1 //===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements the operating system Host concept.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Support/Host.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Config/config.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/FileSystem.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include <string.h>
24 
25 // Include the platform-specific parts of this class.
26 #ifdef LLVM_ON_UNIX
27 #include "Unix/Host.inc"
28 #endif
29 #ifdef LLVM_ON_WIN32
30 #include "Windows/Host.inc"
31 #endif
32 #ifdef _MSC_VER
33 #include <intrin.h>
34 #endif
35 #if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
36 #include <mach/mach.h>
37 #include <mach/mach_host.h>
38 #include <mach/host_info.h>
39 #include <mach/machine.h>
40 #endif
41 
42 #define DEBUG_TYPE "host-detection"
43 
44 //===----------------------------------------------------------------------===//
45 //
46 //  Implementations of the CPU detection routines
47 //
48 //===----------------------------------------------------------------------===//
49 
50 using namespace llvm;
51 
52 #if defined(__linux__)
readCpuInfo(void * Buf,size_t Size)53 static ssize_t LLVM_ATTRIBUTE_UNUSED readCpuInfo(void *Buf, size_t Size) {
54   // Note: We cannot mmap /proc/cpuinfo here and then process the resulting
55   // memory buffer because the 'file' has 0 size (it can be read from only
56   // as a stream).
57 
58   int FD;
59   std::error_code EC = sys::fs::openFileForRead("/proc/cpuinfo", FD);
60   if (EC) {
61     DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << EC.message() << "\n");
62     return -1;
63   }
64   int Ret = read(FD, Buf, Size);
65   int CloseStatus = close(FD);
66   if (CloseStatus)
67     return -1;
68   return Ret;
69 }
70 #endif
71 
72 #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
73  || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
74 
75 /// GetX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
76 /// specified arguments.  If we can't run cpuid on the host, return true.
GetX86CpuIDAndInfo(unsigned value,unsigned * rEAX,unsigned * rEBX,unsigned * rECX,unsigned * rEDX)77 static bool GetX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
78                                unsigned *rECX, unsigned *rEDX) {
79 #if defined(__GNUC__) || defined(__clang__)
80   #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
81     // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
82     asm ("movq\t%%rbx, %%rsi\n\t"
83          "cpuid\n\t"
84          "xchgq\t%%rbx, %%rsi\n\t"
85          : "=a" (*rEAX),
86            "=S" (*rEBX),
87            "=c" (*rECX),
88            "=d" (*rEDX)
89          :  "a" (value));
90     return false;
91   #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
92     asm ("movl\t%%ebx, %%esi\n\t"
93          "cpuid\n\t"
94          "xchgl\t%%ebx, %%esi\n\t"
95          : "=a" (*rEAX),
96            "=S" (*rEBX),
97            "=c" (*rECX),
98            "=d" (*rEDX)
99          :  "a" (value));
100     return false;
101 // pedantic #else returns to appease -Wunreachable-code (so we don't generate
102 // postprocessed code that looks like "return true; return false;")
103   #else
104     return true;
105   #endif
106 #elif defined(_MSC_VER)
107   // The MSVC intrinsic is portable across x86 and x64.
108   int registers[4];
109   __cpuid(registers, value);
110   *rEAX = registers[0];
111   *rEBX = registers[1];
112   *rECX = registers[2];
113   *rEDX = registers[3];
114   return false;
115 #else
116   return true;
117 #endif
118 }
119 
120 /// GetX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return the
121 /// 4 values in the specified arguments.  If we can't run cpuid on the host,
122 /// return true.
GetX86CpuIDAndInfoEx(unsigned value,unsigned subleaf,unsigned * rEAX,unsigned * rEBX,unsigned * rECX,unsigned * rEDX)123 static bool GetX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
124                                  unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
125                                  unsigned *rEDX) {
126 #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
127   #if defined(__GNUC__)
128     // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
129     asm ("movq\t%%rbx, %%rsi\n\t"
130          "cpuid\n\t"
131          "xchgq\t%%rbx, %%rsi\n\t"
132          : "=a" (*rEAX),
133            "=S" (*rEBX),
134            "=c" (*rECX),
135            "=d" (*rEDX)
136          :  "a" (value),
137             "c" (subleaf));
138     return false;
139   #elif defined(_MSC_VER)
140     int registers[4];
141     __cpuidex(registers, value, subleaf);
142     *rEAX = registers[0];
143     *rEBX = registers[1];
144     *rECX = registers[2];
145     *rEDX = registers[3];
146     return false;
147   #else
148     return true;
149   #endif
150 #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
151   #if defined(__GNUC__)
152     asm ("movl\t%%ebx, %%esi\n\t"
153          "cpuid\n\t"
154          "xchgl\t%%ebx, %%esi\n\t"
155          : "=a" (*rEAX),
156            "=S" (*rEBX),
157            "=c" (*rECX),
158            "=d" (*rEDX)
159          :  "a" (value),
160             "c" (subleaf));
161     return false;
162   #elif defined(_MSC_VER)
163     __asm {
164       mov   eax,value
165       mov   ecx,subleaf
166       cpuid
167       mov   esi,rEAX
168       mov   dword ptr [esi],eax
169       mov   esi,rEBX
170       mov   dword ptr [esi],ebx
171       mov   esi,rECX
172       mov   dword ptr [esi],ecx
173       mov   esi,rEDX
174       mov   dword ptr [esi],edx
175     }
176     return false;
177   #else
178     return true;
179   #endif
180 #else
181   return true;
182 #endif
183 }
184 
GetX86XCR0(unsigned * rEAX,unsigned * rEDX)185 static bool GetX86XCR0(unsigned *rEAX, unsigned *rEDX) {
186 #if defined(__GNUC__)
187   // Check xgetbv; this uses a .byte sequence instead of the instruction
188   // directly because older assemblers do not include support for xgetbv and
189   // there is no easy way to conditionally compile based on the assembler used.
190   __asm__ (".byte 0x0f, 0x01, 0xd0" : "=a" (*rEAX), "=d" (*rEDX) : "c" (0));
191   return false;
192 #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
193   unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
194   *rEAX = Result;
195   *rEDX = Result >> 32;
196   return false;
197 #else
198   return true;
199 #endif
200 }
201 
DetectX86FamilyModel(unsigned EAX,unsigned & Family,unsigned & Model)202 static void DetectX86FamilyModel(unsigned EAX, unsigned &Family,
203                                  unsigned &Model) {
204   Family = (EAX >> 8) & 0xf; // Bits 8 - 11
205   Model  = (EAX >> 4) & 0xf; // Bits 4 - 7
206   if (Family == 6 || Family == 0xf) {
207     if (Family == 0xf)
208       // Examine extended family ID if family ID is F.
209       Family += (EAX >> 20) & 0xff;    // Bits 20 - 27
210     // Examine extended model ID if family ID is 6 or F.
211     Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
212   }
213 }
214 
getHostCPUName()215 StringRef sys::getHostCPUName() {
216   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
217   if (GetX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
218     return "generic";
219   unsigned Family = 0;
220   unsigned Model  = 0;
221   DetectX86FamilyModel(EAX, Family, Model);
222 
223   union {
224     unsigned u[3];
225     char     c[12];
226   } text;
227 
228   unsigned MaxLeaf;
229   GetX86CpuIDAndInfo(0, &MaxLeaf, text.u+0, text.u+2, text.u+1);
230 
231   bool HasMMX   = (EDX >> 23) & 1;
232   bool HasSSE   = (EDX >> 25) & 1;
233   bool HasSSE2  = (EDX >> 26) & 1;
234   bool HasSSE3  = (ECX >>  0) & 1;
235   bool HasSSSE3 = (ECX >>  9) & 1;
236   bool HasSSE41 = (ECX >> 19) & 1;
237   bool HasSSE42 = (ECX >> 20) & 1;
238   bool HasMOVBE = (ECX >> 22) & 1;
239   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
240   // indicates that the AVX registers will be saved and restored on context
241   // switch, then we have full AVX support.
242   const unsigned AVXBits = (1 << 27) | (1 << 28);
243   bool HasAVX = ((ECX & AVXBits) == AVXBits) && !GetX86XCR0(&EAX, &EDX) &&
244                 ((EAX & 0x6) == 0x6);
245   bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
246   bool HasLeaf7 = MaxLeaf >= 0x7 &&
247                   !GetX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
248   bool HasADX = HasLeaf7 && ((EBX >> 19) & 1);
249   bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20);
250   bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1);
251 
252   GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
253   bool Em64T = (EDX >> 29) & 0x1;
254   bool HasTBM = (ECX >> 21) & 0x1;
255 
256   if (memcmp(text.c, "GenuineIntel", 12) == 0) {
257     switch (Family) {
258     case 3:
259       return "i386";
260     case 4:
261       switch (Model) {
262       case 0: // Intel486 DX processors
263       case 1: // Intel486 DX processors
264       case 2: // Intel486 SX processors
265       case 3: // Intel487 processors, IntelDX2 OverDrive processors,
266               // IntelDX2 processors
267       case 4: // Intel486 SL processor
268       case 5: // IntelSX2 processors
269       case 7: // Write-Back Enhanced IntelDX2 processors
270       case 8: // IntelDX4 OverDrive processors, IntelDX4 processors
271       default: return "i486";
272       }
273     case 5:
274       switch (Model) {
275       case  1: // Pentium OverDrive processor for Pentium processor (60, 66),
276                // Pentium processors (60, 66)
277       case  2: // Pentium OverDrive processor for Pentium processor (75, 90,
278                // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,
279                // 150, 166, 200)
280       case  3: // Pentium OverDrive processors for Intel486 processor-based
281                // systems
282         return "pentium";
283 
284       case  4: // Pentium OverDrive processor with MMX technology for Pentium
285                // processor (75, 90, 100, 120, 133), Pentium processor with
286                // MMX technology (166, 200)
287         return "pentium-mmx";
288 
289       default: return "pentium";
290       }
291     case 6:
292       switch (Model) {
293       case  1: // Pentium Pro processor
294         return "pentiumpro";
295 
296       case  3: // Intel Pentium II OverDrive processor, Pentium II processor,
297                // model 03
298       case  5: // Pentium II processor, model 05, Pentium II Xeon processor,
299                // model 05, and Intel Celeron processor, model 05
300       case  6: // Celeron processor, model 06
301         return "pentium2";
302 
303       case  7: // Pentium III processor, model 07, and Pentium III Xeon
304                // processor, model 07
305       case  8: // Pentium III processor, model 08, Pentium III Xeon processor,
306                // model 08, and Celeron processor, model 08
307       case 10: // Pentium III Xeon processor, model 0Ah
308       case 11: // Pentium III processor, model 0Bh
309         return "pentium3";
310 
311       case  9: // Intel Pentium M processor, Intel Celeron M processor model 09.
312       case 13: // Intel Pentium M processor, Intel Celeron M processor, model
313                // 0Dh. All processors are manufactured using the 90 nm process.
314       case 21: // Intel EP80579 Integrated Processor and Intel EP80579
315                // Integrated Processor with Intel QuickAssist Technology
316         return "pentium-m";
317 
318       case 14: // Intel Core Duo processor, Intel Core Solo processor, model
319                // 0Eh. All processors are manufactured using the 65 nm process.
320         return "yonah";
321 
322       case 15: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
323                // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
324                // mobile processor, Intel Core 2 Extreme processor, Intel
325                // Pentium Dual-Core processor, Intel Xeon processor, model
326                // 0Fh. All processors are manufactured using the 65 nm process.
327       case 22: // Intel Celeron processor model 16h. All processors are
328                // manufactured using the 65 nm process
329         return "core2";
330 
331       case 23: // Intel Core 2 Extreme processor, Intel Xeon processor, model
332                // 17h. All processors are manufactured using the 45 nm process.
333                //
334                // 45nm: Penryn , Wolfdale, Yorkfield (XE)
335       case 29: // Intel Xeon processor MP. All processors are manufactured using
336                // the 45 nm process.
337         return "penryn";
338 
339       case 26: // Intel Core i7 processor and Intel Xeon processor. All
340                // processors are manufactured using the 45 nm process.
341       case 30: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz.
342                // As found in a Summer 2010 model iMac.
343       case 46: // Nehalem EX
344         return "nehalem";
345       case 37: // Intel Core i7, laptop version.
346       case 44: // Intel Core i7 processor and Intel Xeon processor. All
347                // processors are manufactured using the 32 nm process.
348       case 47: // Westmere EX
349         return "westmere";
350 
351       // SandyBridge:
352       case 42: // Intel Core i7 processor. All processors are manufactured
353                // using the 32 nm process.
354       case 45:
355         return "sandybridge";
356 
357       // Ivy Bridge:
358       case 58:
359       case 62: // Ivy Bridge EP
360         return "ivybridge";
361 
362       // Haswell:
363       case 60:
364       case 63:
365       case 69:
366       case 70:
367         return "haswell";
368 
369       // Broadwell:
370       case 61:
371       case 71:
372         return "broadwell";
373 
374       // Skylake:
375       case 78:
376       case 94:
377         return "skylake";
378 
379       case 28: // Most 45 nm Intel Atom processors
380       case 38: // 45 nm Atom Lincroft
381       case 39: // 32 nm Atom Medfield
382       case 53: // 32 nm Atom Midview
383       case 54: // 32 nm Atom Midview
384         return "bonnell";
385 
386       // Atom Silvermont codes from the Intel software optimization guide.
387       case 55:
388       case 74:
389       case 77:
390       case 90:
391       case 93:
392         return "silvermont";
393 
394       default: // Unknown family 6 CPU, try to guess.
395         if (HasAVX512)
396           return "knl";
397         if (HasADX)
398           return "broadwell";
399         if (HasAVX2)
400           return "haswell";
401         if (HasAVX)
402           return "sandybridge";
403         if (HasSSE42)
404           return HasMOVBE ? "silvermont" : "nehalem";
405         if (HasSSE41)
406           return "penryn";
407         if (HasSSSE3)
408           return HasMOVBE ? "bonnell" : "core2";
409         if (Em64T)
410           return "x86-64";
411         if (HasSSE2)
412           return "pentium-m";
413         if (HasSSE)
414           return "pentium3";
415         if (HasMMX)
416           return "pentium2";
417         return "pentiumpro";
418       }
419     case 15: {
420       switch (Model) {
421       case  0: // Pentium 4 processor, Intel Xeon processor. All processors are
422                // model 00h and manufactured using the 0.18 micron process.
423       case  1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon
424                // processor MP, and Intel Celeron processor. All processors are
425                // model 01h and manufactured using the 0.18 micron process.
426       case  2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,
427                // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron
428                // processor, and Mobile Intel Celeron processor. All processors
429                // are model 02h and manufactured using the 0.13 micron process.
430         return (Em64T) ? "x86-64" : "pentium4";
431 
432       case  3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D
433                // processor. All processors are model 03h and manufactured using
434                // the 90 nm process.
435       case  4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,
436                // Pentium D processor, Intel Xeon processor, Intel Xeon
437                // processor MP, Intel Celeron D processor. All processors are
438                // model 04h and manufactured using the 90 nm process.
439       case  6: // Pentium 4 processor, Pentium D processor, Pentium processor
440                // Extreme Edition, Intel Xeon processor, Intel Xeon processor
441                // MP, Intel Celeron D processor. All processors are model 06h
442                // and manufactured using the 65 nm process.
443         return (Em64T) ? "nocona" : "prescott";
444 
445       default:
446         return (Em64T) ? "x86-64" : "pentium4";
447       }
448     }
449 
450     default:
451       return "generic";
452     }
453   } else if (memcmp(text.c, "AuthenticAMD", 12) == 0) {
454     // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There
455     // appears to be no way to generate the wide variety of AMD-specific targets
456     // from the information returned from CPUID.
457     switch (Family) {
458       case 4:
459         return "i486";
460       case 5:
461         switch (Model) {
462         case 6:
463         case 7:  return "k6";
464         case 8:  return "k6-2";
465         case 9:
466         case 13: return "k6-3";
467         case 10: return "geode";
468         default: return "pentium";
469         }
470       case 6:
471         switch (Model) {
472         case 4:  return "athlon-tbird";
473         case 6:
474         case 7:
475         case 8:  return "athlon-mp";
476         case 10: return "athlon-xp";
477         default: return "athlon";
478         }
479       case 15:
480         if (HasSSE3)
481           return "k8-sse3";
482         switch (Model) {
483         case 1:  return "opteron";
484         case 5:  return "athlon-fx"; // also opteron
485         default: return "athlon64";
486         }
487       case 16:
488         return "amdfam10";
489       case 20:
490         return "btver1";
491       case 21:
492         if (!HasAVX) // If the OS doesn't support AVX provide a sane fallback.
493           return "btver1";
494         if (Model >= 0x50)
495           return "bdver4"; // 50h-6Fh: Excavator
496         if (Model >= 0x30)
497           return "bdver3"; // 30h-3Fh: Steamroller
498         if (Model >= 0x10 || HasTBM)
499           return "bdver2"; // 10h-1Fh: Piledriver
500         return "bdver1";   // 00h-0Fh: Bulldozer
501       case 22:
502         if (!HasAVX) // If the OS doesn't support AVX provide a sane fallback.
503           return "btver1";
504         return "btver2";
505     default:
506       return "generic";
507     }
508   }
509   return "generic";
510 }
511 #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
getHostCPUName()512 StringRef sys::getHostCPUName() {
513   host_basic_info_data_t hostInfo;
514   mach_msg_type_number_t infoCount;
515 
516   infoCount = HOST_BASIC_INFO_COUNT;
517   host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo,
518             &infoCount);
519 
520   if (hostInfo.cpu_type != CPU_TYPE_POWERPC) return "generic";
521 
522   switch(hostInfo.cpu_subtype) {
523   case CPU_SUBTYPE_POWERPC_601:   return "601";
524   case CPU_SUBTYPE_POWERPC_602:   return "602";
525   case CPU_SUBTYPE_POWERPC_603:   return "603";
526   case CPU_SUBTYPE_POWERPC_603e:  return "603e";
527   case CPU_SUBTYPE_POWERPC_603ev: return "603ev";
528   case CPU_SUBTYPE_POWERPC_604:   return "604";
529   case CPU_SUBTYPE_POWERPC_604e:  return "604e";
530   case CPU_SUBTYPE_POWERPC_620:   return "620";
531   case CPU_SUBTYPE_POWERPC_750:   return "750";
532   case CPU_SUBTYPE_POWERPC_7400:  return "7400";
533   case CPU_SUBTYPE_POWERPC_7450:  return "7450";
534   case CPU_SUBTYPE_POWERPC_970:   return "970";
535   default: ;
536   }
537 
538   return "generic";
539 }
540 #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
getHostCPUName()541 StringRef sys::getHostCPUName() {
542   // Access to the Processor Version Register (PVR) on PowerPC is privileged,
543   // and so we must use an operating-system interface to determine the current
544   // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
545   const char *generic = "generic";
546 
547   // The cpu line is second (after the 'processor: 0' line), so if this
548   // buffer is too small then something has changed (or is wrong).
549   char buffer[1024];
550   ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
551   if (CPUInfoSize == -1)
552     return generic;
553 
554   const char *CPUInfoStart = buffer;
555   const char *CPUInfoEnd = buffer + CPUInfoSize;
556 
557   const char *CIP = CPUInfoStart;
558 
559   const char *CPUStart = 0;
560   size_t CPULen = 0;
561 
562   // We need to find the first line which starts with cpu, spaces, and a colon.
563   // After the colon, there may be some additional spaces and then the cpu type.
564   while (CIP < CPUInfoEnd && CPUStart == 0) {
565     if (CIP < CPUInfoEnd && *CIP == '\n')
566       ++CIP;
567 
568     if (CIP < CPUInfoEnd && *CIP == 'c') {
569       ++CIP;
570       if (CIP < CPUInfoEnd && *CIP == 'p') {
571         ++CIP;
572         if (CIP < CPUInfoEnd && *CIP == 'u') {
573           ++CIP;
574           while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
575             ++CIP;
576 
577           if (CIP < CPUInfoEnd && *CIP == ':') {
578             ++CIP;
579             while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
580               ++CIP;
581 
582             if (CIP < CPUInfoEnd) {
583               CPUStart = CIP;
584               while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
585                                           *CIP != ',' && *CIP != '\n'))
586                 ++CIP;
587               CPULen = CIP - CPUStart;
588             }
589           }
590         }
591       }
592     }
593 
594     if (CPUStart == 0)
595       while (CIP < CPUInfoEnd && *CIP != '\n')
596         ++CIP;
597   }
598 
599   if (CPUStart == 0)
600     return generic;
601 
602   return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
603     .Case("604e", "604e")
604     .Case("604", "604")
605     .Case("7400", "7400")
606     .Case("7410", "7400")
607     .Case("7447", "7400")
608     .Case("7455", "7450")
609     .Case("G4", "g4")
610     .Case("POWER4", "970")
611     .Case("PPC970FX", "970")
612     .Case("PPC970MP", "970")
613     .Case("G5", "g5")
614     .Case("POWER5", "g5")
615     .Case("A2", "a2")
616     .Case("POWER6", "pwr6")
617     .Case("POWER7", "pwr7")
618     .Case("POWER8", "pwr8")
619     .Case("POWER8E", "pwr8")
620     .Default(generic);
621 }
622 #elif defined(__linux__) && defined(__arm__)
getHostCPUName()623 StringRef sys::getHostCPUName() {
624   // The cpuid register on arm is not accessible from user space. On Linux,
625   // it is exposed through the /proc/cpuinfo file.
626 
627   // Read 1024 bytes from /proc/cpuinfo, which should contain the CPU part line
628   // in all cases.
629   char buffer[1024];
630   ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
631   if (CPUInfoSize == -1)
632     return "generic";
633 
634   StringRef Str(buffer, CPUInfoSize);
635 
636   SmallVector<StringRef, 32> Lines;
637   Str.split(Lines, "\n");
638 
639   // Look for the CPU implementer line.
640   StringRef Implementer;
641   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
642     if (Lines[I].startswith("CPU implementer"))
643       Implementer = Lines[I].substr(15).ltrim("\t :");
644 
645   if (Implementer == "0x41") // ARM Ltd.
646     // Look for the CPU part line.
647     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
648       if (Lines[I].startswith("CPU part"))
649         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
650         // values correspond to the "Part number" in the CP15/c0 register. The
651         // contents are specified in the various processor manuals.
652         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
653           .Case("0x926", "arm926ej-s")
654           .Case("0xb02", "mpcore")
655           .Case("0xb36", "arm1136j-s")
656           .Case("0xb56", "arm1156t2-s")
657           .Case("0xb76", "arm1176jz-s")
658           .Case("0xc08", "cortex-a8")
659           .Case("0xc09", "cortex-a9")
660           .Case("0xc0f", "cortex-a15")
661           .Case("0xc20", "cortex-m0")
662           .Case("0xc23", "cortex-m3")
663           .Case("0xc24", "cortex-m4")
664           .Default("generic");
665 
666   if (Implementer == "0x51") // Qualcomm Technologies, Inc.
667     // Look for the CPU part line.
668     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
669       if (Lines[I].startswith("CPU part"))
670         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
671         // values correspond to the "Part number" in the CP15/c0 register. The
672         // contents are specified in the various processor manuals.
673         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
674           .Case("0x06f", "krait") // APQ8064
675           .Default("generic");
676 
677   return "generic";
678 }
679 #elif defined(__linux__) && defined(__s390x__)
getHostCPUName()680 StringRef sys::getHostCPUName() {
681   // STIDP is a privileged operation, so use /proc/cpuinfo instead.
682 
683   // The "processor 0:" line comes after a fair amount of other information,
684   // including a cache breakdown, but this should be plenty.
685   char buffer[2048];
686   ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
687   if (CPUInfoSize == -1)
688     return "generic";
689 
690   StringRef Str(buffer, CPUInfoSize);
691   SmallVector<StringRef, 32> Lines;
692   Str.split(Lines, "\n");
693 
694   // Look for the CPU features.
695   SmallVector<StringRef, 32> CPUFeatures;
696   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
697     if (Lines[I].startswith("features")) {
698       size_t Pos = Lines[I].find(":");
699       if (Pos != StringRef::npos) {
700         Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
701         break;
702       }
703     }
704 
705   // We need to check for the presence of vector support independently of
706   // the machine type, since we may only use the vector register set when
707   // supported by the kernel (and hypervisor).
708   bool HaveVectorSupport = false;
709   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
710     if (CPUFeatures[I] == "vx")
711       HaveVectorSupport = true;
712   }
713 
714   // Now check the processor machine type.
715   for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
716     if (Lines[I].startswith("processor ")) {
717       size_t Pos = Lines[I].find("machine = ");
718       if (Pos != StringRef::npos) {
719         Pos += sizeof("machine = ") - 1;
720         unsigned int Id;
721         if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
722           if (Id >= 2964 && HaveVectorSupport)
723             return "z13";
724           if (Id >= 2827)
725             return "zEC12";
726           if (Id >= 2817)
727             return "z196";
728         }
729       }
730       break;
731     }
732   }
733 
734   return "generic";
735 }
736 #else
getHostCPUName()737 StringRef sys::getHostCPUName() {
738   return "generic";
739 }
740 #endif
741 
742 #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
743  || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
getHostCPUFeatures(StringMap<bool> & Features)744 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
745   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
746   unsigned MaxLevel;
747   union {
748     unsigned u[3];
749     char     c[12];
750   } text;
751 
752   if (GetX86CpuIDAndInfo(0, &MaxLevel, text.u+0, text.u+2, text.u+1) ||
753       MaxLevel < 1)
754     return false;
755 
756   GetX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
757 
758   Features["cmov"]   = (EDX >> 15) & 1;
759   Features["mmx"]    = (EDX >> 23) & 1;
760   Features["sse"]    = (EDX >> 25) & 1;
761   Features["sse2"]   = (EDX >> 26) & 1;
762   Features["sse3"]   = (ECX >>  0) & 1;
763   Features["ssse3"]  = (ECX >>  9) & 1;
764   Features["sse4.1"] = (ECX >> 19) & 1;
765   Features["sse4.2"] = (ECX >> 20) & 1;
766 
767   Features["pclmul"] = (ECX >>  1) & 1;
768   Features["cx16"]   = (ECX >> 13) & 1;
769   Features["movbe"]  = (ECX >> 22) & 1;
770   Features["popcnt"] = (ECX >> 23) & 1;
771   Features["aes"]    = (ECX >> 25) & 1;
772   Features["rdrnd"]  = (ECX >> 30) & 1;
773 
774   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
775   // indicates that the AVX registers will be saved and restored on context
776   // switch, then we have full AVX support.
777   bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
778                     !GetX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
779   Features["avx"]    = HasAVXSave;
780   Features["fma"]    = HasAVXSave && (ECX >> 12) & 1;
781   Features["f16c"]   = HasAVXSave && (ECX >> 29) & 1;
782 
783   // Only enable XSAVE if OS has enabled support for saving YMM state.
784   Features["xsave"]  = HasAVXSave && (ECX >> 26) & 1;
785 
786   // AVX512 requires additional context to be saved by the OS.
787   bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
788 
789   unsigned MaxExtLevel;
790   GetX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
791 
792   bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
793                      !GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
794   Features["lzcnt"]  = HasExtLeaf1 && ((ECX >>  5) & 1);
795   Features["sse4a"]  = HasExtLeaf1 && ((ECX >>  6) & 1);
796   Features["prfchw"] = HasExtLeaf1 && ((ECX >>  8) & 1);
797   Features["xop"]    = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
798   Features["fma4"]   = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
799   Features["tbm"]    = HasExtLeaf1 && ((ECX >> 21) & 1);
800 
801   bool HasLeaf7 = MaxLevel >= 7 &&
802                   !GetX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
803 
804   // AVX2 is only supported if we have the OS save support from AVX.
805   Features["avx2"]     = HasAVXSave && HasLeaf7 && ((EBX >>  5) & 1);
806 
807   Features["fsgsbase"] = HasLeaf7 && ((EBX >>  0) & 1);
808   Features["bmi"]      = HasLeaf7 && ((EBX >>  3) & 1);
809   Features["hle"]      = HasLeaf7 && ((EBX >>  4) & 1);
810   Features["bmi2"]     = HasLeaf7 && ((EBX >>  8) & 1);
811   Features["rtm"]      = HasLeaf7 && ((EBX >> 11) & 1);
812   Features["rdseed"]   = HasLeaf7 && ((EBX >> 18) & 1);
813   Features["adx"]      = HasLeaf7 && ((EBX >> 19) & 1);
814   Features["sha"]      = HasLeaf7 && ((EBX >> 29) & 1);
815   // Enable protection keys
816   Features["pku"]    = HasLeaf7 && ((ECX >> 4) & 1);
817 
818   // AVX512 is only supported if the OS supports the context save for it.
819   Features["avx512f"]  = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
820   Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
821   Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
822   Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
823   Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
824   Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
825   Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
826 
827   bool HasLeafD = MaxLevel >= 0xd &&
828     !GetX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
829 
830   // Only enable XSAVE if OS has enabled support for saving YMM state.
831   Features["xsaveopt"] = HasAVXSave && HasLeafD && ((EAX >> 0) & 1);
832   Features["xsavec"]   = HasAVXSave && HasLeafD && ((EAX >> 1) & 1);
833   Features["xsaves"]   = HasAVXSave && HasLeafD && ((EAX >> 3) & 1);
834 
835   return true;
836 }
837 #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
getHostCPUFeatures(StringMap<bool> & Features)838 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
839   // Read 1024 bytes from /proc/cpuinfo, which should contain the Features line
840   // in all cases.
841   char buffer[1024];
842   ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
843   if (CPUInfoSize == -1)
844     return false;
845 
846   StringRef Str(buffer, CPUInfoSize);
847 
848   SmallVector<StringRef, 32> Lines;
849   Str.split(Lines, "\n");
850 
851   SmallVector<StringRef, 32> CPUFeatures;
852 
853   // Look for the CPU features.
854   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
855     if (Lines[I].startswith("Features")) {
856       Lines[I].split(CPUFeatures, ' ');
857       break;
858     }
859 
860 #if defined(__aarch64__)
861   // Keep track of which crypto features we have seen
862   enum {
863     CAP_AES   = 0x1,
864     CAP_PMULL = 0x2,
865     CAP_SHA1  = 0x4,
866     CAP_SHA2  = 0x8
867   };
868   uint32_t crypto = 0;
869 #endif
870 
871   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
872     StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
873 #if defined(__aarch64__)
874       .Case("asimd", "neon")
875       .Case("fp", "fp-armv8")
876       .Case("crc32", "crc")
877 #else
878       .Case("half", "fp16")
879       .Case("neon", "neon")
880       .Case("vfpv3", "vfp3")
881       .Case("vfpv3d16", "d16")
882       .Case("vfpv4", "vfp4")
883       .Case("idiva", "hwdiv-arm")
884       .Case("idivt", "hwdiv")
885 #endif
886       .Default("");
887 
888 #if defined(__aarch64__)
889     // We need to check crypto separately since we need all of the crypto
890     // extensions to enable the subtarget feature
891     if (CPUFeatures[I] == "aes")
892       crypto |= CAP_AES;
893     else if (CPUFeatures[I] == "pmull")
894       crypto |= CAP_PMULL;
895     else if (CPUFeatures[I] == "sha1")
896       crypto |= CAP_SHA1;
897     else if (CPUFeatures[I] == "sha2")
898       crypto |= CAP_SHA2;
899 #endif
900 
901     if (LLVMFeatureStr != "")
902       Features[LLVMFeatureStr] = true;
903   }
904 
905 #if defined(__aarch64__)
906   // If we have all crypto bits we can add the feature
907   if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
908     Features["crypto"] = true;
909 #endif
910 
911   return true;
912 }
913 #else
getHostCPUFeatures(StringMap<bool> & Features)914 bool sys::getHostCPUFeatures(StringMap<bool> &Features){
915   return false;
916 }
917 #endif
918 
getProcessTriple()919 std::string sys::getProcessTriple() {
920   Triple PT(Triple::normalize(LLVM_HOST_TRIPLE));
921 
922   if (sizeof(void *) == 8 && PT.isArch32Bit())
923     PT = PT.get64BitArchVariant();
924   if (sizeof(void *) == 4 && PT.isArch64Bit())
925     PT = PT.get32BitArchVariant();
926 
927   return PT.str();
928 }
929