1 //*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "precomp.hpp"
44 #include <limits>
45 
46 using namespace cv;
47 
solveQuadratic(_Tp a,_Tp b,_Tp c,_Tp & x1,_Tp & x2)48 template<typename _Tp> static int solveQuadratic(_Tp a, _Tp b, _Tp c, _Tp& x1, _Tp& x2)
49 {
50     if( a == 0 )
51     {
52         if( b == 0 )
53         {
54             x1 = x2 = 0;
55             return c == 0;
56         }
57         x1 = x2 = -c/b;
58         return 1;
59     }
60 
61     _Tp d = b*b - 4*a*c;
62     if( d < 0 )
63     {
64         x1 = x2 = 0;
65         return 0;
66     }
67     if( d > 0 )
68     {
69         d = std::sqrt(d);
70         double s = 1/(2*a);
71         x1 = (-b - d)*s;
72         x2 = (-b + d)*s;
73         if( x1 > x2 )
74             std::swap(x1, x2);
75         return 2;
76     }
77     x1 = x2 = -b/(2*a);
78     return 1;
79 }
80 
81 //for android ndk
82 #undef _S
applyHomography(const Mat_<double> & H,const Point2f & pt)83 static inline Point2f applyHomography( const Mat_<double>& H, const Point2f& pt )
84 {
85     double z = H(2,0)*pt.x + H(2,1)*pt.y + H(2,2);
86     if( z )
87     {
88         double w = 1./z;
89         return Point2f( (float)((H(0,0)*pt.x + H(0,1)*pt.y + H(0,2))*w), (float)((H(1,0)*pt.x + H(1,1)*pt.y + H(1,2))*w) );
90     }
91     return Point2f( std::numeric_limits<float>::max(), std::numeric_limits<float>::max() );
92 }
93 
linearizeHomographyAt(const Mat_<double> & H,const Point2f & pt,Mat_<double> & A)94 static inline void linearizeHomographyAt( const Mat_<double>& H, const Point2f& pt, Mat_<double>& A )
95 {
96     A.create(2,2);
97     double p1 = H(0,0)*pt.x + H(0,1)*pt.y + H(0,2),
98            p2 = H(1,0)*pt.x + H(1,1)*pt.y + H(1,2),
99            p3 = H(2,0)*pt.x + H(2,1)*pt.y + H(2,2),
100            p3_2 = p3*p3;
101     if( p3 )
102     {
103         A(0,0) = H(0,0)/p3 - p1*H(2,0)/p3_2; // fxdx
104         A(0,1) = H(0,1)/p3 - p1*H(2,1)/p3_2; // fxdy
105 
106         A(1,0) = H(1,0)/p3 - p2*H(2,0)/p3_2; // fydx
107         A(1,1) = H(1,1)/p3 - p2*H(2,1)/p3_2; // fydx
108     }
109     else
110         A.setTo(Scalar::all(std::numeric_limits<double>::max()));
111 }
112 
113 class EllipticKeyPoint
114 {
115 public:
116     EllipticKeyPoint();
117     EllipticKeyPoint( const Point2f& _center, const Scalar& _ellipse );
118 
119     static void convert( const std::vector<KeyPoint>& src, std::vector<EllipticKeyPoint>& dst );
120     static void convert( const std::vector<EllipticKeyPoint>& src, std::vector<KeyPoint>& dst );
121 
122     static Mat_<double> getSecondMomentsMatrix( const Scalar& _ellipse );
123     Mat_<double> getSecondMomentsMatrix() const;
124 
125     void calcProjection( const Mat_<double>& H, EllipticKeyPoint& projection ) const;
126     static void calcProjection( const std::vector<EllipticKeyPoint>& src, const Mat_<double>& H, std::vector<EllipticKeyPoint>& dst );
127 
128     Point2f center;
129     Scalar ellipse; // 3 elements a, b, c: ax^2+2bxy+cy^2=1
130     Size_<float> axes; // half length of ellipse axes
131     Size_<float> boundingBox; // half sizes of bounding box which sides are parallel to the coordinate axes
132 };
133 
EllipticKeyPoint()134 EllipticKeyPoint::EllipticKeyPoint()
135 {
136     *this = EllipticKeyPoint(Point2f(0,0), Scalar(1, 0, 1) );
137 }
138 
EllipticKeyPoint(const Point2f & _center,const Scalar & _ellipse)139 EllipticKeyPoint::EllipticKeyPoint( const Point2f& _center, const Scalar& _ellipse )
140 {
141     center = _center;
142     ellipse = _ellipse;
143 
144     double a = ellipse[0], b = ellipse[1], c = ellipse[2];
145     double ac_b2 = a*c - b*b;
146     double x1, x2;
147     solveQuadratic(1., -(a+c), ac_b2, x1, x2);
148     axes.width = (float)(1/sqrt(x1));
149     axes.height = (float)(1/sqrt(x2));
150 
151     boundingBox.width = (float)sqrt(ellipse[2]/ac_b2);
152     boundingBox.height = (float)sqrt(ellipse[0]/ac_b2);
153 }
154 
getSecondMomentsMatrix(const Scalar & _ellipse)155 Mat_<double> EllipticKeyPoint::getSecondMomentsMatrix( const Scalar& _ellipse )
156 {
157     Mat_<double> M(2, 2);
158     M(0,0) = _ellipse[0];
159     M(1,0) = M(0,1) = _ellipse[1];
160     M(1,1) = _ellipse[2];
161     return M;
162 }
163 
getSecondMomentsMatrix() const164 Mat_<double> EllipticKeyPoint::getSecondMomentsMatrix() const
165 {
166     return getSecondMomentsMatrix(ellipse);
167 }
168 
calcProjection(const Mat_<double> & H,EllipticKeyPoint & projection) const169 void EllipticKeyPoint::calcProjection( const Mat_<double>& H, EllipticKeyPoint& projection ) const
170 {
171     Point2f dstCenter = applyHomography(H, center);
172 
173     Mat_<double> invM; invert(getSecondMomentsMatrix(), invM);
174     Mat_<double> Aff; linearizeHomographyAt(H, center, Aff);
175     Mat_<double> dstM; invert(Aff*invM*Aff.t(), dstM);
176 
177     projection = EllipticKeyPoint( dstCenter, Scalar(dstM(0,0), dstM(0,1), dstM(1,1)) );
178 }
179 
convert(const std::vector<KeyPoint> & src,std::vector<EllipticKeyPoint> & dst)180 void EllipticKeyPoint::convert( const std::vector<KeyPoint>& src, std::vector<EllipticKeyPoint>& dst )
181 {
182     if( !src.empty() )
183     {
184         dst.resize(src.size());
185         for( size_t i = 0; i < src.size(); i++ )
186         {
187             float rad = src[i].size/2;
188             CV_Assert( rad );
189             float fac = 1.f/(rad*rad);
190             dst[i] = EllipticKeyPoint( src[i].pt, Scalar(fac, 0, fac) );
191         }
192     }
193 }
194 
convert(const std::vector<EllipticKeyPoint> & src,std::vector<KeyPoint> & dst)195 void EllipticKeyPoint::convert( const std::vector<EllipticKeyPoint>& src, std::vector<KeyPoint>& dst )
196 {
197     if( !src.empty() )
198     {
199         dst.resize(src.size());
200         for( size_t i = 0; i < src.size(); i++ )
201         {
202             Size_<float> axes = src[i].axes;
203             float rad = sqrt(axes.height*axes.width);
204             dst[i] = KeyPoint(src[i].center, 2*rad );
205         }
206     }
207 }
208 
calcProjection(const std::vector<EllipticKeyPoint> & src,const Mat_<double> & H,std::vector<EllipticKeyPoint> & dst)209 void EllipticKeyPoint::calcProjection( const std::vector<EllipticKeyPoint>& src, const Mat_<double>& H, std::vector<EllipticKeyPoint>& dst )
210 {
211     if( !src.empty() )
212     {
213         CV_Assert( !H.empty() && H.cols == 3 && H.rows == 3);
214         dst.resize(src.size());
215         std::vector<EllipticKeyPoint>::const_iterator srcIt = src.begin();
216         std::vector<EllipticKeyPoint>::iterator       dstIt = dst.begin();
217         for( ; srcIt != src.end(); ++srcIt, ++dstIt )
218             srcIt->calcProjection(H, *dstIt);
219     }
220 }
221 
filterEllipticKeyPointsByImageSize(std::vector<EllipticKeyPoint> & keypoints,const Size & imgSize)222 static void filterEllipticKeyPointsByImageSize( std::vector<EllipticKeyPoint>& keypoints, const Size& imgSize )
223 {
224     if( !keypoints.empty() )
225     {
226         std::vector<EllipticKeyPoint> filtered;
227         filtered.reserve(keypoints.size());
228         std::vector<EllipticKeyPoint>::const_iterator it = keypoints.begin();
229         for( int i = 0; it != keypoints.end(); ++it, i++ )
230         {
231             if( it->center.x + it->boundingBox.width < imgSize.width &&
232                 it->center.x - it->boundingBox.width > 0 &&
233                 it->center.y + it->boundingBox.height < imgSize.height &&
234                 it->center.y - it->boundingBox.height > 0 )
235                 filtered.push_back(*it);
236         }
237         keypoints.assign(filtered.begin(), filtered.end());
238     }
239 }
240 
241 struct IntersectAreaCounter
242 {
IntersectAreaCounterIntersectAreaCounter243     IntersectAreaCounter( float _dr, int _minx,
244                           int _miny, int _maxy,
245                           const Point2f& _diff,
246                           const Scalar& _ellipse1, const Scalar& _ellipse2 ) :
247                dr(_dr), bua(0), bna(0), minx(_minx), miny(_miny), maxy(_maxy),
248                diff(_diff), ellipse1(_ellipse1), ellipse2(_ellipse2) {}
IntersectAreaCounterIntersectAreaCounter249     IntersectAreaCounter( const IntersectAreaCounter& counter, Split )
250     {
251         *this = counter;
252         bua = 0;
253         bna = 0;
254     }
255 
operator ()IntersectAreaCounter256     void operator()( const BlockedRange& range )
257     {
258         CV_Assert( miny < maxy );
259         CV_Assert( dr > FLT_EPSILON );
260 
261         int temp_bua = bua, temp_bna = bna;
262         for( int i = range.begin(); i != range.end(); i++ )
263         {
264             float rx1 = minx + i*dr;
265             float rx2 = rx1 - diff.x;
266             for( float ry1 = (float)miny; ry1 <= (float)maxy; ry1 += dr )
267             {
268                 float ry2 = ry1 - diff.y;
269                 //compute the distance from the ellipse center
270                 float e1 = (float)(ellipse1[0]*rx1*rx1 + 2*ellipse1[1]*rx1*ry1 + ellipse1[2]*ry1*ry1);
271                 float e2 = (float)(ellipse2[0]*rx2*rx2 + 2*ellipse2[1]*rx2*ry2 + ellipse2[2]*ry2*ry2);
272                 //compute the area
273                 if( e1<1 && e2<1 ) temp_bna++;
274                 if( e1<1 || e2<1 ) temp_bua++;
275             }
276         }
277         bua = temp_bua;
278         bna = temp_bna;
279     }
280 
joinIntersectAreaCounter281     void join( IntersectAreaCounter& ac )
282     {
283         bua += ac.bua;
284         bna += ac.bna;
285     }
286 
287     float dr;
288     int bua, bna;
289 
290     int minx;
291     int miny, maxy;
292 
293     Point2f diff;
294     Scalar ellipse1, ellipse2;
295 
296 };
297 
298 struct SIdx
299 {
SIdxSIdx300     SIdx() : S(-1), i1(-1), i2(-1) {}
SIdxSIdx301     SIdx(float _S, int _i1, int _i2) : S(_S), i1(_i1), i2(_i2) {}
302     float S;
303     int i1;
304     int i2;
305 
operator <SIdx306     bool operator<(const SIdx& v) const { return S > v.S; }
307 
308     struct UsedFinder
309     {
UsedFinderSIdx::UsedFinder310         UsedFinder(const SIdx& _used) : used(_used) {}
311         const SIdx& used;
operator ()SIdx::UsedFinder312         bool operator()(const SIdx& v) const { return  (v.i1 == used.i1 || v.i2 == used.i2); }
313         UsedFinder& operator=(const UsedFinder&);
314     };
315 };
316 
computeOneToOneMatchedOverlaps(const std::vector<EllipticKeyPoint> & keypoints1,const std::vector<EllipticKeyPoint> & keypoints2t,bool commonPart,std::vector<SIdx> & overlaps,float minOverlap)317 static void computeOneToOneMatchedOverlaps( const std::vector<EllipticKeyPoint>& keypoints1, const std::vector<EllipticKeyPoint>& keypoints2t,
318                                             bool commonPart, std::vector<SIdx>& overlaps, float minOverlap )
319 {
320     CV_Assert( minOverlap >= 0.f );
321     overlaps.clear();
322     if( keypoints1.empty() || keypoints2t.empty() )
323         return;
324 
325     overlaps.clear();
326     overlaps.reserve(cvRound(keypoints1.size() * keypoints2t.size() * 0.01));
327 
328     for( size_t i1 = 0; i1 < keypoints1.size(); i1++ )
329     {
330         EllipticKeyPoint kp1 = keypoints1[i1];
331         float maxDist = sqrt(kp1.axes.width*kp1.axes.height),
332               fac = 30.f/maxDist;
333         if( !commonPart )
334             fac=3;
335 
336         maxDist = maxDist*4;
337         fac = 1.f/(fac*fac);
338 
339         EllipticKeyPoint keypoint1a = EllipticKeyPoint( kp1.center, Scalar(fac*kp1.ellipse[0], fac*kp1.ellipse[1], fac*kp1.ellipse[2]) );
340 
341         for( size_t i2 = 0; i2 < keypoints2t.size(); i2++ )
342         {
343             EllipticKeyPoint kp2 = keypoints2t[i2];
344             Point2f diff = kp2.center - kp1.center;
345 
346             if( norm(diff) < maxDist )
347             {
348                 EllipticKeyPoint keypoint2a = EllipticKeyPoint( kp2.center, Scalar(fac*kp2.ellipse[0], fac*kp2.ellipse[1], fac*kp2.ellipse[2]) );
349                 //find the largest eigenvalue
350                 int maxx =  (int)ceil(( keypoint1a.boundingBox.width > (diff.x+keypoint2a.boundingBox.width)) ?
351                                      keypoint1a.boundingBox.width : (diff.x+keypoint2a.boundingBox.width));
352                 int minx = (int)floor((-keypoint1a.boundingBox.width < (diff.x-keypoint2a.boundingBox.width)) ?
353                                     -keypoint1a.boundingBox.width : (diff.x-keypoint2a.boundingBox.width));
354 
355                 int maxy =  (int)ceil(( keypoint1a.boundingBox.height > (diff.y+keypoint2a.boundingBox.height)) ?
356                                      keypoint1a.boundingBox.height : (diff.y+keypoint2a.boundingBox.height));
357                 int miny = (int)floor((-keypoint1a.boundingBox.height < (diff.y-keypoint2a.boundingBox.height)) ?
358                                     -keypoint1a.boundingBox.height : (diff.y-keypoint2a.boundingBox.height));
359                 int mina = (maxx-minx) < (maxy-miny) ? (maxx-minx) : (maxy-miny) ;
360 
361                 //compute the area
362                 float dr = (float)mina/50.f;
363                 int N = (int)floor((float)(maxx - minx) / dr);
364                 IntersectAreaCounter ac( dr, minx, miny, maxy, diff, keypoint1a.ellipse, keypoint2a.ellipse );
365                 parallel_reduce( BlockedRange(0, N+1), ac );
366                 if( ac.bna > 0 )
367                 {
368                     float ov =  (float)ac.bna / (float)ac.bua;
369                     if( ov >= minOverlap )
370                         overlaps.push_back(SIdx(ov, (int)i1, (int)i2));
371                 }
372             }
373         }
374     }
375 
376     std::sort( overlaps.begin(), overlaps.end() );
377 
378     typedef std::vector<SIdx>::iterator It;
379 
380     It pos = overlaps.begin();
381     It end = overlaps.end();
382 
383     while(pos != end)
384     {
385         It prev = pos++;
386         end = std::remove_if(pos, end, SIdx::UsedFinder(*prev));
387     }
388     overlaps.erase(pos, overlaps.end());
389 }
390 
calculateRepeatability(const Mat & img1,const Mat & img2,const Mat & H1to2,const std::vector<KeyPoint> & _keypoints1,const std::vector<KeyPoint> & _keypoints2,float & repeatability,int & correspondencesCount,Mat * thresholdedOverlapMask=0)391 static void calculateRepeatability( const Mat& img1, const Mat& img2, const Mat& H1to2,
392                                     const std::vector<KeyPoint>& _keypoints1, const std::vector<KeyPoint>& _keypoints2,
393                                     float& repeatability, int& correspondencesCount,
394                                     Mat* thresholdedOverlapMask=0  )
395 {
396     std::vector<EllipticKeyPoint> keypoints1, keypoints2, keypoints1t, keypoints2t;
397     EllipticKeyPoint::convert( _keypoints1, keypoints1 );
398     EllipticKeyPoint::convert( _keypoints2, keypoints2 );
399 
400     // calculate projections of key points
401     EllipticKeyPoint::calcProjection( keypoints1, H1to2, keypoints1t );
402     Mat H2to1; invert(H1to2, H2to1);
403     EllipticKeyPoint::calcProjection( keypoints2, H2to1, keypoints2t );
404 
405     float overlapThreshold;
406     bool ifEvaluateDetectors = thresholdedOverlapMask == 0;
407     if( ifEvaluateDetectors )
408     {
409         overlapThreshold = 1.f - 0.4f;
410 
411         // remove key points from outside of the common image part
412         Size sz1 = img1.size(), sz2 = img2.size();
413         filterEllipticKeyPointsByImageSize( keypoints1, sz1 );
414         filterEllipticKeyPointsByImageSize( keypoints1t, sz2 );
415         filterEllipticKeyPointsByImageSize( keypoints2, sz2 );
416         filterEllipticKeyPointsByImageSize( keypoints2t, sz1 );
417     }
418     else
419     {
420         overlapThreshold = 1.f - 0.5f;
421 
422         thresholdedOverlapMask->create( (int)keypoints1.size(), (int)keypoints2t.size(), CV_8UC1 );
423         thresholdedOverlapMask->setTo( Scalar::all(0) );
424     }
425     size_t size1 = keypoints1.size(), size2 = keypoints2t.size();
426     size_t minCount = MIN( size1, size2 );
427 
428     // calculate overlap errors
429     std::vector<SIdx> overlaps;
430     computeOneToOneMatchedOverlaps( keypoints1, keypoints2t, ifEvaluateDetectors, overlaps, overlapThreshold/*min overlap*/ );
431 
432     correspondencesCount = -1;
433     repeatability = -1.f;
434     if( overlaps.empty() )
435         return;
436 
437     if( ifEvaluateDetectors )
438     {
439         // regions one-to-one matching
440         correspondencesCount = (int)overlaps.size();
441         repeatability = minCount ? (float)correspondencesCount / minCount : -1;
442     }
443     else
444     {
445         for( size_t i = 0; i < overlaps.size(); i++ )
446         {
447             int y = overlaps[i].i1;
448             int x = overlaps[i].i2;
449             thresholdedOverlapMask->at<uchar>(y,x) = 1;
450         }
451     }
452 }
453 
evaluateFeatureDetector(const Mat & img1,const Mat & img2,const Mat & H1to2,std::vector<KeyPoint> * _keypoints1,std::vector<KeyPoint> * _keypoints2,float & repeatability,int & correspCount,const Ptr<FeatureDetector> & _fdetector)454 void cv::evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2,
455                               std::vector<KeyPoint>* _keypoints1, std::vector<KeyPoint>* _keypoints2,
456                               float& repeatability, int& correspCount,
457                               const Ptr<FeatureDetector>& _fdetector )
458 {
459     Ptr<FeatureDetector> fdetector(_fdetector);
460     std::vector<KeyPoint> *keypoints1, *keypoints2, buf1, buf2;
461     keypoints1 = _keypoints1 != 0 ? _keypoints1 : &buf1;
462     keypoints2 = _keypoints2 != 0 ? _keypoints2 : &buf2;
463 
464     if( (keypoints1->empty() || keypoints2->empty()) && !fdetector )
465         CV_Error( Error::StsBadArg, "fdetector must not be empty when keypoints1 or keypoints2 is empty" );
466 
467     if( keypoints1->empty() )
468         fdetector->detect( img1, *keypoints1 );
469     if( keypoints2->empty() )
470         fdetector->detect( img2, *keypoints2 );
471 
472     calculateRepeatability( img1, img2, H1to2, *keypoints1, *keypoints2, repeatability, correspCount );
473 }
474 
475 struct DMatchForEvaluation : public DMatch
476 {
477     uchar isCorrect;
DMatchForEvaluationDMatchForEvaluation478     DMatchForEvaluation( const DMatch &dm ) : DMatch( dm ) {}
479 };
480 
recall(int correctMatchCount,int correspondenceCount)481 static inline float recall( int correctMatchCount, int correspondenceCount )
482 {
483     return correspondenceCount ? (float)correctMatchCount / (float)correspondenceCount : -1;
484 }
485 
precision(int correctMatchCount,int falseMatchCount)486 static inline float precision( int correctMatchCount, int falseMatchCount )
487 {
488     return correctMatchCount + falseMatchCount ? (float)correctMatchCount / (float)(correctMatchCount + falseMatchCount) : -1;
489 }
490 
computeRecallPrecisionCurve(const std::vector<std::vector<DMatch>> & matches1to2,const std::vector<std::vector<uchar>> & correctMatches1to2Mask,std::vector<Point2f> & recallPrecisionCurve)491 void cv::computeRecallPrecisionCurve( const std::vector<std::vector<DMatch> >& matches1to2,
492                                       const std::vector<std::vector<uchar> >& correctMatches1to2Mask,
493                                       std::vector<Point2f>& recallPrecisionCurve )
494 {
495     CV_Assert( matches1to2.size() == correctMatches1to2Mask.size() );
496 
497     std::vector<DMatchForEvaluation> allMatches;
498     int correspondenceCount = 0;
499     for( size_t i = 0; i < matches1to2.size(); i++ )
500     {
501         for( size_t j = 0; j < matches1to2[i].size(); j++ )
502         {
503             DMatchForEvaluation match = matches1to2[i][j];
504             match.isCorrect = correctMatches1to2Mask[i][j] ;
505             allMatches.push_back( match );
506             correspondenceCount += match.isCorrect != 0 ? 1 : 0;
507         }
508     }
509 
510     std::sort( allMatches.begin(), allMatches.end() );
511 
512     int correctMatchCount = 0, falseMatchCount = 0;
513     recallPrecisionCurve.resize( allMatches.size() );
514     for( size_t i = 0; i < allMatches.size(); i++ )
515     {
516         if( allMatches[i].isCorrect )
517             correctMatchCount++;
518         else
519             falseMatchCount++;
520 
521         float r = recall( correctMatchCount, correspondenceCount );
522         float p =  precision( correctMatchCount, falseMatchCount );
523         recallPrecisionCurve[i] = Point2f(1-p, r);
524     }
525 }
526 
getRecall(const std::vector<Point2f> & recallPrecisionCurve,float l_precision)527 float cv::getRecall( const std::vector<Point2f>& recallPrecisionCurve, float l_precision )
528 {
529     int nearestPointIndex = getNearestPoint( recallPrecisionCurve, l_precision );
530 
531     float recall = -1.f;
532 
533     if( nearestPointIndex >= 0 )
534         recall = recallPrecisionCurve[nearestPointIndex].y;
535 
536     return recall;
537 }
538 
getNearestPoint(const std::vector<Point2f> & recallPrecisionCurve,float l_precision)539 int cv::getNearestPoint( const std::vector<Point2f>& recallPrecisionCurve, float l_precision )
540 {
541     int nearestPointIndex = -1;
542 
543     if( l_precision >= 0 && l_precision <= 1 )
544     {
545         float minDiff = FLT_MAX;
546         for( size_t i = 0; i < recallPrecisionCurve.size(); i++ )
547         {
548             float curDiff = std::fabs(l_precision - recallPrecisionCurve[i].x);
549             if( curDiff <= minDiff )
550             {
551                 nearestPointIndex = (int)i;
552                 minDiff = curDiff;
553             }
554         }
555     }
556 
557     return nearestPointIndex;
558 }
559