1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Constants.h"
15 #include "ConstantFold.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GetElementPtrTypeIterator.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cstdarg>
37 using namespace llvm;
38
39 //===----------------------------------------------------------------------===//
40 // Constant Class
41 //===----------------------------------------------------------------------===//
42
anchor()43 void Constant::anchor() { }
44
isNegativeZeroValue() const45 bool Constant::isNegativeZeroValue() const {
46 // Floating point values have an explicit -0.0 value.
47 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48 return CFP->isZero() && CFP->isNegative();
49
50 // Equivalent for a vector of -0.0's.
51 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54 return true;
55
56 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
57 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
58 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
59 return true;
60
61 // We've already handled true FP case; any other FP vectors can't represent -0.0.
62 if (getType()->isFPOrFPVectorTy())
63 return false;
64
65 // Otherwise, just use +0.0.
66 return isNullValue();
67 }
68
69 // Return true iff this constant is positive zero (floating point), negative
70 // zero (floating point), or a null value.
isZeroValue() const71 bool Constant::isZeroValue() const {
72 // Floating point values have an explicit -0.0 value.
73 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
74 return CFP->isZero();
75
76 // Equivalent for a vector of -0.0's.
77 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
78 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
79 if (SplatCFP && SplatCFP->isZero())
80 return true;
81
82 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
83 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
84 if (SplatCFP && SplatCFP->isZero())
85 return true;
86
87 // Otherwise, just use +0.0.
88 return isNullValue();
89 }
90
isNullValue() const91 bool Constant::isNullValue() const {
92 // 0 is null.
93 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
94 return CI->isZero();
95
96 // +0.0 is null.
97 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
98 return CFP->isZero() && !CFP->isNegative();
99
100 // constant zero is zero for aggregates, cpnull is null for pointers, none for
101 // tokens.
102 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
103 isa<ConstantTokenNone>(this);
104 }
105
isAllOnesValue() const106 bool Constant::isAllOnesValue() const {
107 // Check for -1 integers
108 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
109 return CI->isMinusOne();
110
111 // Check for FP which are bitcasted from -1 integers
112 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
113 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
114
115 // Check for constant vectors which are splats of -1 values.
116 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
117 if (Constant *Splat = CV->getSplatValue())
118 return Splat->isAllOnesValue();
119
120 // Check for constant vectors which are splats of -1 values.
121 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
122 if (Constant *Splat = CV->getSplatValue())
123 return Splat->isAllOnesValue();
124
125 return false;
126 }
127
isOneValue() const128 bool Constant::isOneValue() const {
129 // Check for 1 integers
130 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
131 return CI->isOne();
132
133 // Check for FP which are bitcasted from 1 integers
134 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
135 return CFP->getValueAPF().bitcastToAPInt() == 1;
136
137 // Check for constant vectors which are splats of 1 values.
138 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
139 if (Constant *Splat = CV->getSplatValue())
140 return Splat->isOneValue();
141
142 // Check for constant vectors which are splats of 1 values.
143 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
144 if (Constant *Splat = CV->getSplatValue())
145 return Splat->isOneValue();
146
147 return false;
148 }
149
isMinSignedValue() const150 bool Constant::isMinSignedValue() const {
151 // Check for INT_MIN integers
152 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
153 return CI->isMinValue(/*isSigned=*/true);
154
155 // Check for FP which are bitcasted from INT_MIN integers
156 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
157 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
158
159 // Check for constant vectors which are splats of INT_MIN values.
160 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
161 if (Constant *Splat = CV->getSplatValue())
162 return Splat->isMinSignedValue();
163
164 // Check for constant vectors which are splats of INT_MIN values.
165 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
166 if (Constant *Splat = CV->getSplatValue())
167 return Splat->isMinSignedValue();
168
169 return false;
170 }
171
isNotMinSignedValue() const172 bool Constant::isNotMinSignedValue() const {
173 // Check for INT_MIN integers
174 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
175 return !CI->isMinValue(/*isSigned=*/true);
176
177 // Check for FP which are bitcasted from INT_MIN integers
178 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
179 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
180
181 // Check for constant vectors which are splats of INT_MIN values.
182 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
183 if (Constant *Splat = CV->getSplatValue())
184 return Splat->isNotMinSignedValue();
185
186 // Check for constant vectors which are splats of INT_MIN values.
187 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
188 if (Constant *Splat = CV->getSplatValue())
189 return Splat->isNotMinSignedValue();
190
191 // It *may* contain INT_MIN, we can't tell.
192 return false;
193 }
194
195 // Constructor to create a '0' constant of arbitrary type...
getNullValue(Type * Ty)196 Constant *Constant::getNullValue(Type *Ty) {
197 switch (Ty->getTypeID()) {
198 case Type::IntegerTyID:
199 return ConstantInt::get(Ty, 0);
200 case Type::HalfTyID:
201 return ConstantFP::get(Ty->getContext(),
202 APFloat::getZero(APFloat::IEEEhalf));
203 case Type::FloatTyID:
204 return ConstantFP::get(Ty->getContext(),
205 APFloat::getZero(APFloat::IEEEsingle));
206 case Type::DoubleTyID:
207 return ConstantFP::get(Ty->getContext(),
208 APFloat::getZero(APFloat::IEEEdouble));
209 case Type::X86_FP80TyID:
210 return ConstantFP::get(Ty->getContext(),
211 APFloat::getZero(APFloat::x87DoubleExtended));
212 case Type::FP128TyID:
213 return ConstantFP::get(Ty->getContext(),
214 APFloat::getZero(APFloat::IEEEquad));
215 case Type::PPC_FP128TyID:
216 return ConstantFP::get(Ty->getContext(),
217 APFloat(APFloat::PPCDoubleDouble,
218 APInt::getNullValue(128)));
219 case Type::PointerTyID:
220 return ConstantPointerNull::get(cast<PointerType>(Ty));
221 case Type::StructTyID:
222 case Type::ArrayTyID:
223 case Type::VectorTyID:
224 return ConstantAggregateZero::get(Ty);
225 case Type::TokenTyID:
226 return ConstantTokenNone::get(Ty->getContext());
227 default:
228 // Function, Label, or Opaque type?
229 llvm_unreachable("Cannot create a null constant of that type!");
230 }
231 }
232
getIntegerValue(Type * Ty,const APInt & V)233 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
234 Type *ScalarTy = Ty->getScalarType();
235
236 // Create the base integer constant.
237 Constant *C = ConstantInt::get(Ty->getContext(), V);
238
239 // Convert an integer to a pointer, if necessary.
240 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
241 C = ConstantExpr::getIntToPtr(C, PTy);
242
243 // Broadcast a scalar to a vector, if necessary.
244 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
245 C = ConstantVector::getSplat(VTy->getNumElements(), C);
246
247 return C;
248 }
249
getAllOnesValue(Type * Ty)250 Constant *Constant::getAllOnesValue(Type *Ty) {
251 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
252 return ConstantInt::get(Ty->getContext(),
253 APInt::getAllOnesValue(ITy->getBitWidth()));
254
255 if (Ty->isFloatingPointTy()) {
256 APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
257 !Ty->isPPC_FP128Ty());
258 return ConstantFP::get(Ty->getContext(), FL);
259 }
260
261 VectorType *VTy = cast<VectorType>(Ty);
262 return ConstantVector::getSplat(VTy->getNumElements(),
263 getAllOnesValue(VTy->getElementType()));
264 }
265
266 /// getAggregateElement - For aggregates (struct/array/vector) return the
267 /// constant that corresponds to the specified element if possible, or null if
268 /// not. This can return null if the element index is a ConstantExpr, or if
269 /// 'this' is a constant expr.
getAggregateElement(unsigned Elt) const270 Constant *Constant::getAggregateElement(unsigned Elt) const {
271 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
272 return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : nullptr;
273
274 if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
275 return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : nullptr;
276
277 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
278 return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : nullptr;
279
280 if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
281 return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
282
283 if (const UndefValue *UV = dyn_cast<UndefValue>(this))
284 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
285
286 if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
287 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
288 : nullptr;
289 return nullptr;
290 }
291
getAggregateElement(Constant * Elt) const292 Constant *Constant::getAggregateElement(Constant *Elt) const {
293 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
294 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
295 return getAggregateElement(CI->getZExtValue());
296 return nullptr;
297 }
298
destroyConstant()299 void Constant::destroyConstant() {
300 /// First call destroyConstantImpl on the subclass. This gives the subclass
301 /// a chance to remove the constant from any maps/pools it's contained in.
302 switch (getValueID()) {
303 default:
304 llvm_unreachable("Not a constant!");
305 #define HANDLE_CONSTANT(Name) \
306 case Value::Name##Val: \
307 cast<Name>(this)->destroyConstantImpl(); \
308 break;
309 #include "llvm/IR/Value.def"
310 }
311
312 // When a Constant is destroyed, there may be lingering
313 // references to the constant by other constants in the constant pool. These
314 // constants are implicitly dependent on the module that is being deleted,
315 // but they don't know that. Because we only find out when the CPV is
316 // deleted, we must now notify all of our users (that should only be
317 // Constants) that they are, in fact, invalid now and should be deleted.
318 //
319 while (!use_empty()) {
320 Value *V = user_back();
321 #ifndef NDEBUG // Only in -g mode...
322 if (!isa<Constant>(V)) {
323 dbgs() << "While deleting: " << *this
324 << "\n\nUse still stuck around after Def is destroyed: " << *V
325 << "\n\n";
326 }
327 #endif
328 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
329 cast<Constant>(V)->destroyConstant();
330
331 // The constant should remove itself from our use list...
332 assert((use_empty() || user_back() != V) && "Constant not removed!");
333 }
334
335 // Value has no outstanding references it is safe to delete it now...
336 delete this;
337 }
338
canTrapImpl(const Constant * C,SmallPtrSetImpl<const ConstantExpr * > & NonTrappingOps)339 static bool canTrapImpl(const Constant *C,
340 SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
341 assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
342 // The only thing that could possibly trap are constant exprs.
343 const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
344 if (!CE)
345 return false;
346
347 // ConstantExpr traps if any operands can trap.
348 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
349 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
350 if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
351 return true;
352 }
353 }
354
355 // Otherwise, only specific operations can trap.
356 switch (CE->getOpcode()) {
357 default:
358 return false;
359 case Instruction::UDiv:
360 case Instruction::SDiv:
361 case Instruction::FDiv:
362 case Instruction::URem:
363 case Instruction::SRem:
364 case Instruction::FRem:
365 // Div and rem can trap if the RHS is not known to be non-zero.
366 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
367 return true;
368 return false;
369 }
370 }
371
372 /// canTrap - Return true if evaluation of this constant could trap. This is
373 /// true for things like constant expressions that could divide by zero.
canTrap() const374 bool Constant::canTrap() const {
375 SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
376 return canTrapImpl(this, NonTrappingOps);
377 }
378
379 /// Check if C contains a GlobalValue for which Predicate is true.
380 static bool
ConstHasGlobalValuePredicate(const Constant * C,bool (* Predicate)(const GlobalValue *))381 ConstHasGlobalValuePredicate(const Constant *C,
382 bool (*Predicate)(const GlobalValue *)) {
383 SmallPtrSet<const Constant *, 8> Visited;
384 SmallVector<const Constant *, 8> WorkList;
385 WorkList.push_back(C);
386 Visited.insert(C);
387
388 while (!WorkList.empty()) {
389 const Constant *WorkItem = WorkList.pop_back_val();
390 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
391 if (Predicate(GV))
392 return true;
393 for (const Value *Op : WorkItem->operands()) {
394 const Constant *ConstOp = dyn_cast<Constant>(Op);
395 if (!ConstOp)
396 continue;
397 if (Visited.insert(ConstOp).second)
398 WorkList.push_back(ConstOp);
399 }
400 }
401 return false;
402 }
403
404 /// Return true if the value can vary between threads.
isThreadDependent() const405 bool Constant::isThreadDependent() const {
406 auto DLLImportPredicate = [](const GlobalValue *GV) {
407 return GV->isThreadLocal();
408 };
409 return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
410 }
411
isDLLImportDependent() const412 bool Constant::isDLLImportDependent() const {
413 auto DLLImportPredicate = [](const GlobalValue *GV) {
414 return GV->hasDLLImportStorageClass();
415 };
416 return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
417 }
418
419 /// Return true if the constant has users other than constant exprs and other
420 /// dangling things.
isConstantUsed() const421 bool Constant::isConstantUsed() const {
422 for (const User *U : users()) {
423 const Constant *UC = dyn_cast<Constant>(U);
424 if (!UC || isa<GlobalValue>(UC))
425 return true;
426
427 if (UC->isConstantUsed())
428 return true;
429 }
430 return false;
431 }
432
needsRelocation() const433 bool Constant::needsRelocation() const {
434 if (isa<GlobalValue>(this))
435 return true; // Global reference.
436
437 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
438 return BA->getFunction()->needsRelocation();
439
440 // While raw uses of blockaddress need to be relocated, differences between
441 // two of them don't when they are for labels in the same function. This is a
442 // common idiom when creating a table for the indirect goto extension, so we
443 // handle it efficiently here.
444 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
445 if (CE->getOpcode() == Instruction::Sub) {
446 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
447 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
448 if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
449 RHS->getOpcode() == Instruction::PtrToInt &&
450 isa<BlockAddress>(LHS->getOperand(0)) &&
451 isa<BlockAddress>(RHS->getOperand(0)) &&
452 cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
453 cast<BlockAddress>(RHS->getOperand(0))->getFunction())
454 return false;
455 }
456
457 bool Result = false;
458 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
459 Result |= cast<Constant>(getOperand(i))->needsRelocation();
460
461 return Result;
462 }
463
464 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
465 /// it. This involves recursively eliminating any dead users of the
466 /// constantexpr.
removeDeadUsersOfConstant(const Constant * C)467 static bool removeDeadUsersOfConstant(const Constant *C) {
468 if (isa<GlobalValue>(C)) return false; // Cannot remove this
469
470 while (!C->use_empty()) {
471 const Constant *User = dyn_cast<Constant>(C->user_back());
472 if (!User) return false; // Non-constant usage;
473 if (!removeDeadUsersOfConstant(User))
474 return false; // Constant wasn't dead
475 }
476
477 const_cast<Constant*>(C)->destroyConstant();
478 return true;
479 }
480
481
482 /// removeDeadConstantUsers - If there are any dead constant users dangling
483 /// off of this constant, remove them. This method is useful for clients
484 /// that want to check to see if a global is unused, but don't want to deal
485 /// with potentially dead constants hanging off of the globals.
removeDeadConstantUsers() const486 void Constant::removeDeadConstantUsers() const {
487 Value::const_user_iterator I = user_begin(), E = user_end();
488 Value::const_user_iterator LastNonDeadUser = E;
489 while (I != E) {
490 const Constant *User = dyn_cast<Constant>(*I);
491 if (!User) {
492 LastNonDeadUser = I;
493 ++I;
494 continue;
495 }
496
497 if (!removeDeadUsersOfConstant(User)) {
498 // If the constant wasn't dead, remember that this was the last live use
499 // and move on to the next constant.
500 LastNonDeadUser = I;
501 ++I;
502 continue;
503 }
504
505 // If the constant was dead, then the iterator is invalidated.
506 if (LastNonDeadUser == E) {
507 I = user_begin();
508 if (I == E) break;
509 } else {
510 I = LastNonDeadUser;
511 ++I;
512 }
513 }
514 }
515
516
517
518 //===----------------------------------------------------------------------===//
519 // ConstantInt
520 //===----------------------------------------------------------------------===//
521
anchor()522 void ConstantInt::anchor() { }
523
ConstantInt(IntegerType * Ty,const APInt & V)524 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
525 : Constant(Ty, ConstantIntVal, nullptr, 0), Val(V) {
526 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
527 }
528
getTrue(LLVMContext & Context)529 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
530 LLVMContextImpl *pImpl = Context.pImpl;
531 if (!pImpl->TheTrueVal)
532 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
533 return pImpl->TheTrueVal;
534 }
535
getFalse(LLVMContext & Context)536 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
537 LLVMContextImpl *pImpl = Context.pImpl;
538 if (!pImpl->TheFalseVal)
539 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
540 return pImpl->TheFalseVal;
541 }
542
getTrue(Type * Ty)543 Constant *ConstantInt::getTrue(Type *Ty) {
544 VectorType *VTy = dyn_cast<VectorType>(Ty);
545 if (!VTy) {
546 assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
547 return ConstantInt::getTrue(Ty->getContext());
548 }
549 assert(VTy->getElementType()->isIntegerTy(1) &&
550 "True must be vector of i1 or i1.");
551 return ConstantVector::getSplat(VTy->getNumElements(),
552 ConstantInt::getTrue(Ty->getContext()));
553 }
554
getFalse(Type * Ty)555 Constant *ConstantInt::getFalse(Type *Ty) {
556 VectorType *VTy = dyn_cast<VectorType>(Ty);
557 if (!VTy) {
558 assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
559 return ConstantInt::getFalse(Ty->getContext());
560 }
561 assert(VTy->getElementType()->isIntegerTy(1) &&
562 "False must be vector of i1 or i1.");
563 return ConstantVector::getSplat(VTy->getNumElements(),
564 ConstantInt::getFalse(Ty->getContext()));
565 }
566
567 // Get a ConstantInt from an APInt.
get(LLVMContext & Context,const APInt & V)568 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
569 // get an existing value or the insertion position
570 LLVMContextImpl *pImpl = Context.pImpl;
571 ConstantInt *&Slot = pImpl->IntConstants[V];
572 if (!Slot) {
573 // Get the corresponding integer type for the bit width of the value.
574 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
575 Slot = new ConstantInt(ITy, V);
576 }
577 assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
578 return Slot;
579 }
580
get(Type * Ty,uint64_t V,bool isSigned)581 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
582 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
583
584 // For vectors, broadcast the value.
585 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
586 return ConstantVector::getSplat(VTy->getNumElements(), C);
587
588 return C;
589 }
590
get(IntegerType * Ty,uint64_t V,bool isSigned)591 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
592 bool isSigned) {
593 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
594 }
595
getSigned(IntegerType * Ty,int64_t V)596 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
597 return get(Ty, V, true);
598 }
599
getSigned(Type * Ty,int64_t V)600 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
601 return get(Ty, V, true);
602 }
603
get(Type * Ty,const APInt & V)604 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
605 ConstantInt *C = get(Ty->getContext(), V);
606 assert(C->getType() == Ty->getScalarType() &&
607 "ConstantInt type doesn't match the type implied by its value!");
608
609 // For vectors, broadcast the value.
610 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
611 return ConstantVector::getSplat(VTy->getNumElements(), C);
612
613 return C;
614 }
615
get(IntegerType * Ty,StringRef Str,uint8_t radix)616 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
617 uint8_t radix) {
618 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
619 }
620
621 /// Remove the constant from the constant table.
destroyConstantImpl()622 void ConstantInt::destroyConstantImpl() {
623 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
624 }
625
626 //===----------------------------------------------------------------------===//
627 // ConstantFP
628 //===----------------------------------------------------------------------===//
629
TypeToFloatSemantics(Type * Ty)630 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
631 if (Ty->isHalfTy())
632 return &APFloat::IEEEhalf;
633 if (Ty->isFloatTy())
634 return &APFloat::IEEEsingle;
635 if (Ty->isDoubleTy())
636 return &APFloat::IEEEdouble;
637 if (Ty->isX86_FP80Ty())
638 return &APFloat::x87DoubleExtended;
639 else if (Ty->isFP128Ty())
640 return &APFloat::IEEEquad;
641
642 assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
643 return &APFloat::PPCDoubleDouble;
644 }
645
anchor()646 void ConstantFP::anchor() { }
647
648 /// get() - This returns a constant fp for the specified value in the
649 /// specified type. This should only be used for simple constant values like
650 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
get(Type * Ty,double V)651 Constant *ConstantFP::get(Type *Ty, double V) {
652 LLVMContext &Context = Ty->getContext();
653
654 APFloat FV(V);
655 bool ignored;
656 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
657 APFloat::rmNearestTiesToEven, &ignored);
658 Constant *C = get(Context, FV);
659
660 // For vectors, broadcast the value.
661 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
662 return ConstantVector::getSplat(VTy->getNumElements(), C);
663
664 return C;
665 }
666
667
get(Type * Ty,StringRef Str)668 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
669 LLVMContext &Context = Ty->getContext();
670
671 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
672 Constant *C = get(Context, FV);
673
674 // For vectors, broadcast the value.
675 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
676 return ConstantVector::getSplat(VTy->getNumElements(), C);
677
678 return C;
679 }
680
getNaN(Type * Ty,bool Negative,unsigned Type)681 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, unsigned Type) {
682 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
683 APFloat NaN = APFloat::getNaN(Semantics, Negative, Type);
684 Constant *C = get(Ty->getContext(), NaN);
685
686 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
687 return ConstantVector::getSplat(VTy->getNumElements(), C);
688
689 return C;
690 }
691
getNegativeZero(Type * Ty)692 Constant *ConstantFP::getNegativeZero(Type *Ty) {
693 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
694 APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
695 Constant *C = get(Ty->getContext(), NegZero);
696
697 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
698 return ConstantVector::getSplat(VTy->getNumElements(), C);
699
700 return C;
701 }
702
703
getZeroValueForNegation(Type * Ty)704 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
705 if (Ty->isFPOrFPVectorTy())
706 return getNegativeZero(Ty);
707
708 return Constant::getNullValue(Ty);
709 }
710
711
712 // ConstantFP accessors.
get(LLVMContext & Context,const APFloat & V)713 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
714 LLVMContextImpl* pImpl = Context.pImpl;
715
716 ConstantFP *&Slot = pImpl->FPConstants[V];
717
718 if (!Slot) {
719 Type *Ty;
720 if (&V.getSemantics() == &APFloat::IEEEhalf)
721 Ty = Type::getHalfTy(Context);
722 else if (&V.getSemantics() == &APFloat::IEEEsingle)
723 Ty = Type::getFloatTy(Context);
724 else if (&V.getSemantics() == &APFloat::IEEEdouble)
725 Ty = Type::getDoubleTy(Context);
726 else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
727 Ty = Type::getX86_FP80Ty(Context);
728 else if (&V.getSemantics() == &APFloat::IEEEquad)
729 Ty = Type::getFP128Ty(Context);
730 else {
731 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
732 "Unknown FP format");
733 Ty = Type::getPPC_FP128Ty(Context);
734 }
735 Slot = new ConstantFP(Ty, V);
736 }
737
738 return Slot;
739 }
740
getInfinity(Type * Ty,bool Negative)741 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
742 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
743 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
744
745 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
746 return ConstantVector::getSplat(VTy->getNumElements(), C);
747
748 return C;
749 }
750
ConstantFP(Type * Ty,const APFloat & V)751 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
752 : Constant(Ty, ConstantFPVal, nullptr, 0), Val(V) {
753 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
754 "FP type Mismatch");
755 }
756
isExactlyValue(const APFloat & V) const757 bool ConstantFP::isExactlyValue(const APFloat &V) const {
758 return Val.bitwiseIsEqual(V);
759 }
760
761 /// Remove the constant from the constant table.
destroyConstantImpl()762 void ConstantFP::destroyConstantImpl() {
763 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
764 }
765
766 //===----------------------------------------------------------------------===//
767 // ConstantAggregateZero Implementation
768 //===----------------------------------------------------------------------===//
769
770 /// getSequentialElement - If this CAZ has array or vector type, return a zero
771 /// with the right element type.
getSequentialElement() const772 Constant *ConstantAggregateZero::getSequentialElement() const {
773 return Constant::getNullValue(getType()->getSequentialElementType());
774 }
775
776 /// getStructElement - If this CAZ has struct type, return a zero with the
777 /// right element type for the specified element.
getStructElement(unsigned Elt) const778 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
779 return Constant::getNullValue(getType()->getStructElementType(Elt));
780 }
781
782 /// getElementValue - Return a zero of the right value for the specified GEP
783 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
getElementValue(Constant * C) const784 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
785 if (isa<SequentialType>(getType()))
786 return getSequentialElement();
787 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
788 }
789
790 /// getElementValue - Return a zero of the right value for the specified GEP
791 /// index.
getElementValue(unsigned Idx) const792 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
793 if (isa<SequentialType>(getType()))
794 return getSequentialElement();
795 return getStructElement(Idx);
796 }
797
getNumElements() const798 unsigned ConstantAggregateZero::getNumElements() const {
799 Type *Ty = getType();
800 if (auto *AT = dyn_cast<ArrayType>(Ty))
801 return AT->getNumElements();
802 if (auto *VT = dyn_cast<VectorType>(Ty))
803 return VT->getNumElements();
804 return Ty->getStructNumElements();
805 }
806
807 //===----------------------------------------------------------------------===//
808 // UndefValue Implementation
809 //===----------------------------------------------------------------------===//
810
811 /// getSequentialElement - If this undef has array or vector type, return an
812 /// undef with the right element type.
getSequentialElement() const813 UndefValue *UndefValue::getSequentialElement() const {
814 return UndefValue::get(getType()->getSequentialElementType());
815 }
816
817 /// getStructElement - If this undef has struct type, return a zero with the
818 /// right element type for the specified element.
getStructElement(unsigned Elt) const819 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
820 return UndefValue::get(getType()->getStructElementType(Elt));
821 }
822
823 /// getElementValue - Return an undef of the right value for the specified GEP
824 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
getElementValue(Constant * C) const825 UndefValue *UndefValue::getElementValue(Constant *C) const {
826 if (isa<SequentialType>(getType()))
827 return getSequentialElement();
828 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
829 }
830
831 /// getElementValue - Return an undef of the right value for the specified GEP
832 /// index.
getElementValue(unsigned Idx) const833 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
834 if (isa<SequentialType>(getType()))
835 return getSequentialElement();
836 return getStructElement(Idx);
837 }
838
getNumElements() const839 unsigned UndefValue::getNumElements() const {
840 Type *Ty = getType();
841 if (auto *AT = dyn_cast<ArrayType>(Ty))
842 return AT->getNumElements();
843 if (auto *VT = dyn_cast<VectorType>(Ty))
844 return VT->getNumElements();
845 return Ty->getStructNumElements();
846 }
847
848 //===----------------------------------------------------------------------===//
849 // ConstantXXX Classes
850 //===----------------------------------------------------------------------===//
851
852 template <typename ItTy, typename EltTy>
rangeOnlyContains(ItTy Start,ItTy End,EltTy Elt)853 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
854 for (; Start != End; ++Start)
855 if (*Start != Elt)
856 return false;
857 return true;
858 }
859
860 template <typename SequentialTy, typename ElementTy>
getIntSequenceIfElementsMatch(ArrayRef<Constant * > V)861 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
862 assert(!V.empty() && "Cannot get empty int sequence.");
863
864 SmallVector<ElementTy, 16> Elts;
865 for (Constant *C : V)
866 if (auto *CI = dyn_cast<ConstantInt>(C))
867 Elts.push_back(CI->getZExtValue());
868 else
869 return nullptr;
870 return SequentialTy::get(V[0]->getContext(), Elts);
871 }
872
873 template <typename SequentialTy, typename ElementTy>
getFPSequenceIfElementsMatch(ArrayRef<Constant * > V)874 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
875 assert(!V.empty() && "Cannot get empty FP sequence.");
876
877 SmallVector<ElementTy, 16> Elts;
878 for (Constant *C : V)
879 if (auto *CFP = dyn_cast<ConstantFP>(C))
880 Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
881 else
882 return nullptr;
883 return SequentialTy::getFP(V[0]->getContext(), Elts);
884 }
885
886 template <typename SequenceTy>
getSequenceIfElementsMatch(Constant * C,ArrayRef<Constant * > V)887 static Constant *getSequenceIfElementsMatch(Constant *C,
888 ArrayRef<Constant *> V) {
889 // We speculatively build the elements here even if it turns out that there is
890 // a constantexpr or something else weird, since it is so uncommon for that to
891 // happen.
892 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
893 if (CI->getType()->isIntegerTy(8))
894 return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
895 else if (CI->getType()->isIntegerTy(16))
896 return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
897 else if (CI->getType()->isIntegerTy(32))
898 return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
899 else if (CI->getType()->isIntegerTy(64))
900 return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
901 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
902 if (CFP->getType()->isHalfTy())
903 return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
904 else if (CFP->getType()->isFloatTy())
905 return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
906 else if (CFP->getType()->isDoubleTy())
907 return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
908 }
909
910 return nullptr;
911 }
912
ConstantArray(ArrayType * T,ArrayRef<Constant * > V)913 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
914 : Constant(T, ConstantArrayVal,
915 OperandTraits<ConstantArray>::op_end(this) - V.size(),
916 V.size()) {
917 assert(V.size() == T->getNumElements() &&
918 "Invalid initializer vector for constant array");
919 for (unsigned i = 0, e = V.size(); i != e; ++i)
920 assert(V[i]->getType() == T->getElementType() &&
921 "Initializer for array element doesn't match array element type!");
922 std::copy(V.begin(), V.end(), op_begin());
923 }
924
get(ArrayType * Ty,ArrayRef<Constant * > V)925 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
926 if (Constant *C = getImpl(Ty, V))
927 return C;
928 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
929 }
930
getImpl(ArrayType * Ty,ArrayRef<Constant * > V)931 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
932 // Empty arrays are canonicalized to ConstantAggregateZero.
933 if (V.empty())
934 return ConstantAggregateZero::get(Ty);
935
936 for (unsigned i = 0, e = V.size(); i != e; ++i) {
937 assert(V[i]->getType() == Ty->getElementType() &&
938 "Wrong type in array element initializer");
939 }
940
941 // If this is an all-zero array, return a ConstantAggregateZero object. If
942 // all undef, return an UndefValue, if "all simple", then return a
943 // ConstantDataArray.
944 Constant *C = V[0];
945 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
946 return UndefValue::get(Ty);
947
948 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
949 return ConstantAggregateZero::get(Ty);
950
951 // Check to see if all of the elements are ConstantFP or ConstantInt and if
952 // the element type is compatible with ConstantDataVector. If so, use it.
953 if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
954 return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
955
956 // Otherwise, we really do want to create a ConstantArray.
957 return nullptr;
958 }
959
960 /// getTypeForElements - Return an anonymous struct type to use for a constant
961 /// with the specified set of elements. The list must not be empty.
getTypeForElements(LLVMContext & Context,ArrayRef<Constant * > V,bool Packed)962 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
963 ArrayRef<Constant*> V,
964 bool Packed) {
965 unsigned VecSize = V.size();
966 SmallVector<Type*, 16> EltTypes(VecSize);
967 for (unsigned i = 0; i != VecSize; ++i)
968 EltTypes[i] = V[i]->getType();
969
970 return StructType::get(Context, EltTypes, Packed);
971 }
972
973
getTypeForElements(ArrayRef<Constant * > V,bool Packed)974 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
975 bool Packed) {
976 assert(!V.empty() &&
977 "ConstantStruct::getTypeForElements cannot be called on empty list");
978 return getTypeForElements(V[0]->getContext(), V, Packed);
979 }
980
981
ConstantStruct(StructType * T,ArrayRef<Constant * > V)982 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
983 : Constant(T, ConstantStructVal,
984 OperandTraits<ConstantStruct>::op_end(this) - V.size(),
985 V.size()) {
986 assert(V.size() == T->getNumElements() &&
987 "Invalid initializer vector for constant structure");
988 for (unsigned i = 0, e = V.size(); i != e; ++i)
989 assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
990 "Initializer for struct element doesn't match struct element type!");
991 std::copy(V.begin(), V.end(), op_begin());
992 }
993
994 // ConstantStruct accessors.
get(StructType * ST,ArrayRef<Constant * > V)995 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
996 assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
997 "Incorrect # elements specified to ConstantStruct::get");
998
999 // Create a ConstantAggregateZero value if all elements are zeros.
1000 bool isZero = true;
1001 bool isUndef = false;
1002
1003 if (!V.empty()) {
1004 isUndef = isa<UndefValue>(V[0]);
1005 isZero = V[0]->isNullValue();
1006 if (isUndef || isZero) {
1007 for (unsigned i = 0, e = V.size(); i != e; ++i) {
1008 if (!V[i]->isNullValue())
1009 isZero = false;
1010 if (!isa<UndefValue>(V[i]))
1011 isUndef = false;
1012 }
1013 }
1014 }
1015 if (isZero)
1016 return ConstantAggregateZero::get(ST);
1017 if (isUndef)
1018 return UndefValue::get(ST);
1019
1020 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1021 }
1022
get(StructType * T,...)1023 Constant *ConstantStruct::get(StructType *T, ...) {
1024 va_list ap;
1025 SmallVector<Constant*, 8> Values;
1026 va_start(ap, T);
1027 while (Constant *Val = va_arg(ap, llvm::Constant*))
1028 Values.push_back(Val);
1029 va_end(ap);
1030 return get(T, Values);
1031 }
1032
ConstantVector(VectorType * T,ArrayRef<Constant * > V)1033 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1034 : Constant(T, ConstantVectorVal,
1035 OperandTraits<ConstantVector>::op_end(this) - V.size(),
1036 V.size()) {
1037 for (size_t i = 0, e = V.size(); i != e; i++)
1038 assert(V[i]->getType() == T->getElementType() &&
1039 "Initializer for vector element doesn't match vector element type!");
1040 std::copy(V.begin(), V.end(), op_begin());
1041 }
1042
1043 // ConstantVector accessors.
get(ArrayRef<Constant * > V)1044 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1045 if (Constant *C = getImpl(V))
1046 return C;
1047 VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
1048 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1049 }
1050
getImpl(ArrayRef<Constant * > V)1051 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1052 assert(!V.empty() && "Vectors can't be empty");
1053 VectorType *T = VectorType::get(V.front()->getType(), V.size());
1054
1055 // If this is an all-undef or all-zero vector, return a
1056 // ConstantAggregateZero or UndefValue.
1057 Constant *C = V[0];
1058 bool isZero = C->isNullValue();
1059 bool isUndef = isa<UndefValue>(C);
1060
1061 if (isZero || isUndef) {
1062 for (unsigned i = 1, e = V.size(); i != e; ++i)
1063 if (V[i] != C) {
1064 isZero = isUndef = false;
1065 break;
1066 }
1067 }
1068
1069 if (isZero)
1070 return ConstantAggregateZero::get(T);
1071 if (isUndef)
1072 return UndefValue::get(T);
1073
1074 // Check to see if all of the elements are ConstantFP or ConstantInt and if
1075 // the element type is compatible with ConstantDataVector. If so, use it.
1076 if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1077 return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
1078
1079 // Otherwise, the element type isn't compatible with ConstantDataVector, or
1080 // the operand list constants a ConstantExpr or something else strange.
1081 return nullptr;
1082 }
1083
getSplat(unsigned NumElts,Constant * V)1084 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1085 // If this splat is compatible with ConstantDataVector, use it instead of
1086 // ConstantVector.
1087 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1088 ConstantDataSequential::isElementTypeCompatible(V->getType()))
1089 return ConstantDataVector::getSplat(NumElts, V);
1090
1091 SmallVector<Constant*, 32> Elts(NumElts, V);
1092 return get(Elts);
1093 }
1094
get(LLVMContext & Context)1095 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
1096 LLVMContextImpl *pImpl = Context.pImpl;
1097 if (!pImpl->TheNoneToken)
1098 pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
1099 return pImpl->TheNoneToken.get();
1100 }
1101
1102 /// Remove the constant from the constant table.
destroyConstantImpl()1103 void ConstantTokenNone::destroyConstantImpl() {
1104 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1105 }
1106
1107 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1108 // can't be inline because we don't want to #include Instruction.h into
1109 // Constant.h
isCast() const1110 bool ConstantExpr::isCast() const {
1111 return Instruction::isCast(getOpcode());
1112 }
1113
isCompare() const1114 bool ConstantExpr::isCompare() const {
1115 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1116 }
1117
isGEPWithNoNotionalOverIndexing() const1118 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1119 if (getOpcode() != Instruction::GetElementPtr) return false;
1120
1121 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1122 User::const_op_iterator OI = std::next(this->op_begin());
1123
1124 // Skip the first index, as it has no static limit.
1125 ++GEPI;
1126 ++OI;
1127
1128 // The remaining indices must be compile-time known integers within the
1129 // bounds of the corresponding notional static array types.
1130 for (; GEPI != E; ++GEPI, ++OI) {
1131 ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1132 if (!CI) return false;
1133 if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1134 if (CI->getValue().getActiveBits() > 64 ||
1135 CI->getZExtValue() >= ATy->getNumElements())
1136 return false;
1137 }
1138
1139 // All the indices checked out.
1140 return true;
1141 }
1142
hasIndices() const1143 bool ConstantExpr::hasIndices() const {
1144 return getOpcode() == Instruction::ExtractValue ||
1145 getOpcode() == Instruction::InsertValue;
1146 }
1147
getIndices() const1148 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1149 if (const ExtractValueConstantExpr *EVCE =
1150 dyn_cast<ExtractValueConstantExpr>(this))
1151 return EVCE->Indices;
1152
1153 return cast<InsertValueConstantExpr>(this)->Indices;
1154 }
1155
getPredicate() const1156 unsigned ConstantExpr::getPredicate() const {
1157 return cast<CompareConstantExpr>(this)->predicate;
1158 }
1159
1160 /// getWithOperandReplaced - Return a constant expression identical to this
1161 /// one, but with the specified operand set to the specified value.
1162 Constant *
getWithOperandReplaced(unsigned OpNo,Constant * Op) const1163 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1164 assert(Op->getType() == getOperand(OpNo)->getType() &&
1165 "Replacing operand with value of different type!");
1166 if (getOperand(OpNo) == Op)
1167 return const_cast<ConstantExpr*>(this);
1168
1169 SmallVector<Constant*, 8> NewOps;
1170 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1171 NewOps.push_back(i == OpNo ? Op : getOperand(i));
1172
1173 return getWithOperands(NewOps);
1174 }
1175
1176 /// getWithOperands - This returns the current constant expression with the
1177 /// operands replaced with the specified values. The specified array must
1178 /// have the same number of operands as our current one.
getWithOperands(ArrayRef<Constant * > Ops,Type * Ty,bool OnlyIfReduced,Type * SrcTy) const1179 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1180 bool OnlyIfReduced, Type *SrcTy) const {
1181 assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1182
1183 // If no operands changed return self.
1184 if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1185 return const_cast<ConstantExpr*>(this);
1186
1187 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1188 switch (getOpcode()) {
1189 case Instruction::Trunc:
1190 case Instruction::ZExt:
1191 case Instruction::SExt:
1192 case Instruction::FPTrunc:
1193 case Instruction::FPExt:
1194 case Instruction::UIToFP:
1195 case Instruction::SIToFP:
1196 case Instruction::FPToUI:
1197 case Instruction::FPToSI:
1198 case Instruction::PtrToInt:
1199 case Instruction::IntToPtr:
1200 case Instruction::BitCast:
1201 case Instruction::AddrSpaceCast:
1202 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1203 case Instruction::Select:
1204 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1205 case Instruction::InsertElement:
1206 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1207 OnlyIfReducedTy);
1208 case Instruction::ExtractElement:
1209 return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1210 case Instruction::InsertValue:
1211 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1212 OnlyIfReducedTy);
1213 case Instruction::ExtractValue:
1214 return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1215 case Instruction::ShuffleVector:
1216 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
1217 OnlyIfReducedTy);
1218 case Instruction::GetElementPtr: {
1219 auto *GEPO = cast<GEPOperator>(this);
1220 assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
1221 return ConstantExpr::getGetElementPtr(
1222 SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
1223 GEPO->isInBounds(), OnlyIfReducedTy);
1224 }
1225 case Instruction::ICmp:
1226 case Instruction::FCmp:
1227 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1228 OnlyIfReducedTy);
1229 default:
1230 assert(getNumOperands() == 2 && "Must be binary operator?");
1231 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1232 OnlyIfReducedTy);
1233 }
1234 }
1235
1236
1237 //===----------------------------------------------------------------------===//
1238 // isValueValidForType implementations
1239
isValueValidForType(Type * Ty,uint64_t Val)1240 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1241 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1242 if (Ty->isIntegerTy(1))
1243 return Val == 0 || Val == 1;
1244 if (NumBits >= 64)
1245 return true; // always true, has to fit in largest type
1246 uint64_t Max = (1ll << NumBits) - 1;
1247 return Val <= Max;
1248 }
1249
isValueValidForType(Type * Ty,int64_t Val)1250 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1251 unsigned NumBits = Ty->getIntegerBitWidth();
1252 if (Ty->isIntegerTy(1))
1253 return Val == 0 || Val == 1 || Val == -1;
1254 if (NumBits >= 64)
1255 return true; // always true, has to fit in largest type
1256 int64_t Min = -(1ll << (NumBits-1));
1257 int64_t Max = (1ll << (NumBits-1)) - 1;
1258 return (Val >= Min && Val <= Max);
1259 }
1260
isValueValidForType(Type * Ty,const APFloat & Val)1261 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1262 // convert modifies in place, so make a copy.
1263 APFloat Val2 = APFloat(Val);
1264 bool losesInfo;
1265 switch (Ty->getTypeID()) {
1266 default:
1267 return false; // These can't be represented as floating point!
1268
1269 // FIXME rounding mode needs to be more flexible
1270 case Type::HalfTyID: {
1271 if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1272 return true;
1273 Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1274 return !losesInfo;
1275 }
1276 case Type::FloatTyID: {
1277 if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1278 return true;
1279 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1280 return !losesInfo;
1281 }
1282 case Type::DoubleTyID: {
1283 if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1284 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1285 &Val2.getSemantics() == &APFloat::IEEEdouble)
1286 return true;
1287 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1288 return !losesInfo;
1289 }
1290 case Type::X86_FP80TyID:
1291 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1292 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1293 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1294 &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1295 case Type::FP128TyID:
1296 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1297 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1298 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1299 &Val2.getSemantics() == &APFloat::IEEEquad;
1300 case Type::PPC_FP128TyID:
1301 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1302 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1303 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1304 &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1305 }
1306 }
1307
1308
1309 //===----------------------------------------------------------------------===//
1310 // Factory Function Implementation
1311
get(Type * Ty)1312 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1313 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1314 "Cannot create an aggregate zero of non-aggregate type!");
1315
1316 ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1317 if (!Entry)
1318 Entry = new ConstantAggregateZero(Ty);
1319
1320 return Entry;
1321 }
1322
1323 /// destroyConstant - Remove the constant from the constant table.
1324 ///
destroyConstantImpl()1325 void ConstantAggregateZero::destroyConstantImpl() {
1326 getContext().pImpl->CAZConstants.erase(getType());
1327 }
1328
1329 /// destroyConstant - Remove the constant from the constant table...
1330 ///
destroyConstantImpl()1331 void ConstantArray::destroyConstantImpl() {
1332 getType()->getContext().pImpl->ArrayConstants.remove(this);
1333 }
1334
1335
1336 //---- ConstantStruct::get() implementation...
1337 //
1338
1339 // destroyConstant - Remove the constant from the constant table...
1340 //
destroyConstantImpl()1341 void ConstantStruct::destroyConstantImpl() {
1342 getType()->getContext().pImpl->StructConstants.remove(this);
1343 }
1344
1345 // destroyConstant - Remove the constant from the constant table...
1346 //
destroyConstantImpl()1347 void ConstantVector::destroyConstantImpl() {
1348 getType()->getContext().pImpl->VectorConstants.remove(this);
1349 }
1350
1351 /// getSplatValue - If this is a splat vector constant, meaning that all of
1352 /// the elements have the same value, return that value. Otherwise return 0.
getSplatValue() const1353 Constant *Constant::getSplatValue() const {
1354 assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1355 if (isa<ConstantAggregateZero>(this))
1356 return getNullValue(this->getType()->getVectorElementType());
1357 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1358 return CV->getSplatValue();
1359 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1360 return CV->getSplatValue();
1361 return nullptr;
1362 }
1363
1364 /// getSplatValue - If this is a splat constant, where all of the
1365 /// elements have the same value, return that value. Otherwise return null.
getSplatValue() const1366 Constant *ConstantVector::getSplatValue() const {
1367 // Check out first element.
1368 Constant *Elt = getOperand(0);
1369 // Then make sure all remaining elements point to the same value.
1370 for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1371 if (getOperand(I) != Elt)
1372 return nullptr;
1373 return Elt;
1374 }
1375
1376 /// If C is a constant integer then return its value, otherwise C must be a
1377 /// vector of constant integers, all equal, and the common value is returned.
getUniqueInteger() const1378 const APInt &Constant::getUniqueInteger() const {
1379 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1380 return CI->getValue();
1381 assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1382 const Constant *C = this->getAggregateElement(0U);
1383 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1384 return cast<ConstantInt>(C)->getValue();
1385 }
1386
1387 //---- ConstantPointerNull::get() implementation.
1388 //
1389
get(PointerType * Ty)1390 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1391 ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1392 if (!Entry)
1393 Entry = new ConstantPointerNull(Ty);
1394
1395 return Entry;
1396 }
1397
1398 // destroyConstant - Remove the constant from the constant table...
1399 //
destroyConstantImpl()1400 void ConstantPointerNull::destroyConstantImpl() {
1401 getContext().pImpl->CPNConstants.erase(getType());
1402 }
1403
1404
1405 //---- UndefValue::get() implementation.
1406 //
1407
get(Type * Ty)1408 UndefValue *UndefValue::get(Type *Ty) {
1409 UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1410 if (!Entry)
1411 Entry = new UndefValue(Ty);
1412
1413 return Entry;
1414 }
1415
1416 // destroyConstant - Remove the constant from the constant table.
1417 //
destroyConstantImpl()1418 void UndefValue::destroyConstantImpl() {
1419 // Free the constant and any dangling references to it.
1420 getContext().pImpl->UVConstants.erase(getType());
1421 }
1422
1423 //---- BlockAddress::get() implementation.
1424 //
1425
get(BasicBlock * BB)1426 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1427 assert(BB->getParent() && "Block must have a parent");
1428 return get(BB->getParent(), BB);
1429 }
1430
get(Function * F,BasicBlock * BB)1431 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1432 BlockAddress *&BA =
1433 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1434 if (!BA)
1435 BA = new BlockAddress(F, BB);
1436
1437 assert(BA->getFunction() == F && "Basic block moved between functions");
1438 return BA;
1439 }
1440
BlockAddress(Function * F,BasicBlock * BB)1441 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1442 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1443 &Op<0>(), 2) {
1444 setOperand(0, F);
1445 setOperand(1, BB);
1446 BB->AdjustBlockAddressRefCount(1);
1447 }
1448
lookup(const BasicBlock * BB)1449 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1450 if (!BB->hasAddressTaken())
1451 return nullptr;
1452
1453 const Function *F = BB->getParent();
1454 assert(F && "Block must have a parent");
1455 BlockAddress *BA =
1456 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1457 assert(BA && "Refcount and block address map disagree!");
1458 return BA;
1459 }
1460
1461 // destroyConstant - Remove the constant from the constant table.
1462 //
destroyConstantImpl()1463 void BlockAddress::destroyConstantImpl() {
1464 getFunction()->getType()->getContext().pImpl
1465 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1466 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1467 }
1468
handleOperandChangeImpl(Value * From,Value * To,Use * U)1469 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
1470 // This could be replacing either the Basic Block or the Function. In either
1471 // case, we have to remove the map entry.
1472 Function *NewF = getFunction();
1473 BasicBlock *NewBB = getBasicBlock();
1474
1475 if (U == &Op<0>())
1476 NewF = cast<Function>(To->stripPointerCasts());
1477 else
1478 NewBB = cast<BasicBlock>(To);
1479
1480 // See if the 'new' entry already exists, if not, just update this in place
1481 // and return early.
1482 BlockAddress *&NewBA =
1483 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1484 if (NewBA)
1485 return NewBA;
1486
1487 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1488
1489 // Remove the old entry, this can't cause the map to rehash (just a
1490 // tombstone will get added).
1491 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1492 getBasicBlock()));
1493 NewBA = this;
1494 setOperand(0, NewF);
1495 setOperand(1, NewBB);
1496 getBasicBlock()->AdjustBlockAddressRefCount(1);
1497
1498 // If we just want to keep the existing value, then return null.
1499 // Callers know that this means we shouldn't delete this value.
1500 return nullptr;
1501 }
1502
1503 //---- ConstantExpr::get() implementations.
1504 //
1505
1506 /// This is a utility function to handle folding of casts and lookup of the
1507 /// cast in the ExprConstants map. It is used by the various get* methods below.
getFoldedCast(Instruction::CastOps opc,Constant * C,Type * Ty,bool OnlyIfReduced=false)1508 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1509 bool OnlyIfReduced = false) {
1510 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1511 // Fold a few common cases
1512 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1513 return FC;
1514
1515 if (OnlyIfReduced)
1516 return nullptr;
1517
1518 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1519
1520 // Look up the constant in the table first to ensure uniqueness.
1521 ConstantExprKeyType Key(opc, C);
1522
1523 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1524 }
1525
getCast(unsigned oc,Constant * C,Type * Ty,bool OnlyIfReduced)1526 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1527 bool OnlyIfReduced) {
1528 Instruction::CastOps opc = Instruction::CastOps(oc);
1529 assert(Instruction::isCast(opc) && "opcode out of range");
1530 assert(C && Ty && "Null arguments to getCast");
1531 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1532
1533 switch (opc) {
1534 default:
1535 llvm_unreachable("Invalid cast opcode");
1536 case Instruction::Trunc:
1537 return getTrunc(C, Ty, OnlyIfReduced);
1538 case Instruction::ZExt:
1539 return getZExt(C, Ty, OnlyIfReduced);
1540 case Instruction::SExt:
1541 return getSExt(C, Ty, OnlyIfReduced);
1542 case Instruction::FPTrunc:
1543 return getFPTrunc(C, Ty, OnlyIfReduced);
1544 case Instruction::FPExt:
1545 return getFPExtend(C, Ty, OnlyIfReduced);
1546 case Instruction::UIToFP:
1547 return getUIToFP(C, Ty, OnlyIfReduced);
1548 case Instruction::SIToFP:
1549 return getSIToFP(C, Ty, OnlyIfReduced);
1550 case Instruction::FPToUI:
1551 return getFPToUI(C, Ty, OnlyIfReduced);
1552 case Instruction::FPToSI:
1553 return getFPToSI(C, Ty, OnlyIfReduced);
1554 case Instruction::PtrToInt:
1555 return getPtrToInt(C, Ty, OnlyIfReduced);
1556 case Instruction::IntToPtr:
1557 return getIntToPtr(C, Ty, OnlyIfReduced);
1558 case Instruction::BitCast:
1559 return getBitCast(C, Ty, OnlyIfReduced);
1560 case Instruction::AddrSpaceCast:
1561 return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1562 }
1563 }
1564
getZExtOrBitCast(Constant * C,Type * Ty)1565 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1566 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1567 return getBitCast(C, Ty);
1568 return getZExt(C, Ty);
1569 }
1570
getSExtOrBitCast(Constant * C,Type * Ty)1571 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1572 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1573 return getBitCast(C, Ty);
1574 return getSExt(C, Ty);
1575 }
1576
getTruncOrBitCast(Constant * C,Type * Ty)1577 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1578 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1579 return getBitCast(C, Ty);
1580 return getTrunc(C, Ty);
1581 }
1582
getPointerCast(Constant * S,Type * Ty)1583 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1584 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1585 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1586 "Invalid cast");
1587
1588 if (Ty->isIntOrIntVectorTy())
1589 return getPtrToInt(S, Ty);
1590
1591 unsigned SrcAS = S->getType()->getPointerAddressSpace();
1592 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1593 return getAddrSpaceCast(S, Ty);
1594
1595 return getBitCast(S, Ty);
1596 }
1597
getPointerBitCastOrAddrSpaceCast(Constant * S,Type * Ty)1598 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1599 Type *Ty) {
1600 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1601 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1602
1603 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1604 return getAddrSpaceCast(S, Ty);
1605
1606 return getBitCast(S, Ty);
1607 }
1608
getIntegerCast(Constant * C,Type * Ty,bool isSigned)1609 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1610 bool isSigned) {
1611 assert(C->getType()->isIntOrIntVectorTy() &&
1612 Ty->isIntOrIntVectorTy() && "Invalid cast");
1613 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1614 unsigned DstBits = Ty->getScalarSizeInBits();
1615 Instruction::CastOps opcode =
1616 (SrcBits == DstBits ? Instruction::BitCast :
1617 (SrcBits > DstBits ? Instruction::Trunc :
1618 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1619 return getCast(opcode, C, Ty);
1620 }
1621
getFPCast(Constant * C,Type * Ty)1622 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1623 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1624 "Invalid cast");
1625 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1626 unsigned DstBits = Ty->getScalarSizeInBits();
1627 if (SrcBits == DstBits)
1628 return C; // Avoid a useless cast
1629 Instruction::CastOps opcode =
1630 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1631 return getCast(opcode, C, Ty);
1632 }
1633
getTrunc(Constant * C,Type * Ty,bool OnlyIfReduced)1634 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1635 #ifndef NDEBUG
1636 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1637 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1638 #endif
1639 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1640 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1641 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1642 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1643 "SrcTy must be larger than DestTy for Trunc!");
1644
1645 return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
1646 }
1647
getSExt(Constant * C,Type * Ty,bool OnlyIfReduced)1648 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1649 #ifndef NDEBUG
1650 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1651 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1652 #endif
1653 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1654 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1655 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1656 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1657 "SrcTy must be smaller than DestTy for SExt!");
1658
1659 return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
1660 }
1661
getZExt(Constant * C,Type * Ty,bool OnlyIfReduced)1662 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1663 #ifndef NDEBUG
1664 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1665 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1666 #endif
1667 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1668 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1669 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1670 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1671 "SrcTy must be smaller than DestTy for ZExt!");
1672
1673 return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
1674 }
1675
getFPTrunc(Constant * C,Type * Ty,bool OnlyIfReduced)1676 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1677 #ifndef NDEBUG
1678 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1679 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1680 #endif
1681 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1682 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1683 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1684 "This is an illegal floating point truncation!");
1685 return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
1686 }
1687
getFPExtend(Constant * C,Type * Ty,bool OnlyIfReduced)1688 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
1689 #ifndef NDEBUG
1690 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1691 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1692 #endif
1693 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1694 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1695 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1696 "This is an illegal floating point extension!");
1697 return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
1698 }
1699
getUIToFP(Constant * C,Type * Ty,bool OnlyIfReduced)1700 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1701 #ifndef NDEBUG
1702 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1703 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1704 #endif
1705 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1706 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1707 "This is an illegal uint to floating point cast!");
1708 return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
1709 }
1710
getSIToFP(Constant * C,Type * Ty,bool OnlyIfReduced)1711 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1712 #ifndef NDEBUG
1713 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1714 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1715 #endif
1716 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1717 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1718 "This is an illegal sint to floating point cast!");
1719 return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
1720 }
1721
getFPToUI(Constant * C,Type * Ty,bool OnlyIfReduced)1722 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1723 #ifndef NDEBUG
1724 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1725 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1726 #endif
1727 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1728 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1729 "This is an illegal floating point to uint cast!");
1730 return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
1731 }
1732
getFPToSI(Constant * C,Type * Ty,bool OnlyIfReduced)1733 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1734 #ifndef NDEBUG
1735 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1736 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1737 #endif
1738 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1739 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1740 "This is an illegal floating point to sint cast!");
1741 return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
1742 }
1743
getPtrToInt(Constant * C,Type * DstTy,bool OnlyIfReduced)1744 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
1745 bool OnlyIfReduced) {
1746 assert(C->getType()->getScalarType()->isPointerTy() &&
1747 "PtrToInt source must be pointer or pointer vector");
1748 assert(DstTy->getScalarType()->isIntegerTy() &&
1749 "PtrToInt destination must be integer or integer vector");
1750 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1751 if (isa<VectorType>(C->getType()))
1752 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1753 "Invalid cast between a different number of vector elements");
1754 return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
1755 }
1756
getIntToPtr(Constant * C,Type * DstTy,bool OnlyIfReduced)1757 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
1758 bool OnlyIfReduced) {
1759 assert(C->getType()->getScalarType()->isIntegerTy() &&
1760 "IntToPtr source must be integer or integer vector");
1761 assert(DstTy->getScalarType()->isPointerTy() &&
1762 "IntToPtr destination must be a pointer or pointer vector");
1763 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1764 if (isa<VectorType>(C->getType()))
1765 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1766 "Invalid cast between a different number of vector elements");
1767 return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
1768 }
1769
getBitCast(Constant * C,Type * DstTy,bool OnlyIfReduced)1770 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
1771 bool OnlyIfReduced) {
1772 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1773 "Invalid constantexpr bitcast!");
1774
1775 // It is common to ask for a bitcast of a value to its own type, handle this
1776 // speedily.
1777 if (C->getType() == DstTy) return C;
1778
1779 return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
1780 }
1781
getAddrSpaceCast(Constant * C,Type * DstTy,bool OnlyIfReduced)1782 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
1783 bool OnlyIfReduced) {
1784 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1785 "Invalid constantexpr addrspacecast!");
1786
1787 // Canonicalize addrspacecasts between different pointer types by first
1788 // bitcasting the pointer type and then converting the address space.
1789 PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
1790 PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
1791 Type *DstElemTy = DstScalarTy->getElementType();
1792 if (SrcScalarTy->getElementType() != DstElemTy) {
1793 Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
1794 if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
1795 // Handle vectors of pointers.
1796 MidTy = VectorType::get(MidTy, VT->getNumElements());
1797 }
1798 C = getBitCast(C, MidTy);
1799 }
1800 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
1801 }
1802
get(unsigned Opcode,Constant * C1,Constant * C2,unsigned Flags,Type * OnlyIfReducedTy)1803 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1804 unsigned Flags, Type *OnlyIfReducedTy) {
1805 // Check the operands for consistency first.
1806 assert(Opcode >= Instruction::BinaryOpsBegin &&
1807 Opcode < Instruction::BinaryOpsEnd &&
1808 "Invalid opcode in binary constant expression");
1809 assert(C1->getType() == C2->getType() &&
1810 "Operand types in binary constant expression should match");
1811
1812 #ifndef NDEBUG
1813 switch (Opcode) {
1814 case Instruction::Add:
1815 case Instruction::Sub:
1816 case Instruction::Mul:
1817 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1818 assert(C1->getType()->isIntOrIntVectorTy() &&
1819 "Tried to create an integer operation on a non-integer type!");
1820 break;
1821 case Instruction::FAdd:
1822 case Instruction::FSub:
1823 case Instruction::FMul:
1824 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1825 assert(C1->getType()->isFPOrFPVectorTy() &&
1826 "Tried to create a floating-point operation on a "
1827 "non-floating-point type!");
1828 break;
1829 case Instruction::UDiv:
1830 case Instruction::SDiv:
1831 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1832 assert(C1->getType()->isIntOrIntVectorTy() &&
1833 "Tried to create an arithmetic operation on a non-arithmetic type!");
1834 break;
1835 case Instruction::FDiv:
1836 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1837 assert(C1->getType()->isFPOrFPVectorTy() &&
1838 "Tried to create an arithmetic operation on a non-arithmetic type!");
1839 break;
1840 case Instruction::URem:
1841 case Instruction::SRem:
1842 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1843 assert(C1->getType()->isIntOrIntVectorTy() &&
1844 "Tried to create an arithmetic operation on a non-arithmetic type!");
1845 break;
1846 case Instruction::FRem:
1847 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1848 assert(C1->getType()->isFPOrFPVectorTy() &&
1849 "Tried to create an arithmetic operation on a non-arithmetic type!");
1850 break;
1851 case Instruction::And:
1852 case Instruction::Or:
1853 case Instruction::Xor:
1854 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1855 assert(C1->getType()->isIntOrIntVectorTy() &&
1856 "Tried to create a logical operation on a non-integral type!");
1857 break;
1858 case Instruction::Shl:
1859 case Instruction::LShr:
1860 case Instruction::AShr:
1861 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1862 assert(C1->getType()->isIntOrIntVectorTy() &&
1863 "Tried to create a shift operation on a non-integer type!");
1864 break;
1865 default:
1866 break;
1867 }
1868 #endif
1869
1870 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1871 return FC; // Fold a few common cases.
1872
1873 if (OnlyIfReducedTy == C1->getType())
1874 return nullptr;
1875
1876 Constant *ArgVec[] = { C1, C2 };
1877 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
1878
1879 LLVMContextImpl *pImpl = C1->getContext().pImpl;
1880 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1881 }
1882
getSizeOf(Type * Ty)1883 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1884 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1885 // Note that a non-inbounds gep is used, as null isn't within any object.
1886 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1887 Constant *GEP = getGetElementPtr(
1888 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1889 return getPtrToInt(GEP,
1890 Type::getInt64Ty(Ty->getContext()));
1891 }
1892
getAlignOf(Type * Ty)1893 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1894 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1895 // Note that a non-inbounds gep is used, as null isn't within any object.
1896 Type *AligningTy =
1897 StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, nullptr);
1898 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
1899 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1900 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1901 Constant *Indices[2] = { Zero, One };
1902 Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
1903 return getPtrToInt(GEP,
1904 Type::getInt64Ty(Ty->getContext()));
1905 }
1906
getOffsetOf(StructType * STy,unsigned FieldNo)1907 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1908 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1909 FieldNo));
1910 }
1911
getOffsetOf(Type * Ty,Constant * FieldNo)1912 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1913 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1914 // Note that a non-inbounds gep is used, as null isn't within any object.
1915 Constant *GEPIdx[] = {
1916 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1917 FieldNo
1918 };
1919 Constant *GEP = getGetElementPtr(
1920 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1921 return getPtrToInt(GEP,
1922 Type::getInt64Ty(Ty->getContext()));
1923 }
1924
getCompare(unsigned short Predicate,Constant * C1,Constant * C2,bool OnlyIfReduced)1925 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
1926 Constant *C2, bool OnlyIfReduced) {
1927 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1928
1929 switch (Predicate) {
1930 default: llvm_unreachable("Invalid CmpInst predicate");
1931 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1932 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1933 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1934 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1935 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1936 case CmpInst::FCMP_TRUE:
1937 return getFCmp(Predicate, C1, C2, OnlyIfReduced);
1938
1939 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
1940 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1941 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1942 case CmpInst::ICMP_SLE:
1943 return getICmp(Predicate, C1, C2, OnlyIfReduced);
1944 }
1945 }
1946
getSelect(Constant * C,Constant * V1,Constant * V2,Type * OnlyIfReducedTy)1947 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
1948 Type *OnlyIfReducedTy) {
1949 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1950
1951 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1952 return SC; // Fold common cases
1953
1954 if (OnlyIfReducedTy == V1->getType())
1955 return nullptr;
1956
1957 Constant *ArgVec[] = { C, V1, V2 };
1958 ConstantExprKeyType Key(Instruction::Select, ArgVec);
1959
1960 LLVMContextImpl *pImpl = C->getContext().pImpl;
1961 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1962 }
1963
getGetElementPtr(Type * Ty,Constant * C,ArrayRef<Value * > Idxs,bool InBounds,Type * OnlyIfReducedTy)1964 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
1965 ArrayRef<Value *> Idxs, bool InBounds,
1966 Type *OnlyIfReducedTy) {
1967 if (!Ty)
1968 Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
1969 else
1970 assert(
1971 Ty ==
1972 cast<PointerType>(C->getType()->getScalarType())->getContainedType(0u));
1973
1974 if (Constant *FC = ConstantFoldGetElementPtr(Ty, C, InBounds, Idxs))
1975 return FC; // Fold a few common cases.
1976
1977 // Get the result type of the getelementptr!
1978 Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
1979 assert(DestTy && "GEP indices invalid!");
1980 unsigned AS = C->getType()->getPointerAddressSpace();
1981 Type *ReqTy = DestTy->getPointerTo(AS);
1982 if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
1983 ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
1984
1985 if (OnlyIfReducedTy == ReqTy)
1986 return nullptr;
1987
1988 // Look up the constant in the table first to ensure uniqueness
1989 std::vector<Constant*> ArgVec;
1990 ArgVec.reserve(1 + Idxs.size());
1991 ArgVec.push_back(C);
1992 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1993 assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
1994 "getelementptr index type missmatch");
1995 assert((!Idxs[i]->getType()->isVectorTy() ||
1996 ReqTy->getVectorNumElements() ==
1997 Idxs[i]->getType()->getVectorNumElements()) &&
1998 "getelementptr index type missmatch");
1999 ArgVec.push_back(cast<Constant>(Idxs[i]));
2000 }
2001 const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2002 InBounds ? GEPOperator::IsInBounds : 0, None,
2003 Ty);
2004
2005 LLVMContextImpl *pImpl = C->getContext().pImpl;
2006 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2007 }
2008
getICmp(unsigned short pred,Constant * LHS,Constant * RHS,bool OnlyIfReduced)2009 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2010 Constant *RHS, bool OnlyIfReduced) {
2011 assert(LHS->getType() == RHS->getType());
2012 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
2013 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
2014
2015 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2016 return FC; // Fold a few common cases...
2017
2018 if (OnlyIfReduced)
2019 return nullptr;
2020
2021 // Look up the constant in the table first to ensure uniqueness
2022 Constant *ArgVec[] = { LHS, RHS };
2023 // Get the key type with both the opcode and predicate
2024 const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
2025
2026 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2027 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2028 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2029
2030 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2031 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2032 }
2033
getFCmp(unsigned short pred,Constant * LHS,Constant * RHS,bool OnlyIfReduced)2034 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2035 Constant *RHS, bool OnlyIfReduced) {
2036 assert(LHS->getType() == RHS->getType());
2037 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
2038
2039 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2040 return FC; // Fold a few common cases...
2041
2042 if (OnlyIfReduced)
2043 return nullptr;
2044
2045 // Look up the constant in the table first to ensure uniqueness
2046 Constant *ArgVec[] = { LHS, RHS };
2047 // Get the key type with both the opcode and predicate
2048 const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
2049
2050 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2051 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2052 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2053
2054 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2055 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2056 }
2057
getExtractElement(Constant * Val,Constant * Idx,Type * OnlyIfReducedTy)2058 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2059 Type *OnlyIfReducedTy) {
2060 assert(Val->getType()->isVectorTy() &&
2061 "Tried to create extractelement operation on non-vector type!");
2062 assert(Idx->getType()->isIntegerTy() &&
2063 "Extractelement index must be an integer type!");
2064
2065 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2066 return FC; // Fold a few common cases.
2067
2068 Type *ReqTy = Val->getType()->getVectorElementType();
2069 if (OnlyIfReducedTy == ReqTy)
2070 return nullptr;
2071
2072 // Look up the constant in the table first to ensure uniqueness
2073 Constant *ArgVec[] = { Val, Idx };
2074 const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2075
2076 LLVMContextImpl *pImpl = Val->getContext().pImpl;
2077 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2078 }
2079
getInsertElement(Constant * Val,Constant * Elt,Constant * Idx,Type * OnlyIfReducedTy)2080 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2081 Constant *Idx, Type *OnlyIfReducedTy) {
2082 assert(Val->getType()->isVectorTy() &&
2083 "Tried to create insertelement operation on non-vector type!");
2084 assert(Elt->getType() == Val->getType()->getVectorElementType() &&
2085 "Insertelement types must match!");
2086 assert(Idx->getType()->isIntegerTy() &&
2087 "Insertelement index must be i32 type!");
2088
2089 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2090 return FC; // Fold a few common cases.
2091
2092 if (OnlyIfReducedTy == Val->getType())
2093 return nullptr;
2094
2095 // Look up the constant in the table first to ensure uniqueness
2096 Constant *ArgVec[] = { Val, Elt, Idx };
2097 const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2098
2099 LLVMContextImpl *pImpl = Val->getContext().pImpl;
2100 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2101 }
2102
getShuffleVector(Constant * V1,Constant * V2,Constant * Mask,Type * OnlyIfReducedTy)2103 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2104 Constant *Mask, Type *OnlyIfReducedTy) {
2105 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2106 "Invalid shuffle vector constant expr operands!");
2107
2108 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2109 return FC; // Fold a few common cases.
2110
2111 unsigned NElts = Mask->getType()->getVectorNumElements();
2112 Type *EltTy = V1->getType()->getVectorElementType();
2113 Type *ShufTy = VectorType::get(EltTy, NElts);
2114
2115 if (OnlyIfReducedTy == ShufTy)
2116 return nullptr;
2117
2118 // Look up the constant in the table first to ensure uniqueness
2119 Constant *ArgVec[] = { V1, V2, Mask };
2120 const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
2121
2122 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2123 return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2124 }
2125
getInsertValue(Constant * Agg,Constant * Val,ArrayRef<unsigned> Idxs,Type * OnlyIfReducedTy)2126 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2127 ArrayRef<unsigned> Idxs,
2128 Type *OnlyIfReducedTy) {
2129 assert(Agg->getType()->isFirstClassType() &&
2130 "Non-first-class type for constant insertvalue expression");
2131
2132 assert(ExtractValueInst::getIndexedType(Agg->getType(),
2133 Idxs) == Val->getType() &&
2134 "insertvalue indices invalid!");
2135 Type *ReqTy = Val->getType();
2136
2137 if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2138 return FC;
2139
2140 if (OnlyIfReducedTy == ReqTy)
2141 return nullptr;
2142
2143 Constant *ArgVec[] = { Agg, Val };
2144 const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2145
2146 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2147 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2148 }
2149
getExtractValue(Constant * Agg,ArrayRef<unsigned> Idxs,Type * OnlyIfReducedTy)2150 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2151 Type *OnlyIfReducedTy) {
2152 assert(Agg->getType()->isFirstClassType() &&
2153 "Tried to create extractelement operation on non-first-class type!");
2154
2155 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2156 (void)ReqTy;
2157 assert(ReqTy && "extractvalue indices invalid!");
2158
2159 assert(Agg->getType()->isFirstClassType() &&
2160 "Non-first-class type for constant extractvalue expression");
2161 if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2162 return FC;
2163
2164 if (OnlyIfReducedTy == ReqTy)
2165 return nullptr;
2166
2167 Constant *ArgVec[] = { Agg };
2168 const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2169
2170 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2171 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2172 }
2173
getNeg(Constant * C,bool HasNUW,bool HasNSW)2174 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2175 assert(C->getType()->isIntOrIntVectorTy() &&
2176 "Cannot NEG a nonintegral value!");
2177 return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2178 C, HasNUW, HasNSW);
2179 }
2180
getFNeg(Constant * C)2181 Constant *ConstantExpr::getFNeg(Constant *C) {
2182 assert(C->getType()->isFPOrFPVectorTy() &&
2183 "Cannot FNEG a non-floating-point value!");
2184 return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2185 }
2186
getNot(Constant * C)2187 Constant *ConstantExpr::getNot(Constant *C) {
2188 assert(C->getType()->isIntOrIntVectorTy() &&
2189 "Cannot NOT a nonintegral value!");
2190 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2191 }
2192
getAdd(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2193 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2194 bool HasNUW, bool HasNSW) {
2195 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2196 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2197 return get(Instruction::Add, C1, C2, Flags);
2198 }
2199
getFAdd(Constant * C1,Constant * C2)2200 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2201 return get(Instruction::FAdd, C1, C2);
2202 }
2203
getSub(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2204 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2205 bool HasNUW, bool HasNSW) {
2206 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2207 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2208 return get(Instruction::Sub, C1, C2, Flags);
2209 }
2210
getFSub(Constant * C1,Constant * C2)2211 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2212 return get(Instruction::FSub, C1, C2);
2213 }
2214
getMul(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2215 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2216 bool HasNUW, bool HasNSW) {
2217 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2218 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2219 return get(Instruction::Mul, C1, C2, Flags);
2220 }
2221
getFMul(Constant * C1,Constant * C2)2222 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2223 return get(Instruction::FMul, C1, C2);
2224 }
2225
getUDiv(Constant * C1,Constant * C2,bool isExact)2226 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2227 return get(Instruction::UDiv, C1, C2,
2228 isExact ? PossiblyExactOperator::IsExact : 0);
2229 }
2230
getSDiv(Constant * C1,Constant * C2,bool isExact)2231 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2232 return get(Instruction::SDiv, C1, C2,
2233 isExact ? PossiblyExactOperator::IsExact : 0);
2234 }
2235
getFDiv(Constant * C1,Constant * C2)2236 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2237 return get(Instruction::FDiv, C1, C2);
2238 }
2239
getURem(Constant * C1,Constant * C2)2240 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2241 return get(Instruction::URem, C1, C2);
2242 }
2243
getSRem(Constant * C1,Constant * C2)2244 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2245 return get(Instruction::SRem, C1, C2);
2246 }
2247
getFRem(Constant * C1,Constant * C2)2248 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2249 return get(Instruction::FRem, C1, C2);
2250 }
2251
getAnd(Constant * C1,Constant * C2)2252 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2253 return get(Instruction::And, C1, C2);
2254 }
2255
getOr(Constant * C1,Constant * C2)2256 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2257 return get(Instruction::Or, C1, C2);
2258 }
2259
getXor(Constant * C1,Constant * C2)2260 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2261 return get(Instruction::Xor, C1, C2);
2262 }
2263
getShl(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2264 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2265 bool HasNUW, bool HasNSW) {
2266 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2267 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2268 return get(Instruction::Shl, C1, C2, Flags);
2269 }
2270
getLShr(Constant * C1,Constant * C2,bool isExact)2271 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2272 return get(Instruction::LShr, C1, C2,
2273 isExact ? PossiblyExactOperator::IsExact : 0);
2274 }
2275
getAShr(Constant * C1,Constant * C2,bool isExact)2276 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2277 return get(Instruction::AShr, C1, C2,
2278 isExact ? PossiblyExactOperator::IsExact : 0);
2279 }
2280
2281 /// getBinOpIdentity - Return the identity for the given binary operation,
2282 /// i.e. a constant C such that X op C = X and C op X = X for every X. It
2283 /// returns null if the operator doesn't have an identity.
getBinOpIdentity(unsigned Opcode,Type * Ty)2284 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2285 switch (Opcode) {
2286 default:
2287 // Doesn't have an identity.
2288 return nullptr;
2289
2290 case Instruction::Add:
2291 case Instruction::Or:
2292 case Instruction::Xor:
2293 return Constant::getNullValue(Ty);
2294
2295 case Instruction::Mul:
2296 return ConstantInt::get(Ty, 1);
2297
2298 case Instruction::And:
2299 return Constant::getAllOnesValue(Ty);
2300 }
2301 }
2302
2303 /// getBinOpAbsorber - Return the absorbing element for the given binary
2304 /// operation, i.e. a constant C such that X op C = C and C op X = C for
2305 /// every X. For example, this returns zero for integer multiplication.
2306 /// It returns null if the operator doesn't have an absorbing element.
getBinOpAbsorber(unsigned Opcode,Type * Ty)2307 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2308 switch (Opcode) {
2309 default:
2310 // Doesn't have an absorber.
2311 return nullptr;
2312
2313 case Instruction::Or:
2314 return Constant::getAllOnesValue(Ty);
2315
2316 case Instruction::And:
2317 case Instruction::Mul:
2318 return Constant::getNullValue(Ty);
2319 }
2320 }
2321
2322 // destroyConstant - Remove the constant from the constant table...
2323 //
destroyConstantImpl()2324 void ConstantExpr::destroyConstantImpl() {
2325 getType()->getContext().pImpl->ExprConstants.remove(this);
2326 }
2327
getOpcodeName() const2328 const char *ConstantExpr::getOpcodeName() const {
2329 return Instruction::getOpcodeName(getOpcode());
2330 }
2331
GetElementPtrConstantExpr(Type * SrcElementTy,Constant * C,ArrayRef<Constant * > IdxList,Type * DestTy)2332 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2333 Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2334 : ConstantExpr(DestTy, Instruction::GetElementPtr,
2335 OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2336 (IdxList.size() + 1),
2337 IdxList.size() + 1),
2338 SrcElementTy(SrcElementTy) {
2339 Op<0>() = C;
2340 Use *OperandList = getOperandList();
2341 for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2342 OperandList[i+1] = IdxList[i];
2343 }
2344
getSourceElementType() const2345 Type *GetElementPtrConstantExpr::getSourceElementType() const {
2346 return SrcElementTy;
2347 }
2348
2349 //===----------------------------------------------------------------------===//
2350 // ConstantData* implementations
2351
anchor()2352 void ConstantDataArray::anchor() {}
anchor()2353 void ConstantDataVector::anchor() {}
2354
2355 /// getElementType - Return the element type of the array/vector.
getElementType() const2356 Type *ConstantDataSequential::getElementType() const {
2357 return getType()->getElementType();
2358 }
2359
getRawDataValues() const2360 StringRef ConstantDataSequential::getRawDataValues() const {
2361 return StringRef(DataElements, getNumElements()*getElementByteSize());
2362 }
2363
2364 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2365 /// formed with a vector or array of the specified element type.
2366 /// ConstantDataArray only works with normal float and int types that are
2367 /// stored densely in memory, not with things like i42 or x86_f80.
isElementTypeCompatible(Type * Ty)2368 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
2369 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2370 if (auto *IT = dyn_cast<IntegerType>(Ty)) {
2371 switch (IT->getBitWidth()) {
2372 case 8:
2373 case 16:
2374 case 32:
2375 case 64:
2376 return true;
2377 default: break;
2378 }
2379 }
2380 return false;
2381 }
2382
2383 /// getNumElements - Return the number of elements in the array or vector.
getNumElements() const2384 unsigned ConstantDataSequential::getNumElements() const {
2385 if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2386 return AT->getNumElements();
2387 return getType()->getVectorNumElements();
2388 }
2389
2390
2391 /// getElementByteSize - Return the size in bytes of the elements in the data.
getElementByteSize() const2392 uint64_t ConstantDataSequential::getElementByteSize() const {
2393 return getElementType()->getPrimitiveSizeInBits()/8;
2394 }
2395
2396 /// getElementPointer - Return the start of the specified element.
getElementPointer(unsigned Elt) const2397 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2398 assert(Elt < getNumElements() && "Invalid Elt");
2399 return DataElements+Elt*getElementByteSize();
2400 }
2401
2402
2403 /// isAllZeros - return true if the array is empty or all zeros.
isAllZeros(StringRef Arr)2404 static bool isAllZeros(StringRef Arr) {
2405 for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2406 if (*I != 0)
2407 return false;
2408 return true;
2409 }
2410
2411 /// getImpl - This is the underlying implementation of all of the
2412 /// ConstantDataSequential::get methods. They all thunk down to here, providing
2413 /// the correct element type. We take the bytes in as a StringRef because
2414 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
getImpl(StringRef Elements,Type * Ty)2415 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2416 assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2417 // If the elements are all zero or there are no elements, return a CAZ, which
2418 // is more dense and canonical.
2419 if (isAllZeros(Elements))
2420 return ConstantAggregateZero::get(Ty);
2421
2422 // Do a lookup to see if we have already formed one of these.
2423 auto &Slot =
2424 *Ty->getContext()
2425 .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2426 .first;
2427
2428 // The bucket can point to a linked list of different CDS's that have the same
2429 // body but different types. For example, 0,0,0,1 could be a 4 element array
2430 // of i8, or a 1-element array of i32. They'll both end up in the same
2431 /// StringMap bucket, linked up by their Next pointers. Walk the list.
2432 ConstantDataSequential **Entry = &Slot.second;
2433 for (ConstantDataSequential *Node = *Entry; Node;
2434 Entry = &Node->Next, Node = *Entry)
2435 if (Node->getType() == Ty)
2436 return Node;
2437
2438 // Okay, we didn't get a hit. Create a node of the right class, link it in,
2439 // and return it.
2440 if (isa<ArrayType>(Ty))
2441 return *Entry = new ConstantDataArray(Ty, Slot.first().data());
2442
2443 assert(isa<VectorType>(Ty));
2444 return *Entry = new ConstantDataVector(Ty, Slot.first().data());
2445 }
2446
destroyConstantImpl()2447 void ConstantDataSequential::destroyConstantImpl() {
2448 // Remove the constant from the StringMap.
2449 StringMap<ConstantDataSequential*> &CDSConstants =
2450 getType()->getContext().pImpl->CDSConstants;
2451
2452 StringMap<ConstantDataSequential*>::iterator Slot =
2453 CDSConstants.find(getRawDataValues());
2454
2455 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2456
2457 ConstantDataSequential **Entry = &Slot->getValue();
2458
2459 // Remove the entry from the hash table.
2460 if (!(*Entry)->Next) {
2461 // If there is only one value in the bucket (common case) it must be this
2462 // entry, and removing the entry should remove the bucket completely.
2463 assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2464 getContext().pImpl->CDSConstants.erase(Slot);
2465 } else {
2466 // Otherwise, there are multiple entries linked off the bucket, unlink the
2467 // node we care about but keep the bucket around.
2468 for (ConstantDataSequential *Node = *Entry; ;
2469 Entry = &Node->Next, Node = *Entry) {
2470 assert(Node && "Didn't find entry in its uniquing hash table!");
2471 // If we found our entry, unlink it from the list and we're done.
2472 if (Node == this) {
2473 *Entry = Node->Next;
2474 break;
2475 }
2476 }
2477 }
2478
2479 // If we were part of a list, make sure that we don't delete the list that is
2480 // still owned by the uniquing map.
2481 Next = nullptr;
2482 }
2483
2484 /// get() constructors - Return a constant with array type with an element
2485 /// count and element type matching the ArrayRef passed in. Note that this
2486 /// can return a ConstantAggregateZero object.
get(LLVMContext & Context,ArrayRef<uint8_t> Elts)2487 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2488 Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2489 const char *Data = reinterpret_cast<const char *>(Elts.data());
2490 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2491 }
get(LLVMContext & Context,ArrayRef<uint16_t> Elts)2492 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2493 Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2494 const char *Data = reinterpret_cast<const char *>(Elts.data());
2495 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2496 }
get(LLVMContext & Context,ArrayRef<uint32_t> Elts)2497 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2498 Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2499 const char *Data = reinterpret_cast<const char *>(Elts.data());
2500 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2501 }
get(LLVMContext & Context,ArrayRef<uint64_t> Elts)2502 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2503 Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2504 const char *Data = reinterpret_cast<const char *>(Elts.data());
2505 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2506 }
get(LLVMContext & Context,ArrayRef<float> Elts)2507 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2508 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2509 const char *Data = reinterpret_cast<const char *>(Elts.data());
2510 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2511 }
get(LLVMContext & Context,ArrayRef<double> Elts)2512 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2513 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2514 const char *Data = reinterpret_cast<const char *>(Elts.data());
2515 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2516 }
2517
2518 /// getFP() constructors - Return a constant with array type with an element
2519 /// count and element type of float with precision matching the number of
2520 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2521 /// double for 64bits) Note that this can return a ConstantAggregateZero
2522 /// object.
getFP(LLVMContext & Context,ArrayRef<uint16_t> Elts)2523 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2524 ArrayRef<uint16_t> Elts) {
2525 Type *Ty = ArrayType::get(Type::getHalfTy(Context), Elts.size());
2526 const char *Data = reinterpret_cast<const char *>(Elts.data());
2527 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
2528 }
getFP(LLVMContext & Context,ArrayRef<uint32_t> Elts)2529 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2530 ArrayRef<uint32_t> Elts) {
2531 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2532 const char *Data = reinterpret_cast<const char *>(Elts.data());
2533 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
2534 }
getFP(LLVMContext & Context,ArrayRef<uint64_t> Elts)2535 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2536 ArrayRef<uint64_t> Elts) {
2537 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2538 const char *Data = reinterpret_cast<const char *>(Elts.data());
2539 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2540 }
2541
2542 /// getString - This method constructs a CDS and initializes it with a text
2543 /// string. The default behavior (AddNull==true) causes a null terminator to
2544 /// be placed at the end of the array (increasing the length of the string by
2545 /// one more than the StringRef would normally indicate. Pass AddNull=false
2546 /// to disable this behavior.
getString(LLVMContext & Context,StringRef Str,bool AddNull)2547 Constant *ConstantDataArray::getString(LLVMContext &Context,
2548 StringRef Str, bool AddNull) {
2549 if (!AddNull) {
2550 const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2551 return get(Context, makeArrayRef(const_cast<uint8_t *>(Data),
2552 Str.size()));
2553 }
2554
2555 SmallVector<uint8_t, 64> ElementVals;
2556 ElementVals.append(Str.begin(), Str.end());
2557 ElementVals.push_back(0);
2558 return get(Context, ElementVals);
2559 }
2560
2561 /// get() constructors - Return a constant with vector type with an element
2562 /// count and element type matching the ArrayRef passed in. Note that this
2563 /// can return a ConstantAggregateZero object.
get(LLVMContext & Context,ArrayRef<uint8_t> Elts)2564 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2565 Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2566 const char *Data = reinterpret_cast<const char *>(Elts.data());
2567 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2568 }
get(LLVMContext & Context,ArrayRef<uint16_t> Elts)2569 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2570 Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2571 const char *Data = reinterpret_cast<const char *>(Elts.data());
2572 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2573 }
get(LLVMContext & Context,ArrayRef<uint32_t> Elts)2574 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2575 Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2576 const char *Data = reinterpret_cast<const char *>(Elts.data());
2577 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2578 }
get(LLVMContext & Context,ArrayRef<uint64_t> Elts)2579 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2580 Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2581 const char *Data = reinterpret_cast<const char *>(Elts.data());
2582 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2583 }
get(LLVMContext & Context,ArrayRef<float> Elts)2584 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2585 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2586 const char *Data = reinterpret_cast<const char *>(Elts.data());
2587 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2588 }
get(LLVMContext & Context,ArrayRef<double> Elts)2589 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2590 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2591 const char *Data = reinterpret_cast<const char *>(Elts.data());
2592 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2593 }
2594
2595 /// getFP() constructors - Return a constant with vector type with an element
2596 /// count and element type of float with the precision matching the number of
2597 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2598 /// double for 64bits) Note that this can return a ConstantAggregateZero
2599 /// object.
getFP(LLVMContext & Context,ArrayRef<uint16_t> Elts)2600 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2601 ArrayRef<uint16_t> Elts) {
2602 Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
2603 const char *Data = reinterpret_cast<const char *>(Elts.data());
2604 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
2605 }
getFP(LLVMContext & Context,ArrayRef<uint32_t> Elts)2606 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2607 ArrayRef<uint32_t> Elts) {
2608 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2609 const char *Data = reinterpret_cast<const char *>(Elts.data());
2610 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
2611 }
getFP(LLVMContext & Context,ArrayRef<uint64_t> Elts)2612 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2613 ArrayRef<uint64_t> Elts) {
2614 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2615 const char *Data = reinterpret_cast<const char *>(Elts.data());
2616 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2617 }
2618
getSplat(unsigned NumElts,Constant * V)2619 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2620 assert(isElementTypeCompatible(V->getType()) &&
2621 "Element type not compatible with ConstantData");
2622 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2623 if (CI->getType()->isIntegerTy(8)) {
2624 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2625 return get(V->getContext(), Elts);
2626 }
2627 if (CI->getType()->isIntegerTy(16)) {
2628 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2629 return get(V->getContext(), Elts);
2630 }
2631 if (CI->getType()->isIntegerTy(32)) {
2632 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2633 return get(V->getContext(), Elts);
2634 }
2635 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2636 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2637 return get(V->getContext(), Elts);
2638 }
2639
2640 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2641 if (CFP->getType()->isHalfTy()) {
2642 SmallVector<uint16_t, 16> Elts(
2643 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2644 return getFP(V->getContext(), Elts);
2645 }
2646 if (CFP->getType()->isFloatTy()) {
2647 SmallVector<uint32_t, 16> Elts(
2648 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2649 return getFP(V->getContext(), Elts);
2650 }
2651 if (CFP->getType()->isDoubleTy()) {
2652 SmallVector<uint64_t, 16> Elts(
2653 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2654 return getFP(V->getContext(), Elts);
2655 }
2656 }
2657 return ConstantVector::getSplat(NumElts, V);
2658 }
2659
2660
2661 /// getElementAsInteger - If this is a sequential container of integers (of
2662 /// any size), return the specified element in the low bits of a uint64_t.
getElementAsInteger(unsigned Elt) const2663 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2664 assert(isa<IntegerType>(getElementType()) &&
2665 "Accessor can only be used when element is an integer");
2666 const char *EltPtr = getElementPointer(Elt);
2667
2668 // The data is stored in host byte order, make sure to cast back to the right
2669 // type to load with the right endianness.
2670 switch (getElementType()->getIntegerBitWidth()) {
2671 default: llvm_unreachable("Invalid bitwidth for CDS");
2672 case 8:
2673 return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2674 case 16:
2675 return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2676 case 32:
2677 return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2678 case 64:
2679 return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2680 }
2681 }
2682
2683 /// getElementAsAPFloat - If this is a sequential container of floating point
2684 /// type, return the specified element as an APFloat.
getElementAsAPFloat(unsigned Elt) const2685 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2686 const char *EltPtr = getElementPointer(Elt);
2687
2688 switch (getElementType()->getTypeID()) {
2689 default:
2690 llvm_unreachable("Accessor can only be used when element is float/double!");
2691 case Type::HalfTyID: {
2692 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
2693 return APFloat(APFloat::IEEEhalf, APInt(16, EltVal));
2694 }
2695 case Type::FloatTyID: {
2696 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2697 return APFloat(APFloat::IEEEsingle, APInt(32, EltVal));
2698 }
2699 case Type::DoubleTyID: {
2700 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2701 return APFloat(APFloat::IEEEdouble, APInt(64, EltVal));
2702 }
2703 }
2704 }
2705
2706 /// getElementAsFloat - If this is an sequential container of floats, return
2707 /// the specified element as a float.
getElementAsFloat(unsigned Elt) const2708 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2709 assert(getElementType()->isFloatTy() &&
2710 "Accessor can only be used when element is a 'float'");
2711 const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2712 return *const_cast<float *>(EltPtr);
2713 }
2714
2715 /// getElementAsDouble - If this is an sequential container of doubles, return
2716 /// the specified element as a float.
getElementAsDouble(unsigned Elt) const2717 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2718 assert(getElementType()->isDoubleTy() &&
2719 "Accessor can only be used when element is a 'float'");
2720 const double *EltPtr =
2721 reinterpret_cast<const double *>(getElementPointer(Elt));
2722 return *const_cast<double *>(EltPtr);
2723 }
2724
2725 /// getElementAsConstant - Return a Constant for a specified index's element.
2726 /// Note that this has to compute a new constant to return, so it isn't as
2727 /// efficient as getElementAsInteger/Float/Double.
getElementAsConstant(unsigned Elt) const2728 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2729 if (getElementType()->isHalfTy() || getElementType()->isFloatTy() ||
2730 getElementType()->isDoubleTy())
2731 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2732
2733 return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2734 }
2735
2736 /// isString - This method returns true if this is an array of i8.
isString() const2737 bool ConstantDataSequential::isString() const {
2738 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2739 }
2740
2741 /// isCString - This method returns true if the array "isString", ends with a
2742 /// nul byte, and does not contains any other nul bytes.
isCString() const2743 bool ConstantDataSequential::isCString() const {
2744 if (!isString())
2745 return false;
2746
2747 StringRef Str = getAsString();
2748
2749 // The last value must be nul.
2750 if (Str.back() != 0) return false;
2751
2752 // Other elements must be non-nul.
2753 return Str.drop_back().find(0) == StringRef::npos;
2754 }
2755
2756 /// getSplatValue - If this is a splat constant, meaning that all of the
2757 /// elements have the same value, return that value. Otherwise return nullptr.
getSplatValue() const2758 Constant *ConstantDataVector::getSplatValue() const {
2759 const char *Base = getRawDataValues().data();
2760
2761 // Compare elements 1+ to the 0'th element.
2762 unsigned EltSize = getElementByteSize();
2763 for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2764 if (memcmp(Base, Base+i*EltSize, EltSize))
2765 return nullptr;
2766
2767 // If they're all the same, return the 0th one as a representative.
2768 return getElementAsConstant(0);
2769 }
2770
2771 //===----------------------------------------------------------------------===//
2772 // handleOperandChange implementations
2773
2774 /// Update this constant array to change uses of
2775 /// 'From' to be uses of 'To'. This must update the uniquing data structures
2776 /// etc.
2777 ///
2778 /// Note that we intentionally replace all uses of From with To here. Consider
2779 /// a large array that uses 'From' 1000 times. By handling this case all here,
2780 /// ConstantArray::handleOperandChange is only invoked once, and that
2781 /// single invocation handles all 1000 uses. Handling them one at a time would
2782 /// work, but would be really slow because it would have to unique each updated
2783 /// array instance.
2784 ///
handleOperandChange(Value * From,Value * To,Use * U)2785 void Constant::handleOperandChange(Value *From, Value *To, Use *U) {
2786 Value *Replacement = nullptr;
2787 switch (getValueID()) {
2788 default:
2789 llvm_unreachable("Not a constant!");
2790 #define HANDLE_CONSTANT(Name) \
2791 case Value::Name##Val: \
2792 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To, U); \
2793 break;
2794 #include "llvm/IR/Value.def"
2795 }
2796
2797 // If handleOperandChangeImpl returned nullptr, then it handled
2798 // replacing itself and we don't want to delete or replace anything else here.
2799 if (!Replacement)
2800 return;
2801
2802 // I do need to replace this with an existing value.
2803 assert(Replacement != this && "I didn't contain From!");
2804
2805 // Everyone using this now uses the replacement.
2806 replaceAllUsesWith(Replacement);
2807
2808 // Delete the old constant!
2809 destroyConstant();
2810 }
2811
handleOperandChangeImpl(Value * From,Value * To,Use * U)2812 Value *ConstantInt::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2813 llvm_unreachable("Unsupported class for handleOperandChange()!");
2814 }
2815
handleOperandChangeImpl(Value * From,Value * To,Use * U)2816 Value *ConstantFP::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2817 llvm_unreachable("Unsupported class for handleOperandChange()!");
2818 }
2819
handleOperandChangeImpl(Value * From,Value * To,Use * U)2820 Value *ConstantTokenNone::handleOperandChangeImpl(Value *From, Value *To,
2821 Use *U) {
2822 llvm_unreachable("Unsupported class for handleOperandChange()!");
2823 }
2824
handleOperandChangeImpl(Value * From,Value * To,Use * U)2825 Value *UndefValue::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2826 llvm_unreachable("Unsupported class for handleOperandChange()!");
2827 }
2828
handleOperandChangeImpl(Value * From,Value * To,Use * U)2829 Value *ConstantPointerNull::handleOperandChangeImpl(Value *From, Value *To,
2830 Use *U) {
2831 llvm_unreachable("Unsupported class for handleOperandChange()!");
2832 }
2833
handleOperandChangeImpl(Value * From,Value * To,Use * U)2834 Value *ConstantAggregateZero::handleOperandChangeImpl(Value *From, Value *To,
2835 Use *U) {
2836 llvm_unreachable("Unsupported class for handleOperandChange()!");
2837 }
2838
handleOperandChangeImpl(Value * From,Value * To,Use * U)2839 Value *ConstantDataSequential::handleOperandChangeImpl(Value *From, Value *To,
2840 Use *U) {
2841 llvm_unreachable("Unsupported class for handleOperandChange()!");
2842 }
2843
handleOperandChangeImpl(Value * From,Value * To,Use * U)2844 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2845 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2846 Constant *ToC = cast<Constant>(To);
2847
2848 SmallVector<Constant*, 8> Values;
2849 Values.reserve(getNumOperands()); // Build replacement array.
2850
2851 // Fill values with the modified operands of the constant array. Also,
2852 // compute whether this turns into an all-zeros array.
2853 unsigned NumUpdated = 0;
2854
2855 // Keep track of whether all the values in the array are "ToC".
2856 bool AllSame = true;
2857 Use *OperandList = getOperandList();
2858 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2859 Constant *Val = cast<Constant>(O->get());
2860 if (Val == From) {
2861 Val = ToC;
2862 ++NumUpdated;
2863 }
2864 Values.push_back(Val);
2865 AllSame &= Val == ToC;
2866 }
2867
2868 if (AllSame && ToC->isNullValue())
2869 return ConstantAggregateZero::get(getType());
2870
2871 if (AllSame && isa<UndefValue>(ToC))
2872 return UndefValue::get(getType());
2873
2874 // Check for any other type of constant-folding.
2875 if (Constant *C = getImpl(getType(), Values))
2876 return C;
2877
2878 // Update to the new value.
2879 return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
2880 Values, this, From, ToC, NumUpdated, U - OperandList);
2881 }
2882
handleOperandChangeImpl(Value * From,Value * To,Use * U)2883 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2884 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2885 Constant *ToC = cast<Constant>(To);
2886
2887 Use *OperandList = getOperandList();
2888 unsigned OperandToUpdate = U-OperandList;
2889 assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2890
2891 SmallVector<Constant*, 8> Values;
2892 Values.reserve(getNumOperands()); // Build replacement struct.
2893
2894 // Fill values with the modified operands of the constant struct. Also,
2895 // compute whether this turns into an all-zeros struct.
2896 bool isAllZeros = false;
2897 bool isAllUndef = false;
2898 if (ToC->isNullValue()) {
2899 isAllZeros = true;
2900 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2901 Constant *Val = cast<Constant>(O->get());
2902 Values.push_back(Val);
2903 if (isAllZeros) isAllZeros = Val->isNullValue();
2904 }
2905 } else if (isa<UndefValue>(ToC)) {
2906 isAllUndef = true;
2907 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2908 Constant *Val = cast<Constant>(O->get());
2909 Values.push_back(Val);
2910 if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2911 }
2912 } else {
2913 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2914 Values.push_back(cast<Constant>(O->get()));
2915 }
2916 Values[OperandToUpdate] = ToC;
2917
2918 if (isAllZeros)
2919 return ConstantAggregateZero::get(getType());
2920
2921 if (isAllUndef)
2922 return UndefValue::get(getType());
2923
2924 // Update to the new value.
2925 return getContext().pImpl->StructConstants.replaceOperandsInPlace(
2926 Values, this, From, ToC);
2927 }
2928
handleOperandChangeImpl(Value * From,Value * To,Use * U)2929 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2930 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2931 Constant *ToC = cast<Constant>(To);
2932
2933 SmallVector<Constant*, 8> Values;
2934 Values.reserve(getNumOperands()); // Build replacement array...
2935 unsigned NumUpdated = 0;
2936 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2937 Constant *Val = getOperand(i);
2938 if (Val == From) {
2939 ++NumUpdated;
2940 Val = ToC;
2941 }
2942 Values.push_back(Val);
2943 }
2944
2945 if (Constant *C = getImpl(Values))
2946 return C;
2947
2948 // Update to the new value.
2949 Use *OperandList = getOperandList();
2950 return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
2951 Values, this, From, ToC, NumUpdated, U - OperandList);
2952 }
2953
handleOperandChangeImpl(Value * From,Value * ToV,Use * U)2954 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV, Use *U) {
2955 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2956 Constant *To = cast<Constant>(ToV);
2957
2958 SmallVector<Constant*, 8> NewOps;
2959 unsigned NumUpdated = 0;
2960 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2961 Constant *Op = getOperand(i);
2962 if (Op == From) {
2963 ++NumUpdated;
2964 Op = To;
2965 }
2966 NewOps.push_back(Op);
2967 }
2968 assert(NumUpdated && "I didn't contain From!");
2969
2970 if (Constant *C = getWithOperands(NewOps, getType(), true))
2971 return C;
2972
2973 // Update to the new value.
2974 Use *OperandList = getOperandList();
2975 return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
2976 NewOps, this, From, To, NumUpdated, U - OperandList);
2977 }
2978
getAsInstruction()2979 Instruction *ConstantExpr::getAsInstruction() {
2980 SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
2981 ArrayRef<Value*> Ops(ValueOperands);
2982
2983 switch (getOpcode()) {
2984 case Instruction::Trunc:
2985 case Instruction::ZExt:
2986 case Instruction::SExt:
2987 case Instruction::FPTrunc:
2988 case Instruction::FPExt:
2989 case Instruction::UIToFP:
2990 case Instruction::SIToFP:
2991 case Instruction::FPToUI:
2992 case Instruction::FPToSI:
2993 case Instruction::PtrToInt:
2994 case Instruction::IntToPtr:
2995 case Instruction::BitCast:
2996 case Instruction::AddrSpaceCast:
2997 return CastInst::Create((Instruction::CastOps)getOpcode(),
2998 Ops[0], getType());
2999 case Instruction::Select:
3000 return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
3001 case Instruction::InsertElement:
3002 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
3003 case Instruction::ExtractElement:
3004 return ExtractElementInst::Create(Ops[0], Ops[1]);
3005 case Instruction::InsertValue:
3006 return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
3007 case Instruction::ExtractValue:
3008 return ExtractValueInst::Create(Ops[0], getIndices());
3009 case Instruction::ShuffleVector:
3010 return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
3011
3012 case Instruction::GetElementPtr: {
3013 const auto *GO = cast<GEPOperator>(this);
3014 if (GO->isInBounds())
3015 return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
3016 Ops[0], Ops.slice(1));
3017 return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3018 Ops.slice(1));
3019 }
3020 case Instruction::ICmp:
3021 case Instruction::FCmp:
3022 return CmpInst::Create((Instruction::OtherOps)getOpcode(),
3023 (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]);
3024
3025 default:
3026 assert(getNumOperands() == 2 && "Must be binary operator?");
3027 BinaryOperator *BO =
3028 BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
3029 Ops[0], Ops[1]);
3030 if (isa<OverflowingBinaryOperator>(BO)) {
3031 BO->setHasNoUnsignedWrap(SubclassOptionalData &
3032 OverflowingBinaryOperator::NoUnsignedWrap);
3033 BO->setHasNoSignedWrap(SubclassOptionalData &
3034 OverflowingBinaryOperator::NoSignedWrap);
3035 }
3036 if (isa<PossiblyExactOperator>(BO))
3037 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
3038 return BO;
3039 }
3040 }
3041