunctionProto:
5639 S += '?';
5640 return;
5641
5642 case Type::Record: {
5643 RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5644 S += RDecl->isUnion() ? '(' : '{';
5645 // Anonymous structures print as '?'
5646 if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5647 S += II->getName();
5648 if (ClassTemplateSpecializationDecl *Spec
5649 = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5650 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5651 llvm::raw_string_ostream OS(S);
5652 TemplateSpecializationType::PrintTemplateArgumentList(OS,
5653 TemplateArgs.data(),
5654 TemplateArgs.size(),
5655 (*this).getPrintingPolicy());
5656 }
5657 } else {
5658 S += '?';
5659 }
5660 if (ExpandStructures) {
5661 S += '=';
5662 if (!RDecl->isUnion()) {
5663 getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
5664 } else {
5665 for (const auto *Field : RDecl->fields()) {
5666 if (FD) {
5667 S += '"';
5668 S += Field->getNameAsString();
5669 S += '"';
5670 }
5671
5672 // Special case bit-fields.
5673 if (Field->isBitField()) {
5674 getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5675 Field);
5676 } else {
5677 QualType qt = Field->getType();
5678 getLegacyIntegralTypeEncoding(qt);
5679 getObjCEncodingForTypeImpl(qt, S, false, true,
5680 FD, /*OutermostType*/false,
5681 /*EncodingProperty*/false,
5682 /*StructField*/true,
5683 false, false, false, NotEncodedT);
5684 }
5685 }
5686 }
5687 }
5688 S += RDecl->isUnion() ? ')' : '}';
5689 return;
5690 }
5691
5692 case Type::BlockPointer: {
5693 const BlockPointerType *BT = T->castAs<BlockPointerType>();
5694 S += "@?"; // Unlike a pointer-to-function, which is "^?".
5695 if (EncodeBlockParameters) {
5696 const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5697
5698 S += '<';
5699 // Block return type
5700 getObjCEncodingForTypeImpl(
5701 FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures,
5702 FD, false /* OutermostType */, EncodingProperty,
5703 false /* StructField */, EncodeBlockParameters, EncodeClassNames, false,
5704 NotEncodedT);
5705 // Block self
5706 S += "@?";
5707 // Block parameters
5708 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5709 for (const auto &I : FPT->param_types())
5710 getObjCEncodingForTypeImpl(
5711 I, S, ExpandPointedToStructures, ExpandStructures, FD,
5712 false /* OutermostType */, EncodingProperty,
5713 false /* StructField */, EncodeBlockParameters, EncodeClassNames,
5714 false, NotEncodedT);
5715 }
5716 S += '>';
5717 }
5718 return;
5719 }
5720
5721 case Type::ObjCObject: {
5722 // hack to match legacy encoding of *id and *Class
5723 QualType Ty = getObjCObjectPointerType(CT);
5724 if (Ty->isObjCIdType()) {
5725 S += "{objc_object=}";
5726 return;
5727 }
5728 else if (Ty->isObjCClassType()) {
5729 S += "{objc_class=}";
5730 return;
5731 }
5732 }
5733
5734 case Type::ObjCInterface: {
5735 // Ignore protocol qualifiers when mangling at this level.
5736 // @encode(class_name)
5737 ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
5738 S += '{';
5739 S += OI->getObjCRuntimeNameAsString();
5740 S += '=';
5741 SmallVector<const ObjCIvarDecl*, 32> Ivars;
5742 DeepCollectObjCIvars(OI, true, Ivars);
5743 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5744 const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5745 if (Field->isBitField())
5746 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5747 else
5748 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5749 false, false, false, false, false,
5750 EncodePointerToObjCTypedef,
5751 NotEncodedT);
5752 }
5753 S += '}';
5754 return;
5755 }
5756
5757 case Type::ObjCObjectPointer: {
5758 const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5759 if (OPT->isObjCIdType()) {
5760 S += '@';
5761 return;
5762 }
5763
5764 if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5765 // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5766 // Since this is a binary compatibility issue, need to consult with runtime
5767 // folks. Fortunately, this is a *very* obsure construct.
5768 S += '#';
5769 return;
5770 }
5771
5772 if (OPT->isObjCQualifiedIdType()) {
5773 getObjCEncodingForTypeImpl(getObjCIdType(), S,
5774 ExpandPointedToStructures,
5775 ExpandStructures, FD);
5776 if (FD || EncodingProperty || EncodeClassNames) {
5777 // Note that we do extended encoding of protocol qualifer list
5778 // Only when doing ivar or property encoding.
5779 S += '"';
5780 for (const auto *I : OPT->quals()) {
5781 S += '<';
5782 S += I->getObjCRuntimeNameAsString();
5783 S += '>';
5784 }
5785 S += '"';
5786 }
5787 return;
5788 }
5789
5790 QualType PointeeTy = OPT->getPointeeType();
5791 if (!EncodingProperty &&
5792 isa<TypedefType>(PointeeTy.getTypePtr()) &&
5793 !EncodePointerToObjCTypedef) {
5794 // Another historical/compatibility reason.
5795 // We encode the underlying type which comes out as
5796 // {...};
5797 S += '^';
5798 if (FD && OPT->getInterfaceDecl()) {
5799 // Prevent recursive encoding of fields in some rare cases.
5800 ObjCInterfaceDecl *OI = OPT->getInterfaceDecl();
5801 SmallVector<const ObjCIvarDecl*, 32> Ivars;
5802 DeepCollectObjCIvars(OI, true, Ivars);
5803 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5804 if (cast<FieldDecl>(Ivars[i]) == FD) {
5805 S += '{';
5806 S += OI->getObjCRuntimeNameAsString();
5807 S += '}';
5808 return;
5809 }
5810 }
5811 }
5812 getObjCEncodingForTypeImpl(PointeeTy, S,
5813 false, ExpandPointedToStructures,
5814 nullptr,
5815 false, false, false, false, false,
5816 /*EncodePointerToObjCTypedef*/true);
5817 return;
5818 }
5819
5820 S += '@';
5821 if (OPT->getInterfaceDecl() &&
5822 (FD || EncodingProperty || EncodeClassNames)) {
5823 S += '"';
5824 S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
5825 for (const auto *I : OPT->quals()) {
5826 S += '<';
5827 S += I->getObjCRuntimeNameAsString();
5828 S += '>';
5829 }
5830 S += '"';
5831 }
5832 return;
5833 }
5834
5835 // gcc just blithely ignores member pointers.
5836 // FIXME: we shoul do better than that. 'M' is available.
5837 case Type::MemberPointer:
5838 // This matches gcc's encoding, even though technically it is insufficient.
5839 //FIXME. We should do a better job than gcc.
5840 case Type::Vector:
5841 case Type::ExtVector:
5842 // Until we have a coherent encoding of these three types, issue warning.
5843 { if (NotEncodedT)
5844 *NotEncodedT = T;
5845 return;
5846 }
5847
5848 // We could see an undeduced auto type here during error recovery.
5849 // Just ignore it.
5850 case Type::Auto:
5851 return;
5852
5853 #define ABSTRACT_TYPE(KIND, BASE)
5854 #define TYPE(KIND, BASE)
5855 #define DEPENDENT_TYPE(KIND, BASE) \
5856 case Type::KIND:
5857 #define NON_CANONICAL_TYPE(KIND, BASE) \
5858 case Type::KIND:
5859 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5860 case Type::KIND:
5861 #include "clang/AST/TypeNodes.def"
5862 llvm_unreachable("@encode for dependent type!");
5863 }
5864 llvm_unreachable("bad type kind!");
5865 }
5866
getObjCEncodingForStructureImpl(RecordDecl * RDecl,std::string & S,const FieldDecl * FD,bool includeVBases,QualType * NotEncodedT) const5867 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5868 std::string &S,
5869 const FieldDecl *FD,
5870 bool includeVBases,
5871 QualType *NotEncodedT) const {
5872 assert(RDecl && "Expected non-null RecordDecl");
5873 assert(!RDecl->isUnion() && "Should not be called for unions");
5874 if (!RDecl->getDefinition())
5875 return;
5876
5877 CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5878 std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5879 const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5880
5881 if (CXXRec) {
5882 for (const auto &BI : CXXRec->bases()) {
5883 if (!BI.isVirtual()) {
5884 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5885 if (base->isEmpty())
5886 continue;
5887 uint64_t offs = toBits(layout.getBaseClassOffset(base));
5888 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5889 std::make_pair(offs, base));
5890 }
5891 }
5892 }
5893
5894 unsigned i = 0;
5895 for (auto *Field : RDecl->fields()) {
5896 uint64_t offs = layout.getFieldOffset(i);
5897 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5898 std::make_pair(offs, Field));
5899 ++i;
5900 }
5901
5902 if (CXXRec && includeVBases) {
5903 for (const auto &BI : CXXRec->vbases()) {
5904 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5905 if (base->isEmpty())
5906 continue;
5907 uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5908 if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
5909 FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5910 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5911 std::make_pair(offs, base));
5912 }
5913 }
5914
5915 CharUnits size;
5916 if (CXXRec) {
5917 size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5918 } else {
5919 size = layout.getSize();
5920 }
5921
5922 #ifndef NDEBUG
5923 uint64_t CurOffs = 0;
5924 #endif
5925 std::multimap<uint64_t, NamedDecl *>::iterator
5926 CurLayObj = FieldOrBaseOffsets.begin();
5927
5928 if (CXXRec && CXXRec->isDynamicClass() &&
5929 (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5930 if (FD) {
5931 S += "\"_vptr$";
5932 std::string recname = CXXRec->getNameAsString();
5933 if (recname.empty()) recname = "?";
5934 S += recname;
5935 S += '"';
5936 }
5937 S += "^^?";
5938 #ifndef NDEBUG
5939 CurOffs += getTypeSize(VoidPtrTy);
5940 #endif
5941 }
5942
5943 if (!RDecl->hasFlexibleArrayMember()) {
5944 // Mark the end of the structure.
5945 uint64_t offs = toBits(size);
5946 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5947 std::make_pair(offs, nullptr));
5948 }
5949
5950 for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5951 #ifndef NDEBUG
5952 assert(CurOffs <= CurLayObj->first);
5953 if (CurOffs < CurLayObj->first) {
5954 uint64_t padding = CurLayObj->first - CurOffs;
5955 // FIXME: There doesn't seem to be a way to indicate in the encoding that
5956 // packing/alignment of members is different that normal, in which case
5957 // the encoding will be out-of-sync with the real layout.
5958 // If the runtime switches to just consider the size of types without
5959 // taking into account alignment, we could make padding explicit in the
5960 // encoding (e.g. using arrays of chars). The encoding strings would be
5961 // longer then though.
5962 CurOffs += padding;
5963 }
5964 #endif
5965
5966 NamedDecl *dcl = CurLayObj->second;
5967 if (!dcl)
5968 break; // reached end of structure.
5969
5970 if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5971 // We expand the bases without their virtual bases since those are going
5972 // in the initial structure. Note that this differs from gcc which
5973 // expands virtual bases each time one is encountered in the hierarchy,
5974 // making the encoding type bigger than it really is.
5975 getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
5976 NotEncodedT);
5977 assert(!base->isEmpty());
5978 #ifndef NDEBUG
5979 CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5980 #endif
5981 } else {
5982 FieldDecl *field = cast<FieldDecl>(dcl);
5983 if (FD) {
5984 S += '"';
5985 S += field->getNameAsString();
5986 S += '"';
5987 }
5988
5989 if (field->isBitField()) {
5990 EncodeBitField(this, S, field->getType(), field);
5991 #ifndef NDEBUG
5992 CurOffs += field->getBitWidthValue(*this);
5993 #endif
5994 } else {
5995 QualType qt = field->getType();
5996 getLegacyIntegralTypeEncoding(qt);
5997 getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5998 /*OutermostType*/false,
5999 /*EncodingProperty*/false,
6000 /*StructField*/true,
6001 false, false, false, NotEncodedT);
6002 #ifndef NDEBUG
6003 CurOffs += getTypeSize(field->getType());
6004 #endif
6005 }
6006 }
6007 }
6008 }
6009
getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,std::string & S) const6010 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
6011 std::string& S) const {
6012 if (QT & Decl::OBJC_TQ_In)
6013 S += 'n';
6014 if (QT & Decl::OBJC_TQ_Inout)
6015 S += 'N';
6016 if (QT & Decl::OBJC_TQ_Out)
6017 S += 'o';
6018 if (QT & Decl::OBJC_TQ_Bycopy)
6019 S += 'O';
6020 if (QT & Decl::OBJC_TQ_Byref)
6021 S += 'R';
6022 if (QT & Decl::OBJC_TQ_Oneway)
6023 S += 'V';
6024 }
6025
getObjCIdDecl() const6026 TypedefDecl *ASTContext::getObjCIdDecl() const {
6027 if (!ObjCIdDecl) {
6028 QualType T = getObjCObjectType(ObjCBuiltinIdTy, { }, { });
6029 T = getObjCObjectPointerType(T);
6030 ObjCIdDecl = buildImplicitTypedef(T, "id");
6031 }
6032 return ObjCIdDecl;
6033 }
6034
getObjCSelDecl() const6035 TypedefDecl *ASTContext::getObjCSelDecl() const {
6036 if (!ObjCSelDecl) {
6037 QualType T = getPointerType(ObjCBuiltinSelTy);
6038 ObjCSelDecl = buildImplicitTypedef(T, "SEL");
6039 }
6040 return ObjCSelDecl;
6041 }
6042
getObjCClassDecl() const6043 TypedefDecl *ASTContext::getObjCClassDecl() const {
6044 if (!ObjCClassDecl) {
6045 QualType T = getObjCObjectType(ObjCBuiltinClassTy, { }, { });
6046 T = getObjCObjectPointerType(T);
6047 ObjCClassDecl = buildImplicitTypedef(T, "Class");
6048 }
6049 return ObjCClassDecl;
6050 }
6051
getObjCProtocolDecl() const6052 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
6053 if (!ObjCProtocolClassDecl) {
6054 ObjCProtocolClassDecl
6055 = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
6056 SourceLocation(),
6057 &Idents.get("Protocol"),
6058 /*typeParamList=*/nullptr,
6059 /*PrevDecl=*/nullptr,
6060 SourceLocation(), true);
6061 }
6062
6063 return ObjCProtocolClassDecl;
6064 }
6065
6066 //===----------------------------------------------------------------------===//
6067 // __builtin_va_list Construction Functions
6068 //===----------------------------------------------------------------------===//
6069
CreateCharPtrNamedVaListDecl(const ASTContext * Context,StringRef Name)6070 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
6071 StringRef Name) {
6072 // typedef char* __builtin[_ms]_va_list;
6073 QualType T = Context->getPointerType(Context->CharTy);
6074 return Context->buildImplicitTypedef(T, Name);
6075 }
6076
CreateMSVaListDecl(const ASTContext * Context)6077 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
6078 return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
6079 }
6080
CreateCharPtrBuiltinVaListDecl(const ASTContext * Context)6081 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
6082 return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
6083 }
6084
CreateVoidPtrBuiltinVaListDecl(const ASTContext * Context)6085 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
6086 // typedef void* __builtin_va_list;
6087 QualType T = Context->getPointerType(Context->VoidTy);
6088 return Context->buildImplicitTypedef(T, "__builtin_va_list");
6089 }
6090
6091 static TypedefDecl *
CreateAArch64ABIBuiltinVaListDecl(const ASTContext * Context)6092 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
6093 // struct __va_list
6094 RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
6095 if (Context->getLangOpts().CPlusPlus) {
6096 // namespace std { struct __va_list {
6097 NamespaceDecl *NS;
6098 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
6099 Context->getTranslationUnitDecl(),
6100 /*Inline*/ false, SourceLocation(),
6101 SourceLocation(), &Context->Idents.get("std"),
6102 /*PrevDecl*/ nullptr);
6103 NS->setImplicit();
6104 VaListTagDecl->setDeclContext(NS);
6105 }
6106
6107 VaListTagDecl->startDefinition();
6108
6109 const size_t NumFields = 5;
6110 QualType FieldTypes[NumFields];
6111 const char *FieldNames[NumFields];
6112
6113 // void *__stack;
6114 FieldTypes[0] = Context->getPointerType(Context->VoidTy);
6115 FieldNames[0] = "__stack";
6116
6117 // void *__gr_top;
6118 FieldTypes[1] = Context->getPointerType(Context->VoidTy);
6119 FieldNames[1] = "__gr_top";
6120
6121 // void *__vr_top;
6122 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6123 FieldNames[2] = "__vr_top";
6124
6125 // int __gr_offs;
6126 FieldTypes[3] = Context->IntTy;
6127 FieldNames[3] = "__gr_offs";
6128
6129 // int __vr_offs;
6130 FieldTypes[4] = Context->IntTy;
6131 FieldNames[4] = "__vr_offs";
6132
6133 // Create fields
6134 for (unsigned i = 0; i < NumFields; ++i) {
6135 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6136 VaListTagDecl,
6137 SourceLocation(),
6138 SourceLocation(),
6139 &Context->Idents.get(FieldNames[i]),
6140 FieldTypes[i], /*TInfo=*/nullptr,
6141 /*BitWidth=*/nullptr,
6142 /*Mutable=*/false,
6143 ICIS_NoInit);
6144 Field->setAccess(AS_public);
6145 VaListTagDecl->addDecl(Field);
6146 }
6147 VaListTagDecl->completeDefinition();
6148 Context->VaListTagDecl = VaListTagDecl;
6149 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6150
6151 // } __builtin_va_list;
6152 return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
6153 }
6154
CreatePowerABIBuiltinVaListDecl(const ASTContext * Context)6155 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
6156 // typedef struct __va_list_tag {
6157 RecordDecl *VaListTagDecl;
6158
6159 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6160 VaListTagDecl->startDefinition();
6161
6162 const size_t NumFields = 5;
6163 QualType FieldTypes[NumFields];
6164 const char *FieldNames[NumFields];
6165
6166 // unsigned char gpr;
6167 FieldTypes[0] = Context->UnsignedCharTy;
6168 FieldNames[0] = "gpr";
6169
6170 // unsigned char fpr;
6171 FieldTypes[1] = Context->UnsignedCharTy;
6172 FieldNames[1] = "fpr";
6173
6174 // unsigned short reserved;
6175 FieldTypes[2] = Context->UnsignedShortTy;
6176 FieldNames[2] = "reserved";
6177
6178 // void* overflow_arg_area;
6179 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6180 FieldNames[3] = "overflow_arg_area";
6181
6182 // void* reg_save_area;
6183 FieldTypes[4] = Context->getPointerType(Context->VoidTy);
6184 FieldNames[4] = "reg_save_area";
6185
6186 // Create fields
6187 for (unsigned i = 0; i < NumFields; ++i) {
6188 FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
6189 SourceLocation(),
6190 SourceLocation(),
6191 &Context->Idents.get(FieldNames[i]),
6192 FieldTypes[i], /*TInfo=*/nullptr,
6193 /*BitWidth=*/nullptr,
6194 /*Mutable=*/false,
6195 ICIS_NoInit);
6196 Field->setAccess(AS_public);
6197 VaListTagDecl->addDecl(Field);
6198 }
6199 VaListTagDecl->completeDefinition();
6200 Context->VaListTagDecl = VaListTagDecl;
6201 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6202
6203 // } __va_list_tag;
6204 TypedefDecl *VaListTagTypedefDecl =
6205 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6206
6207 QualType VaListTagTypedefType =
6208 Context->getTypedefType(VaListTagTypedefDecl);
6209
6210 // typedef __va_list_tag __builtin_va_list[1];
6211 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6212 QualType VaListTagArrayType
6213 = Context->getConstantArrayType(VaListTagTypedefType,
6214 Size, ArrayType::Normal, 0);
6215 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6216 }
6217
6218 static TypedefDecl *
CreateX86_64ABIBuiltinVaListDecl(const ASTContext * Context)6219 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
6220 // struct __va_list_tag {
6221 RecordDecl *VaListTagDecl;
6222 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6223 VaListTagDecl->startDefinition();
6224
6225 const size_t NumFields = 4;
6226 QualType FieldTypes[NumFields];
6227 const char *FieldNames[NumFields];
6228
6229 // unsigned gp_offset;
6230 FieldTypes[0] = Context->UnsignedIntTy;
6231 FieldNames[0] = "gp_offset";
6232
6233 // unsigned fp_offset;
6234 FieldTypes[1] = Context->UnsignedIntTy;
6235 FieldNames[1] = "fp_offset";
6236
6237 // void* overflow_arg_area;
6238 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6239 FieldNames[2] = "overflow_arg_area";
6240
6241 // void* reg_save_area;
6242 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6243 FieldNames[3] = "reg_save_area";
6244
6245 // Create fields
6246 for (unsigned i = 0; i < NumFields; ++i) {
6247 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6248 VaListTagDecl,
6249 SourceLocation(),
6250 SourceLocation(),
6251 &Context->Idents.get(FieldNames[i]),
6252 FieldTypes[i], /*TInfo=*/nullptr,
6253 /*BitWidth=*/nullptr,
6254 /*Mutable=*/false,
6255 ICIS_NoInit);
6256 Field->setAccess(AS_public);
6257 VaListTagDecl->addDecl(Field);
6258 }
6259 VaListTagDecl->completeDefinition();
6260 Context->VaListTagDecl = VaListTagDecl;
6261 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6262
6263 // };
6264
6265 // typedef struct __va_list_tag __builtin_va_list[1];
6266 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6267 QualType VaListTagArrayType =
6268 Context->getConstantArrayType(VaListTagType, Size, ArrayType::Normal, 0);
6269 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6270 }
6271
CreatePNaClABIBuiltinVaListDecl(const ASTContext * Context)6272 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
6273 // typedef int __builtin_va_list[4];
6274 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
6275 QualType IntArrayType
6276 = Context->getConstantArrayType(Context->IntTy,
6277 Size, ArrayType::Normal, 0);
6278 return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
6279 }
6280
6281 static TypedefDecl *
CreateAAPCSABIBuiltinVaListDecl(const ASTContext * Context)6282 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
6283 // struct __va_list
6284 RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
6285 if (Context->getLangOpts().CPlusPlus) {
6286 // namespace std { struct __va_list {
6287 NamespaceDecl *NS;
6288 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
6289 Context->getTranslationUnitDecl(),
6290 /*Inline*/false, SourceLocation(),
6291 SourceLocation(), &Context->Idents.get("std"),
6292 /*PrevDecl*/ nullptr);
6293 NS->setImplicit();
6294 VaListDecl->setDeclContext(NS);
6295 }
6296
6297 VaListDecl->startDefinition();
6298
6299 // void * __ap;
6300 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6301 VaListDecl,
6302 SourceLocation(),
6303 SourceLocation(),
6304 &Context->Idents.get("__ap"),
6305 Context->getPointerType(Context->VoidTy),
6306 /*TInfo=*/nullptr,
6307 /*BitWidth=*/nullptr,
6308 /*Mutable=*/false,
6309 ICIS_NoInit);
6310 Field->setAccess(AS_public);
6311 VaListDecl->addDecl(Field);
6312
6313 // };
6314 VaListDecl->completeDefinition();
6315
6316 // typedef struct __va_list __builtin_va_list;
6317 QualType T = Context->getRecordType(VaListDecl);
6318 return Context->buildImplicitTypedef(T, "__builtin_va_list");
6319 }
6320
6321 static TypedefDecl *
CreateSystemZBuiltinVaListDecl(const ASTContext * Context)6322 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
6323 // struct __va_list_tag {
6324 RecordDecl *VaListTagDecl;
6325 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6326 VaListTagDecl->startDefinition();
6327
6328 const size_t NumFields = 4;
6329 QualType FieldTypes[NumFields];
6330 const char *FieldNames[NumFields];
6331
6332 // long __gpr;
6333 FieldTypes[0] = Context->LongTy;
6334 FieldNames[0] = "__gpr";
6335
6336 // long __fpr;
6337 FieldTypes[1] = Context->LongTy;
6338 FieldNames[1] = "__fpr";
6339
6340 // void *__overflow_arg_area;
6341 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6342 FieldNames[2] = "__overflow_arg_area";
6343
6344 // void *__reg_save_area;
6345 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6346 FieldNames[3] = "__reg_save_area";
6347
6348 // Create fields
6349 for (unsigned i = 0; i < NumFields; ++i) {
6350 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6351 VaListTagDecl,
6352 SourceLocation(),
6353 SourceLocation(),
6354 &Context->Idents.get(FieldNames[i]),
6355 FieldTypes[i], /*TInfo=*/nullptr,
6356 /*BitWidth=*/nullptr,
6357 /*Mutable=*/false,
6358 ICIS_NoInit);
6359 Field->setAccess(AS_public);
6360 VaListTagDecl->addDecl(Field);
6361 }
6362 VaListTagDecl->completeDefinition();
6363 Context->VaListTagDecl = VaListTagDecl;
6364 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6365
6366 // };
6367
6368 // typedef __va_list_tag __builtin_va_list[1];
6369 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6370 QualType VaListTagArrayType =
6371 Context->getConstantArrayType(VaListTagType, Size, ArrayType::Normal, 0);
6372
6373 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6374 }
6375
CreateVaListDecl(const ASTContext * Context,TargetInfo::BuiltinVaListKind Kind)6376 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6377 TargetInfo::BuiltinVaListKind Kind) {
6378 switch (Kind) {
6379 case TargetInfo::CharPtrBuiltinVaList:
6380 return CreateCharPtrBuiltinVaListDecl(Context);
6381 case TargetInfo::VoidPtrBuiltinVaList:
6382 return CreateVoidPtrBuiltinVaListDecl(Context);
6383 case TargetInfo::AArch64ABIBuiltinVaList:
6384 return CreateAArch64ABIBuiltinVaListDecl(Context);
6385 case TargetInfo::PowerABIBuiltinVaList:
6386 return CreatePowerABIBuiltinVaListDecl(Context);
6387 case TargetInfo::X86_64ABIBuiltinVaList:
6388 return CreateX86_64ABIBuiltinVaListDecl(Context);
6389 case TargetInfo::PNaClABIBuiltinVaList:
6390 return CreatePNaClABIBuiltinVaListDecl(Context);
6391 case TargetInfo::AAPCSABIBuiltinVaList:
6392 return CreateAAPCSABIBuiltinVaListDecl(Context);
6393 case TargetInfo::SystemZBuiltinVaList:
6394 return CreateSystemZBuiltinVaListDecl(Context);
6395 }
6396
6397 llvm_unreachable("Unhandled __builtin_va_list type kind");
6398 }
6399
getBuiltinVaListDecl() const6400 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
6401 if (!BuiltinVaListDecl) {
6402 BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
6403 assert(BuiltinVaListDecl->isImplicit());
6404 }
6405
6406 return BuiltinVaListDecl;
6407 }
6408
getVaListTagDecl() const6409 Decl *ASTContext::getVaListTagDecl() const {
6410 // Force the creation of VaListTagDecl by building the __builtin_va_list
6411 // declaration.
6412 if (!VaListTagDecl)
6413 (void)getBuiltinVaListDecl();
6414
6415 return VaListTagDecl;
6416 }
6417
getBuiltinMSVaListDecl() const6418 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
6419 if (!BuiltinMSVaListDecl)
6420 BuiltinMSVaListDecl = CreateMSVaListDecl(this);
6421
6422 return BuiltinMSVaListDecl;
6423 }
6424
setObjCConstantStringInterface(ObjCInterfaceDecl * Decl)6425 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
6426 assert(ObjCConstantStringType.isNull() &&
6427 "'NSConstantString' type already set!");
6428
6429 ObjCConstantStringType = getObjCInterfaceType(Decl);
6430 }
6431
6432 /// \brief Retrieve the template name that corresponds to a non-empty
6433 /// lookup.
6434 TemplateName
getOverloadedTemplateName(UnresolvedSetIterator Begin,UnresolvedSetIterator End) const6435 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
6436 UnresolvedSetIterator End) const {
6437 unsigned size = End - Begin;
6438 assert(size > 1 && "set is not overloaded!");
6439
6440 void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
6441 size * sizeof(FunctionTemplateDecl*));
6442 OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
6443
6444 NamedDecl **Storage = OT->getStorage();
6445 for (UnresolvedSetIterator I = Begin; I != End; ++I) {
6446 NamedDecl *D = *I;
6447 assert(isa<FunctionTemplateDecl>(D) ||
6448 (isa<UsingShadowDecl>(D) &&
6449 isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
6450 *Storage++ = D;
6451 }
6452
6453 return TemplateName(OT);
6454 }
6455
6456 /// \brief Retrieve the template name that represents a qualified
6457 /// template name such as \c std::vector.
6458 TemplateName
getQualifiedTemplateName(NestedNameSpecifier * NNS,bool TemplateKeyword,TemplateDecl * Template) const6459 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
6460 bool TemplateKeyword,
6461 TemplateDecl *Template) const {
6462 assert(NNS && "Missing nested-name-specifier in qualified template name");
6463
6464 // FIXME: Canonicalization?
6465 llvm::FoldingSetNodeID ID;
6466 QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6467
6468 void *InsertPos = nullptr;
6469 QualifiedTemplateName *QTN =
6470 QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6471 if (!QTN) {
6472 QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6473 QualifiedTemplateName(NNS, TemplateKeyword, Template);
6474 QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6475 }
6476
6477 return TemplateName(QTN);
6478 }
6479
6480 /// \brief Retrieve the template name that represents a dependent
6481 /// template name such as \c MetaFun::template apply.
6482 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,const IdentifierInfo * Name) const6483 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6484 const IdentifierInfo *Name) const {
6485 assert((!NNS || NNS->isDependent()) &&
6486 "Nested name specifier must be dependent");
6487
6488 llvm::FoldingSetNodeID ID;
6489 DependentTemplateName::Profile(ID, NNS, Name);
6490
6491 void *InsertPos = nullptr;
6492 DependentTemplateName *QTN =
6493 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6494
6495 if (QTN)
6496 return TemplateName(QTN);
6497
6498 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6499 if (CanonNNS == NNS) {
6500 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6501 DependentTemplateName(NNS, Name);
6502 } else {
6503 TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6504 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6505 DependentTemplateName(NNS, Name, Canon);
6506 DependentTemplateName *CheckQTN =
6507 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6508 assert(!CheckQTN && "Dependent type name canonicalization broken");
6509 (void)CheckQTN;
6510 }
6511
6512 DependentTemplateNames.InsertNode(QTN, InsertPos);
6513 return TemplateName(QTN);
6514 }
6515
6516 /// \brief Retrieve the template name that represents a dependent
6517 /// template name such as \c MetaFun::template operator+.
6518 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,OverloadedOperatorKind Operator) const6519 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6520 OverloadedOperatorKind Operator) const {
6521 assert((!NNS || NNS->isDependent()) &&
6522 "Nested name specifier must be dependent");
6523
6524 llvm::FoldingSetNodeID ID;
6525 DependentTemplateName::Profile(ID, NNS, Operator);
6526
6527 void *InsertPos = nullptr;
6528 DependentTemplateName *QTN
6529 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6530
6531 if (QTN)
6532 return TemplateName(QTN);
6533
6534 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6535 if (CanonNNS == NNS) {
6536 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6537 DependentTemplateName(NNS, Operator);
6538 } else {
6539 TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6540 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6541 DependentTemplateName(NNS, Operator, Canon);
6542
6543 DependentTemplateName *CheckQTN
6544 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6545 assert(!CheckQTN && "Dependent template name canonicalization broken");
6546 (void)CheckQTN;
6547 }
6548
6549 DependentTemplateNames.InsertNode(QTN, InsertPos);
6550 return TemplateName(QTN);
6551 }
6552
6553 TemplateName
getSubstTemplateTemplateParm(TemplateTemplateParmDecl * param,TemplateName replacement) const6554 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6555 TemplateName replacement) const {
6556 llvm::FoldingSetNodeID ID;
6557 SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6558
6559 void *insertPos = nullptr;
6560 SubstTemplateTemplateParmStorage *subst
6561 = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6562
6563 if (!subst) {
6564 subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6565 SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6566 }
6567
6568 return TemplateName(subst);
6569 }
6570
6571 TemplateName
getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl * Param,const TemplateArgument & ArgPack) const6572 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6573 const TemplateArgument &ArgPack) const {
6574 ASTContext &Self = const_cast<ASTContext &>(*this);
6575 llvm::FoldingSetNodeID ID;
6576 SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6577
6578 void *InsertPos = nullptr;
6579 SubstTemplateTemplateParmPackStorage *Subst
6580 = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6581
6582 if (!Subst) {
6583 Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6584 ArgPack.pack_size(),
6585 ArgPack.pack_begin());
6586 SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6587 }
6588
6589 return TemplateName(Subst);
6590 }
6591
6592 /// getFromTargetType - Given one of the integer types provided by
6593 /// TargetInfo, produce the corresponding type. The unsigned @p Type
6594 /// is actually a value of type @c TargetInfo::IntType.
getFromTargetType(unsigned Type) const6595 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6596 switch (Type) {
6597 case TargetInfo::NoInt: return CanQualType();
6598 case TargetInfo::SignedChar: return SignedCharTy;
6599 case TargetInfo::UnsignedChar: return UnsignedCharTy;
6600 case TargetInfo::SignedShort: return ShortTy;
6601 case TargetInfo::UnsignedShort: return UnsignedShortTy;
6602 case TargetInfo::SignedInt: return IntTy;
6603 case TargetInfo::UnsignedInt: return UnsignedIntTy;
6604 case TargetInfo::SignedLong: return LongTy;
6605 case TargetInfo::UnsignedLong: return UnsignedLongTy;
6606 case TargetInfo::SignedLongLong: return LongLongTy;
6607 case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6608 }
6609
6610 llvm_unreachable("Unhandled TargetInfo::IntType value");
6611 }
6612
6613 //===----------------------------------------------------------------------===//
6614 // Type Predicates.
6615 //===----------------------------------------------------------------------===//
6616
6617 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6618 /// garbage collection attribute.
6619 ///
getObjCGCAttrKind(QualType Ty) const6620 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6621 if (getLangOpts().getGC() == LangOptions::NonGC)
6622 return Qualifiers::GCNone;
6623
6624 assert(getLangOpts().ObjC1);
6625 Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6626
6627 // Default behaviour under objective-C's gc is for ObjC pointers
6628 // (or pointers to them) be treated as though they were declared
6629 // as __strong.
6630 if (GCAttrs == Qualifiers::GCNone) {
6631 if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6632 return Qualifiers::Strong;
6633 else if (Ty->isPointerType())
6634 return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6635 } else {
6636 // It's not valid to set GC attributes on anything that isn't a
6637 // pointer.
6638 #ifndef NDEBUG
6639 QualType CT = Ty->getCanonicalTypeInternal();
6640 while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6641 CT = AT->getElementType();
6642 assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6643 #endif
6644 }
6645 return GCAttrs;
6646 }
6647
6648 //===----------------------------------------------------------------------===//
6649 // Type Compatibility Testing
6650 //===----------------------------------------------------------------------===//
6651
6652 /// areCompatVectorTypes - Return true if the two specified vector types are
6653 /// compatible.
areCompatVectorTypes(const VectorType * LHS,const VectorType * RHS)6654 static bool areCompatVectorTypes(const VectorType *LHS,
6655 const VectorType *RHS) {
6656 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6657 return LHS->getElementType() == RHS->getElementType() &&
6658 LHS->getNumElements() == RHS->getNumElements();
6659 }
6660
areCompatibleVectorTypes(QualType FirstVec,QualType SecondVec)6661 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6662 QualType SecondVec) {
6663 assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6664 assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6665
6666 if (hasSameUnqualifiedType(FirstVec, SecondVec))
6667 return true;
6668
6669 // Treat Neon vector types and most AltiVec vector types as if they are the
6670 // equivalent GCC vector types.
6671 const VectorType *First = FirstVec->getAs<VectorType>();
6672 const VectorType *Second = SecondVec->getAs<VectorType>();
6673 if (First->getNumElements() == Second->getNumElements() &&
6674 hasSameType(First->getElementType(), Second->getElementType()) &&
6675 First->getVectorKind() != VectorType::AltiVecPixel &&
6676 First->getVectorKind() != VectorType::AltiVecBool &&
6677 Second->getVectorKind() != VectorType::AltiVecPixel &&
6678 Second->getVectorKind() != VectorType::AltiVecBool)
6679 return true;
6680
6681 return false;
6682 }
6683
6684 //===----------------------------------------------------------------------===//
6685 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6686 //===----------------------------------------------------------------------===//
6687
6688 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6689 /// inheritance hierarchy of 'rProto'.
6690 bool
ProtocolCompatibleWithProtocol(ObjCProtocolDecl * lProto,ObjCProtocolDecl * rProto) const6691 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6692 ObjCProtocolDecl *rProto) const {
6693 if (declaresSameEntity(lProto, rProto))
6694 return true;
6695 for (auto *PI : rProto->protocols())
6696 if (ProtocolCompatibleWithProtocol(lProto, PI))
6697 return true;
6698 return false;
6699 }
6700
6701 /// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and
6702 /// Class<pr1, ...>.
ObjCQualifiedClassTypesAreCompatible(QualType lhs,QualType rhs)6703 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6704 QualType rhs) {
6705 const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6706 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6707 assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6708
6709 for (auto *lhsProto : lhsQID->quals()) {
6710 bool match = false;
6711 for (auto *rhsProto : rhsOPT->quals()) {
6712 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6713 match = true;
6714 break;
6715 }
6716 }
6717 if (!match)
6718 return false;
6719 }
6720 return true;
6721 }
6722
6723 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6724 /// ObjCQualifiedIDType.
ObjCQualifiedIdTypesAreCompatible(QualType lhs,QualType rhs,bool compare)6725 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6726 bool compare) {
6727 // Allow id<P..> and an 'id' or void* type in all cases.
6728 if (lhs->isVoidPointerType() ||
6729 lhs->isObjCIdType() || lhs->isObjCClassType())
6730 return true;
6731 else if (rhs->isVoidPointerType() ||
6732 rhs->isObjCIdType() || rhs->isObjCClassType())
6733 return true;
6734
6735 if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6736 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6737
6738 if (!rhsOPT) return false;
6739
6740 if (rhsOPT->qual_empty()) {
6741 // If the RHS is a unqualified interface pointer "NSString*",
6742 // make sure we check the class hierarchy.
6743 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6744 for (auto *I : lhsQID->quals()) {
6745 // when comparing an id<P> on lhs with a static type on rhs,
6746 // see if static class implements all of id's protocols, directly or
6747 // through its super class and categories.
6748 if (!rhsID->ClassImplementsProtocol(I, true))
6749 return false;
6750 }
6751 }
6752 // If there are no qualifiers and no interface, we have an 'id'.
6753 return true;
6754 }
6755 // Both the right and left sides have qualifiers.
6756 for (auto *lhsProto : lhsQID->quals()) {
6757 bool match = false;
6758
6759 // when comparing an id<P> on lhs with a static type on rhs,
6760 // see if static class implements all of id's protocols, directly or
6761 // through its super class and categories.
6762 for (auto *rhsProto : rhsOPT->quals()) {
6763 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6764 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6765 match = true;
6766 break;
6767 }
6768 }
6769 // If the RHS is a qualified interface pointer "NSString<P>*",
6770 // make sure we check the class hierarchy.
6771 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6772 for (auto *I : lhsQID->quals()) {
6773 // when comparing an id<P> on lhs with a static type on rhs,
6774 // see if static class implements all of id's protocols, directly or
6775 // through its super class and categories.
6776 if (rhsID->ClassImplementsProtocol(I, true)) {
6777 match = true;
6778 break;
6779 }
6780 }
6781 }
6782 if (!match)
6783 return false;
6784 }
6785
6786 return true;
6787 }
6788
6789 const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6790 assert(rhsQID && "One of the LHS/RHS should be id<x>");
6791
6792 if (const ObjCObjectPointerType *lhsOPT =
6793 lhs->getAsObjCInterfacePointerType()) {
6794 // If both the right and left sides have qualifiers.
6795 for (auto *lhsProto : lhsOPT->quals()) {
6796 bool match = false;
6797
6798 // when comparing an id<P> on rhs with a static type on lhs,
6799 // see if static class implements all of id's protocols, directly or
6800 // through its super class and categories.
6801 // First, lhs protocols in the qualifier list must be found, direct
6802 // or indirect in rhs's qualifier list or it is a mismatch.
6803 for (auto *rhsProto : rhsQID->quals()) {
6804 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6805 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6806 match = true;
6807 break;
6808 }
6809 }
6810 if (!match)
6811 return false;
6812 }
6813
6814 // Static class's protocols, or its super class or category protocols
6815 // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6816 if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6817 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6818 CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6819 // This is rather dubious but matches gcc's behavior. If lhs has
6820 // no type qualifier and its class has no static protocol(s)
6821 // assume that it is mismatch.
6822 if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6823 return false;
6824 for (auto *lhsProto : LHSInheritedProtocols) {
6825 bool match = false;
6826 for (auto *rhsProto : rhsQID->quals()) {
6827 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6828 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6829 match = true;
6830 break;
6831 }
6832 }
6833 if (!match)
6834 return false;
6835 }
6836 }
6837 return true;
6838 }
6839 return false;
6840 }
6841
6842 /// canAssignObjCInterfaces - Return true if the two interface types are
6843 /// compatible for assignment from RHS to LHS. This handles validation of any
6844 /// protocol qualifiers on the LHS or RHS.
6845 ///
canAssignObjCInterfaces(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT)6846 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6847 const ObjCObjectPointerType *RHSOPT) {
6848 const ObjCObjectType* LHS = LHSOPT->getObjectType();
6849 const ObjCObjectType* RHS = RHSOPT->getObjectType();
6850
6851 // If either type represents the built-in 'id' or 'Class' types, return true.
6852 if (LHS->isObjCUnqualifiedIdOrClass() ||
6853 RHS->isObjCUnqualifiedIdOrClass())
6854 return true;
6855
6856 // Function object that propagates a successful result or handles
6857 // __kindof types.
6858 auto finish = [&](bool succeeded) -> bool {
6859 if (succeeded)
6860 return true;
6861
6862 if (!RHS->isKindOfType())
6863 return false;
6864
6865 // Strip off __kindof and protocol qualifiers, then check whether
6866 // we can assign the other way.
6867 return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
6868 LHSOPT->stripObjCKindOfTypeAndQuals(*this));
6869 };
6870
6871 if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
6872 return finish(ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6873 QualType(RHSOPT,0),
6874 false));
6875 }
6876
6877 if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
6878 return finish(ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6879 QualType(RHSOPT,0)));
6880 }
6881
6882 // If we have 2 user-defined types, fall into that path.
6883 if (LHS->getInterface() && RHS->getInterface()) {
6884 return finish(canAssignObjCInterfaces(LHS, RHS));
6885 }
6886
6887 return false;
6888 }
6889
6890 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6891 /// for providing type-safety for objective-c pointers used to pass/return
6892 /// arguments in block literals. When passed as arguments, passing 'A*' where
6893 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6894 /// not OK. For the return type, the opposite is not OK.
canAssignObjCInterfacesInBlockPointer(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,bool BlockReturnType)6895 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6896 const ObjCObjectPointerType *LHSOPT,
6897 const ObjCObjectPointerType *RHSOPT,
6898 bool BlockReturnType) {
6899
6900 // Function object that propagates a successful result or handles
6901 // __kindof types.
6902 auto finish = [&](bool succeeded) -> bool {
6903 if (succeeded)
6904 return true;
6905
6906 const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
6907 if (!Expected->isKindOfType())
6908 return false;
6909
6910 // Strip off __kindof and protocol qualifiers, then check whether
6911 // we can assign the other way.
6912 return canAssignObjCInterfacesInBlockPointer(
6913 RHSOPT->stripObjCKindOfTypeAndQuals(*this),
6914 LHSOPT->stripObjCKindOfTypeAndQuals(*this),
6915 BlockReturnType);
6916 };
6917
6918 if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6919 return true;
6920
6921 if (LHSOPT->isObjCBuiltinType()) {
6922 return finish(RHSOPT->isObjCBuiltinType() ||
6923 RHSOPT->isObjCQualifiedIdType());
6924 }
6925
6926 if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6927 return finish(ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6928 QualType(RHSOPT,0),
6929 false));
6930
6931 const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6932 const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6933 if (LHS && RHS) { // We have 2 user-defined types.
6934 if (LHS != RHS) {
6935 if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6936 return finish(BlockReturnType);
6937 if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6938 return finish(!BlockReturnType);
6939 }
6940 else
6941 return true;
6942 }
6943 return false;
6944 }
6945
6946 /// Comparison routine for Objective-C protocols to be used with
6947 /// llvm::array_pod_sort.
compareObjCProtocolsByName(ObjCProtocolDecl * const * lhs,ObjCProtocolDecl * const * rhs)6948 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
6949 ObjCProtocolDecl * const *rhs) {
6950 return (*lhs)->getName().compare((*rhs)->getName());
6951
6952 }
6953
6954 /// getIntersectionOfProtocols - This routine finds the intersection of set
6955 /// of protocols inherited from two distinct objective-c pointer objects with
6956 /// the given common base.
6957 /// It is used to build composite qualifier list of the composite type of
6958 /// the conditional expression involving two objective-c pointer objects.
6959 static
getIntersectionOfProtocols(ASTContext & Context,const ObjCInterfaceDecl * CommonBase,const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,SmallVectorImpl<ObjCProtocolDecl * > & IntersectionSet)6960 void getIntersectionOfProtocols(ASTContext &Context,
6961 const ObjCInterfaceDecl *CommonBase,
6962 const ObjCObjectPointerType *LHSOPT,
6963 const ObjCObjectPointerType *RHSOPT,
6964 SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
6965
6966 const ObjCObjectType* LHS = LHSOPT->getObjectType();
6967 const ObjCObjectType* RHS = RHSOPT->getObjectType();
6968 assert(LHS->getInterface() && "LHS must have an interface base");
6969 assert(RHS->getInterface() && "RHS must have an interface base");
6970
6971 // Add all of the protocols for the LHS.
6972 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
6973
6974 // Start with the protocol qualifiers.
6975 for (auto proto : LHS->quals()) {
6976 Context.CollectInheritedProtocols(proto, LHSProtocolSet);
6977 }
6978
6979 // Also add the protocols associated with the LHS interface.
6980 Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
6981
6982 // Add all of the protocls for the RHS.
6983 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
6984
6985 // Start with the protocol qualifiers.
6986 for (auto proto : RHS->quals()) {
6987 Context.CollectInheritedProtocols(proto, RHSProtocolSet);
6988 }
6989
6990 // Also add the protocols associated with the RHS interface.
6991 Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
6992
6993 // Compute the intersection of the collected protocol sets.
6994 for (auto proto : LHSProtocolSet) {
6995 if (RHSProtocolSet.count(proto))
6996 IntersectionSet.push_back(proto);
6997 }
6998
6999 // Compute the set of protocols that is implied by either the common type or
7000 // the protocols within the intersection.
7001 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
7002 Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
7003
7004 // Remove any implied protocols from the list of inherited protocols.
7005 if (!ImpliedProtocols.empty()) {
7006 IntersectionSet.erase(
7007 std::remove_if(IntersectionSet.begin(),
7008 IntersectionSet.end(),
7009 [&](ObjCProtocolDecl *proto) -> bool {
7010 return ImpliedProtocols.count(proto) > 0;
7011 }),
7012 IntersectionSet.end());
7013 }
7014
7015 // Sort the remaining protocols by name.
7016 llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
7017 compareObjCProtocolsByName);
7018 }
7019
7020 /// Determine whether the first type is a subtype of the second.
canAssignObjCObjectTypes(ASTContext & ctx,QualType lhs,QualType rhs)7021 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
7022 QualType rhs) {
7023 // Common case: two object pointers.
7024 const ObjCObjectPointerType *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
7025 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
7026 if (lhsOPT && rhsOPT)
7027 return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
7028
7029 // Two block pointers.
7030 const BlockPointerType *lhsBlock = lhs->getAs<BlockPointerType>();
7031 const BlockPointerType *rhsBlock = rhs->getAs<BlockPointerType>();
7032 if (lhsBlock && rhsBlock)
7033 return ctx.typesAreBlockPointerCompatible(lhs, rhs);
7034
7035 // If either is an unqualified 'id' and the other is a block, it's
7036 // acceptable.
7037 if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
7038 (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
7039 return true;
7040
7041 return false;
7042 }
7043
7044 // Check that the given Objective-C type argument lists are equivalent.
sameObjCTypeArgs(ASTContext & ctx,const ObjCInterfaceDecl * iface,ArrayRef<QualType> lhsArgs,ArrayRef<QualType> rhsArgs,bool stripKindOf)7045 static bool sameObjCTypeArgs(ASTContext &ctx,
7046 const ObjCInterfaceDecl *iface,
7047 ArrayRef<QualType> lhsArgs,
7048 ArrayRef<QualType> rhsArgs,
7049 bool stripKindOf) {
7050 if (lhsArgs.size() != rhsArgs.size())
7051 return false;
7052
7053 ObjCTypeParamList *typeParams = iface->getTypeParamList();
7054 for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
7055 if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
7056 continue;
7057
7058 switch (typeParams->begin()[i]->getVariance()) {
7059 case ObjCTypeParamVariance::Invariant:
7060 if (!stripKindOf ||
7061 !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
7062 rhsArgs[i].stripObjCKindOfType(ctx))) {
7063 return false;
7064 }
7065 break;
7066
7067 case ObjCTypeParamVariance::Covariant:
7068 if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
7069 return false;
7070 break;
7071
7072 case ObjCTypeParamVariance::Contravariant:
7073 if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
7074 return false;
7075 break;
7076 }
7077 }
7078
7079 return true;
7080 }
7081
areCommonBaseCompatible(const ObjCObjectPointerType * Lptr,const ObjCObjectPointerType * Rptr)7082 QualType ASTContext::areCommonBaseCompatible(
7083 const ObjCObjectPointerType *Lptr,
7084 const ObjCObjectPointerType *Rptr) {
7085 const ObjCObjectType *LHS = Lptr->getObjectType();
7086 const ObjCObjectType *RHS = Rptr->getObjectType();
7087 const ObjCInterfaceDecl* LDecl = LHS->getInterface();
7088 const ObjCInterfaceDecl* RDecl = RHS->getInterface();
7089
7090 if (!LDecl || !RDecl)
7091 return QualType();
7092
7093 // Follow the left-hand side up the class hierarchy until we either hit a
7094 // root or find the RHS. Record the ancestors in case we don't find it.
7095 llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
7096 LHSAncestors;
7097 while (true) {
7098 // Record this ancestor. We'll need this if the common type isn't in the
7099 // path from the LHS to the root.
7100 LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
7101
7102 if (declaresSameEntity(LHS->getInterface(), RDecl)) {
7103 // Get the type arguments.
7104 ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
7105 bool anyChanges = false;
7106 if (LHS->isSpecialized() && RHS->isSpecialized()) {
7107 // Both have type arguments, compare them.
7108 if (!sameObjCTypeArgs(*this, LHS->getInterface(),
7109 LHS->getTypeArgs(), RHS->getTypeArgs(),
7110 /*stripKindOf=*/true))
7111 return QualType();
7112 } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
7113 // If only one has type arguments, the result will not have type
7114 // arguments.
7115 LHSTypeArgs = { };
7116 anyChanges = true;
7117 }
7118
7119 // Compute the intersection of protocols.
7120 SmallVector<ObjCProtocolDecl *, 8> Protocols;
7121 getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
7122 Protocols);
7123 if (!Protocols.empty())
7124 anyChanges = true;
7125
7126 // If anything in the LHS will have changed, build a new result type.
7127 if (anyChanges) {
7128 QualType Result = getObjCInterfaceType(LHS->getInterface());
7129 Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
7130 LHS->isKindOfType());
7131 return getObjCObjectPointerType(Result);
7132 }
7133
7134 return getObjCObjectPointerType(QualType(LHS, 0));
7135 }
7136
7137 // Find the superclass.
7138 QualType LHSSuperType = LHS->getSuperClassType();
7139 if (LHSSuperType.isNull())
7140 break;
7141
7142 LHS = LHSSuperType->castAs<ObjCObjectType>();
7143 }
7144
7145 // We didn't find anything by following the LHS to its root; now check
7146 // the RHS against the cached set of ancestors.
7147 while (true) {
7148 auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
7149 if (KnownLHS != LHSAncestors.end()) {
7150 LHS = KnownLHS->second;
7151
7152 // Get the type arguments.
7153 ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
7154 bool anyChanges = false;
7155 if (LHS->isSpecialized() && RHS->isSpecialized()) {
7156 // Both have type arguments, compare them.
7157 if (!sameObjCTypeArgs(*this, LHS->getInterface(),
7158 LHS->getTypeArgs(), RHS->getTypeArgs(),
7159 /*stripKindOf=*/true))
7160 return QualType();
7161 } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
7162 // If only one has type arguments, the result will not have type
7163 // arguments.
7164 RHSTypeArgs = { };
7165 anyChanges = true;
7166 }
7167
7168 // Compute the intersection of protocols.
7169 SmallVector<ObjCProtocolDecl *, 8> Protocols;
7170 getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
7171 Protocols);
7172 if (!Protocols.empty())
7173 anyChanges = true;
7174
7175 if (anyChanges) {
7176 QualType Result = getObjCInterfaceType(RHS->getInterface());
7177 Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
7178 RHS->isKindOfType());
7179 return getObjCObjectPointerType(Result);
7180 }
7181
7182 return getObjCObjectPointerType(QualType(RHS, 0));
7183 }
7184
7185 // Find the superclass of the RHS.
7186 QualType RHSSuperType = RHS->getSuperClassType();
7187 if (RHSSuperType.isNull())
7188 break;
7189
7190 RHS = RHSSuperType->castAs<ObjCObjectType>();
7191 }
7192
7193 return QualType();
7194 }
7195
canAssignObjCInterfaces(const ObjCObjectType * LHS,const ObjCObjectType * RHS)7196 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
7197 const ObjCObjectType *RHS) {
7198 assert(LHS->getInterface() && "LHS is not an interface type");
7199 assert(RHS->getInterface() && "RHS is not an interface type");
7200
7201 // Verify that the base decls are compatible: the RHS must be a subclass of
7202 // the LHS.
7203 ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
7204 bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
7205 if (!IsSuperClass)
7206 return false;
7207
7208 // If the LHS has protocol qualifiers, determine whether all of them are
7209 // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
7210 // LHS).
7211 if (LHS->getNumProtocols() > 0) {
7212 // OK if conversion of LHS to SuperClass results in narrowing of types
7213 // ; i.e., SuperClass may implement at least one of the protocols
7214 // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
7215 // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
7216 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
7217 CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
7218 // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
7219 // qualifiers.
7220 for (auto *RHSPI : RHS->quals())
7221 CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
7222 // If there is no protocols associated with RHS, it is not a match.
7223 if (SuperClassInheritedProtocols.empty())
7224 return false;
7225
7226 for (const auto *LHSProto : LHS->quals()) {
7227 bool SuperImplementsProtocol = false;
7228 for (auto *SuperClassProto : SuperClassInheritedProtocols)
7229 if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
7230 SuperImplementsProtocol = true;
7231 break;
7232 }
7233 if (!SuperImplementsProtocol)
7234 return false;
7235 }
7236 }
7237
7238 // If the LHS is specialized, we may need to check type arguments.
7239 if (LHS->isSpecialized()) {
7240 // Follow the superclass chain until we've matched the LHS class in the
7241 // hierarchy. This substitutes type arguments through.
7242 const ObjCObjectType *RHSSuper = RHS;
7243 while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
7244 RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
7245
7246 // If the RHS is specializd, compare type arguments.
7247 if (RHSSuper->isSpecialized() &&
7248 !sameObjCTypeArgs(*this, LHS->getInterface(),
7249 LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
7250 /*stripKindOf=*/true)) {
7251 return false;
7252 }
7253 }
7254
7255 return true;
7256 }
7257
areComparableObjCPointerTypes(QualType LHS,QualType RHS)7258 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
7259 // get the "pointed to" types
7260 const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
7261 const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
7262
7263 if (!LHSOPT || !RHSOPT)
7264 return false;
7265
7266 return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
7267 canAssignObjCInterfaces(RHSOPT, LHSOPT);
7268 }
7269
canBindObjCObjectType(QualType To,QualType From)7270 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
7271 return canAssignObjCInterfaces(
7272 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
7273 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
7274 }
7275
7276 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
7277 /// both shall have the identically qualified version of a compatible type.
7278 /// C99 6.2.7p1: Two types have compatible types if their types are the
7279 /// same. See 6.7.[2,3,5] for additional rules.
typesAreCompatible(QualType LHS,QualType RHS,bool CompareUnqualified)7280 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
7281 bool CompareUnqualified) {
7282 if (getLangOpts().CPlusPlus)
7283 return hasSameType(LHS, RHS);
7284
7285 return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
7286 }
7287
propertyTypesAreCompatible(QualType LHS,QualType RHS)7288 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
7289 return typesAreCompatible(LHS, RHS);
7290 }
7291
typesAreBlockPointerCompatible(QualType LHS,QualType RHS)7292 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
7293 return !mergeTypes(LHS, RHS, true).isNull();
7294 }
7295
7296 /// mergeTransparentUnionType - if T is a transparent union type and a member
7297 /// of T is compatible with SubType, return the merged type, else return
7298 /// QualType()
mergeTransparentUnionType(QualType T,QualType SubType,bool OfBlockPointer,bool Unqualified)7299 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
7300 bool OfBlockPointer,
7301 bool Unqualified) {
7302 if (const RecordType *UT = T->getAsUnionType()) {
7303 RecordDecl *UD = UT->getDecl();
7304 if (UD->hasAttr<TransparentUnionAttr>()) {
7305 for (const auto *I : UD->fields()) {
7306 QualType ET = I->getType().getUnqualifiedType();
7307 QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
7308 if (!MT.isNull())
7309 return MT;
7310 }
7311 }
7312 }
7313
7314 return QualType();
7315 }
7316
7317 /// mergeFunctionParameterTypes - merge two types which appear as function
7318 /// parameter types
mergeFunctionParameterTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)7319 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
7320 bool OfBlockPointer,
7321 bool Unqualified) {
7322 // GNU extension: two types are compatible if they appear as a function
7323 // argument, one of the types is a transparent union type and the other
7324 // type is compatible with a union member
7325 QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
7326 Unqualified);
7327 if (!lmerge.isNull())
7328 return lmerge;
7329
7330 QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
7331 Unqualified);
7332 if (!rmerge.isNull())
7333 return rmerge;
7334
7335 return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
7336 }
7337
mergeFunctionTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)7338 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
7339 bool OfBlockPointer,
7340 bool Unqualified) {
7341 const FunctionType *lbase = lhs->getAs<FunctionType>();
7342 const FunctionType *rbase = rhs->getAs<FunctionType>();
7343 const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
7344 const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
7345 bool allLTypes = true;
7346 bool allRTypes = true;
7347
7348 // Check return type
7349 QualType retType;
7350 if (OfBlockPointer) {
7351 QualType RHS = rbase->getReturnType();
7352 QualType LHS = lbase->getReturnType();
7353 bool UnqualifiedResult = Unqualified;
7354 if (!UnqualifiedResult)
7355 UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
7356 retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
7357 }
7358 else
7359 retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
7360 Unqualified);
7361 if (retType.isNull()) return QualType();
7362
7363 if (Unqualified)
7364 retType = retType.getUnqualifiedType();
7365
7366 CanQualType LRetType = getCanonicalType(lbase->getReturnType());
7367 CanQualType RRetType = getCanonicalType(rbase->getReturnType());
7368 if (Unqualified) {
7369 LRetType = LRetType.getUnqualifiedType();
7370 RRetType = RRetType.getUnqualifiedType();
7371 }
7372
7373 if (getCanonicalType(retType) != LRetType)
7374 allLTypes = false;
7375 if (getCanonicalType(retType) != RRetType)
7376 allRTypes = false;
7377
7378 // FIXME: double check this
7379 // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
7380 // rbase->getRegParmAttr() != 0 &&
7381 // lbase->getRegParmAttr() != rbase->getRegParmAttr()?
7382 FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
7383 FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
7384
7385 // Compatible functions must have compatible calling conventions
7386 if (lbaseInfo.getCC() != rbaseInfo.getCC())
7387 return QualType();
7388
7389 // Regparm is part of the calling convention.
7390 if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
7391 return QualType();
7392 if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
7393 return QualType();
7394
7395 if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
7396 return QualType();
7397
7398 // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
7399 bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
7400
7401 if (lbaseInfo.getNoReturn() != NoReturn)
7402 allLTypes = false;
7403 if (rbaseInfo.getNoReturn() != NoReturn)
7404 allRTypes = false;
7405
7406 FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
7407
7408 if (lproto && rproto) { // two C99 style function prototypes
7409 assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
7410 "C++ shouldn't be here");
7411 // Compatible functions must have the same number of parameters
7412 if (lproto->getNumParams() != rproto->getNumParams())
7413 return QualType();
7414
7415 // Variadic and non-variadic functions aren't compatible
7416 if (lproto->isVariadic() != rproto->isVariadic())
7417 return QualType();
7418
7419 if (lproto->getTypeQuals() != rproto->getTypeQuals())
7420 return QualType();
7421
7422 if (LangOpts.ObjCAutoRefCount &&
7423 !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
7424 return QualType();
7425
7426 // Check parameter type compatibility
7427 SmallVector<QualType, 10> types;
7428 for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
7429 QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
7430 QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
7431 QualType paramType = mergeFunctionParameterTypes(
7432 lParamType, rParamType, OfBlockPointer, Unqualified);
7433 if (paramType.isNull())
7434 return QualType();
7435
7436 if (Unqualified)
7437 paramType = paramType.getUnqualifiedType();
7438
7439 types.push_back(paramType);
7440 if (Unqualified) {
7441 lParamType = lParamType.getUnqualifiedType();
7442 rParamType = rParamType.getUnqualifiedType();
7443 }
7444
7445 if (getCanonicalType(paramType) != getCanonicalType(lParamType))
7446 allLTypes = false;
7447 if (getCanonicalType(paramType) != getCanonicalType(rParamType))
7448 allRTypes = false;
7449 }
7450
7451 if (allLTypes) return lhs;
7452 if (allRTypes) return rhs;
7453
7454 FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
7455 EPI.ExtInfo = einfo;
7456 return getFunctionType(retType, types, EPI);
7457 }
7458
7459 if (lproto) allRTypes = false;
7460 if (rproto) allLTypes = false;
7461
7462 const FunctionProtoType *proto = lproto ? lproto : rproto;
7463 if (proto) {
7464 assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
7465 if (proto->isVariadic()) return QualType();
7466 // Check that the types are compatible with the types that
7467 // would result from default argument promotions (C99 6.7.5.3p15).
7468 // The only types actually affected are promotable integer
7469 // types and floats, which would be passed as a different
7470 // type depending on whether the prototype is visible.
7471 for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
7472 QualType paramTy = proto->getParamType(i);
7473
7474 // Look at the converted type of enum types, since that is the type used
7475 // to pass enum values.
7476 if (const EnumType *Enum = paramTy->getAs<EnumType>()) {
7477 paramTy = Enum->getDecl()->getIntegerType();
7478 if (paramTy.isNull())
7479 return QualType();
7480 }
7481
7482 if (paramTy->isPromotableIntegerType() ||
7483 getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
7484 return QualType();
7485 }
7486
7487 if (allLTypes) return lhs;
7488 if (allRTypes) return rhs;
7489
7490 FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
7491 EPI.ExtInfo = einfo;
7492 return getFunctionType(retType, proto->getParamTypes(), EPI);
7493 }
7494
7495 if (allLTypes) return lhs;
7496 if (allRTypes) return rhs;
7497 return getFunctionNoProtoType(retType, einfo);
7498 }
7499
7500 /// Given that we have an enum type and a non-enum type, try to merge them.
mergeEnumWithInteger(ASTContext & Context,const EnumType * ET,QualType other,bool isBlockReturnType)7501 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
7502 QualType other, bool isBlockReturnType) {
7503 // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
7504 // a signed integer type, or an unsigned integer type.
7505 // Compatibility is based on the underlying type, not the promotion
7506 // type.
7507 QualType underlyingType = ET->getDecl()->getIntegerType();
7508 if (underlyingType.isNull()) return QualType();
7509 if (Context.hasSameType(underlyingType, other))
7510 return other;
7511
7512 // In block return types, we're more permissive and accept any
7513 // integral type of the same size.
7514 if (isBlockReturnType && other->isIntegerType() &&
7515 Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
7516 return other;
7517
7518 return QualType();
7519 }
7520
mergeTypes(QualType LHS,QualType RHS,bool OfBlockPointer,bool Unqualified,bool BlockReturnType)7521 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
7522 bool OfBlockPointer,
7523 bool Unqualified, bool BlockReturnType) {
7524 // C++ [expr]: If an expression initially has the type "reference to T", the
7525 // type is adjusted to "T" prior to any further analysis, the expression
7526 // designates the object or function denoted by the reference, and the
7527 // expression is an lvalue unless the reference is an rvalue reference and
7528 // the expression is a function call (possibly inside parentheses).
7529 assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
7530 assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
7531
7532 if (Unqualified) {
7533 LHS = LHS.getUnqualifiedType();
7534 RHS = RHS.getUnqualifiedType();
7535 }
7536
7537 QualType LHSCan = getCanonicalType(LHS),
7538 RHSCan = getCanonicalType(RHS);
7539
7540 // If two types are identical, they are compatible.
7541 if (LHSCan == RHSCan)
7542 return LHS;
7543
7544 // If the qualifiers are different, the types aren't compatible... mostly.
7545 Qualifiers LQuals = LHSCan.getLocalQualifiers();
7546 Qualifiers RQuals = RHSCan.getLocalQualifiers();
7547 if (LQuals != RQuals) {
7548 // If any of these qualifiers are different, we have a type
7549 // mismatch.
7550 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7551 LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
7552 LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
7553 return QualType();
7554
7555 // Exactly one GC qualifier difference is allowed: __strong is
7556 // okay if the other type has no GC qualifier but is an Objective
7557 // C object pointer (i.e. implicitly strong by default). We fix
7558 // this by pretending that the unqualified type was actually
7559 // qualified __strong.
7560 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7561 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7562 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7563
7564 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7565 return QualType();
7566
7567 if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
7568 return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
7569 }
7570 if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
7571 return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
7572 }
7573 return QualType();
7574 }
7575
7576 // Okay, qualifiers are equal.
7577
7578 Type::TypeClass LHSClass = LHSCan->getTypeClass();
7579 Type::TypeClass RHSClass = RHSCan->getTypeClass();
7580
7581 // We want to consider the two function types to be the same for these
7582 // comparisons, just force one to the other.
7583 if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
7584 if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
7585
7586 // Same as above for arrays
7587 if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
7588 LHSClass = Type::ConstantArray;
7589 if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
7590 RHSClass = Type::ConstantArray;
7591
7592 // ObjCInterfaces are just specialized ObjCObjects.
7593 if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
7594 if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
7595
7596 // Canonicalize ExtVector -> Vector.
7597 if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
7598 if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
7599
7600 // If the canonical type classes don't match.
7601 if (LHSClass != RHSClass) {
7602 // Note that we only have special rules for turning block enum
7603 // returns into block int returns, not vice-versa.
7604 if (const EnumType* ETy = LHS->getAs<EnumType>()) {
7605 return mergeEnumWithInteger(*this, ETy, RHS, false);
7606 }
7607 if (const EnumType* ETy = RHS->getAs<EnumType>()) {
7608 return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
7609 }
7610 // allow block pointer type to match an 'id' type.
7611 if (OfBlockPointer && !BlockReturnType) {
7612 if (LHS->isObjCIdType() && RHS->isBlockPointerType())
7613 return LHS;
7614 if (RHS->isObjCIdType() && LHS->isBlockPointerType())
7615 return RHS;
7616 }
7617
7618 return QualType();
7619 }
7620
7621 // The canonical type classes match.
7622 switch (LHSClass) {
7623 #define TYPE(Class, Base)
7624 #define ABSTRACT_TYPE(Class, Base)
7625 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7626 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7627 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
7628 #include "clang/AST/TypeNodes.def"
7629 llvm_unreachable("Non-canonical and dependent types shouldn't get here");
7630
7631 case Type::Auto:
7632 case Type::LValueReference:
7633 case Type::RValueReference:
7634 case Type::MemberPointer:
7635 llvm_unreachable("C++ should never be in mergeTypes");
7636
7637 case Type::ObjCInterface:
7638 case Type::IncompleteArray:
7639 case Type::VariableArray:
7640 case Type::FunctionProto:
7641 case Type::ExtVector:
7642 llvm_unreachable("Types are eliminated above");
7643
7644 case Type::Pointer:
7645 {
7646 // Merge two pointer types, while trying to preserve typedef info
7647 QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7648 QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7649 if (Unqualified) {
7650 LHSPointee = LHSPointee.getUnqualifiedType();
7651 RHSPointee = RHSPointee.getUnqualifiedType();
7652 }
7653 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7654 Unqualified);
7655 if (ResultType.isNull()) return QualType();
7656 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7657 return LHS;
7658 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7659 return RHS;
7660 return getPointerType(ResultType);
7661 }
7662 case Type::BlockPointer:
7663 {
7664 // Merge two block pointer types, while trying to preserve typedef info
7665 QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7666 QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7667 if (Unqualified) {
7668 LHSPointee = LHSPointee.getUnqualifiedType();
7669 RHSPointee = RHSPointee.getUnqualifiedType();
7670 }
7671 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7672 Unqualified);
7673 if (ResultType.isNull()) return QualType();
7674 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7675 return LHS;
7676 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7677 return RHS;
7678 return getBlockPointerType(ResultType);
7679 }
7680 case Type::Atomic:
7681 {
7682 // Merge two pointer types, while trying to preserve typedef info
7683 QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7684 QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7685 if (Unqualified) {
7686 LHSValue = LHSValue.getUnqualifiedType();
7687 RHSValue = RHSValue.getUnqualifiedType();
7688 }
7689 QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7690 Unqualified);
7691 if (ResultType.isNull()) return QualType();
7692 if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7693 return LHS;
7694 if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7695 return RHS;
7696 return getAtomicType(ResultType);
7697 }
7698 case Type::ConstantArray:
7699 {
7700 const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7701 const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7702 if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7703 return QualType();
7704
7705 QualType LHSElem = getAsArrayType(LHS)->getElementType();
7706 QualType RHSElem = getAsArrayType(RHS)->getElementType();
7707 if (Unqualified) {
7708 LHSElem = LHSElem.getUnqualifiedType();
7709 RHSElem = RHSElem.getUnqualifiedType();
7710 }
7711
7712 QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7713 if (ResultType.isNull()) return QualType();
7714 if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7715 return LHS;
7716 if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7717 return RHS;
7718 if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7719 ArrayType::ArraySizeModifier(), 0);
7720 if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7721 ArrayType::ArraySizeModifier(), 0);
7722 const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7723 const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7724 if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7725 return LHS;
7726 if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7727 return RHS;
7728 if (LVAT) {
7729 // FIXME: This isn't correct! But tricky to implement because
7730 // the array's size has to be the size of LHS, but the type
7731 // has to be different.
7732 return LHS;
7733 }
7734 if (RVAT) {
7735 // FIXME: This isn't correct! But tricky to implement because
7736 // the array's size has to be the size of RHS, but the type
7737 // has to be different.
7738 return RHS;
7739 }
7740 if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7741 if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7742 return getIncompleteArrayType(ResultType,
7743 ArrayType::ArraySizeModifier(), 0);
7744 }
7745 case Type::FunctionNoProto:
7746 return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7747 case Type::Record:
7748 case Type::Enum:
7749 return QualType();
7750 case Type::Builtin:
7751 // Only exactly equal builtin types are compatible, which is tested above.
7752 return QualType();
7753 case Type::Complex:
7754 // Distinct complex types are incompatible.
7755 return QualType();
7756 case Type::Vector:
7757 // FIXME: The merged type should be an ExtVector!
7758 if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7759 RHSCan->getAs<VectorType>()))
7760 return LHS;
7761 return QualType();
7762 case Type::ObjCObject: {
7763 // Check if the types are assignment compatible.
7764 // FIXME: This should be type compatibility, e.g. whether
7765 // "LHS x; RHS x;" at global scope is legal.
7766 const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7767 const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7768 if (canAssignObjCInterfaces(LHSIface, RHSIface))
7769 return LHS;
7770
7771 return QualType();
7772 }
7773 case Type::ObjCObjectPointer: {
7774 if (OfBlockPointer) {
7775 if (canAssignObjCInterfacesInBlockPointer(
7776 LHS->getAs<ObjCObjectPointerType>(),
7777 RHS->getAs<ObjCObjectPointerType>(),
7778 BlockReturnType))
7779 return LHS;
7780 return QualType();
7781 }
7782 if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7783 RHS->getAs<ObjCObjectPointerType>()))
7784 return LHS;
7785
7786 return QualType();
7787 }
7788 }
7789
7790 llvm_unreachable("Invalid Type::Class!");
7791 }
7792
FunctionTypesMatchOnNSConsumedAttrs(const FunctionProtoType * FromFunctionType,const FunctionProtoType * ToFunctionType)7793 bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7794 const FunctionProtoType *FromFunctionType,
7795 const FunctionProtoType *ToFunctionType) {
7796 if (FromFunctionType->hasAnyConsumedParams() !=
7797 ToFunctionType->hasAnyConsumedParams())
7798 return false;
7799 FunctionProtoType::ExtProtoInfo FromEPI =
7800 FromFunctionType->getExtProtoInfo();
7801 FunctionProtoType::ExtProtoInfo ToEPI =
7802 ToFunctionType->getExtProtoInfo();
7803 if (FromEPI.ConsumedParameters && ToEPI.ConsumedParameters)
7804 for (unsigned i = 0, n = FromFunctionType->getNumParams(); i != n; ++i) {
7805 if (FromEPI.ConsumedParameters[i] != ToEPI.ConsumedParameters[i])
7806 return false;
7807 }
7808 return true;
7809 }
7810
7811 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7812 /// 'RHS' attributes and returns the merged version; including for function
7813 /// return types.
mergeObjCGCQualifiers(QualType LHS,QualType RHS)7814 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7815 QualType LHSCan = getCanonicalType(LHS),
7816 RHSCan = getCanonicalType(RHS);
7817 // If two types are identical, they are compatible.
7818 if (LHSCan == RHSCan)
7819 return LHS;
7820 if (RHSCan->isFunctionType()) {
7821 if (!LHSCan->isFunctionType())
7822 return QualType();
7823 QualType OldReturnType =
7824 cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
7825 QualType NewReturnType =
7826 cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
7827 QualType ResReturnType =
7828 mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7829 if (ResReturnType.isNull())
7830 return QualType();
7831 if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7832 // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7833 // In either case, use OldReturnType to build the new function type.
7834 const FunctionType *F = LHS->getAs<FunctionType>();
7835 if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7836 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7837 EPI.ExtInfo = getFunctionExtInfo(LHS);
7838 QualType ResultType =
7839 getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
7840 return ResultType;
7841 }
7842 }
7843 return QualType();
7844 }
7845
7846 // If the qualifiers are different, the types can still be merged.
7847 Qualifiers LQuals = LHSCan.getLocalQualifiers();
7848 Qualifiers RQuals = RHSCan.getLocalQualifiers();
7849 if (LQuals != RQuals) {
7850 // If any of these qualifiers are different, we have a type mismatch.
7851 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7852 LQuals.getAddressSpace() != RQuals.getAddressSpace())
7853 return QualType();
7854
7855 // Exactly one GC qualifier difference is allowed: __strong is
7856 // okay if the other type has no GC qualifier but is an Objective
7857 // C object pointer (i.e. implicitly strong by default). We fix
7858 // this by pretending that the unqualified type was actually
7859 // qualified __strong.
7860 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7861 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7862 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7863
7864 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7865 return QualType();
7866
7867 if (GC_L == Qualifiers::Strong)
7868 return LHS;
7869 if (GC_R == Qualifiers::Strong)
7870 return RHS;
7871 return QualType();
7872 }
7873
7874 if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7875 QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7876 QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7877 QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7878 if (ResQT == LHSBaseQT)
7879 return LHS;
7880 if (ResQT == RHSBaseQT)
7881 return RHS;
7882 }
7883 return QualType();
7884 }
7885
7886 //===----------------------------------------------------------------------===//
7887 // Integer Predicates
7888 //===----------------------------------------------------------------------===//
7889
getIntWidth(QualType T) const7890 unsigned ASTContext::getIntWidth(QualType T) const {
7891 if (const EnumType *ET = T->getAs<EnumType>())
7892 T = ET->getDecl()->getIntegerType();
7893 if (T->isBooleanType())
7894 return 1;
7895 // For builtin types, just use the standard type sizing method
7896 return (unsigned)getTypeSize(T);
7897 }
7898
getCorrespondingUnsignedType(QualType T) const7899 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7900 assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7901
7902 // Turn <4 x signed int> -> <4 x unsigned int>
7903 if (const VectorType *VTy = T->getAs<VectorType>())
7904 return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7905 VTy->getNumElements(), VTy->getVectorKind());
7906
7907 // For enums, we return the unsigned version of the base type.
7908 if (const EnumType *ETy = T->getAs<EnumType>())
7909 T = ETy->getDecl()->getIntegerType();
7910
7911 const BuiltinType *BTy = T->getAs<BuiltinType>();
7912 assert(BTy && "Unexpected signed integer type");
7913 switch (BTy->getKind()) {
7914 case BuiltinType::Char_S:
7915 case BuiltinType::SChar:
7916 return UnsignedCharTy;
7917 case BuiltinType::Short:
7918 return UnsignedShortTy;
7919 case BuiltinType::Int:
7920 return UnsignedIntTy;
7921 case BuiltinType::Long:
7922 return UnsignedLongTy;
7923 case BuiltinType::LongLong:
7924 return UnsignedLongLongTy;
7925 case BuiltinType::Int128:
7926 return UnsignedInt128Ty;
7927 default:
7928 llvm_unreachable("Unexpected signed integer type");
7929 }
7930 }
7931
~ASTMutationListener()7932 ASTMutationListener::~ASTMutationListener() { }
7933
DeducedReturnType(const FunctionDecl * FD,QualType ReturnType)7934 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
7935 QualType ReturnType) {}
7936
7937 //===----------------------------------------------------------------------===//
7938 // Builtin Type Computation
7939 //===----------------------------------------------------------------------===//
7940
7941 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7942 /// pointer over the consumed characters. This returns the resultant type. If
7943 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7944 /// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of
7945 /// a vector of "i*".
7946 ///
7947 /// RequiresICE is filled in on return to indicate whether the value is required
7948 /// to be an Integer Constant Expression.
DecodeTypeFromStr(const char * & Str,const ASTContext & Context,ASTContext::GetBuiltinTypeError & Error,bool & RequiresICE,bool AllowTypeModifiers)7949 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7950 ASTContext::GetBuiltinTypeError &Error,
7951 bool &RequiresICE,
7952 bool AllowTypeModifiers) {
7953 // Modifiers.
7954 int HowLong = 0;
7955 bool Signed = false, Unsigned = false;
7956 RequiresICE = false;
7957
7958 // Read the prefixed modifiers first.
7959 bool Done = false;
7960 while (!Done) {
7961 switch (*Str++) {
7962 default: Done = true; --Str; break;
7963 case 'I':
7964 RequiresICE = true;
7965 break;
7966 case 'S':
7967 assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7968 assert(!Signed && "Can't use 'S' modifier multiple times!");
7969 Signed = true;
7970 break;
7971 case 'U':
7972 assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7973 assert(!Unsigned && "Can't use 'U' modifier multiple times!");
7974 Unsigned = true;
7975 break;
7976 case 'L':
7977 assert(HowLong <= 2 && "Can't have LLLL modifier");
7978 ++HowLong;
7979 break;
7980 case 'W':
7981 // This modifier represents int64 type.
7982 assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
7983 switch (Context.getTargetInfo().getInt64Type()) {
7984 default:
7985 llvm_unreachable("Unexpected integer type");
7986 case TargetInfo::SignedLong:
7987 HowLong = 1;
7988 break;
7989 case TargetInfo::SignedLongLong:
7990 HowLong = 2;
7991 break;
7992 }
7993 }
7994 }
7995
7996 QualType Type;
7997
7998 // Read the base type.
7999 switch (*Str++) {
8000 default: llvm_unreachable("Unknown builtin type letter!");
8001 case 'v':
8002 assert(HowLong == 0 && !Signed && !Unsigned &&
8003 "Bad modifiers used with 'v'!");
8004 Type = Context.VoidTy;
8005 break;
8006 case 'h':
8007 assert(HowLong == 0 && !Signed && !Unsigned &&
8008 "Bad modifiers used with 'h'!");
8009 Type = Context.HalfTy;
8010 break;
8011 case 'f':
8012 assert(HowLong == 0 && !Signed && !Unsigned &&
8013 "Bad modifiers used with 'f'!");
8014 Type = Context.FloatTy;
8015 break;
8016 case 'd':
8017 assert(HowLong < 2 && !Signed && !Unsigned &&
8018 "Bad modifiers used with 'd'!");
8019 if (HowLong)
8020 Type = Context.LongDoubleTy;
8021 else
8022 Type = Context.DoubleTy;
8023 break;
8024 case 's':
8025 assert(HowLong == 0 && "Bad modifiers used with 's'!");
8026 if (Unsigned)
8027 Type = Context.UnsignedShortTy;
8028 else
8029 Type = Context.ShortTy;
8030 break;
8031 case 'i':
8032 if (HowLong == 3)
8033 Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
8034 else if (HowLong == 2)
8035 Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
8036 else if (HowLong == 1)
8037 Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
8038 else
8039 Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
8040 break;
8041 case 'c':
8042 assert(HowLong == 0 && "Bad modifiers used with 'c'!");
8043 if (Signed)
8044 Type = Context.SignedCharTy;
8045 else if (Unsigned)
8046 Type = Context.UnsignedCharTy;
8047 else
8048 Type = Context.CharTy;
8049 break;
8050 case 'b': // boolean
8051 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
8052 Type = Context.BoolTy;
8053 break;
8054 case 'z': // size_t.
8055 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
8056 Type = Context.getSizeType();
8057 break;
8058 case 'F':
8059 Type = Context.getCFConstantStringType();
8060 break;
8061 case 'G':
8062 Type = Context.getObjCIdType();
8063 break;
8064 case 'H':
8065 Type = Context.getObjCSelType();
8066 break;
8067 case 'M':
8068 Type = Context.getObjCSuperType();
8069 break;
8070 case 'a':
8071 Type = Context.getBuiltinVaListType();
8072 assert(!Type.isNull() && "builtin va list type not initialized!");
8073 break;
8074 case 'A':
8075 // This is a "reference" to a va_list; however, what exactly
8076 // this means depends on how va_list is defined. There are two
8077 // different kinds of va_list: ones passed by value, and ones
8078 // passed by reference. An example of a by-value va_list is
8079 // x86, where va_list is a char*. An example of by-ref va_list
8080 // is x86-64, where va_list is a __va_list_tag[1]. For x86,
8081 // we want this argument to be a char*&; for x86-64, we want
8082 // it to be a __va_list_tag*.
8083 Type = Context.getBuiltinVaListType();
8084 assert(!Type.isNull() && "builtin va list type not initialized!");
8085 if (Type->isArrayType())
8086 Type = Context.getArrayDecayedType(Type);
8087 else
8088 Type = Context.getLValueReferenceType(Type);
8089 break;
8090 case 'V': {
8091 char *End;
8092 unsigned NumElements = strtoul(Str, &End, 10);
8093 assert(End != Str && "Missing vector size");
8094 Str = End;
8095
8096 QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
8097 RequiresICE, false);
8098 assert(!RequiresICE && "Can't require vector ICE");
8099
8100 // TODO: No way to make AltiVec vectors in builtins yet.
8101 Type = Context.getVectorType(ElementType, NumElements,
8102 VectorType::GenericVector);
8103 break;
8104 }
8105 case 'E': {
8106 char *End;
8107
8108 unsigned NumElements = strtoul(Str, &End, 10);
8109 assert(End != Str && "Missing vector size");
8110
8111 Str = End;
8112
8113 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
8114 false);
8115 Type = Context.getExtVectorType(ElementType, NumElements);
8116 break;
8117 }
8118 case 'X': {
8119 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
8120 false);
8121 assert(!RequiresICE && "Can't require complex ICE");
8122 Type = Context.getComplexType(ElementType);
8123 break;
8124 }
8125 case 'Y' : {
8126 Type = Context.getPointerDiffType();
8127 break;
8128 }
8129 case 'P':
8130 Type = Context.getFILEType();
8131 if (Type.isNull()) {
8132 Error = ASTContext::GE_Missing_stdio;
8133 return QualType();
8134 }
8135 break;
8136 case 'J':
8137 if (Signed)
8138 Type = Context.getsigjmp_bufType();
8139 else
8140 Type = Context.getjmp_bufType();
8141
8142 if (Type.isNull()) {
8143 Error = ASTContext::GE_Missing_setjmp;
8144 return QualType();
8145 }
8146 break;
8147 case 'K':
8148 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
8149 Type = Context.getucontext_tType();
8150
8151 if (Type.isNull()) {
8152 Error = ASTContext::GE_Missing_ucontext;
8153 return QualType();
8154 }
8155 break;
8156 case 'p':
8157 Type = Context.getProcessIDType();
8158 break;
8159 }
8160
8161 // If there are modifiers and if we're allowed to parse them, go for it.
8162 Done = !AllowTypeModifiers;
8163 while (!Done) {
8164 switch (char c = *Str++) {
8165 default: Done = true; --Str; break;
8166 case '*':
8167 case '&': {
8168 // Both pointers and references can have their pointee types
8169 // qualified with an address space.
8170 char *End;
8171 unsigned AddrSpace = strtoul(Str, &End, 10);
8172 if (End != Str && AddrSpace != 0) {
8173 Type = Context.getAddrSpaceQualType(Type, AddrSpace);
8174 Str = End;
8175 }
8176 if (c == '*')
8177 Type = Context.getPointerType(Type);
8178 else
8179 Type = Context.getLValueReferenceType(Type);
8180 break;
8181 }
8182 // FIXME: There's no way to have a built-in with an rvalue ref arg.
8183 case 'C':
8184 Type = Type.withConst();
8185 break;
8186 case 'D':
8187 Type = Context.getVolatileType(Type);
8188 break;
8189 case 'R':
8190 Type = Type.withRestrict();
8191 break;
8192 }
8193 }
8194
8195 assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
8196 "Integer constant 'I' type must be an integer");
8197
8198 return Type;
8199 }
8200
8201 /// GetBuiltinType - Return the type for the specified builtin.
GetBuiltinType(unsigned Id,GetBuiltinTypeError & Error,unsigned * IntegerConstantArgs) const8202 QualType ASTContext::GetBuiltinType(unsigned Id,
8203 GetBuiltinTypeError &Error,
8204 unsigned *IntegerConstantArgs) const {
8205 const char *TypeStr = BuiltinInfo.getTypeString(Id);
8206
8207 SmallVector<QualType, 8> ArgTypes;
8208
8209 bool RequiresICE = false;
8210 Error = GE_None;
8211 QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
8212 RequiresICE, true);
8213 if (Error != GE_None)
8214 return QualType();
8215
8216 assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
8217
8218 while (TypeStr[0] && TypeStr[0] != '.') {
8219 QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
8220 if (Error != GE_None)
8221 return QualType();
8222
8223 // If this argument is required to be an IntegerConstantExpression and the
8224 // caller cares, fill in the bitmask we return.
8225 if (RequiresICE && IntegerConstantArgs)
8226 *IntegerConstantArgs |= 1 << ArgTypes.size();
8227
8228 // Do array -> pointer decay. The builtin should use the decayed type.
8229 if (Ty->isArrayType())
8230 Ty = getArrayDecayedType(Ty);
8231
8232 ArgTypes.push_back(Ty);
8233 }
8234
8235 if (Id == Builtin::BI__GetExceptionInfo)
8236 return QualType();
8237
8238 assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
8239 "'.' should only occur at end of builtin type list!");
8240
8241 FunctionType::ExtInfo EI(CC_C);
8242 if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
8243
8244 bool Variadic = (TypeStr[0] == '.');
8245
8246 // We really shouldn't be making a no-proto type here, especially in C++.
8247 if (ArgTypes.empty() && Variadic)
8248 return getFunctionNoProtoType(ResType, EI);
8249
8250 FunctionProtoType::ExtProtoInfo EPI;
8251 EPI.ExtInfo = EI;
8252 EPI.Variadic = Variadic;
8253
8254 return getFunctionType(ResType, ArgTypes, EPI);
8255 }
8256
basicGVALinkageForFunction(const ASTContext & Context,const FunctionDecl * FD)8257 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
8258 const FunctionDecl *FD) {
8259 if (!FD->isExternallyVisible())
8260 return GVA_Internal;
8261
8262 GVALinkage External = GVA_StrongExternal;
8263 switch (FD->getTemplateSpecializationKind()) {
8264 case TSK_Undeclared:
8265 case TSK_ExplicitSpecialization:
8266 External = GVA_StrongExternal;
8267 break;
8268
8269 case TSK_ExplicitInstantiationDefinition:
8270 return GVA_StrongODR;
8271
8272 // C++11 [temp.explicit]p10:
8273 // [ Note: The intent is that an inline function that is the subject of
8274 // an explicit instantiation declaration will still be implicitly
8275 // instantiated when used so that the body can be considered for
8276 // inlining, but that no out-of-line copy of the inline function would be
8277 // generated in the translation unit. -- end note ]
8278 case TSK_ExplicitInstantiationDeclaration:
8279 return GVA_AvailableExternally;
8280
8281 case TSK_ImplicitInstantiation:
8282 External = GVA_DiscardableODR;
8283 break;
8284 }
8285
8286 if (!FD->isInlined())
8287 return External;
8288
8289 if ((!Context.getLangOpts().CPlusPlus &&
8290 !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
8291 !FD->hasAttr<DLLExportAttr>()) ||
8292 FD->hasAttr<GNUInlineAttr>()) {
8293 // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
8294
8295 // GNU or C99 inline semantics. Determine whether this symbol should be
8296 // externally visible.
8297 if (FD->isInlineDefinitionExternallyVisible())
8298 return External;
8299
8300 // C99 inline semantics, where the symbol is not externally visible.
8301 return GVA_AvailableExternally;
8302 }
8303
8304 // Functions specified with extern and inline in -fms-compatibility mode
8305 // forcibly get emitted. While the body of the function cannot be later
8306 // replaced, the function definition cannot be discarded.
8307 if (FD->isMSExternInline())
8308 return GVA_StrongODR;
8309
8310 return GVA_DiscardableODR;
8311 }
8312
adjustGVALinkageForAttributes(GVALinkage L,const Decl * D)8313 static GVALinkage adjustGVALinkageForAttributes(GVALinkage L, const Decl *D) {
8314 // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
8315 // dllexport/dllimport on inline functions.
8316 if (D->hasAttr<DLLImportAttr>()) {
8317 if (L == GVA_DiscardableODR || L == GVA_StrongODR)
8318 return GVA_AvailableExternally;
8319 } else if (D->hasAttr<DLLExportAttr>() || D->hasAttr<CUDAGlobalAttr>()) {
8320 if (L == GVA_DiscardableODR)
8321 return GVA_StrongODR;
8322 }
8323 return L;
8324 }
8325
GetGVALinkageForFunction(const FunctionDecl * FD) const8326 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
8327 return adjustGVALinkageForAttributes(basicGVALinkageForFunction(*this, FD),
8328 FD);
8329 }
8330
basicGVALinkageForVariable(const ASTContext & Context,const VarDecl * VD)8331 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
8332 const VarDecl *VD) {
8333 if (!VD->isExternallyVisible())
8334 return GVA_Internal;
8335
8336 if (VD->isStaticLocal()) {
8337 GVALinkage StaticLocalLinkage = GVA_DiscardableODR;
8338 const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
8339 while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
8340 LexicalContext = LexicalContext->getLexicalParent();
8341
8342 // Let the static local variable inherit its linkage from the nearest
8343 // enclosing function.
8344 if (LexicalContext)
8345 StaticLocalLinkage =
8346 Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
8347
8348 // GVA_StrongODR function linkage is stronger than what we need,
8349 // downgrade to GVA_DiscardableODR.
8350 // This allows us to discard the variable if we never end up needing it.
8351 return StaticLocalLinkage == GVA_StrongODR ? GVA_DiscardableODR
8352 : StaticLocalLinkage;
8353 }
8354
8355 // MSVC treats in-class initialized static data members as definitions.
8356 // By giving them non-strong linkage, out-of-line definitions won't
8357 // cause link errors.
8358 if (Context.isMSStaticDataMemberInlineDefinition(VD))
8359 return GVA_DiscardableODR;
8360
8361 switch (VD->getTemplateSpecializationKind()) {
8362 case TSK_Undeclared:
8363 return GVA_StrongExternal;
8364
8365 case TSK_ExplicitSpecialization:
8366 return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
8367 VD->isStaticDataMember()
8368 ? GVA_StrongODR
8369 : GVA_StrongExternal;
8370
8371 case TSK_ExplicitInstantiationDefinition:
8372 return GVA_StrongODR;
8373
8374 case TSK_ExplicitInstantiationDeclaration:
8375 return GVA_AvailableExternally;
8376
8377 case TSK_ImplicitInstantiation:
8378 return GVA_DiscardableODR;
8379 }
8380
8381 llvm_unreachable("Invalid Linkage!");
8382 }
8383
GetGVALinkageForVariable(const VarDecl * VD)8384 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
8385 return adjustGVALinkageForAttributes(basicGVALinkageForVariable(*this, VD),
8386 VD);
8387 }
8388
DeclMustBeEmitted(const Decl * D)8389 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
8390 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
8391 if (!VD->isFileVarDecl())
8392 return false;
8393 // Global named register variables (GNU extension) are never emitted.
8394 if (VD->getStorageClass() == SC_Register)
8395 return false;
8396 if (VD->getDescribedVarTemplate() ||
8397 isa<VarTemplatePartialSpecializationDecl>(VD))
8398 return false;
8399 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
8400 // We never need to emit an uninstantiated function template.
8401 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
8402 return false;
8403 } else if (isa<OMPThreadPrivateDecl>(D))
8404 return true;
8405 else
8406 return false;
8407
8408 // If this is a member of a class template, we do not need to emit it.
8409 if (D->getDeclContext()->isDependentContext())
8410 return false;
8411
8412 // Weak references don't produce any output by themselves.
8413 if (D->hasAttr<WeakRefAttr>())
8414 return false;
8415
8416 // Aliases and used decls are required.
8417 if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
8418 return true;
8419
8420 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
8421 // Forward declarations aren't required.
8422 if (!FD->doesThisDeclarationHaveABody())
8423 return FD->doesDeclarationForceExternallyVisibleDefinition();
8424
8425 // Constructors and destructors are required.
8426 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
8427 return true;
8428
8429 // The key function for a class is required. This rule only comes
8430 // into play when inline functions can be key functions, though.
8431 if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
8432 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
8433 const CXXRecordDecl *RD = MD->getParent();
8434 if (MD->isOutOfLine() && RD->isDynamicClass()) {
8435 const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
8436 if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
8437 return true;
8438 }
8439 }
8440 }
8441
8442 GVALinkage Linkage = GetGVALinkageForFunction(FD);
8443
8444 // static, static inline, always_inline, and extern inline functions can
8445 // always be deferred. Normal inline functions can be deferred in C99/C++.
8446 // Implicit template instantiations can also be deferred in C++.
8447 if (Linkage == GVA_Internal || Linkage == GVA_AvailableExternally ||
8448 Linkage == GVA_DiscardableODR)
8449 return false;
8450 return true;
8451 }
8452
8453 const VarDecl *VD = cast<VarDecl>(D);
8454 assert(VD->isFileVarDecl() && "Expected file scoped var");
8455
8456 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
8457 !isMSStaticDataMemberInlineDefinition(VD))
8458 return false;
8459
8460 // Variables that can be needed in other TUs are required.
8461 GVALinkage L = GetGVALinkageForVariable(VD);
8462 if (L != GVA_Internal && L != GVA_AvailableExternally &&
8463 L != GVA_DiscardableODR)
8464 return true;
8465
8466 // Variables that have destruction with side-effects are required.
8467 if (VD->getType().isDestructedType())
8468 return true;
8469
8470 // Variables that have initialization with side-effects are required.
8471 if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
8472 !VD->evaluateValue())
8473 return true;
8474
8475 return false;
8476 }
8477
getDefaultCallingConvention(bool IsVariadic,bool IsCXXMethod) const8478 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
8479 bool IsCXXMethod) const {
8480 // Pass through to the C++ ABI object
8481 if (IsCXXMethod)
8482 return ABI->getDefaultMethodCallConv(IsVariadic);
8483
8484 if (LangOpts.MRTD && !IsVariadic) return CC_X86StdCall;
8485
8486 return Target->getDefaultCallingConv(TargetInfo::CCMT_Unknown);
8487 }
8488
isNearlyEmpty(const CXXRecordDecl * RD) const8489 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
8490 // Pass through to the C++ ABI object
8491 return ABI->isNearlyEmpty(RD);
8492 }
8493
getVTableContext()8494 VTableContextBase *ASTContext::getVTableContext() {
8495 if (!VTContext.get()) {
8496 if (Target->getCXXABI().isMicrosoft())
8497 VTContext.reset(new MicrosoftVTableContext(*this));
8498 else
8499 VTContext.reset(new ItaniumVTableContext(*this));
8500 }
8501 return VTContext.get();
8502 }
8503
createMangleContext()8504 MangleContext *ASTContext::createMangleContext() {
8505 switch (Target->getCXXABI().getKind()) {
8506 case TargetCXXABI::GenericAArch64:
8507 case TargetCXXABI::GenericItanium:
8508 case TargetCXXABI::GenericARM:
8509 case TargetCXXABI::GenericMIPS:
8510 case TargetCXXABI::iOS:
8511 case TargetCXXABI::iOS64:
8512 case TargetCXXABI::WebAssembly:
8513 case TargetCXXABI::WatchOS:
8514 return ItaniumMangleContext::create(*this, getDiagnostics());
8515 case TargetCXXABI::Microsoft:
8516 return MicrosoftMangleContext::create(*this, getDiagnostics());
8517 }
8518 llvm_unreachable("Unsupported ABI");
8519 }
8520
~CXXABI()8521 CXXABI::~CXXABI() {}
8522
getSideTableAllocatedMemory() const8523 size_t ASTContext::getSideTableAllocatedMemory() const {
8524 return ASTRecordLayouts.getMemorySize() +
8525 llvm::capacity_in_bytes(ObjCLayouts) +
8526 llvm::capacity_in_bytes(KeyFunctions) +
8527 llvm::capacity_in_bytes(ObjCImpls) +
8528 llvm::capacity_in_bytes(BlockVarCopyInits) +
8529 llvm::capacity_in_bytes(DeclAttrs) +
8530 llvm::capacity_in_bytes(TemplateOrInstantiation) +
8531 llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
8532 llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
8533 llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
8534 llvm::capacity_in_bytes(OverriddenMethods) +
8535 llvm::capacity_in_bytes(Types) +
8536 llvm::capacity_in_bytes(VariableArrayTypes) +
8537 llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
8538 }
8539
8540 /// getIntTypeForBitwidth -
8541 /// sets integer QualTy according to specified details:
8542 /// bitwidth, signed/unsigned.
8543 /// Returns empty type if there is no appropriate target types.
getIntTypeForBitwidth(unsigned DestWidth,unsigned Signed) const8544 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
8545 unsigned Signed) const {
8546 TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
8547 CanQualType QualTy = getFromTargetType(Ty);
8548 if (!QualTy && DestWidth == 128)
8549 return Signed ? Int128Ty : UnsignedInt128Ty;
8550 return QualTy;
8551 }
8552
8553 /// getRealTypeForBitwidth -
8554 /// sets floating point QualTy according to specified bitwidth.
8555 /// Returns empty type if there is no appropriate target types.
getRealTypeForBitwidth(unsigned DestWidth) const8556 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
8557 TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
8558 switch (Ty) {
8559 case TargetInfo::Float:
8560 return FloatTy;
8561 case TargetInfo::Double:
8562 return DoubleTy;
8563 case TargetInfo::LongDouble:
8564 return LongDoubleTy;
8565 case TargetInfo::NoFloat:
8566 return QualType();
8567 }
8568
8569 llvm_unreachable("Unhandled TargetInfo::RealType value");
8570 }
8571
setManglingNumber(const NamedDecl * ND,unsigned Number)8572 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
8573 if (Number > 1)
8574 MangleNumbers[ND] = Number;
8575 }
8576
getManglingNumber(const NamedDecl * ND) const8577 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
8578 llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I =
8579 MangleNumbers.find(ND);
8580 return I != MangleNumbers.end() ? I->second : 1;
8581 }
8582
setStaticLocalNumber(const VarDecl * VD,unsigned Number)8583 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
8584 if (Number > 1)
8585 StaticLocalNumbers[VD] = Number;
8586 }
8587
getStaticLocalNumber(const VarDecl * VD) const8588 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
8589 llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I =
8590 StaticLocalNumbers.find(VD);
8591 return I != StaticLocalNumbers.end() ? I->second : 1;
8592 }
8593
8594 MangleNumberingContext &
getManglingNumberContext(const DeclContext * DC)8595 ASTContext::getManglingNumberContext(const DeclContext *DC) {
8596 assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
8597 MangleNumberingContext *&MCtx = MangleNumberingContexts[DC];
8598 if (!MCtx)
8599 MCtx = createMangleNumberingContext();
8600 return *MCtx;
8601 }
8602
createMangleNumberingContext() const8603 MangleNumberingContext *ASTContext::createMangleNumberingContext() const {
8604 return ABI->createMangleNumberingContext();
8605 }
8606
8607 const CXXConstructorDecl *
getCopyConstructorForExceptionObject(CXXRecordDecl * RD)8608 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
8609 return ABI->getCopyConstructorForExceptionObject(
8610 cast<CXXRecordDecl>(RD->getFirstDecl()));
8611 }
8612
addCopyConstructorForExceptionObject(CXXRecordDecl * RD,CXXConstructorDecl * CD)8613 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
8614 CXXConstructorDecl *CD) {
8615 return ABI->addCopyConstructorForExceptionObject(
8616 cast<CXXRecordDecl>(RD->getFirstDecl()),
8617 cast<CXXConstructorDecl>(CD->getFirstDecl()));
8618 }
8619
addDefaultArgExprForConstructor(const CXXConstructorDecl * CD,unsigned ParmIdx,Expr * DAE)8620 void ASTContext::addDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
8621 unsigned ParmIdx, Expr *DAE) {
8622 ABI->addDefaultArgExprForConstructor(
8623 cast<CXXConstructorDecl>(CD->getFirstDecl()), ParmIdx, DAE);
8624 }
8625
getDefaultArgExprForConstructor(const CXXConstructorDecl * CD,unsigned ParmIdx)8626 Expr *ASTContext::getDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
8627 unsigned ParmIdx) {
8628 return ABI->getDefaultArgExprForConstructor(
8629 cast<CXXConstructorDecl>(CD->getFirstDecl()), ParmIdx);
8630 }
8631
addTypedefNameForUnnamedTagDecl(TagDecl * TD,TypedefNameDecl * DD)8632 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
8633 TypedefNameDecl *DD) {
8634 return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
8635 }
8636
8637 TypedefNameDecl *
getTypedefNameForUnnamedTagDecl(const TagDecl * TD)8638 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
8639 return ABI->getTypedefNameForUnnamedTagDecl(TD);
8640 }
8641
addDeclaratorForUnnamedTagDecl(TagDecl * TD,DeclaratorDecl * DD)8642 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
8643 DeclaratorDecl *DD) {
8644 return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
8645 }
8646
getDeclaratorForUnnamedTagDecl(const TagDecl * TD)8647 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
8648 return ABI->getDeclaratorForUnnamedTagDecl(TD);
8649 }
8650
setParameterIndex(const ParmVarDecl * D,unsigned int index)8651 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
8652 ParamIndices[D] = index;
8653 }
8654
getParameterIndex(const ParmVarDecl * D) const8655 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
8656 ParameterIndexTable::const_iterator I = ParamIndices.find(D);
8657 assert(I != ParamIndices.end() &&
8658 "ParmIndices lacks entry set by ParmVarDecl");
8659 return I->second;
8660 }
8661
8662 APValue *
getMaterializedTemporaryValue(const MaterializeTemporaryExpr * E,bool MayCreate)8663 ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
8664 bool MayCreate) {
8665 assert(E && E->getStorageDuration() == SD_Static &&
8666 "don't need to cache the computed value for this temporary");
8667 if (MayCreate) {
8668 APValue *&MTVI = MaterializedTemporaryValues[E];
8669 if (!MTVI)
8670 MTVI = new (*this) APValue;
8671 return MTVI;
8672 }
8673
8674 return MaterializedTemporaryValues.lookup(E);
8675 }
8676
AtomicUsesUnsupportedLibcall(const AtomicExpr * E) const8677 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
8678 const llvm::Triple &T = getTargetInfo().getTriple();
8679 if (!T.isOSDarwin())
8680 return false;
8681
8682 if (!(T.isiOS() && T.isOSVersionLT(7)) &&
8683 !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
8684 return false;
8685
8686 QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
8687 CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
8688 uint64_t Size = sizeChars.getQuantity();
8689 CharUnits alignChars = getTypeAlignInChars(AtomicTy);
8690 unsigned Align = alignChars.getQuantity();
8691 unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
8692 return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
8693 }
8694
8695 namespace {
8696
getSingleDynTypedNodeFromParentMap(ASTContext::ParentMapPointers::mapped_type U)8697 ast_type_traits::DynTypedNode getSingleDynTypedNodeFromParentMap(
8698 ASTContext::ParentMapPointers::mapped_type U) {
8699 if (const auto *D = U.dyn_cast<const Decl *>())
8700 return ast_type_traits::DynTypedNode::create(*D);
8701 if (const auto *S = U.dyn_cast<const Stmt *>())
8702 return ast_type_traits::DynTypedNode::create(*S);
8703 return *U.get<ast_type_traits::DynTypedNode *>();
8704 }
8705
8706 /// Template specializations to abstract away from pointers and TypeLocs.
8707 /// @{
8708 template <typename T>
createDynTypedNode(const T & Node)8709 ast_type_traits::DynTypedNode createDynTypedNode(const T &Node) {
8710 return ast_type_traits::DynTypedNode::create(*Node);
8711 }
8712 template <>
createDynTypedNode(const TypeLoc & Node)8713 ast_type_traits::DynTypedNode createDynTypedNode(const TypeLoc &Node) {
8714 return ast_type_traits::DynTypedNode::create(Node);
8715 }
8716 template <>
8717 ast_type_traits::DynTypedNode
createDynTypedNode(const NestedNameSpecifierLoc & Node)8718 createDynTypedNode(const NestedNameSpecifierLoc &Node) {
8719 return ast_type_traits::DynTypedNode::create(Node);
8720 }
8721 /// @}
8722
8723 /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
8724 /// parents as defined by the \c RecursiveASTVisitor.
8725 ///
8726 /// Note that the relationship described here is purely in terms of AST
8727 /// traversal - there are other relationships (for example declaration context)
8728 /// in the AST that are better modeled by special matchers.
8729 ///
8730 /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
8731 class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
8732 public:
8733 /// \brief Builds and returns the translation unit's parent map.
8734 ///
8735 /// The caller takes ownership of the returned \c ParentMap.
8736 static std::pair<ASTContext::ParentMapPointers *,
8737 ASTContext::ParentMapOtherNodes *>
buildMap(TranslationUnitDecl & TU)8738 buildMap(TranslationUnitDecl &TU) {
8739 ParentMapASTVisitor Visitor(new ASTContext::ParentMapPointers,
8740 new ASTContext::ParentMapOtherNodes);
8741 Visitor.TraverseDecl(&TU);
8742 return std::make_pair(Visitor.Parents, Visitor.OtherParents);
8743 }
8744
8745 private:
8746 typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
8747
ParentMapASTVisitor(ASTContext::ParentMapPointers * Parents,ASTContext::ParentMapOtherNodes * OtherParents)8748 ParentMapASTVisitor(ASTContext::ParentMapPointers *Parents,
8749 ASTContext::ParentMapOtherNodes *OtherParents)
8750 : Parents(Parents), OtherParents(OtherParents) {}
8751
shouldVisitTemplateInstantiations() const8752 bool shouldVisitTemplateInstantiations() const {
8753 return true;
8754 }
shouldVisitImplicitCode() const8755 bool shouldVisitImplicitCode() const {
8756 return true;
8757 }
8758
8759 template <typename T, typename MapNodeTy, typename BaseTraverseFn,
8760 typename MapTy>
TraverseNode(T Node,MapNodeTy MapNode,BaseTraverseFn BaseTraverse,MapTy * Parents)8761 bool TraverseNode(T Node, MapNodeTy MapNode,
8762 BaseTraverseFn BaseTraverse, MapTy *Parents) {
8763 if (!Node)
8764 return true;
8765 if (ParentStack.size() > 0) {
8766 // FIXME: Currently we add the same parent multiple times, but only
8767 // when no memoization data is available for the type.
8768 // For example when we visit all subexpressions of template
8769 // instantiations; this is suboptimal, but benign: the only way to
8770 // visit those is with hasAncestor / hasParent, and those do not create
8771 // new matches.
8772 // The plan is to enable DynTypedNode to be storable in a map or hash
8773 // map. The main problem there is to implement hash functions /
8774 // comparison operators for all types that DynTypedNode supports that
8775 // do not have pointer identity.
8776 auto &NodeOrVector = (*Parents)[MapNode];
8777 if (NodeOrVector.isNull()) {
8778 if (const auto *D = ParentStack.back().get<Decl>())
8779 NodeOrVector = D;
8780 else if (const auto *S = ParentStack.back().get<Stmt>())
8781 NodeOrVector = S;
8782 else
8783 NodeOrVector =
8784 new ast_type_traits::DynTypedNode(ParentStack.back());
8785 } else {
8786 if (!NodeOrVector.template is<ASTContext::ParentVector *>()) {
8787 auto *Vector = new ASTContext::ParentVector(
8788 1, getSingleDynTypedNodeFromParentMap(NodeOrVector));
8789 if (auto *Node =
8790 NodeOrVector
8791 .template dyn_cast<ast_type_traits::DynTypedNode *>())
8792 delete Node;
8793 NodeOrVector = Vector;
8794 }
8795
8796 auto *Vector =
8797 NodeOrVector.template get<ASTContext::ParentVector *>();
8798 // Skip duplicates for types that have memoization data.
8799 // We must check that the type has memoization data before calling
8800 // std::find() because DynTypedNode::operator== can't compare all
8801 // types.
8802 bool Found = ParentStack.back().getMemoizationData() &&
8803 std::find(Vector->begin(), Vector->end(),
8804 ParentStack.back()) != Vector->end();
8805 if (!Found)
8806 Vector->push_back(ParentStack.back());
8807 }
8808 }
8809 ParentStack.push_back(createDynTypedNode(Node));
8810 bool Result = BaseTraverse();
8811 ParentStack.pop_back();
8812 return Result;
8813 }
8814
TraverseDecl(Decl * DeclNode)8815 bool TraverseDecl(Decl *DeclNode) {
8816 return TraverseNode(DeclNode, DeclNode,
8817 [&] { return VisitorBase::TraverseDecl(DeclNode); },
8818 Parents);
8819 }
8820
TraverseStmt(Stmt * StmtNode)8821 bool TraverseStmt(Stmt *StmtNode) {
8822 return TraverseNode(StmtNode, StmtNode,
8823 [&] { return VisitorBase::TraverseStmt(StmtNode); },
8824 Parents);
8825 }
8826
TraverseTypeLoc(TypeLoc TypeLocNode)8827 bool TraverseTypeLoc(TypeLoc TypeLocNode) {
8828 return TraverseNode(
8829 TypeLocNode, ast_type_traits::DynTypedNode::create(TypeLocNode),
8830 [&] { return VisitorBase::TraverseTypeLoc(TypeLocNode); },
8831 OtherParents);
8832 }
8833
TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNSLocNode)8834 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNSLocNode) {
8835 return TraverseNode(
8836 NNSLocNode, ast_type_traits::DynTypedNode::create(NNSLocNode),
8837 [&] {
8838 return VisitorBase::TraverseNestedNameSpecifierLoc(NNSLocNode);
8839 },
8840 OtherParents);
8841 }
8842
8843 ASTContext::ParentMapPointers *Parents;
8844 ASTContext::ParentMapOtherNodes *OtherParents;
8845 llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
8846
8847 friend class RecursiveASTVisitor<ParentMapASTVisitor>;
8848 };
8849
8850 } // anonymous namespace
8851
8852 template <typename NodeTy, typename MapTy>
getDynNodeFromMap(const NodeTy & Node,const MapTy & Map)8853 static ASTContext::DynTypedNodeList getDynNodeFromMap(const NodeTy &Node,
8854 const MapTy &Map) {
8855 auto I = Map.find(Node);
8856 if (I == Map.end()) {
8857 return llvm::ArrayRef<ast_type_traits::DynTypedNode>();
8858 }
8859 if (auto *V = I->second.template dyn_cast<ASTContext::ParentVector *>()) {
8860 return llvm::makeArrayRef(*V);
8861 }
8862 return getSingleDynTypedNodeFromParentMap(I->second);
8863 }
8864
8865 ASTContext::DynTypedNodeList
getParents(const ast_type_traits::DynTypedNode & Node)8866 ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
8867 if (!PointerParents) {
8868 // We always need to run over the whole translation unit, as
8869 // hasAncestor can escape any subtree.
8870 auto Maps = ParentMapASTVisitor::buildMap(*getTranslationUnitDecl());
8871 PointerParents.reset(Maps.first);
8872 OtherParents.reset(Maps.second);
8873 }
8874 if (Node.getNodeKind().hasPointerIdentity())
8875 return getDynNodeFromMap(Node.getMemoizationData(), *PointerParents);
8876 return getDynNodeFromMap(Node, *OtherParents);
8877 }
8878
8879 bool
ObjCMethodsAreEqual(const ObjCMethodDecl * MethodDecl,const ObjCMethodDecl * MethodImpl)8880 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
8881 const ObjCMethodDecl *MethodImpl) {
8882 // No point trying to match an unavailable/deprecated mothod.
8883 if (MethodDecl->hasAttr<UnavailableAttr>()
8884 || MethodDecl->hasAttr<DeprecatedAttr>())
8885 return false;
8886 if (MethodDecl->getObjCDeclQualifier() !=
8887 MethodImpl->getObjCDeclQualifier())
8888 return false;
8889 if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
8890 return false;
8891
8892 if (MethodDecl->param_size() != MethodImpl->param_size())
8893 return false;
8894
8895 for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
8896 IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
8897 EF = MethodDecl->param_end();
8898 IM != EM && IF != EF; ++IM, ++IF) {
8899 const ParmVarDecl *DeclVar = (*IF);
8900 const ParmVarDecl *ImplVar = (*IM);
8901 if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
8902 return false;
8903 if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
8904 return false;
8905 }
8906 return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
8907
8908 }
8909
8910 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
8911 // doesn't include ASTContext.h
8912 template
8913 clang::LazyGenerationalUpdatePtr<
8914 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
8915 clang::LazyGenerationalUpdatePtr<
8916 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
8917 const clang::ASTContext &Ctx, Decl *Value);
8918