1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "precomp.hpp"
44
45 using namespace cv;
46 using namespace cv::cuda;
47
48 #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
49
estimateRecommendedParams(int,int,int &,int &,int &,int &)50 void cv::cuda::StereoConstantSpaceBP::estimateRecommendedParams(int, int, int&, int&, int&, int&) { throw_no_cuda(); }
51
createStereoConstantSpaceBP(int,int,int,int,int)52 Ptr<cuda::StereoConstantSpaceBP> cv::cuda::createStereoConstantSpaceBP(int, int, int, int, int) { throw_no_cuda(); return Ptr<cuda::StereoConstantSpaceBP>(); }
53
54 #else /* !defined (HAVE_CUDA) */
55
56 #include "cuda/stereocsbp.hpp"
57
58 namespace
59 {
60 class StereoCSBPImpl : public cuda::StereoConstantSpaceBP
61 {
62 public:
63 StereoCSBPImpl(int ndisp, int iters, int levels, int nr_plane, int msg_type);
64
65 void compute(InputArray left, InputArray right, OutputArray disparity);
66 void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream);
67 void compute(InputArray data, OutputArray disparity, Stream& stream);
68
getMinDisparity() const69 int getMinDisparity() const { return min_disp_th_; }
setMinDisparity(int minDisparity)70 void setMinDisparity(int minDisparity) { min_disp_th_ = minDisparity; }
71
getNumDisparities() const72 int getNumDisparities() const { return ndisp_; }
setNumDisparities(int numDisparities)73 void setNumDisparities(int numDisparities) { ndisp_ = numDisparities; }
74
getBlockSize() const75 int getBlockSize() const { return 0; }
setBlockSize(int)76 void setBlockSize(int /*blockSize*/) {}
77
getSpeckleWindowSize() const78 int getSpeckleWindowSize() const { return 0; }
setSpeckleWindowSize(int)79 void setSpeckleWindowSize(int /*speckleWindowSize*/) {}
80
getSpeckleRange() const81 int getSpeckleRange() const { return 0; }
setSpeckleRange(int)82 void setSpeckleRange(int /*speckleRange*/) {}
83
getDisp12MaxDiff() const84 int getDisp12MaxDiff() const { return 0; }
setDisp12MaxDiff(int)85 void setDisp12MaxDiff(int /*disp12MaxDiff*/) {}
86
getNumIters() const87 int getNumIters() const { return iters_; }
setNumIters(int iters)88 void setNumIters(int iters) { iters_ = iters; }
89
getNumLevels() const90 int getNumLevels() const { return levels_; }
setNumLevels(int levels)91 void setNumLevels(int levels) { levels_ = levels; }
92
getMaxDataTerm() const93 double getMaxDataTerm() const { return max_data_term_; }
setMaxDataTerm(double max_data_term)94 void setMaxDataTerm(double max_data_term) { max_data_term_ = (float) max_data_term; }
95
getDataWeight() const96 double getDataWeight() const { return data_weight_; }
setDataWeight(double data_weight)97 void setDataWeight(double data_weight) { data_weight_ = (float) data_weight; }
98
getMaxDiscTerm() const99 double getMaxDiscTerm() const { return max_disc_term_; }
setMaxDiscTerm(double max_disc_term)100 void setMaxDiscTerm(double max_disc_term) { max_disc_term_ = (float) max_disc_term; }
101
getDiscSingleJump() const102 double getDiscSingleJump() const { return disc_single_jump_; }
setDiscSingleJump(double disc_single_jump)103 void setDiscSingleJump(double disc_single_jump) { disc_single_jump_ = (float) disc_single_jump; }
104
getMsgType() const105 int getMsgType() const { return msg_type_; }
setMsgType(int msg_type)106 void setMsgType(int msg_type) { msg_type_ = msg_type; }
107
getNrPlane() const108 int getNrPlane() const { return nr_plane_; }
setNrPlane(int nr_plane)109 void setNrPlane(int nr_plane) { nr_plane_ = nr_plane; }
110
getUseLocalInitDataCost() const111 bool getUseLocalInitDataCost() const { return use_local_init_data_cost_; }
setUseLocalInitDataCost(bool use_local_init_data_cost)112 void setUseLocalInitDataCost(bool use_local_init_data_cost) { use_local_init_data_cost_ = use_local_init_data_cost; }
113
114 private:
115 int min_disp_th_;
116 int ndisp_;
117 int iters_;
118 int levels_;
119 float max_data_term_;
120 float data_weight_;
121 float max_disc_term_;
122 float disc_single_jump_;
123 int msg_type_;
124 int nr_plane_;
125 bool use_local_init_data_cost_;
126
127 GpuMat mbuf_;
128 GpuMat temp_;
129 GpuMat outBuf_;
130 };
131
132 const float DEFAULT_MAX_DATA_TERM = 30.0f;
133 const float DEFAULT_DATA_WEIGHT = 1.0f;
134 const float DEFAULT_MAX_DISC_TERM = 160.0f;
135 const float DEFAULT_DISC_SINGLE_JUMP = 10.0f;
136
StereoCSBPImpl(int ndisp,int iters,int levels,int nr_plane,int msg_type)137 StereoCSBPImpl::StereoCSBPImpl(int ndisp, int iters, int levels, int nr_plane, int msg_type) :
138 min_disp_th_(0), ndisp_(ndisp), iters_(iters), levels_(levels),
139 max_data_term_(DEFAULT_MAX_DATA_TERM), data_weight_(DEFAULT_DATA_WEIGHT),
140 max_disc_term_(DEFAULT_MAX_DISC_TERM), disc_single_jump_(DEFAULT_DISC_SINGLE_JUMP),
141 msg_type_(msg_type), nr_plane_(nr_plane), use_local_init_data_cost_(true)
142 {
143 }
144
compute(InputArray left,InputArray right,OutputArray disparity)145 void StereoCSBPImpl::compute(InputArray left, InputArray right, OutputArray disparity)
146 {
147 compute(left, right, disparity, Stream::Null());
148 }
149
compute(InputArray _left,InputArray _right,OutputArray disp,Stream & _stream)150 void StereoCSBPImpl::compute(InputArray _left, InputArray _right, OutputArray disp, Stream& _stream)
151 {
152 using namespace cv::cuda::device::stereocsbp;
153
154 CV_Assert( msg_type_ == CV_32F || msg_type_ == CV_16S );
155 CV_Assert( 0 < ndisp_ && 0 < iters_ && 0 < levels_ && 0 < nr_plane_ && levels_ <= 8 );
156
157 GpuMat left = _left.getGpuMat();
158 GpuMat right = _right.getGpuMat();
159
160 CV_Assert( left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4 );
161 CV_Assert( left.size() == right.size() && left.type() == right.type() );
162
163 cudaStream_t stream = StreamAccessor::getStream(_stream);
164
165 ////////////////////////////////////////////////////////////////////////////////////////////
166 // Init
167
168 int rows = left.rows;
169 int cols = left.cols;
170
171 levels_ = std::min(levels_, int(log((double)ndisp_) / log(2.0)));
172
173 // compute sizes
174 AutoBuffer<int> buf(levels_ * 3);
175 int* cols_pyr = buf;
176 int* rows_pyr = cols_pyr + levels_;
177 int* nr_plane_pyr = rows_pyr + levels_;
178
179 cols_pyr[0] = cols;
180 rows_pyr[0] = rows;
181 nr_plane_pyr[0] = nr_plane_;
182
183 for (int i = 1; i < levels_; i++)
184 {
185 cols_pyr[i] = cols_pyr[i-1] / 2;
186 rows_pyr[i] = rows_pyr[i-1] / 2;
187 nr_plane_pyr[i] = nr_plane_pyr[i-1] * 2;
188 }
189
190 GpuMat u[2], d[2], l[2], r[2], disp_selected_pyr[2], data_cost, data_cost_selected;
191
192 //allocate buffers
193 int buffers_count = 10; // (up + down + left + right + disp_selected_pyr) * 2
194 buffers_count += 2; // data_cost has twice more rows than other buffers, what's why +2, not +1;
195 buffers_count += 1; // data_cost_selected
196 mbuf_.create(rows * nr_plane_ * buffers_count, cols, msg_type_);
197
198 data_cost = mbuf_.rowRange(0, rows * nr_plane_ * 2);
199 data_cost_selected = mbuf_.rowRange(data_cost.rows, data_cost.rows + rows * nr_plane_);
200
201 for(int k = 0; k < 2; ++k) // in/out
202 {
203 GpuMat sub1 = mbuf_.rowRange(data_cost.rows + data_cost_selected.rows, mbuf_.rows);
204 GpuMat sub2 = sub1.rowRange((k+0)*sub1.rows/2, (k+1)*sub1.rows/2);
205
206 GpuMat *buf_ptrs[] = { &u[k], &d[k], &l[k], &r[k], &disp_selected_pyr[k] };
207 for(int _r = 0; _r < 5; ++_r)
208 {
209 *buf_ptrs[_r] = sub2.rowRange(_r * sub2.rows/5, (_r+1) * sub2.rows/5);
210 CV_DbgAssert( buf_ptrs[_r]->cols == cols && buf_ptrs[_r]->rows == rows * nr_plane_ );
211 }
212 };
213
214 size_t elem_step = mbuf_.step / mbuf_.elemSize();
215
216 Size temp_size = data_cost.size();
217 if ((size_t)temp_size.area() < elem_step * rows_pyr[levels_ - 1] * ndisp_)
218 temp_size = Size(static_cast<int>(elem_step), rows_pyr[levels_ - 1] * ndisp_);
219
220 temp_.create(temp_size, msg_type_);
221
222 ////////////////////////////////////////////////////////////////////////////
223 // Compute
224
225 l[0].setTo(0, _stream);
226 d[0].setTo(0, _stream);
227 r[0].setTo(0, _stream);
228 u[0].setTo(0, _stream);
229
230 l[1].setTo(0, _stream);
231 d[1].setTo(0, _stream);
232 r[1].setTo(0, _stream);
233 u[1].setTo(0, _stream);
234
235 data_cost.setTo(0, _stream);
236 data_cost_selected.setTo(0, _stream);
237
238 int cur_idx = 0;
239
240 if (msg_type_ == CV_32F)
241 {
242 for (int i = levels_ - 1; i >= 0; i--)
243 {
244 if (i == levels_ - 1)
245 {
246 init_data_cost(left.ptr<uchar>(), right.ptr<uchar>(), temp_.ptr<uchar>(), left.step, left.rows, left.cols, disp_selected_pyr[cur_idx].ptr<float>(), data_cost_selected.ptr<float>(),
247 elem_step, rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], ndisp_, left.channels(), data_weight_, max_data_term_, min_disp_th_, use_local_init_data_cost_, stream);
248 }
249 else
250 {
251 compute_data_cost(left.ptr<uchar>(), right.ptr<uchar>(), left.step, disp_selected_pyr[cur_idx].ptr<float>(), data_cost.ptr<float>(), elem_step,
252 left.rows, left.cols, rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), data_weight_, max_data_term_, min_disp_th_, stream);
253
254 int new_idx = (cur_idx + 1) & 1;
255
256 init_message(temp_.ptr<uchar>(),
257 u[new_idx].ptr<float>(), d[new_idx].ptr<float>(), l[new_idx].ptr<float>(), r[new_idx].ptr<float>(),
258 u[cur_idx].ptr<float>(), d[cur_idx].ptr<float>(), l[cur_idx].ptr<float>(), r[cur_idx].ptr<float>(),
259 disp_selected_pyr[new_idx].ptr<float>(), disp_selected_pyr[cur_idx].ptr<float>(),
260 data_cost_selected.ptr<float>(), data_cost.ptr<float>(), elem_step, rows_pyr[i],
261 cols_pyr[i], nr_plane_pyr[i], rows_pyr[i+1], cols_pyr[i+1], nr_plane_pyr[i+1], stream);
262
263 cur_idx = new_idx;
264 }
265
266 calc_all_iterations(temp_.ptr<uchar>(), u[cur_idx].ptr<float>(), d[cur_idx].ptr<float>(), l[cur_idx].ptr<float>(), r[cur_idx].ptr<float>(),
267 data_cost_selected.ptr<float>(), disp_selected_pyr[cur_idx].ptr<float>(), elem_step,
268 rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], iters_, max_disc_term_, disc_single_jump_, stream);
269 }
270 }
271 else
272 {
273 for (int i = levels_ - 1; i >= 0; i--)
274 {
275 if (i == levels_ - 1)
276 {
277 init_data_cost(left.ptr<uchar>(), right.ptr<uchar>(), temp_.ptr<uchar>(), left.step, left.rows, left.cols, disp_selected_pyr[cur_idx].ptr<short>(), data_cost_selected.ptr<short>(),
278 elem_step, rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], ndisp_, left.channels(), data_weight_, max_data_term_, min_disp_th_, use_local_init_data_cost_, stream);
279 }
280 else
281 {
282 compute_data_cost(left.ptr<uchar>(), right.ptr<uchar>(), left.step, disp_selected_pyr[cur_idx].ptr<short>(), data_cost.ptr<short>(), elem_step,
283 left.rows, left.cols, rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), data_weight_, max_data_term_, min_disp_th_, stream);
284
285 int new_idx = (cur_idx + 1) & 1;
286
287 init_message(temp_.ptr<uchar>(),
288 u[new_idx].ptr<short>(), d[new_idx].ptr<short>(), l[new_idx].ptr<short>(), r[new_idx].ptr<short>(),
289 u[cur_idx].ptr<short>(), d[cur_idx].ptr<short>(), l[cur_idx].ptr<short>(), r[cur_idx].ptr<short>(),
290 disp_selected_pyr[new_idx].ptr<short>(), disp_selected_pyr[cur_idx].ptr<short>(),
291 data_cost_selected.ptr<short>(), data_cost.ptr<short>(), elem_step, rows_pyr[i],
292 cols_pyr[i], nr_plane_pyr[i], rows_pyr[i+1], cols_pyr[i+1], nr_plane_pyr[i+1], stream);
293
294 cur_idx = new_idx;
295 }
296
297 calc_all_iterations(temp_.ptr<uchar>(), u[cur_idx].ptr<short>(), d[cur_idx].ptr<short>(), l[cur_idx].ptr<short>(), r[cur_idx].ptr<short>(),
298 data_cost_selected.ptr<short>(), disp_selected_pyr[cur_idx].ptr<short>(), elem_step,
299 rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], iters_, max_disc_term_, disc_single_jump_, stream);
300 }
301 }
302
303 const int dtype = disp.fixedType() ? disp.type() : CV_16SC1;
304
305 disp.create(rows, cols, dtype);
306 GpuMat out = disp.getGpuMat();
307
308 if (dtype != CV_16SC1)
309 {
310 outBuf_.create(rows, cols, CV_16SC1);
311 out = outBuf_;
312 }
313
314 out.setTo(0, _stream);
315
316 if (msg_type_ == CV_32F)
317 {
318 compute_disp(u[cur_idx].ptr<float>(), d[cur_idx].ptr<float>(), l[cur_idx].ptr<float>(), r[cur_idx].ptr<float>(),
319 data_cost_selected.ptr<float>(), disp_selected_pyr[cur_idx].ptr<float>(), elem_step, out, nr_plane_pyr[0], stream);
320 }
321 else
322 {
323 compute_disp(u[cur_idx].ptr<short>(), d[cur_idx].ptr<short>(), l[cur_idx].ptr<short>(), r[cur_idx].ptr<short>(),
324 data_cost_selected.ptr<short>(), disp_selected_pyr[cur_idx].ptr<short>(), elem_step, out, nr_plane_pyr[0], stream);
325 }
326
327 if (dtype != CV_16SC1)
328 out.convertTo(disp, dtype, _stream);
329 }
330
compute(InputArray,OutputArray,Stream &)331 void StereoCSBPImpl::compute(InputArray /*data*/, OutputArray /*disparity*/, Stream& /*stream*/)
332 {
333 CV_Error(Error::StsNotImplemented, "Not implemented");
334 }
335 }
336
createStereoConstantSpaceBP(int ndisp,int iters,int levels,int nr_plane,int msg_type)337 Ptr<cuda::StereoConstantSpaceBP> cv::cuda::createStereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane, int msg_type)
338 {
339 return makePtr<StereoCSBPImpl>(ndisp, iters, levels, nr_plane, msg_type);
340 }
341
estimateRecommendedParams(int width,int height,int & ndisp,int & iters,int & levels,int & nr_plane)342 void cv::cuda::StereoConstantSpaceBP::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane)
343 {
344 ndisp = (int) ((float) width / 3.14f);
345 if ((ndisp & 1) != 0)
346 ndisp++;
347
348 int mm = std::max(width, height);
349 iters = mm / 100 + ((mm > 1200)? - 4 : 4);
350
351 levels = (int)::log(static_cast<double>(mm)) * 2 / 3;
352 if (levels == 0) levels++;
353
354 nr_plane = (int) ((float) ndisp / std::pow(2.0, levels + 1));
355 }
356
357 #endif /* !defined (HAVE_CUDA) */
358