1 /*
2 **
3 ** Copyright 2007, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18 //#define LOG_NDEBUG 0
19 #define LOG_TAG "AudioTrack"
20
21 #include <inttypes.h>
22 #include <math.h>
23 #include <sys/resource.h>
24
25 #include <audio_utils/primitives.h>
26 #include <binder/IPCThreadState.h>
27 #include <media/AudioTrack.h>
28 #include <utils/Log.h>
29 #include <private/media/AudioTrackShared.h>
30 #include <media/IAudioFlinger.h>
31 #include <media/AudioPolicyHelper.h>
32 #include <media/AudioResamplerPublic.h>
33
34 #define WAIT_PERIOD_MS 10
35 #define WAIT_STREAM_END_TIMEOUT_SEC 120
36 static const int kMaxLoopCountNotifications = 32;
37
38 namespace android {
39 // ---------------------------------------------------------------------------
40
41 // TODO: Move to a separate .h
42
43 template <typename T>
min(const T & x,const T & y)44 static inline const T &min(const T &x, const T &y) {
45 return x < y ? x : y;
46 }
47
48 template <typename T>
max(const T & x,const T & y)49 static inline const T &max(const T &x, const T &y) {
50 return x > y ? x : y;
51 }
52
framesToNanoseconds(ssize_t frames,uint32_t sampleRate,float speed)53 static inline nsecs_t framesToNanoseconds(ssize_t frames, uint32_t sampleRate, float speed)
54 {
55 return ((double)frames * 1000000000) / ((double)sampleRate * speed);
56 }
57
convertTimespecToUs(const struct timespec & tv)58 static int64_t convertTimespecToUs(const struct timespec &tv)
59 {
60 return tv.tv_sec * 1000000ll + tv.tv_nsec / 1000;
61 }
62
63 // current monotonic time in microseconds.
getNowUs()64 static int64_t getNowUs()
65 {
66 struct timespec tv;
67 (void) clock_gettime(CLOCK_MONOTONIC, &tv);
68 return convertTimespecToUs(tv);
69 }
70
71 // FIXME: we don't use the pitch setting in the time stretcher (not working);
72 // instead we emulate it using our sample rate converter.
73 static const bool kFixPitch = true; // enable pitch fix
adjustSampleRate(uint32_t sampleRate,float pitch)74 static inline uint32_t adjustSampleRate(uint32_t sampleRate, float pitch)
75 {
76 return kFixPitch ? (sampleRate * pitch + 0.5) : sampleRate;
77 }
78
adjustSpeed(float speed,float pitch)79 static inline float adjustSpeed(float speed, float pitch)
80 {
81 return kFixPitch ? speed / max(pitch, AUDIO_TIMESTRETCH_PITCH_MIN_DELTA) : speed;
82 }
83
adjustPitch(float pitch)84 static inline float adjustPitch(float pitch)
85 {
86 return kFixPitch ? AUDIO_TIMESTRETCH_PITCH_NORMAL : pitch;
87 }
88
89 // Must match similar computation in createTrack_l in Threads.cpp.
90 // TODO: Move to a common library
calculateMinFrameCount(uint32_t afLatencyMs,uint32_t afFrameCount,uint32_t afSampleRate,uint32_t sampleRate,float speed)91 static size_t calculateMinFrameCount(
92 uint32_t afLatencyMs, uint32_t afFrameCount, uint32_t afSampleRate,
93 uint32_t sampleRate, float speed /*, uint32_t notificationsPerBufferReq*/)
94 {
95 // Ensure that buffer depth covers at least audio hardware latency
96 uint32_t minBufCount = afLatencyMs / ((1000 * afFrameCount) / afSampleRate);
97 if (minBufCount < 2) {
98 minBufCount = 2;
99 }
100 #if 0
101 // The notificationsPerBufferReq parameter is not yet used for non-fast tracks,
102 // but keeping the code here to make it easier to add later.
103 if (minBufCount < notificationsPerBufferReq) {
104 minBufCount = notificationsPerBufferReq;
105 }
106 #endif
107 ALOGV("calculateMinFrameCount afLatency %u afFrameCount %u afSampleRate %u "
108 "sampleRate %u speed %f minBufCount: %u" /*" notificationsPerBufferReq %u"*/,
109 afLatencyMs, afFrameCount, afSampleRate, sampleRate, speed, minBufCount
110 /*, notificationsPerBufferReq*/);
111 return minBufCount * sourceFramesNeededWithTimestretch(
112 sampleRate, afFrameCount, afSampleRate, speed);
113 }
114
115 // static
getMinFrameCount(size_t * frameCount,audio_stream_type_t streamType,uint32_t sampleRate)116 status_t AudioTrack::getMinFrameCount(
117 size_t* frameCount,
118 audio_stream_type_t streamType,
119 uint32_t sampleRate)
120 {
121 if (frameCount == NULL) {
122 return BAD_VALUE;
123 }
124
125 // FIXME handle in server, like createTrack_l(), possible missing info:
126 // audio_io_handle_t output
127 // audio_format_t format
128 // audio_channel_mask_t channelMask
129 // audio_output_flags_t flags (FAST)
130 uint32_t afSampleRate;
131 status_t status;
132 status = AudioSystem::getOutputSamplingRate(&afSampleRate, streamType);
133 if (status != NO_ERROR) {
134 ALOGE("Unable to query output sample rate for stream type %d; status %d",
135 streamType, status);
136 return status;
137 }
138 size_t afFrameCount;
139 status = AudioSystem::getOutputFrameCount(&afFrameCount, streamType);
140 if (status != NO_ERROR) {
141 ALOGE("Unable to query output frame count for stream type %d; status %d",
142 streamType, status);
143 return status;
144 }
145 uint32_t afLatency;
146 status = AudioSystem::getOutputLatency(&afLatency, streamType);
147 if (status != NO_ERROR) {
148 ALOGE("Unable to query output latency for stream type %d; status %d",
149 streamType, status);
150 return status;
151 }
152
153 // When called from createTrack, speed is 1.0f (normal speed).
154 // This is rechecked again on setting playback rate (TODO: on setting sample rate, too).
155 *frameCount = calculateMinFrameCount(afLatency, afFrameCount, afSampleRate, sampleRate, 1.0f
156 /*, 0 notificationsPerBufferReq*/);
157
158 // The formula above should always produce a non-zero value under normal circumstances:
159 // AudioTrack.SAMPLE_RATE_HZ_MIN <= sampleRate <= AudioTrack.SAMPLE_RATE_HZ_MAX.
160 // Return error in the unlikely event that it does not, as that's part of the API contract.
161 if (*frameCount == 0) {
162 ALOGE("AudioTrack::getMinFrameCount failed for streamType %d, sampleRate %u",
163 streamType, sampleRate);
164 return BAD_VALUE;
165 }
166 ALOGV("getMinFrameCount=%zu: afFrameCount=%zu, afSampleRate=%u, afLatency=%u",
167 *frameCount, afFrameCount, afSampleRate, afLatency);
168 return NO_ERROR;
169 }
170
171 // ---------------------------------------------------------------------------
172
AudioTrack()173 AudioTrack::AudioTrack()
174 : mStatus(NO_INIT),
175 mState(STATE_STOPPED),
176 mPreviousPriority(ANDROID_PRIORITY_NORMAL),
177 mPreviousSchedulingGroup(SP_DEFAULT),
178 mPausedPosition(0),
179 mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE)
180 {
181 mAttributes.content_type = AUDIO_CONTENT_TYPE_UNKNOWN;
182 mAttributes.usage = AUDIO_USAGE_UNKNOWN;
183 mAttributes.flags = 0x0;
184 strcpy(mAttributes.tags, "");
185 }
186
AudioTrack(audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t frameCount,audio_output_flags_t flags,callback_t cbf,void * user,int32_t notificationFrames,audio_session_t sessionId,transfer_type transferType,const audio_offload_info_t * offloadInfo,int uid,pid_t pid,const audio_attributes_t * pAttributes,bool doNotReconnect,float maxRequiredSpeed)187 AudioTrack::AudioTrack(
188 audio_stream_type_t streamType,
189 uint32_t sampleRate,
190 audio_format_t format,
191 audio_channel_mask_t channelMask,
192 size_t frameCount,
193 audio_output_flags_t flags,
194 callback_t cbf,
195 void* user,
196 int32_t notificationFrames,
197 audio_session_t sessionId,
198 transfer_type transferType,
199 const audio_offload_info_t *offloadInfo,
200 int uid,
201 pid_t pid,
202 const audio_attributes_t* pAttributes,
203 bool doNotReconnect,
204 float maxRequiredSpeed)
205 : mStatus(NO_INIT),
206 mState(STATE_STOPPED),
207 mPreviousPriority(ANDROID_PRIORITY_NORMAL),
208 mPreviousSchedulingGroup(SP_DEFAULT),
209 mPausedPosition(0),
210 mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE)
211 {
212 mStatus = set(streamType, sampleRate, format, channelMask,
213 frameCount, flags, cbf, user, notificationFrames,
214 0 /*sharedBuffer*/, false /*threadCanCallJava*/, sessionId, transferType,
215 offloadInfo, uid, pid, pAttributes, doNotReconnect, maxRequiredSpeed);
216 }
217
AudioTrack(audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,const sp<IMemory> & sharedBuffer,audio_output_flags_t flags,callback_t cbf,void * user,int32_t notificationFrames,audio_session_t sessionId,transfer_type transferType,const audio_offload_info_t * offloadInfo,int uid,pid_t pid,const audio_attributes_t * pAttributes,bool doNotReconnect,float maxRequiredSpeed)218 AudioTrack::AudioTrack(
219 audio_stream_type_t streamType,
220 uint32_t sampleRate,
221 audio_format_t format,
222 audio_channel_mask_t channelMask,
223 const sp<IMemory>& sharedBuffer,
224 audio_output_flags_t flags,
225 callback_t cbf,
226 void* user,
227 int32_t notificationFrames,
228 audio_session_t sessionId,
229 transfer_type transferType,
230 const audio_offload_info_t *offloadInfo,
231 int uid,
232 pid_t pid,
233 const audio_attributes_t* pAttributes,
234 bool doNotReconnect,
235 float maxRequiredSpeed)
236 : mStatus(NO_INIT),
237 mState(STATE_STOPPED),
238 mPreviousPriority(ANDROID_PRIORITY_NORMAL),
239 mPreviousSchedulingGroup(SP_DEFAULT),
240 mPausedPosition(0),
241 mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE)
242 {
243 mStatus = set(streamType, sampleRate, format, channelMask,
244 0 /*frameCount*/, flags, cbf, user, notificationFrames,
245 sharedBuffer, false /*threadCanCallJava*/, sessionId, transferType, offloadInfo,
246 uid, pid, pAttributes, doNotReconnect, maxRequiredSpeed);
247 }
248
~AudioTrack()249 AudioTrack::~AudioTrack()
250 {
251 if (mStatus == NO_ERROR) {
252 // Make sure that callback function exits in the case where
253 // it is looping on buffer full condition in obtainBuffer().
254 // Otherwise the callback thread will never exit.
255 stop();
256 if (mAudioTrackThread != 0) {
257 mProxy->interrupt();
258 mAudioTrackThread->requestExit(); // see comment in AudioTrack.h
259 mAudioTrackThread->requestExitAndWait();
260 mAudioTrackThread.clear();
261 }
262 // No lock here: worst case we remove a NULL callback which will be a nop
263 if (mDeviceCallback != 0 && mOutput != AUDIO_IO_HANDLE_NONE) {
264 AudioSystem::removeAudioDeviceCallback(mDeviceCallback, mOutput);
265 }
266 IInterface::asBinder(mAudioTrack)->unlinkToDeath(mDeathNotifier, this);
267 mAudioTrack.clear();
268 mCblkMemory.clear();
269 mSharedBuffer.clear();
270 IPCThreadState::self()->flushCommands();
271 ALOGV("~AudioTrack, releasing session id %d from %d on behalf of %d",
272 mSessionId, IPCThreadState::self()->getCallingPid(), mClientPid);
273 AudioSystem::releaseAudioSessionId(mSessionId, mClientPid);
274 }
275 }
276
set(audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t frameCount,audio_output_flags_t flags,callback_t cbf,void * user,int32_t notificationFrames,const sp<IMemory> & sharedBuffer,bool threadCanCallJava,audio_session_t sessionId,transfer_type transferType,const audio_offload_info_t * offloadInfo,int uid,pid_t pid,const audio_attributes_t * pAttributes,bool doNotReconnect,float maxRequiredSpeed)277 status_t AudioTrack::set(
278 audio_stream_type_t streamType,
279 uint32_t sampleRate,
280 audio_format_t format,
281 audio_channel_mask_t channelMask,
282 size_t frameCount,
283 audio_output_flags_t flags,
284 callback_t cbf,
285 void* user,
286 int32_t notificationFrames,
287 const sp<IMemory>& sharedBuffer,
288 bool threadCanCallJava,
289 audio_session_t sessionId,
290 transfer_type transferType,
291 const audio_offload_info_t *offloadInfo,
292 int uid,
293 pid_t pid,
294 const audio_attributes_t* pAttributes,
295 bool doNotReconnect,
296 float maxRequiredSpeed)
297 {
298 ALOGV("set(): streamType %d, sampleRate %u, format %#x, channelMask %#x, frameCount %zu, "
299 "flags #%x, notificationFrames %d, sessionId %d, transferType %d, uid %d, pid %d",
300 streamType, sampleRate, format, channelMask, frameCount, flags, notificationFrames,
301 sessionId, transferType, uid, pid);
302
303 mThreadCanCallJava = threadCanCallJava;
304
305 switch (transferType) {
306 case TRANSFER_DEFAULT:
307 if (sharedBuffer != 0) {
308 transferType = TRANSFER_SHARED;
309 } else if (cbf == NULL || threadCanCallJava) {
310 transferType = TRANSFER_SYNC;
311 } else {
312 transferType = TRANSFER_CALLBACK;
313 }
314 break;
315 case TRANSFER_CALLBACK:
316 if (cbf == NULL || sharedBuffer != 0) {
317 ALOGE("Transfer type TRANSFER_CALLBACK but cbf == NULL || sharedBuffer != 0");
318 return BAD_VALUE;
319 }
320 break;
321 case TRANSFER_OBTAIN:
322 case TRANSFER_SYNC:
323 if (sharedBuffer != 0) {
324 ALOGE("Transfer type TRANSFER_OBTAIN but sharedBuffer != 0");
325 return BAD_VALUE;
326 }
327 break;
328 case TRANSFER_SHARED:
329 if (sharedBuffer == 0) {
330 ALOGE("Transfer type TRANSFER_SHARED but sharedBuffer == 0");
331 return BAD_VALUE;
332 }
333 break;
334 default:
335 ALOGE("Invalid transfer type %d", transferType);
336 return BAD_VALUE;
337 }
338 mSharedBuffer = sharedBuffer;
339 mTransfer = transferType;
340 mDoNotReconnect = doNotReconnect;
341
342 ALOGV_IF(sharedBuffer != 0, "sharedBuffer: %p, size: %zu", sharedBuffer->pointer(),
343 sharedBuffer->size());
344
345 ALOGV("set() streamType %d frameCount %zu flags %04x", streamType, frameCount, flags);
346
347 // invariant that mAudioTrack != 0 is true only after set() returns successfully
348 if (mAudioTrack != 0) {
349 ALOGE("Track already in use");
350 return INVALID_OPERATION;
351 }
352
353 // handle default values first.
354 if (streamType == AUDIO_STREAM_DEFAULT) {
355 streamType = AUDIO_STREAM_MUSIC;
356 }
357 if (pAttributes == NULL) {
358 if (uint32_t(streamType) >= AUDIO_STREAM_PUBLIC_CNT) {
359 ALOGE("Invalid stream type %d", streamType);
360 return BAD_VALUE;
361 }
362 mStreamType = streamType;
363
364 } else {
365 // stream type shouldn't be looked at, this track has audio attributes
366 memcpy(&mAttributes, pAttributes, sizeof(audio_attributes_t));
367 ALOGV("Building AudioTrack with attributes: usage=%d content=%d flags=0x%x tags=[%s]",
368 mAttributes.usage, mAttributes.content_type, mAttributes.flags, mAttributes.tags);
369 mStreamType = AUDIO_STREAM_DEFAULT;
370 if ((mAttributes.flags & AUDIO_FLAG_HW_AV_SYNC) != 0) {
371 flags = (audio_output_flags_t)(flags | AUDIO_OUTPUT_FLAG_HW_AV_SYNC);
372 }
373 if ((mAttributes.flags & AUDIO_FLAG_LOW_LATENCY) != 0) {
374 flags = (audio_output_flags_t) (flags | AUDIO_OUTPUT_FLAG_FAST);
375 }
376 }
377
378 // these below should probably come from the audioFlinger too...
379 if (format == AUDIO_FORMAT_DEFAULT) {
380 format = AUDIO_FORMAT_PCM_16_BIT;
381 } else if (format == AUDIO_FORMAT_IEC61937) { // HDMI pass-through?
382 mAttributes.flags |= AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO;
383 }
384
385 // validate parameters
386 if (!audio_is_valid_format(format)) {
387 ALOGE("Invalid format %#x", format);
388 return BAD_VALUE;
389 }
390 mFormat = format;
391
392 if (!audio_is_output_channel(channelMask)) {
393 ALOGE("Invalid channel mask %#x", channelMask);
394 return BAD_VALUE;
395 }
396 mChannelMask = channelMask;
397 uint32_t channelCount = audio_channel_count_from_out_mask(channelMask);
398 mChannelCount = channelCount;
399
400 // force direct flag if format is not linear PCM
401 // or offload was requested
402 if ((flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD)
403 || !audio_is_linear_pcm(format)) {
404 ALOGV( (flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD)
405 ? "Offload request, forcing to Direct Output"
406 : "Not linear PCM, forcing to Direct Output");
407 flags = (audio_output_flags_t)
408 // FIXME why can't we allow direct AND fast?
409 ((flags | AUDIO_OUTPUT_FLAG_DIRECT) & ~AUDIO_OUTPUT_FLAG_FAST);
410 }
411
412 // force direct flag if HW A/V sync requested
413 if ((flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) != 0) {
414 flags = (audio_output_flags_t)(flags | AUDIO_OUTPUT_FLAG_DIRECT);
415 }
416
417 if (flags & AUDIO_OUTPUT_FLAG_DIRECT) {
418 if (audio_has_proportional_frames(format)) {
419 mFrameSize = channelCount * audio_bytes_per_sample(format);
420 } else {
421 mFrameSize = sizeof(uint8_t);
422 }
423 } else {
424 ALOG_ASSERT(audio_has_proportional_frames(format));
425 mFrameSize = channelCount * audio_bytes_per_sample(format);
426 // createTrack will return an error if PCM format is not supported by server,
427 // so no need to check for specific PCM formats here
428 }
429
430 // sampling rate must be specified for direct outputs
431 if (sampleRate == 0 && (flags & AUDIO_OUTPUT_FLAG_DIRECT) != 0) {
432 return BAD_VALUE;
433 }
434 mSampleRate = sampleRate;
435 mOriginalSampleRate = sampleRate;
436 mPlaybackRate = AUDIO_PLAYBACK_RATE_DEFAULT;
437 // 1.0 <= mMaxRequiredSpeed <= AUDIO_TIMESTRETCH_SPEED_MAX
438 mMaxRequiredSpeed = min(max(maxRequiredSpeed, 1.0f), AUDIO_TIMESTRETCH_SPEED_MAX);
439
440 // Make copy of input parameter offloadInfo so that in the future:
441 // (a) createTrack_l doesn't need it as an input parameter
442 // (b) we can support re-creation of offloaded tracks
443 if (offloadInfo != NULL) {
444 mOffloadInfoCopy = *offloadInfo;
445 mOffloadInfo = &mOffloadInfoCopy;
446 } else {
447 mOffloadInfo = NULL;
448 }
449
450 mVolume[AUDIO_INTERLEAVE_LEFT] = 1.0f;
451 mVolume[AUDIO_INTERLEAVE_RIGHT] = 1.0f;
452 mSendLevel = 0.0f;
453 // mFrameCount is initialized in createTrack_l
454 mReqFrameCount = frameCount;
455 if (notificationFrames >= 0) {
456 mNotificationFramesReq = notificationFrames;
457 mNotificationsPerBufferReq = 0;
458 } else {
459 if (!(flags & AUDIO_OUTPUT_FLAG_FAST)) {
460 ALOGE("notificationFrames=%d not permitted for non-fast track",
461 notificationFrames);
462 return BAD_VALUE;
463 }
464 if (frameCount > 0) {
465 ALOGE("notificationFrames=%d not permitted with non-zero frameCount=%zu",
466 notificationFrames, frameCount);
467 return BAD_VALUE;
468 }
469 mNotificationFramesReq = 0;
470 const uint32_t minNotificationsPerBuffer = 1;
471 const uint32_t maxNotificationsPerBuffer = 8;
472 mNotificationsPerBufferReq = min(maxNotificationsPerBuffer,
473 max((uint32_t) -notificationFrames, minNotificationsPerBuffer));
474 ALOGW_IF(mNotificationsPerBufferReq != (uint32_t) -notificationFrames,
475 "notificationFrames=%d clamped to the range -%u to -%u",
476 notificationFrames, minNotificationsPerBuffer, maxNotificationsPerBuffer);
477 }
478 mNotificationFramesAct = 0;
479 if (sessionId == AUDIO_SESSION_ALLOCATE) {
480 mSessionId = (audio_session_t) AudioSystem::newAudioUniqueId(AUDIO_UNIQUE_ID_USE_SESSION);
481 } else {
482 mSessionId = sessionId;
483 }
484 int callingpid = IPCThreadState::self()->getCallingPid();
485 int mypid = getpid();
486 if (uid == -1 || (callingpid != mypid)) {
487 mClientUid = IPCThreadState::self()->getCallingUid();
488 } else {
489 mClientUid = uid;
490 }
491 if (pid == -1 || (callingpid != mypid)) {
492 mClientPid = callingpid;
493 } else {
494 mClientPid = pid;
495 }
496 mAuxEffectId = 0;
497 mOrigFlags = mFlags = flags;
498 mCbf = cbf;
499
500 if (cbf != NULL) {
501 mAudioTrackThread = new AudioTrackThread(*this, threadCanCallJava);
502 mAudioTrackThread->run("AudioTrack", ANDROID_PRIORITY_AUDIO, 0 /*stack*/);
503 // thread begins in paused state, and will not reference us until start()
504 }
505
506 // create the IAudioTrack
507 status_t status = createTrack_l();
508
509 if (status != NO_ERROR) {
510 if (mAudioTrackThread != 0) {
511 mAudioTrackThread->requestExit(); // see comment in AudioTrack.h
512 mAudioTrackThread->requestExitAndWait();
513 mAudioTrackThread.clear();
514 }
515 return status;
516 }
517
518 mStatus = NO_ERROR;
519 mUserData = user;
520 mLoopCount = 0;
521 mLoopStart = 0;
522 mLoopEnd = 0;
523 mLoopCountNotified = 0;
524 mMarkerPosition = 0;
525 mMarkerReached = false;
526 mNewPosition = 0;
527 mUpdatePeriod = 0;
528 mPosition = 0;
529 mReleased = 0;
530 mStartUs = 0;
531 AudioSystem::acquireAudioSessionId(mSessionId, mClientPid);
532 mSequence = 1;
533 mObservedSequence = mSequence;
534 mInUnderrun = false;
535 mPreviousTimestampValid = false;
536 mTimestampStartupGlitchReported = false;
537 mRetrogradeMotionReported = false;
538 mPreviousLocation = ExtendedTimestamp::LOCATION_INVALID;
539 mUnderrunCountOffset = 0;
540 mFramesWritten = 0;
541 mFramesWrittenServerOffset = 0;
542
543 return NO_ERROR;
544 }
545
546 // -------------------------------------------------------------------------
547
start()548 status_t AudioTrack::start()
549 {
550 AutoMutex lock(mLock);
551
552 if (mState == STATE_ACTIVE) {
553 return INVALID_OPERATION;
554 }
555
556 mInUnderrun = true;
557
558 State previousState = mState;
559 if (previousState == STATE_PAUSED_STOPPING) {
560 mState = STATE_STOPPING;
561 } else {
562 mState = STATE_ACTIVE;
563 }
564 (void) updateAndGetPosition_l();
565 if (previousState == STATE_STOPPED || previousState == STATE_FLUSHED) {
566 // reset current position as seen by client to 0
567 mPosition = 0;
568 mPreviousTimestampValid = false;
569 mTimestampStartupGlitchReported = false;
570 mRetrogradeMotionReported = false;
571 mPreviousLocation = ExtendedTimestamp::LOCATION_INVALID;
572
573 // read last server side position change via timestamp.
574 ExtendedTimestamp ets;
575 if (mProxy->getTimestamp(&ets) == OK &&
576 ets.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] > 0) {
577 // Server side has consumed something, but is it finished consuming?
578 // It is possible since flush and stop are asynchronous that the server
579 // is still active at this point.
580 ALOGV("start: server read:%lld cumulative flushed:%lld client written:%lld",
581 (long long)(mFramesWrittenServerOffset
582 + ets.mPosition[ExtendedTimestamp::LOCATION_SERVER]),
583 (long long)ets.mFlushed,
584 (long long)mFramesWritten);
585 mFramesWrittenServerOffset = -ets.mPosition[ExtendedTimestamp::LOCATION_SERVER];
586 }
587 mFramesWritten = 0;
588 mProxy->clearTimestamp(); // need new server push for valid timestamp
589 mMarkerReached = false;
590
591 // For offloaded tracks, we don't know if the hardware counters are really zero here,
592 // since the flush is asynchronous and stop may not fully drain.
593 // We save the time when the track is started to later verify whether
594 // the counters are realistic (i.e. start from zero after this time).
595 mStartUs = getNowUs();
596
597 // force refresh of remaining frames by processAudioBuffer() as last
598 // write before stop could be partial.
599 mRefreshRemaining = true;
600 }
601 mNewPosition = mPosition + mUpdatePeriod;
602 int32_t flags = android_atomic_and(~CBLK_DISABLED, &mCblk->mFlags);
603
604 status_t status = NO_ERROR;
605 if (!(flags & CBLK_INVALID)) {
606 status = mAudioTrack->start();
607 if (status == DEAD_OBJECT) {
608 flags |= CBLK_INVALID;
609 }
610 }
611 if (flags & CBLK_INVALID) {
612 status = restoreTrack_l("start");
613 }
614
615 // resume or pause the callback thread as needed.
616 sp<AudioTrackThread> t = mAudioTrackThread;
617 if (status == NO_ERROR) {
618 if (t != 0) {
619 if (previousState == STATE_STOPPING) {
620 mProxy->interrupt();
621 } else {
622 t->resume();
623 }
624 } else {
625 mPreviousPriority = getpriority(PRIO_PROCESS, 0);
626 get_sched_policy(0, &mPreviousSchedulingGroup);
627 androidSetThreadPriority(0, ANDROID_PRIORITY_AUDIO);
628 }
629 } else {
630 ALOGE("start() status %d", status);
631 mState = previousState;
632 if (t != 0) {
633 if (previousState != STATE_STOPPING) {
634 t->pause();
635 }
636 } else {
637 setpriority(PRIO_PROCESS, 0, mPreviousPriority);
638 set_sched_policy(0, mPreviousSchedulingGroup);
639 }
640 }
641
642 return status;
643 }
644
stop()645 void AudioTrack::stop()
646 {
647 AutoMutex lock(mLock);
648 if (mState != STATE_ACTIVE && mState != STATE_PAUSED) {
649 return;
650 }
651
652 if (isOffloaded_l()) {
653 mState = STATE_STOPPING;
654 } else {
655 mState = STATE_STOPPED;
656 mReleased = 0;
657 }
658
659 mProxy->interrupt();
660 mAudioTrack->stop();
661
662 // Note: legacy handling - stop does not clear playback marker
663 // and periodic update counter, but flush does for streaming tracks.
664
665 if (mSharedBuffer != 0) {
666 // clear buffer position and loop count.
667 mStaticProxy->setBufferPositionAndLoop(0 /* position */,
668 0 /* loopStart */, 0 /* loopEnd */, 0 /* loopCount */);
669 }
670
671 sp<AudioTrackThread> t = mAudioTrackThread;
672 if (t != 0) {
673 if (!isOffloaded_l()) {
674 t->pause();
675 }
676 } else {
677 setpriority(PRIO_PROCESS, 0, mPreviousPriority);
678 set_sched_policy(0, mPreviousSchedulingGroup);
679 }
680 }
681
stopped() const682 bool AudioTrack::stopped() const
683 {
684 AutoMutex lock(mLock);
685 return mState != STATE_ACTIVE;
686 }
687
flush()688 void AudioTrack::flush()
689 {
690 if (mSharedBuffer != 0) {
691 return;
692 }
693 AutoMutex lock(mLock);
694 if (mState == STATE_ACTIVE || mState == STATE_FLUSHED) {
695 return;
696 }
697 flush_l();
698 }
699
flush_l()700 void AudioTrack::flush_l()
701 {
702 ALOG_ASSERT(mState != STATE_ACTIVE);
703
704 // clear playback marker and periodic update counter
705 mMarkerPosition = 0;
706 mMarkerReached = false;
707 mUpdatePeriod = 0;
708 mRefreshRemaining = true;
709
710 mState = STATE_FLUSHED;
711 mReleased = 0;
712 if (isOffloaded_l()) {
713 mProxy->interrupt();
714 }
715 mProxy->flush();
716 mAudioTrack->flush();
717 }
718
pause()719 void AudioTrack::pause()
720 {
721 AutoMutex lock(mLock);
722 if (mState == STATE_ACTIVE) {
723 mState = STATE_PAUSED;
724 } else if (mState == STATE_STOPPING) {
725 mState = STATE_PAUSED_STOPPING;
726 } else {
727 return;
728 }
729 mProxy->interrupt();
730 mAudioTrack->pause();
731
732 if (isOffloaded_l()) {
733 if (mOutput != AUDIO_IO_HANDLE_NONE) {
734 // An offload output can be re-used between two audio tracks having
735 // the same configuration. A timestamp query for a paused track
736 // while the other is running would return an incorrect time.
737 // To fix this, cache the playback position on a pause() and return
738 // this time when requested until the track is resumed.
739
740 // OffloadThread sends HAL pause in its threadLoop. Time saved
741 // here can be slightly off.
742
743 // TODO: check return code for getRenderPosition.
744
745 uint32_t halFrames;
746 AudioSystem::getRenderPosition(mOutput, &halFrames, &mPausedPosition);
747 ALOGV("AudioTrack::pause for offload, cache current position %u", mPausedPosition);
748 }
749 }
750 }
751
setVolume(float left,float right)752 status_t AudioTrack::setVolume(float left, float right)
753 {
754 // This duplicates a test by AudioTrack JNI, but that is not the only caller
755 if (isnanf(left) || left < GAIN_FLOAT_ZERO || left > GAIN_FLOAT_UNITY ||
756 isnanf(right) || right < GAIN_FLOAT_ZERO || right > GAIN_FLOAT_UNITY) {
757 return BAD_VALUE;
758 }
759
760 AutoMutex lock(mLock);
761 mVolume[AUDIO_INTERLEAVE_LEFT] = left;
762 mVolume[AUDIO_INTERLEAVE_RIGHT] = right;
763
764 mProxy->setVolumeLR(gain_minifloat_pack(gain_from_float(left), gain_from_float(right)));
765
766 if (isOffloaded_l()) {
767 mAudioTrack->signal();
768 }
769 return NO_ERROR;
770 }
771
setVolume(float volume)772 status_t AudioTrack::setVolume(float volume)
773 {
774 return setVolume(volume, volume);
775 }
776
setAuxEffectSendLevel(float level)777 status_t AudioTrack::setAuxEffectSendLevel(float level)
778 {
779 // This duplicates a test by AudioTrack JNI, but that is not the only caller
780 if (isnanf(level) || level < GAIN_FLOAT_ZERO || level > GAIN_FLOAT_UNITY) {
781 return BAD_VALUE;
782 }
783
784 AutoMutex lock(mLock);
785 mSendLevel = level;
786 mProxy->setSendLevel(level);
787
788 return NO_ERROR;
789 }
790
getAuxEffectSendLevel(float * level) const791 void AudioTrack::getAuxEffectSendLevel(float* level) const
792 {
793 if (level != NULL) {
794 *level = mSendLevel;
795 }
796 }
797
setSampleRate(uint32_t rate)798 status_t AudioTrack::setSampleRate(uint32_t rate)
799 {
800 AutoMutex lock(mLock);
801 if (rate == mSampleRate) {
802 return NO_ERROR;
803 }
804 if (isOffloadedOrDirect_l() || (mFlags & AUDIO_OUTPUT_FLAG_FAST)) {
805 return INVALID_OPERATION;
806 }
807 if (mOutput == AUDIO_IO_HANDLE_NONE) {
808 return NO_INIT;
809 }
810 // NOTE: it is theoretically possible, but highly unlikely, that a device change
811 // could mean a previously allowed sampling rate is no longer allowed.
812 uint32_t afSamplingRate;
813 if (AudioSystem::getSamplingRate(mOutput, &afSamplingRate) != NO_ERROR) {
814 return NO_INIT;
815 }
816 // pitch is emulated by adjusting speed and sampleRate
817 const uint32_t effectiveSampleRate = adjustSampleRate(rate, mPlaybackRate.mPitch);
818 if (rate == 0 || effectiveSampleRate > afSamplingRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
819 return BAD_VALUE;
820 }
821 // TODO: Should we also check if the buffer size is compatible?
822
823 mSampleRate = rate;
824 mProxy->setSampleRate(effectiveSampleRate);
825
826 return NO_ERROR;
827 }
828
getSampleRate() const829 uint32_t AudioTrack::getSampleRate() const
830 {
831 AutoMutex lock(mLock);
832
833 // sample rate can be updated during playback by the offloaded decoder so we need to
834 // query the HAL and update if needed.
835 // FIXME use Proxy return channel to update the rate from server and avoid polling here
836 if (isOffloadedOrDirect_l()) {
837 if (mOutput != AUDIO_IO_HANDLE_NONE) {
838 uint32_t sampleRate = 0;
839 status_t status = AudioSystem::getSamplingRate(mOutput, &sampleRate);
840 if (status == NO_ERROR) {
841 mSampleRate = sampleRate;
842 }
843 }
844 }
845 return mSampleRate;
846 }
847
getOriginalSampleRate() const848 uint32_t AudioTrack::getOriginalSampleRate() const
849 {
850 return mOriginalSampleRate;
851 }
852
setPlaybackRate(const AudioPlaybackRate & playbackRate)853 status_t AudioTrack::setPlaybackRate(const AudioPlaybackRate &playbackRate)
854 {
855 AutoMutex lock(mLock);
856 if (isAudioPlaybackRateEqual(playbackRate, mPlaybackRate)) {
857 return NO_ERROR;
858 }
859 if (isOffloadedOrDirect_l()) {
860 return INVALID_OPERATION;
861 }
862 if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
863 return INVALID_OPERATION;
864 }
865
866 ALOGV("setPlaybackRate (input): mSampleRate:%u mSpeed:%f mPitch:%f",
867 mSampleRate, playbackRate.mSpeed, playbackRate.mPitch);
868 // pitch is emulated by adjusting speed and sampleRate
869 const uint32_t effectiveRate = adjustSampleRate(mSampleRate, playbackRate.mPitch);
870 const float effectiveSpeed = adjustSpeed(playbackRate.mSpeed, playbackRate.mPitch);
871 const float effectivePitch = adjustPitch(playbackRate.mPitch);
872 AudioPlaybackRate playbackRateTemp = playbackRate;
873 playbackRateTemp.mSpeed = effectiveSpeed;
874 playbackRateTemp.mPitch = effectivePitch;
875
876 ALOGV("setPlaybackRate (effective): mSampleRate:%u mSpeed:%f mPitch:%f",
877 effectiveRate, effectiveSpeed, effectivePitch);
878
879 if (!isAudioPlaybackRateValid(playbackRateTemp)) {
880 ALOGV("setPlaybackRate(%f, %f) failed (effective rate out of bounds)",
881 playbackRate.mSpeed, playbackRate.mPitch);
882 return BAD_VALUE;
883 }
884 // Check if the buffer size is compatible.
885 if (!isSampleRateSpeedAllowed_l(effectiveRate, effectiveSpeed)) {
886 ALOGV("setPlaybackRate(%f, %f) failed (buffer size)",
887 playbackRate.mSpeed, playbackRate.mPitch);
888 return BAD_VALUE;
889 }
890
891 // Check resampler ratios are within bounds
892 if ((uint64_t)effectiveRate > (uint64_t)mSampleRate * (uint64_t)AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
893 ALOGV("setPlaybackRate(%f, %f) failed. Resample rate exceeds max accepted value",
894 playbackRate.mSpeed, playbackRate.mPitch);
895 return BAD_VALUE;
896 }
897
898 if ((uint64_t)effectiveRate * (uint64_t)AUDIO_RESAMPLER_UP_RATIO_MAX < (uint64_t)mSampleRate) {
899 ALOGV("setPlaybackRate(%f, %f) failed. Resample rate below min accepted value",
900 playbackRate.mSpeed, playbackRate.mPitch);
901 return BAD_VALUE;
902 }
903 mPlaybackRate = playbackRate;
904 //set effective rates
905 mProxy->setPlaybackRate(playbackRateTemp);
906 mProxy->setSampleRate(effectiveRate); // FIXME: not quite "atomic" with setPlaybackRate
907 return NO_ERROR;
908 }
909
getPlaybackRate() const910 const AudioPlaybackRate& AudioTrack::getPlaybackRate() const
911 {
912 AutoMutex lock(mLock);
913 return mPlaybackRate;
914 }
915
getBufferSizeInFrames()916 ssize_t AudioTrack::getBufferSizeInFrames()
917 {
918 AutoMutex lock(mLock);
919 if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) {
920 return NO_INIT;
921 }
922 return (ssize_t) mProxy->getBufferSizeInFrames();
923 }
924
getBufferDurationInUs(int64_t * duration)925 status_t AudioTrack::getBufferDurationInUs(int64_t *duration)
926 {
927 if (duration == nullptr) {
928 return BAD_VALUE;
929 }
930 AutoMutex lock(mLock);
931 if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) {
932 return NO_INIT;
933 }
934 ssize_t bufferSizeInFrames = (ssize_t) mProxy->getBufferSizeInFrames();
935 if (bufferSizeInFrames < 0) {
936 return (status_t)bufferSizeInFrames;
937 }
938 *duration = (int64_t)((double)bufferSizeInFrames * 1000000
939 / ((double)mSampleRate * mPlaybackRate.mSpeed));
940 return NO_ERROR;
941 }
942
setBufferSizeInFrames(size_t bufferSizeInFrames)943 ssize_t AudioTrack::setBufferSizeInFrames(size_t bufferSizeInFrames)
944 {
945 AutoMutex lock(mLock);
946 if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) {
947 return NO_INIT;
948 }
949 // Reject if timed track or compressed audio.
950 if (!audio_is_linear_pcm(mFormat)) {
951 return INVALID_OPERATION;
952 }
953 return (ssize_t) mProxy->setBufferSizeInFrames((uint32_t) bufferSizeInFrames);
954 }
955
setLoop(uint32_t loopStart,uint32_t loopEnd,int loopCount)956 status_t AudioTrack::setLoop(uint32_t loopStart, uint32_t loopEnd, int loopCount)
957 {
958 if (mSharedBuffer == 0 || isOffloadedOrDirect()) {
959 return INVALID_OPERATION;
960 }
961
962 if (loopCount == 0) {
963 ;
964 } else if (loopCount >= -1 && loopStart < loopEnd && loopEnd <= mFrameCount &&
965 loopEnd - loopStart >= MIN_LOOP) {
966 ;
967 } else {
968 return BAD_VALUE;
969 }
970
971 AutoMutex lock(mLock);
972 // See setPosition() regarding setting parameters such as loop points or position while active
973 if (mState == STATE_ACTIVE) {
974 return INVALID_OPERATION;
975 }
976 setLoop_l(loopStart, loopEnd, loopCount);
977 return NO_ERROR;
978 }
979
setLoop_l(uint32_t loopStart,uint32_t loopEnd,int loopCount)980 void AudioTrack::setLoop_l(uint32_t loopStart, uint32_t loopEnd, int loopCount)
981 {
982 // We do not update the periodic notification point.
983 // mNewPosition = updateAndGetPosition_l() + mUpdatePeriod;
984 mLoopCount = loopCount;
985 mLoopEnd = loopEnd;
986 mLoopStart = loopStart;
987 mLoopCountNotified = loopCount;
988 mStaticProxy->setLoop(loopStart, loopEnd, loopCount);
989
990 // Waking the AudioTrackThread is not needed as this cannot be called when active.
991 }
992
setMarkerPosition(uint32_t marker)993 status_t AudioTrack::setMarkerPosition(uint32_t marker)
994 {
995 // The only purpose of setting marker position is to get a callback
996 if (mCbf == NULL || isOffloadedOrDirect()) {
997 return INVALID_OPERATION;
998 }
999
1000 AutoMutex lock(mLock);
1001 mMarkerPosition = marker;
1002 mMarkerReached = false;
1003
1004 sp<AudioTrackThread> t = mAudioTrackThread;
1005 if (t != 0) {
1006 t->wake();
1007 }
1008 return NO_ERROR;
1009 }
1010
getMarkerPosition(uint32_t * marker) const1011 status_t AudioTrack::getMarkerPosition(uint32_t *marker) const
1012 {
1013 if (isOffloadedOrDirect()) {
1014 return INVALID_OPERATION;
1015 }
1016 if (marker == NULL) {
1017 return BAD_VALUE;
1018 }
1019
1020 AutoMutex lock(mLock);
1021 mMarkerPosition.getValue(marker);
1022
1023 return NO_ERROR;
1024 }
1025
setPositionUpdatePeriod(uint32_t updatePeriod)1026 status_t AudioTrack::setPositionUpdatePeriod(uint32_t updatePeriod)
1027 {
1028 // The only purpose of setting position update period is to get a callback
1029 if (mCbf == NULL || isOffloadedOrDirect()) {
1030 return INVALID_OPERATION;
1031 }
1032
1033 AutoMutex lock(mLock);
1034 mNewPosition = updateAndGetPosition_l() + updatePeriod;
1035 mUpdatePeriod = updatePeriod;
1036
1037 sp<AudioTrackThread> t = mAudioTrackThread;
1038 if (t != 0) {
1039 t->wake();
1040 }
1041 return NO_ERROR;
1042 }
1043
getPositionUpdatePeriod(uint32_t * updatePeriod) const1044 status_t AudioTrack::getPositionUpdatePeriod(uint32_t *updatePeriod) const
1045 {
1046 if (isOffloadedOrDirect()) {
1047 return INVALID_OPERATION;
1048 }
1049 if (updatePeriod == NULL) {
1050 return BAD_VALUE;
1051 }
1052
1053 AutoMutex lock(mLock);
1054 *updatePeriod = mUpdatePeriod;
1055
1056 return NO_ERROR;
1057 }
1058
setPosition(uint32_t position)1059 status_t AudioTrack::setPosition(uint32_t position)
1060 {
1061 if (mSharedBuffer == 0 || isOffloadedOrDirect()) {
1062 return INVALID_OPERATION;
1063 }
1064 if (position > mFrameCount) {
1065 return BAD_VALUE;
1066 }
1067
1068 AutoMutex lock(mLock);
1069 // Currently we require that the player is inactive before setting parameters such as position
1070 // or loop points. Otherwise, there could be a race condition: the application could read the
1071 // current position, compute a new position or loop parameters, and then set that position or
1072 // loop parameters but it would do the "wrong" thing since the position has continued to advance
1073 // in the mean time. If we ever provide a sequencer in server, we could allow a way for the app
1074 // to specify how it wants to handle such scenarios.
1075 if (mState == STATE_ACTIVE) {
1076 return INVALID_OPERATION;
1077 }
1078 // After setting the position, use full update period before notification.
1079 mNewPosition = updateAndGetPosition_l() + mUpdatePeriod;
1080 mStaticProxy->setBufferPosition(position);
1081
1082 // Waking the AudioTrackThread is not needed as this cannot be called when active.
1083 return NO_ERROR;
1084 }
1085
getPosition(uint32_t * position)1086 status_t AudioTrack::getPosition(uint32_t *position)
1087 {
1088 if (position == NULL) {
1089 return BAD_VALUE;
1090 }
1091
1092 AutoMutex lock(mLock);
1093 // FIXME: offloaded and direct tracks call into the HAL for render positions
1094 // for compressed/synced data; however, we use proxy position for pure linear pcm data
1095 // as we do not know the capability of the HAL for pcm position support and standby.
1096 // There may be some latency differences between the HAL position and the proxy position.
1097 if (isOffloadedOrDirect_l() && !isPurePcmData_l()) {
1098 uint32_t dspFrames = 0;
1099
1100 if (isOffloaded_l() && ((mState == STATE_PAUSED) || (mState == STATE_PAUSED_STOPPING))) {
1101 ALOGV("getPosition called in paused state, return cached position %u", mPausedPosition);
1102 *position = mPausedPosition;
1103 return NO_ERROR;
1104 }
1105
1106 if (mOutput != AUDIO_IO_HANDLE_NONE) {
1107 uint32_t halFrames; // actually unused
1108 (void) AudioSystem::getRenderPosition(mOutput, &halFrames, &dspFrames);
1109 // FIXME: on getRenderPosition() error, we return OK with frame position 0.
1110 }
1111 // FIXME: dspFrames may not be zero in (mState == STATE_STOPPED || mState == STATE_FLUSHED)
1112 // due to hardware latency. We leave this behavior for now.
1113 *position = dspFrames;
1114 } else {
1115 if (mCblk->mFlags & CBLK_INVALID) {
1116 (void) restoreTrack_l("getPosition");
1117 // FIXME: for compatibility with the Java API we ignore the restoreTrack_l()
1118 // error here (e.g. DEAD_OBJECT) and return OK with the last recorded server position.
1119 }
1120
1121 // IAudioTrack::stop() isn't synchronous; we don't know when presentation completes
1122 *position = (mState == STATE_STOPPED || mState == STATE_FLUSHED) ?
1123 0 : updateAndGetPosition_l().value();
1124 }
1125 return NO_ERROR;
1126 }
1127
getBufferPosition(uint32_t * position)1128 status_t AudioTrack::getBufferPosition(uint32_t *position)
1129 {
1130 if (mSharedBuffer == 0) {
1131 return INVALID_OPERATION;
1132 }
1133 if (position == NULL) {
1134 return BAD_VALUE;
1135 }
1136
1137 AutoMutex lock(mLock);
1138 *position = mStaticProxy->getBufferPosition();
1139 return NO_ERROR;
1140 }
1141
reload()1142 status_t AudioTrack::reload()
1143 {
1144 if (mSharedBuffer == 0 || isOffloadedOrDirect()) {
1145 return INVALID_OPERATION;
1146 }
1147
1148 AutoMutex lock(mLock);
1149 // See setPosition() regarding setting parameters such as loop points or position while active
1150 if (mState == STATE_ACTIVE) {
1151 return INVALID_OPERATION;
1152 }
1153 mNewPosition = mUpdatePeriod;
1154 (void) updateAndGetPosition_l();
1155 mPosition = 0;
1156 mPreviousTimestampValid = false;
1157 #if 0
1158 // The documentation is not clear on the behavior of reload() and the restoration
1159 // of loop count. Historically we have not restored loop count, start, end,
1160 // but it makes sense if one desires to repeat playing a particular sound.
1161 if (mLoopCount != 0) {
1162 mLoopCountNotified = mLoopCount;
1163 mStaticProxy->setLoop(mLoopStart, mLoopEnd, mLoopCount);
1164 }
1165 #endif
1166 mStaticProxy->setBufferPosition(0);
1167 return NO_ERROR;
1168 }
1169
getOutput() const1170 audio_io_handle_t AudioTrack::getOutput() const
1171 {
1172 AutoMutex lock(mLock);
1173 return mOutput;
1174 }
1175
setOutputDevice(audio_port_handle_t deviceId)1176 status_t AudioTrack::setOutputDevice(audio_port_handle_t deviceId) {
1177 AutoMutex lock(mLock);
1178 if (mSelectedDeviceId != deviceId) {
1179 mSelectedDeviceId = deviceId;
1180 android_atomic_or(CBLK_INVALID, &mCblk->mFlags);
1181 }
1182 return NO_ERROR;
1183 }
1184
getOutputDevice()1185 audio_port_handle_t AudioTrack::getOutputDevice() {
1186 AutoMutex lock(mLock);
1187 return mSelectedDeviceId;
1188 }
1189
getRoutedDeviceId()1190 audio_port_handle_t AudioTrack::getRoutedDeviceId() {
1191 AutoMutex lock(mLock);
1192 if (mOutput == AUDIO_IO_HANDLE_NONE) {
1193 return AUDIO_PORT_HANDLE_NONE;
1194 }
1195 return AudioSystem::getDeviceIdForIo(mOutput);
1196 }
1197
attachAuxEffect(int effectId)1198 status_t AudioTrack::attachAuxEffect(int effectId)
1199 {
1200 AutoMutex lock(mLock);
1201 status_t status = mAudioTrack->attachAuxEffect(effectId);
1202 if (status == NO_ERROR) {
1203 mAuxEffectId = effectId;
1204 }
1205 return status;
1206 }
1207
streamType() const1208 audio_stream_type_t AudioTrack::streamType() const
1209 {
1210 if (mStreamType == AUDIO_STREAM_DEFAULT) {
1211 return audio_attributes_to_stream_type(&mAttributes);
1212 }
1213 return mStreamType;
1214 }
1215
1216 // -------------------------------------------------------------------------
1217
1218 // must be called with mLock held
createTrack_l()1219 status_t AudioTrack::createTrack_l()
1220 {
1221 const sp<IAudioFlinger>& audioFlinger = AudioSystem::get_audio_flinger();
1222 if (audioFlinger == 0) {
1223 ALOGE("Could not get audioflinger");
1224 return NO_INIT;
1225 }
1226
1227 if (mDeviceCallback != 0 && mOutput != AUDIO_IO_HANDLE_NONE) {
1228 AudioSystem::removeAudioDeviceCallback(mDeviceCallback, mOutput);
1229 }
1230 audio_io_handle_t output;
1231 audio_stream_type_t streamType = mStreamType;
1232 audio_attributes_t *attr = (mStreamType == AUDIO_STREAM_DEFAULT) ? &mAttributes : NULL;
1233
1234 // mFlags (not mOrigFlags) is modified depending on whether fast request is accepted.
1235 // After fast request is denied, we will request again if IAudioTrack is re-created.
1236
1237 status_t status;
1238 status = AudioSystem::getOutputForAttr(attr, &output,
1239 mSessionId, &streamType, mClientUid,
1240 mSampleRate, mFormat, mChannelMask,
1241 mFlags, mSelectedDeviceId, mOffloadInfo);
1242
1243 if (status != NO_ERROR || output == AUDIO_IO_HANDLE_NONE) {
1244 ALOGE("Could not get audio output for session %d, stream type %d, usage %d, sample rate %u, format %#x,"
1245 " channel mask %#x, flags %#x",
1246 mSessionId, streamType, mAttributes.usage, mSampleRate, mFormat, mChannelMask, mFlags);
1247 return BAD_VALUE;
1248 }
1249 {
1250 // Now that we have a reference to an I/O handle and have not yet handed it off to AudioFlinger,
1251 // we must release it ourselves if anything goes wrong.
1252
1253 // Not all of these values are needed under all conditions, but it is easier to get them all
1254 status = AudioSystem::getLatency(output, &mAfLatency);
1255 if (status != NO_ERROR) {
1256 ALOGE("getLatency(%d) failed status %d", output, status);
1257 goto release;
1258 }
1259 ALOGV("createTrack_l() output %d afLatency %u", output, mAfLatency);
1260
1261 status = AudioSystem::getFrameCount(output, &mAfFrameCount);
1262 if (status != NO_ERROR) {
1263 ALOGE("getFrameCount(output=%d) status %d", output, status);
1264 goto release;
1265 }
1266
1267 // TODO consider making this a member variable if there are other uses for it later
1268 size_t afFrameCountHAL;
1269 status = AudioSystem::getFrameCountHAL(output, &afFrameCountHAL);
1270 if (status != NO_ERROR) {
1271 ALOGE("getFrameCountHAL(output=%d) status %d", output, status);
1272 goto release;
1273 }
1274 ALOG_ASSERT(afFrameCountHAL > 0);
1275
1276 status = AudioSystem::getSamplingRate(output, &mAfSampleRate);
1277 if (status != NO_ERROR) {
1278 ALOGE("getSamplingRate(output=%d) status %d", output, status);
1279 goto release;
1280 }
1281 if (mSampleRate == 0) {
1282 mSampleRate = mAfSampleRate;
1283 mOriginalSampleRate = mAfSampleRate;
1284 }
1285
1286 // Client can only express a preference for FAST. Server will perform additional tests.
1287 if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
1288 bool useCaseAllowed =
1289 // either of these use cases:
1290 // use case 1: shared buffer
1291 (mSharedBuffer != 0) ||
1292 // use case 2: callback transfer mode
1293 (mTransfer == TRANSFER_CALLBACK) ||
1294 // use case 3: obtain/release mode
1295 (mTransfer == TRANSFER_OBTAIN) ||
1296 // use case 4: synchronous write
1297 ((mTransfer == TRANSFER_SYNC) && mThreadCanCallJava);
1298 // sample rates must also match
1299 bool fastAllowed = useCaseAllowed && (mSampleRate == mAfSampleRate);
1300 if (!fastAllowed) {
1301 ALOGW("AUDIO_OUTPUT_FLAG_FAST denied by client; transfer %d, "
1302 "track %u Hz, output %u Hz",
1303 mTransfer, mSampleRate, mAfSampleRate);
1304 mFlags = (audio_output_flags_t) (mFlags & ~AUDIO_OUTPUT_FLAG_FAST);
1305 }
1306 }
1307
1308 mNotificationFramesAct = mNotificationFramesReq;
1309
1310 size_t frameCount = mReqFrameCount;
1311 if (!audio_has_proportional_frames(mFormat)) {
1312
1313 if (mSharedBuffer != 0) {
1314 // Same comment as below about ignoring frameCount parameter for set()
1315 frameCount = mSharedBuffer->size();
1316 } else if (frameCount == 0) {
1317 frameCount = mAfFrameCount;
1318 }
1319 if (mNotificationFramesAct != frameCount) {
1320 mNotificationFramesAct = frameCount;
1321 }
1322 } else if (mSharedBuffer != 0) {
1323 // FIXME: Ensure client side memory buffers need
1324 // not have additional alignment beyond sample
1325 // (e.g. 16 bit stereo accessed as 32 bit frame).
1326 size_t alignment = audio_bytes_per_sample(mFormat);
1327 if (alignment & 1) {
1328 // for AUDIO_FORMAT_PCM_24_BIT_PACKED (not exposed through Java).
1329 alignment = 1;
1330 }
1331 if (mChannelCount > 1) {
1332 // More than 2 channels does not require stronger alignment than stereo
1333 alignment <<= 1;
1334 }
1335 if (((uintptr_t)mSharedBuffer->pointer() & (alignment - 1)) != 0) {
1336 ALOGE("Invalid buffer alignment: address %p, channel count %u",
1337 mSharedBuffer->pointer(), mChannelCount);
1338 status = BAD_VALUE;
1339 goto release;
1340 }
1341
1342 // When initializing a shared buffer AudioTrack via constructors,
1343 // there's no frameCount parameter.
1344 // But when initializing a shared buffer AudioTrack via set(),
1345 // there _is_ a frameCount parameter. We silently ignore it.
1346 frameCount = mSharedBuffer->size() / mFrameSize;
1347 } else {
1348 size_t minFrameCount = 0;
1349 // For fast tracks the frame count calculations and checks are mostly done by server,
1350 // but we try to respect the application's request for notifications per buffer.
1351 if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
1352 if (mNotificationsPerBufferReq > 0) {
1353 // Avoid possible arithmetic overflow during multiplication.
1354 // mNotificationsPerBuffer is clamped to a small integer earlier, so it is unlikely.
1355 if (mNotificationsPerBufferReq > SIZE_MAX / afFrameCountHAL) {
1356 ALOGE("Requested notificationPerBuffer=%u ignored for HAL frameCount=%zu",
1357 mNotificationsPerBufferReq, afFrameCountHAL);
1358 } else {
1359 minFrameCount = afFrameCountHAL * mNotificationsPerBufferReq;
1360 }
1361 }
1362 } else {
1363 // for normal tracks precompute the frame count based on speed.
1364 const float speed = !isPurePcmData_l() || isOffloadedOrDirect_l() ? 1.0f :
1365 max(mMaxRequiredSpeed, mPlaybackRate.mSpeed);
1366 minFrameCount = calculateMinFrameCount(
1367 mAfLatency, mAfFrameCount, mAfSampleRate, mSampleRate,
1368 speed /*, 0 mNotificationsPerBufferReq*/);
1369 }
1370 if (frameCount < minFrameCount) {
1371 frameCount = minFrameCount;
1372 }
1373 }
1374
1375 IAudioFlinger::track_flags_t trackFlags = IAudioFlinger::TRACK_DEFAULT;
1376
1377 pid_t tid = -1;
1378 if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
1379 trackFlags |= IAudioFlinger::TRACK_FAST;
1380 if (mAudioTrackThread != 0 && !mThreadCanCallJava) {
1381 tid = mAudioTrackThread->getTid();
1382 }
1383 }
1384
1385 if (mFlags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD) {
1386 trackFlags |= IAudioFlinger::TRACK_OFFLOAD;
1387 }
1388
1389 if (mFlags & AUDIO_OUTPUT_FLAG_DIRECT) {
1390 trackFlags |= IAudioFlinger::TRACK_DIRECT;
1391 }
1392
1393 size_t temp = frameCount; // temp may be replaced by a revised value of frameCount,
1394 // but we will still need the original value also
1395 audio_session_t originalSessionId = mSessionId;
1396 sp<IAudioTrack> track = audioFlinger->createTrack(streamType,
1397 mSampleRate,
1398 mFormat,
1399 mChannelMask,
1400 &temp,
1401 &trackFlags,
1402 mSharedBuffer,
1403 output,
1404 mClientPid,
1405 tid,
1406 &mSessionId,
1407 mClientUid,
1408 &status);
1409 ALOGE_IF(originalSessionId != AUDIO_SESSION_ALLOCATE && mSessionId != originalSessionId,
1410 "session ID changed from %d to %d", originalSessionId, mSessionId);
1411
1412 if (status != NO_ERROR) {
1413 ALOGE("AudioFlinger could not create track, status: %d", status);
1414 goto release;
1415 }
1416 ALOG_ASSERT(track != 0);
1417
1418 // AudioFlinger now owns the reference to the I/O handle,
1419 // so we are no longer responsible for releasing it.
1420
1421 // FIXME compare to AudioRecord
1422 sp<IMemory> iMem = track->getCblk();
1423 if (iMem == 0) {
1424 ALOGE("Could not get control block");
1425 return NO_INIT;
1426 }
1427 void *iMemPointer = iMem->pointer();
1428 if (iMemPointer == NULL) {
1429 ALOGE("Could not get control block pointer");
1430 return NO_INIT;
1431 }
1432 // invariant that mAudioTrack != 0 is true only after set() returns successfully
1433 if (mAudioTrack != 0) {
1434 IInterface::asBinder(mAudioTrack)->unlinkToDeath(mDeathNotifier, this);
1435 mDeathNotifier.clear();
1436 }
1437 mAudioTrack = track;
1438 mCblkMemory = iMem;
1439 IPCThreadState::self()->flushCommands();
1440
1441 audio_track_cblk_t* cblk = static_cast<audio_track_cblk_t*>(iMemPointer);
1442 mCblk = cblk;
1443 // note that temp is the (possibly revised) value of frameCount
1444 if (temp < frameCount || (frameCount == 0 && temp == 0)) {
1445 // In current design, AudioTrack client checks and ensures frame count validity before
1446 // passing it to AudioFlinger so AudioFlinger should not return a different value except
1447 // for fast track as it uses a special method of assigning frame count.
1448 ALOGW("Requested frameCount %zu but received frameCount %zu", frameCount, temp);
1449 }
1450 frameCount = temp;
1451
1452 mAwaitBoost = false;
1453 if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
1454 if (trackFlags & IAudioFlinger::TRACK_FAST) {
1455 ALOGV("AUDIO_OUTPUT_FLAG_FAST successful; frameCount %zu", frameCount);
1456 if (!mThreadCanCallJava) {
1457 mAwaitBoost = true;
1458 }
1459 } else {
1460 ALOGW("AUDIO_OUTPUT_FLAG_FAST denied by server; frameCount %zu", frameCount);
1461 mFlags = (audio_output_flags_t) (mFlags & ~AUDIO_OUTPUT_FLAG_FAST);
1462 }
1463 }
1464
1465 // Make sure that application is notified with sufficient margin before underrun.
1466 // The client can divide the AudioTrack buffer into sub-buffers,
1467 // and expresses its desire to server as the notification frame count.
1468 if (mSharedBuffer == 0 && audio_is_linear_pcm(mFormat)) {
1469 size_t maxNotificationFrames;
1470 if (trackFlags & IAudioFlinger::TRACK_FAST) {
1471 // notify every HAL buffer, regardless of the size of the track buffer
1472 maxNotificationFrames = afFrameCountHAL;
1473 } else {
1474 // For normal tracks, use at least double-buffering if no sample rate conversion,
1475 // or at least triple-buffering if there is sample rate conversion
1476 const int nBuffering = mOriginalSampleRate == mAfSampleRate ? 2 : 3;
1477 maxNotificationFrames = frameCount / nBuffering;
1478 }
1479 if (mNotificationFramesAct == 0 || mNotificationFramesAct > maxNotificationFrames) {
1480 if (mNotificationFramesAct == 0) {
1481 ALOGD("Client defaulted notificationFrames to %zu for frameCount %zu",
1482 maxNotificationFrames, frameCount);
1483 } else {
1484 ALOGW("Client adjusted notificationFrames from %u to %zu for frameCount %zu",
1485 mNotificationFramesAct, maxNotificationFrames, frameCount);
1486 }
1487 mNotificationFramesAct = (uint32_t) maxNotificationFrames;
1488 }
1489 }
1490
1491 // We retain a copy of the I/O handle, but don't own the reference
1492 mOutput = output;
1493 mRefreshRemaining = true;
1494
1495 // Starting address of buffers in shared memory. If there is a shared buffer, buffers
1496 // is the value of pointer() for the shared buffer, otherwise buffers points
1497 // immediately after the control block. This address is for the mapping within client
1498 // address space. AudioFlinger::TrackBase::mBuffer is for the server address space.
1499 void* buffers;
1500 if (mSharedBuffer == 0) {
1501 buffers = cblk + 1;
1502 } else {
1503 buffers = mSharedBuffer->pointer();
1504 if (buffers == NULL) {
1505 ALOGE("Could not get buffer pointer");
1506 return NO_INIT;
1507 }
1508 }
1509
1510 mAudioTrack->attachAuxEffect(mAuxEffectId);
1511 // FIXME doesn't take into account speed or future sample rate changes (until restoreTrack)
1512 // FIXME don't believe this lie
1513 mLatency = mAfLatency + (1000*frameCount) / mSampleRate;
1514
1515 mFrameCount = frameCount;
1516 // If IAudioTrack is re-created, don't let the requested frameCount
1517 // decrease. This can confuse clients that cache frameCount().
1518 if (frameCount > mReqFrameCount) {
1519 mReqFrameCount = frameCount;
1520 }
1521
1522 // reset server position to 0 as we have new cblk.
1523 mServer = 0;
1524
1525 // update proxy
1526 if (mSharedBuffer == 0) {
1527 mStaticProxy.clear();
1528 mProxy = new AudioTrackClientProxy(cblk, buffers, frameCount, mFrameSize);
1529 } else {
1530 mStaticProxy = new StaticAudioTrackClientProxy(cblk, buffers, frameCount, mFrameSize);
1531 mProxy = mStaticProxy;
1532 }
1533
1534 mProxy->setVolumeLR(gain_minifloat_pack(
1535 gain_from_float(mVolume[AUDIO_INTERLEAVE_LEFT]),
1536 gain_from_float(mVolume[AUDIO_INTERLEAVE_RIGHT])));
1537
1538 mProxy->setSendLevel(mSendLevel);
1539 const uint32_t effectiveSampleRate = adjustSampleRate(mSampleRate, mPlaybackRate.mPitch);
1540 const float effectiveSpeed = adjustSpeed(mPlaybackRate.mSpeed, mPlaybackRate.mPitch);
1541 const float effectivePitch = adjustPitch(mPlaybackRate.mPitch);
1542 mProxy->setSampleRate(effectiveSampleRate);
1543
1544 AudioPlaybackRate playbackRateTemp = mPlaybackRate;
1545 playbackRateTemp.mSpeed = effectiveSpeed;
1546 playbackRateTemp.mPitch = effectivePitch;
1547 mProxy->setPlaybackRate(playbackRateTemp);
1548 mProxy->setMinimum(mNotificationFramesAct);
1549
1550 mDeathNotifier = new DeathNotifier(this);
1551 IInterface::asBinder(mAudioTrack)->linkToDeath(mDeathNotifier, this);
1552
1553 if (mDeviceCallback != 0) {
1554 AudioSystem::addAudioDeviceCallback(mDeviceCallback, mOutput);
1555 }
1556
1557 return NO_ERROR;
1558 }
1559
1560 release:
1561 AudioSystem::releaseOutput(output, streamType, mSessionId);
1562 if (status == NO_ERROR) {
1563 status = NO_INIT;
1564 }
1565 return status;
1566 }
1567
obtainBuffer(Buffer * audioBuffer,int32_t waitCount,size_t * nonContig)1568 status_t AudioTrack::obtainBuffer(Buffer* audioBuffer, int32_t waitCount, size_t *nonContig)
1569 {
1570 if (audioBuffer == NULL) {
1571 if (nonContig != NULL) {
1572 *nonContig = 0;
1573 }
1574 return BAD_VALUE;
1575 }
1576 if (mTransfer != TRANSFER_OBTAIN) {
1577 audioBuffer->frameCount = 0;
1578 audioBuffer->size = 0;
1579 audioBuffer->raw = NULL;
1580 if (nonContig != NULL) {
1581 *nonContig = 0;
1582 }
1583 return INVALID_OPERATION;
1584 }
1585
1586 const struct timespec *requested;
1587 struct timespec timeout;
1588 if (waitCount == -1) {
1589 requested = &ClientProxy::kForever;
1590 } else if (waitCount == 0) {
1591 requested = &ClientProxy::kNonBlocking;
1592 } else if (waitCount > 0) {
1593 long long ms = WAIT_PERIOD_MS * (long long) waitCount;
1594 timeout.tv_sec = ms / 1000;
1595 timeout.tv_nsec = (int) (ms % 1000) * 1000000;
1596 requested = &timeout;
1597 } else {
1598 ALOGE("%s invalid waitCount %d", __func__, waitCount);
1599 requested = NULL;
1600 }
1601 return obtainBuffer(audioBuffer, requested, NULL /*elapsed*/, nonContig);
1602 }
1603
obtainBuffer(Buffer * audioBuffer,const struct timespec * requested,struct timespec * elapsed,size_t * nonContig)1604 status_t AudioTrack::obtainBuffer(Buffer* audioBuffer, const struct timespec *requested,
1605 struct timespec *elapsed, size_t *nonContig)
1606 {
1607 // previous and new IAudioTrack sequence numbers are used to detect track re-creation
1608 uint32_t oldSequence = 0;
1609 uint32_t newSequence;
1610
1611 Proxy::Buffer buffer;
1612 status_t status = NO_ERROR;
1613
1614 static const int32_t kMaxTries = 5;
1615 int32_t tryCounter = kMaxTries;
1616
1617 do {
1618 // obtainBuffer() is called with mutex unlocked, so keep extra references to these fields to
1619 // keep them from going away if another thread re-creates the track during obtainBuffer()
1620 sp<AudioTrackClientProxy> proxy;
1621 sp<IMemory> iMem;
1622
1623 { // start of lock scope
1624 AutoMutex lock(mLock);
1625
1626 newSequence = mSequence;
1627 // did previous obtainBuffer() fail due to media server death or voluntary invalidation?
1628 if (status == DEAD_OBJECT) {
1629 // re-create track, unless someone else has already done so
1630 if (newSequence == oldSequence) {
1631 status = restoreTrack_l("obtainBuffer");
1632 if (status != NO_ERROR) {
1633 buffer.mFrameCount = 0;
1634 buffer.mRaw = NULL;
1635 buffer.mNonContig = 0;
1636 break;
1637 }
1638 }
1639 }
1640 oldSequence = newSequence;
1641
1642 if (status == NOT_ENOUGH_DATA) {
1643 restartIfDisabled();
1644 }
1645
1646 // Keep the extra references
1647 proxy = mProxy;
1648 iMem = mCblkMemory;
1649
1650 if (mState == STATE_STOPPING) {
1651 status = -EINTR;
1652 buffer.mFrameCount = 0;
1653 buffer.mRaw = NULL;
1654 buffer.mNonContig = 0;
1655 break;
1656 }
1657
1658 // Non-blocking if track is stopped or paused
1659 if (mState != STATE_ACTIVE) {
1660 requested = &ClientProxy::kNonBlocking;
1661 }
1662
1663 } // end of lock scope
1664
1665 buffer.mFrameCount = audioBuffer->frameCount;
1666 // FIXME starts the requested timeout and elapsed over from scratch
1667 status = proxy->obtainBuffer(&buffer, requested, elapsed);
1668 } while (((status == DEAD_OBJECT) || (status == NOT_ENOUGH_DATA)) && (tryCounter-- > 0));
1669
1670 audioBuffer->frameCount = buffer.mFrameCount;
1671 audioBuffer->size = buffer.mFrameCount * mFrameSize;
1672 audioBuffer->raw = buffer.mRaw;
1673 if (nonContig != NULL) {
1674 *nonContig = buffer.mNonContig;
1675 }
1676 return status;
1677 }
1678
releaseBuffer(const Buffer * audioBuffer)1679 void AudioTrack::releaseBuffer(const Buffer* audioBuffer)
1680 {
1681 // FIXME add error checking on mode, by adding an internal version
1682 if (mTransfer == TRANSFER_SHARED) {
1683 return;
1684 }
1685
1686 size_t stepCount = audioBuffer->size / mFrameSize;
1687 if (stepCount == 0) {
1688 return;
1689 }
1690
1691 Proxy::Buffer buffer;
1692 buffer.mFrameCount = stepCount;
1693 buffer.mRaw = audioBuffer->raw;
1694
1695 AutoMutex lock(mLock);
1696 mReleased += stepCount;
1697 mInUnderrun = false;
1698 mProxy->releaseBuffer(&buffer);
1699
1700 // restart track if it was disabled by audioflinger due to previous underrun
1701 restartIfDisabled();
1702 }
1703
restartIfDisabled()1704 void AudioTrack::restartIfDisabled()
1705 {
1706 int32_t flags = android_atomic_and(~CBLK_DISABLED, &mCblk->mFlags);
1707 if ((mState == STATE_ACTIVE) && (flags & CBLK_DISABLED)) {
1708 ALOGW("releaseBuffer() track %p disabled due to previous underrun, restarting", this);
1709 // FIXME ignoring status
1710 mAudioTrack->start();
1711 }
1712 }
1713
1714 // -------------------------------------------------------------------------
1715
write(const void * buffer,size_t userSize,bool blocking)1716 ssize_t AudioTrack::write(const void* buffer, size_t userSize, bool blocking)
1717 {
1718 if (mTransfer != TRANSFER_SYNC) {
1719 return INVALID_OPERATION;
1720 }
1721
1722 if (isDirect()) {
1723 AutoMutex lock(mLock);
1724 int32_t flags = android_atomic_and(
1725 ~(CBLK_UNDERRUN | CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END),
1726 &mCblk->mFlags);
1727 if (flags & CBLK_INVALID) {
1728 return DEAD_OBJECT;
1729 }
1730 }
1731
1732 if (ssize_t(userSize) < 0 || (buffer == NULL && userSize != 0)) {
1733 // Sanity-check: user is most-likely passing an error code, and it would
1734 // make the return value ambiguous (actualSize vs error).
1735 ALOGE("AudioTrack::write(buffer=%p, size=%zu (%zd)", buffer, userSize, userSize);
1736 return BAD_VALUE;
1737 }
1738
1739 size_t written = 0;
1740 Buffer audioBuffer;
1741
1742 while (userSize >= mFrameSize) {
1743 audioBuffer.frameCount = userSize / mFrameSize;
1744
1745 status_t err = obtainBuffer(&audioBuffer,
1746 blocking ? &ClientProxy::kForever : &ClientProxy::kNonBlocking);
1747 if (err < 0) {
1748 if (written > 0) {
1749 break;
1750 }
1751 return ssize_t(err);
1752 }
1753
1754 size_t toWrite = audioBuffer.size;
1755 memcpy(audioBuffer.i8, buffer, toWrite);
1756 buffer = ((const char *) buffer) + toWrite;
1757 userSize -= toWrite;
1758 written += toWrite;
1759
1760 releaseBuffer(&audioBuffer);
1761 }
1762
1763 if (written > 0) {
1764 mFramesWritten += written / mFrameSize;
1765 }
1766 return written;
1767 }
1768
1769 // -------------------------------------------------------------------------
1770
processAudioBuffer()1771 nsecs_t AudioTrack::processAudioBuffer()
1772 {
1773 // Currently the AudioTrack thread is not created if there are no callbacks.
1774 // Would it ever make sense to run the thread, even without callbacks?
1775 // If so, then replace this by checks at each use for mCbf != NULL.
1776 LOG_ALWAYS_FATAL_IF(mCblk == NULL);
1777
1778 mLock.lock();
1779 if (mAwaitBoost) {
1780 mAwaitBoost = false;
1781 mLock.unlock();
1782 static const int32_t kMaxTries = 5;
1783 int32_t tryCounter = kMaxTries;
1784 uint32_t pollUs = 10000;
1785 do {
1786 int policy = sched_getscheduler(0);
1787 if (policy == SCHED_FIFO || policy == SCHED_RR) {
1788 break;
1789 }
1790 usleep(pollUs);
1791 pollUs <<= 1;
1792 } while (tryCounter-- > 0);
1793 if (tryCounter < 0) {
1794 ALOGE("did not receive expected priority boost on time");
1795 }
1796 // Run again immediately
1797 return 0;
1798 }
1799
1800 // Can only reference mCblk while locked
1801 int32_t flags = android_atomic_and(
1802 ~(CBLK_UNDERRUN | CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END), &mCblk->mFlags);
1803
1804 // Check for track invalidation
1805 if (flags & CBLK_INVALID) {
1806 // for offloaded tracks restoreTrack_l() will just update the sequence and clear
1807 // AudioSystem cache. We should not exit here but after calling the callback so
1808 // that the upper layers can recreate the track
1809 if (!isOffloadedOrDirect_l() || (mSequence == mObservedSequence)) {
1810 status_t status __unused = restoreTrack_l("processAudioBuffer");
1811 // FIXME unused status
1812 // after restoration, continue below to make sure that the loop and buffer events
1813 // are notified because they have been cleared from mCblk->mFlags above.
1814 }
1815 }
1816
1817 bool waitStreamEnd = mState == STATE_STOPPING;
1818 bool active = mState == STATE_ACTIVE;
1819
1820 // Manage underrun callback, must be done under lock to avoid race with releaseBuffer()
1821 bool newUnderrun = false;
1822 if (flags & CBLK_UNDERRUN) {
1823 #if 0
1824 // Currently in shared buffer mode, when the server reaches the end of buffer,
1825 // the track stays active in continuous underrun state. It's up to the application
1826 // to pause or stop the track, or set the position to a new offset within buffer.
1827 // This was some experimental code to auto-pause on underrun. Keeping it here
1828 // in "if 0" so we can re-visit this if we add a real sequencer for shared memory content.
1829 if (mTransfer == TRANSFER_SHARED) {
1830 mState = STATE_PAUSED;
1831 active = false;
1832 }
1833 #endif
1834 if (!mInUnderrun) {
1835 mInUnderrun = true;
1836 newUnderrun = true;
1837 }
1838 }
1839
1840 // Get current position of server
1841 Modulo<uint32_t> position(updateAndGetPosition_l());
1842
1843 // Manage marker callback
1844 bool markerReached = false;
1845 Modulo<uint32_t> markerPosition(mMarkerPosition);
1846 // uses 32 bit wraparound for comparison with position.
1847 if (!mMarkerReached && markerPosition.value() > 0 && position >= markerPosition) {
1848 mMarkerReached = markerReached = true;
1849 }
1850
1851 // Determine number of new position callback(s) that will be needed, while locked
1852 size_t newPosCount = 0;
1853 Modulo<uint32_t> newPosition(mNewPosition);
1854 uint32_t updatePeriod = mUpdatePeriod;
1855 // FIXME fails for wraparound, need 64 bits
1856 if (updatePeriod > 0 && position >= newPosition) {
1857 newPosCount = ((position - newPosition).value() / updatePeriod) + 1;
1858 mNewPosition += updatePeriod * newPosCount;
1859 }
1860
1861 // Cache other fields that will be needed soon
1862 uint32_t sampleRate = mSampleRate;
1863 float speed = mPlaybackRate.mSpeed;
1864 const uint32_t notificationFrames = mNotificationFramesAct;
1865 if (mRefreshRemaining) {
1866 mRefreshRemaining = false;
1867 mRemainingFrames = notificationFrames;
1868 mRetryOnPartialBuffer = false;
1869 }
1870 size_t misalignment = mProxy->getMisalignment();
1871 uint32_t sequence = mSequence;
1872 sp<AudioTrackClientProxy> proxy = mProxy;
1873
1874 // Determine the number of new loop callback(s) that will be needed, while locked.
1875 int loopCountNotifications = 0;
1876 uint32_t loopPeriod = 0; // time in frames for next EVENT_LOOP_END or EVENT_BUFFER_END
1877
1878 if (mLoopCount > 0) {
1879 int loopCount;
1880 size_t bufferPosition;
1881 mStaticProxy->getBufferPositionAndLoopCount(&bufferPosition, &loopCount);
1882 loopPeriod = ((loopCount > 0) ? mLoopEnd : mFrameCount) - bufferPosition;
1883 loopCountNotifications = min(mLoopCountNotified - loopCount, kMaxLoopCountNotifications);
1884 mLoopCountNotified = loopCount; // discard any excess notifications
1885 } else if (mLoopCount < 0) {
1886 // FIXME: We're not accurate with notification count and position with infinite looping
1887 // since loopCount from server side will always return -1 (we could decrement it).
1888 size_t bufferPosition = mStaticProxy->getBufferPosition();
1889 loopCountNotifications = int((flags & (CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL)) != 0);
1890 loopPeriod = mLoopEnd - bufferPosition;
1891 } else if (/* mLoopCount == 0 && */ mSharedBuffer != 0) {
1892 size_t bufferPosition = mStaticProxy->getBufferPosition();
1893 loopPeriod = mFrameCount - bufferPosition;
1894 }
1895
1896 // These fields don't need to be cached, because they are assigned only by set():
1897 // mTransfer, mCbf, mUserData, mFormat, mFrameSize, mFlags
1898 // mFlags is also assigned by createTrack_l(), but not the bit we care about.
1899
1900 mLock.unlock();
1901
1902 // get anchor time to account for callbacks.
1903 const nsecs_t timeBeforeCallbacks = systemTime();
1904
1905 if (waitStreamEnd) {
1906 // FIXME: Instead of blocking in proxy->waitStreamEndDone(), Callback thread
1907 // should wait on proxy futex and handle CBLK_STREAM_END_DONE within this function
1908 // (and make sure we don't callback for more data while we're stopping).
1909 // This helps with position, marker notifications, and track invalidation.
1910 struct timespec timeout;
1911 timeout.tv_sec = WAIT_STREAM_END_TIMEOUT_SEC;
1912 timeout.tv_nsec = 0;
1913
1914 status_t status = proxy->waitStreamEndDone(&timeout);
1915 switch (status) {
1916 case NO_ERROR:
1917 case DEAD_OBJECT:
1918 case TIMED_OUT:
1919 if (status != DEAD_OBJECT) {
1920 // for DEAD_OBJECT, we do not send a EVENT_STREAM_END after stop();
1921 // instead, the application should handle the EVENT_NEW_IAUDIOTRACK.
1922 mCbf(EVENT_STREAM_END, mUserData, NULL);
1923 }
1924 {
1925 AutoMutex lock(mLock);
1926 // The previously assigned value of waitStreamEnd is no longer valid,
1927 // since the mutex has been unlocked and either the callback handler
1928 // or another thread could have re-started the AudioTrack during that time.
1929 waitStreamEnd = mState == STATE_STOPPING;
1930 if (waitStreamEnd) {
1931 mState = STATE_STOPPED;
1932 mReleased = 0;
1933 }
1934 }
1935 if (waitStreamEnd && status != DEAD_OBJECT) {
1936 return NS_INACTIVE;
1937 }
1938 break;
1939 }
1940 return 0;
1941 }
1942
1943 // perform callbacks while unlocked
1944 if (newUnderrun) {
1945 mCbf(EVENT_UNDERRUN, mUserData, NULL);
1946 }
1947 while (loopCountNotifications > 0) {
1948 mCbf(EVENT_LOOP_END, mUserData, NULL);
1949 --loopCountNotifications;
1950 }
1951 if (flags & CBLK_BUFFER_END) {
1952 mCbf(EVENT_BUFFER_END, mUserData, NULL);
1953 }
1954 if (markerReached) {
1955 mCbf(EVENT_MARKER, mUserData, &markerPosition);
1956 }
1957 while (newPosCount > 0) {
1958 size_t temp = newPosition.value(); // FIXME size_t != uint32_t
1959 mCbf(EVENT_NEW_POS, mUserData, &temp);
1960 newPosition += updatePeriod;
1961 newPosCount--;
1962 }
1963
1964 if (mObservedSequence != sequence) {
1965 mObservedSequence = sequence;
1966 mCbf(EVENT_NEW_IAUDIOTRACK, mUserData, NULL);
1967 // for offloaded tracks, just wait for the upper layers to recreate the track
1968 if (isOffloadedOrDirect()) {
1969 return NS_INACTIVE;
1970 }
1971 }
1972
1973 // if inactive, then don't run me again until re-started
1974 if (!active) {
1975 return NS_INACTIVE;
1976 }
1977
1978 // Compute the estimated time until the next timed event (position, markers, loops)
1979 // FIXME only for non-compressed audio
1980 uint32_t minFrames = ~0;
1981 if (!markerReached && position < markerPosition) {
1982 minFrames = (markerPosition - position).value();
1983 }
1984 if (loopPeriod > 0 && loopPeriod < minFrames) {
1985 // loopPeriod is already adjusted for actual position.
1986 minFrames = loopPeriod;
1987 }
1988 if (updatePeriod > 0) {
1989 minFrames = min(minFrames, (newPosition - position).value());
1990 }
1991
1992 // If > 0, poll periodically to recover from a stuck server. A good value is 2.
1993 static const uint32_t kPoll = 0;
1994 if (kPoll > 0 && mTransfer == TRANSFER_CALLBACK && kPoll * notificationFrames < minFrames) {
1995 minFrames = kPoll * notificationFrames;
1996 }
1997
1998 // This "fudge factor" avoids soaking CPU, and compensates for late progress by server
1999 static const nsecs_t kWaitPeriodNs = WAIT_PERIOD_MS * 1000000LL;
2000 const nsecs_t timeAfterCallbacks = systemTime();
2001
2002 // Convert frame units to time units
2003 nsecs_t ns = NS_WHENEVER;
2004 if (minFrames != (uint32_t) ~0) {
2005 ns = framesToNanoseconds(minFrames, sampleRate, speed) + kWaitPeriodNs;
2006 ns -= (timeAfterCallbacks - timeBeforeCallbacks); // account for callback time
2007 // TODO: Should we warn if the callback time is too long?
2008 if (ns < 0) ns = 0;
2009 }
2010
2011 // If not supplying data by EVENT_MORE_DATA, then we're done
2012 if (mTransfer != TRANSFER_CALLBACK) {
2013 return ns;
2014 }
2015
2016 // EVENT_MORE_DATA callback handling.
2017 // Timing for linear pcm audio data formats can be derived directly from the
2018 // buffer fill level.
2019 // Timing for compressed data is not directly available from the buffer fill level,
2020 // rather indirectly from waiting for blocking mode callbacks or waiting for obtain()
2021 // to return a certain fill level.
2022
2023 struct timespec timeout;
2024 const struct timespec *requested = &ClientProxy::kForever;
2025 if (ns != NS_WHENEVER) {
2026 timeout.tv_sec = ns / 1000000000LL;
2027 timeout.tv_nsec = ns % 1000000000LL;
2028 ALOGV("timeout %ld.%03d", timeout.tv_sec, (int) timeout.tv_nsec / 1000000);
2029 requested = &timeout;
2030 }
2031
2032 size_t writtenFrames = 0;
2033 while (mRemainingFrames > 0) {
2034
2035 Buffer audioBuffer;
2036 audioBuffer.frameCount = mRemainingFrames;
2037 size_t nonContig;
2038 status_t err = obtainBuffer(&audioBuffer, requested, NULL, &nonContig);
2039 LOG_ALWAYS_FATAL_IF((err != NO_ERROR) != (audioBuffer.frameCount == 0),
2040 "obtainBuffer() err=%d frameCount=%zu", err, audioBuffer.frameCount);
2041 requested = &ClientProxy::kNonBlocking;
2042 size_t avail = audioBuffer.frameCount + nonContig;
2043 ALOGV("obtainBuffer(%u) returned %zu = %zu + %zu err %d",
2044 mRemainingFrames, avail, audioBuffer.frameCount, nonContig, err);
2045 if (err != NO_ERROR) {
2046 if (err == TIMED_OUT || err == WOULD_BLOCK || err == -EINTR ||
2047 (isOffloaded() && (err == DEAD_OBJECT))) {
2048 // FIXME bug 25195759
2049 return 1000000;
2050 }
2051 ALOGE("Error %d obtaining an audio buffer, giving up.", err);
2052 return NS_NEVER;
2053 }
2054
2055 if (mRetryOnPartialBuffer && audio_has_proportional_frames(mFormat)) {
2056 mRetryOnPartialBuffer = false;
2057 if (avail < mRemainingFrames) {
2058 if (ns > 0) { // account for obtain time
2059 const nsecs_t timeNow = systemTime();
2060 ns = max((nsecs_t)0, ns - (timeNow - timeAfterCallbacks));
2061 }
2062 nsecs_t myns = framesToNanoseconds(mRemainingFrames - avail, sampleRate, speed);
2063 if (ns < 0 /* NS_WHENEVER */ || myns < ns) {
2064 ns = myns;
2065 }
2066 return ns;
2067 }
2068 }
2069
2070 size_t reqSize = audioBuffer.size;
2071 mCbf(EVENT_MORE_DATA, mUserData, &audioBuffer);
2072 size_t writtenSize = audioBuffer.size;
2073
2074 // Sanity check on returned size
2075 if (ssize_t(writtenSize) < 0 || writtenSize > reqSize) {
2076 ALOGE("EVENT_MORE_DATA requested %zu bytes but callback returned %zd bytes",
2077 reqSize, ssize_t(writtenSize));
2078 return NS_NEVER;
2079 }
2080
2081 if (writtenSize == 0) {
2082 // The callback is done filling buffers
2083 // Keep this thread going to handle timed events and
2084 // still try to get more data in intervals of WAIT_PERIOD_MS
2085 // but don't just loop and block the CPU, so wait
2086
2087 // mCbf(EVENT_MORE_DATA, ...) might either
2088 // (1) Block until it can fill the buffer, returning 0 size on EOS.
2089 // (2) Block until it can fill the buffer, returning 0 data (silence) on EOS.
2090 // (3) Return 0 size when no data is available, does not wait for more data.
2091 //
2092 // (1) and (2) occurs with AudioPlayer/AwesomePlayer; (3) occurs with NuPlayer.
2093 // We try to compute the wait time to avoid a tight sleep-wait cycle,
2094 // especially for case (3).
2095 //
2096 // The decision to support (1) and (2) affect the sizing of mRemainingFrames
2097 // and this loop; whereas for case (3) we could simply check once with the full
2098 // buffer size and skip the loop entirely.
2099
2100 nsecs_t myns;
2101 if (audio_has_proportional_frames(mFormat)) {
2102 // time to wait based on buffer occupancy
2103 const nsecs_t datans = mRemainingFrames <= avail ? 0 :
2104 framesToNanoseconds(mRemainingFrames - avail, sampleRate, speed);
2105 // audio flinger thread buffer size (TODO: adjust for fast tracks)
2106 // FIXME: use mAfFrameCountHAL instead of mAfFrameCount below for fast tracks.
2107 const nsecs_t afns = framesToNanoseconds(mAfFrameCount, mAfSampleRate, speed);
2108 // add a half the AudioFlinger buffer time to avoid soaking CPU if datans is 0.
2109 myns = datans + (afns / 2);
2110 } else {
2111 // FIXME: This could ping quite a bit if the buffer isn't full.
2112 // Note that when mState is stopping we waitStreamEnd, so it never gets here.
2113 myns = kWaitPeriodNs;
2114 }
2115 if (ns > 0) { // account for obtain and callback time
2116 const nsecs_t timeNow = systemTime();
2117 ns = max((nsecs_t)0, ns - (timeNow - timeAfterCallbacks));
2118 }
2119 if (ns < 0 /* NS_WHENEVER */ || myns < ns) {
2120 ns = myns;
2121 }
2122 return ns;
2123 }
2124
2125 size_t releasedFrames = writtenSize / mFrameSize;
2126 audioBuffer.frameCount = releasedFrames;
2127 mRemainingFrames -= releasedFrames;
2128 if (misalignment >= releasedFrames) {
2129 misalignment -= releasedFrames;
2130 } else {
2131 misalignment = 0;
2132 }
2133
2134 releaseBuffer(&audioBuffer);
2135 writtenFrames += releasedFrames;
2136
2137 // FIXME here is where we would repeat EVENT_MORE_DATA again on same advanced buffer
2138 // if callback doesn't like to accept the full chunk
2139 if (writtenSize < reqSize) {
2140 continue;
2141 }
2142
2143 // There could be enough non-contiguous frames available to satisfy the remaining request
2144 if (mRemainingFrames <= nonContig) {
2145 continue;
2146 }
2147
2148 #if 0
2149 // This heuristic tries to collapse a series of EVENT_MORE_DATA that would total to a
2150 // sum <= notificationFrames. It replaces that series by at most two EVENT_MORE_DATA
2151 // that total to a sum == notificationFrames.
2152 if (0 < misalignment && misalignment <= mRemainingFrames) {
2153 mRemainingFrames = misalignment;
2154 return ((double)mRemainingFrames * 1100000000) / ((double)sampleRate * speed);
2155 }
2156 #endif
2157
2158 }
2159 if (writtenFrames > 0) {
2160 AutoMutex lock(mLock);
2161 mFramesWritten += writtenFrames;
2162 }
2163 mRemainingFrames = notificationFrames;
2164 mRetryOnPartialBuffer = true;
2165
2166 // A lot has transpired since ns was calculated, so run again immediately and re-calculate
2167 return 0;
2168 }
2169
restoreTrack_l(const char * from)2170 status_t AudioTrack::restoreTrack_l(const char *from)
2171 {
2172 ALOGW("dead IAudioTrack, %s, creating a new one from %s()",
2173 isOffloadedOrDirect_l() ? "Offloaded or Direct" : "PCM", from);
2174 ++mSequence;
2175
2176 // refresh the audio configuration cache in this process to make sure we get new
2177 // output parameters and new IAudioFlinger in createTrack_l()
2178 AudioSystem::clearAudioConfigCache();
2179
2180 if (isOffloadedOrDirect_l() || mDoNotReconnect) {
2181 // FIXME re-creation of offloaded and direct tracks is not yet implemented;
2182 // reconsider enabling for linear PCM encodings when position can be preserved.
2183 return DEAD_OBJECT;
2184 }
2185
2186 // Save so we can return count since creation.
2187 mUnderrunCountOffset = getUnderrunCount_l();
2188
2189 // save the old static buffer position
2190 size_t bufferPosition = 0;
2191 int loopCount = 0;
2192 if (mStaticProxy != 0) {
2193 mStaticProxy->getBufferPositionAndLoopCount(&bufferPosition, &loopCount);
2194 }
2195
2196 mFlags = mOrigFlags;
2197
2198 // If a new IAudioTrack is successfully created, createTrack_l() will modify the
2199 // following member variables: mAudioTrack, mCblkMemory and mCblk.
2200 // It will also delete the strong references on previous IAudioTrack and IMemory.
2201 // If a new IAudioTrack cannot be created, the previous (dead) instance will be left intact.
2202 status_t result = createTrack_l();
2203
2204 if (result == NO_ERROR) {
2205 // take the frames that will be lost by track recreation into account in saved position
2206 // For streaming tracks, this is the amount we obtained from the user/client
2207 // (not the number actually consumed at the server - those are already lost).
2208 if (mStaticProxy == 0) {
2209 mPosition = mReleased;
2210 }
2211 // Continue playback from last known position and restore loop.
2212 if (mStaticProxy != 0) {
2213 if (loopCount != 0) {
2214 mStaticProxy->setBufferPositionAndLoop(bufferPosition,
2215 mLoopStart, mLoopEnd, loopCount);
2216 } else {
2217 mStaticProxy->setBufferPosition(bufferPosition);
2218 if (bufferPosition == mFrameCount) {
2219 ALOGD("restoring track at end of static buffer");
2220 }
2221 }
2222 }
2223 if (mState == STATE_ACTIVE) {
2224 result = mAudioTrack->start();
2225 mFramesWrittenServerOffset = mFramesWritten; // server resets to zero so we offset
2226 }
2227 }
2228 if (result != NO_ERROR) {
2229 ALOGW("restoreTrack_l() failed status %d", result);
2230 mState = STATE_STOPPED;
2231 mReleased = 0;
2232 }
2233
2234 return result;
2235 }
2236
updateAndGetPosition_l()2237 Modulo<uint32_t> AudioTrack::updateAndGetPosition_l()
2238 {
2239 // This is the sole place to read server consumed frames
2240 Modulo<uint32_t> newServer(mProxy->getPosition());
2241 const int32_t delta = (newServer - mServer).signedValue();
2242 // TODO There is controversy about whether there can be "negative jitter" in server position.
2243 // This should be investigated further, and if possible, it should be addressed.
2244 // A more definite failure mode is infrequent polling by client.
2245 // One could call (void)getPosition_l() in releaseBuffer(),
2246 // so mReleased and mPosition are always lock-step as best possible.
2247 // That should ensure delta never goes negative for infrequent polling
2248 // unless the server has more than 2^31 frames in its buffer,
2249 // in which case the use of uint32_t for these counters has bigger issues.
2250 ALOGE_IF(delta < 0,
2251 "detected illegal retrograde motion by the server: mServer advanced by %d",
2252 delta);
2253 mServer = newServer;
2254 if (delta > 0) { // avoid retrograde
2255 mPosition += delta;
2256 }
2257 return mPosition;
2258 }
2259
isSampleRateSpeedAllowed_l(uint32_t sampleRate,float speed) const2260 bool AudioTrack::isSampleRateSpeedAllowed_l(uint32_t sampleRate, float speed) const
2261 {
2262 // applicable for mixing tracks only (not offloaded or direct)
2263 if (mStaticProxy != 0) {
2264 return true; // static tracks do not have issues with buffer sizing.
2265 }
2266 const size_t minFrameCount =
2267 calculateMinFrameCount(mAfLatency, mAfFrameCount, mAfSampleRate, sampleRate, speed
2268 /*, 0 mNotificationsPerBufferReq*/);
2269 ALOGV("isSampleRateSpeedAllowed_l mFrameCount %zu minFrameCount %zu",
2270 mFrameCount, minFrameCount);
2271 return mFrameCount >= minFrameCount;
2272 }
2273
setParameters(const String8 & keyValuePairs)2274 status_t AudioTrack::setParameters(const String8& keyValuePairs)
2275 {
2276 AutoMutex lock(mLock);
2277 return mAudioTrack->setParameters(keyValuePairs);
2278 }
2279
getTimestamp(ExtendedTimestamp * timestamp)2280 status_t AudioTrack::getTimestamp(ExtendedTimestamp *timestamp)
2281 {
2282 if (timestamp == nullptr) {
2283 return BAD_VALUE;
2284 }
2285 AutoMutex lock(mLock);
2286 return getTimestamp_l(timestamp);
2287 }
2288
getTimestamp_l(ExtendedTimestamp * timestamp)2289 status_t AudioTrack::getTimestamp_l(ExtendedTimestamp *timestamp)
2290 {
2291 if (mCblk->mFlags & CBLK_INVALID) {
2292 const status_t status = restoreTrack_l("getTimestampExtended");
2293 if (status != OK) {
2294 // per getTimestamp() API doc in header, we return DEAD_OBJECT here,
2295 // recommending that the track be recreated.
2296 return DEAD_OBJECT;
2297 }
2298 }
2299 // check for offloaded/direct here in case restoring somehow changed those flags.
2300 if (isOffloadedOrDirect_l()) {
2301 return INVALID_OPERATION; // not supported
2302 }
2303 status_t status = mProxy->getTimestamp(timestamp);
2304 LOG_ALWAYS_FATAL_IF(status != OK, "status %d not allowed from proxy getTimestamp", status);
2305 bool found = false;
2306 timestamp->mPosition[ExtendedTimestamp::LOCATION_CLIENT] = mFramesWritten;
2307 timestamp->mTimeNs[ExtendedTimestamp::LOCATION_CLIENT] = 0;
2308 // server side frame offset in case AudioTrack has been restored.
2309 for (int i = ExtendedTimestamp::LOCATION_SERVER;
2310 i < ExtendedTimestamp::LOCATION_MAX; ++i) {
2311 if (timestamp->mTimeNs[i] >= 0) {
2312 // apply server offset (frames flushed is ignored
2313 // so we don't report the jump when the flush occurs).
2314 timestamp->mPosition[i] += mFramesWrittenServerOffset;
2315 found = true;
2316 }
2317 }
2318 return found ? OK : WOULD_BLOCK;
2319 }
2320
getTimestamp(AudioTimestamp & timestamp)2321 status_t AudioTrack::getTimestamp(AudioTimestamp& timestamp)
2322 {
2323 AutoMutex lock(mLock);
2324
2325 bool previousTimestampValid = mPreviousTimestampValid;
2326 // Set false here to cover all the error return cases.
2327 mPreviousTimestampValid = false;
2328
2329 switch (mState) {
2330 case STATE_ACTIVE:
2331 case STATE_PAUSED:
2332 break; // handle below
2333 case STATE_FLUSHED:
2334 case STATE_STOPPED:
2335 return WOULD_BLOCK;
2336 case STATE_STOPPING:
2337 case STATE_PAUSED_STOPPING:
2338 if (!isOffloaded_l()) {
2339 return INVALID_OPERATION;
2340 }
2341 break; // offloaded tracks handled below
2342 default:
2343 LOG_ALWAYS_FATAL("Invalid mState in getTimestamp(): %d", mState);
2344 break;
2345 }
2346
2347 if (mCblk->mFlags & CBLK_INVALID) {
2348 const status_t status = restoreTrack_l("getTimestamp");
2349 if (status != OK) {
2350 // per getTimestamp() API doc in header, we return DEAD_OBJECT here,
2351 // recommending that the track be recreated.
2352 return DEAD_OBJECT;
2353 }
2354 }
2355
2356 // The presented frame count must always lag behind the consumed frame count.
2357 // To avoid a race, read the presented frames first. This ensures that presented <= consumed.
2358
2359 status_t status;
2360 if (isOffloadedOrDirect_l()) {
2361 // use Binder to get timestamp
2362 status = mAudioTrack->getTimestamp(timestamp);
2363 } else {
2364 // read timestamp from shared memory
2365 ExtendedTimestamp ets;
2366 status = mProxy->getTimestamp(&ets);
2367 if (status == OK) {
2368 ExtendedTimestamp::Location location;
2369 status = ets.getBestTimestamp(×tamp, &location);
2370
2371 if (status == OK) {
2372 // It is possible that the best location has moved from the kernel to the server.
2373 // In this case we adjust the position from the previous computed latency.
2374 if (location == ExtendedTimestamp::LOCATION_SERVER) {
2375 ALOGW_IF(mPreviousLocation == ExtendedTimestamp::LOCATION_KERNEL,
2376 "getTimestamp() location moved from kernel to server");
2377 // check that the last kernel OK time info exists and the positions
2378 // are valid (if they predate the current track, the positions may
2379 // be zero or negative).
2380 const int64_t frames =
2381 (ets.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] < 0 ||
2382 ets.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] < 0 ||
2383 ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] <= 0 ||
2384 ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] <= 0)
2385 ?
2386 int64_t((double)mAfLatency * mSampleRate * mPlaybackRate.mSpeed
2387 / 1000)
2388 :
2389 (ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK]
2390 - ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK]);
2391 ALOGV("frame adjustment:%lld timestamp:%s",
2392 (long long)frames, ets.toString().c_str());
2393 if (frames >= ets.mPosition[location]) {
2394 timestamp.mPosition = 0;
2395 } else {
2396 timestamp.mPosition = (uint32_t)(ets.mPosition[location] - frames);
2397 }
2398 } else if (location == ExtendedTimestamp::LOCATION_KERNEL) {
2399 ALOGV_IF(mPreviousLocation == ExtendedTimestamp::LOCATION_SERVER,
2400 "getTimestamp() location moved from server to kernel");
2401 }
2402 mPreviousLocation = location;
2403 } else {
2404 // right after AudioTrack is started, one may not find a timestamp
2405 ALOGV("getBestTimestamp did not find timestamp");
2406 }
2407 }
2408 if (status == INVALID_OPERATION) {
2409 status = WOULD_BLOCK;
2410 }
2411 }
2412 if (status != NO_ERROR) {
2413 ALOGV_IF(status != WOULD_BLOCK, "getTimestamp error:%#x", status);
2414 return status;
2415 }
2416 if (isOffloadedOrDirect_l()) {
2417 if (isOffloaded_l() && (mState == STATE_PAUSED || mState == STATE_PAUSED_STOPPING)) {
2418 // use cached paused position in case another offloaded track is running.
2419 timestamp.mPosition = mPausedPosition;
2420 clock_gettime(CLOCK_MONOTONIC, ×tamp.mTime);
2421 return NO_ERROR;
2422 }
2423
2424 // Check whether a pending flush or stop has completed, as those commands may
2425 // be asynchronous or return near finish or exhibit glitchy behavior.
2426 //
2427 // Originally this showed up as the first timestamp being a continuation of
2428 // the previous song under gapless playback.
2429 // However, we sometimes see zero timestamps, then a glitch of
2430 // the previous song's position, and then correct timestamps afterwards.
2431 if (mStartUs != 0 && mSampleRate != 0) {
2432 static const int kTimeJitterUs = 100000; // 100 ms
2433 static const int k1SecUs = 1000000;
2434
2435 const int64_t timeNow = getNowUs();
2436
2437 if (timeNow < mStartUs + k1SecUs) { // within first second of starting
2438 const int64_t timestampTimeUs = convertTimespecToUs(timestamp.mTime);
2439 if (timestampTimeUs < mStartUs) {
2440 return WOULD_BLOCK; // stale timestamp time, occurs before start.
2441 }
2442 const int64_t deltaTimeUs = timestampTimeUs - mStartUs;
2443 const int64_t deltaPositionByUs = (double)timestamp.mPosition * 1000000
2444 / ((double)mSampleRate * mPlaybackRate.mSpeed);
2445
2446 if (deltaPositionByUs > deltaTimeUs + kTimeJitterUs) {
2447 // Verify that the counter can't count faster than the sample rate
2448 // since the start time. If greater, then that means we may have failed
2449 // to completely flush or stop the previous playing track.
2450 ALOGW_IF(!mTimestampStartupGlitchReported,
2451 "getTimestamp startup glitch detected"
2452 " deltaTimeUs(%lld) deltaPositionUs(%lld) tsmPosition(%u)",
2453 (long long)deltaTimeUs, (long long)deltaPositionByUs,
2454 timestamp.mPosition);
2455 mTimestampStartupGlitchReported = true;
2456 if (previousTimestampValid
2457 && mPreviousTimestamp.mPosition == 0 /* should be true if valid */) {
2458 timestamp = mPreviousTimestamp;
2459 mPreviousTimestampValid = true;
2460 return NO_ERROR;
2461 }
2462 return WOULD_BLOCK;
2463 }
2464 if (deltaPositionByUs != 0) {
2465 mStartUs = 0; // don't check again, we got valid nonzero position.
2466 }
2467 } else {
2468 mStartUs = 0; // don't check again, start time expired.
2469 }
2470 mTimestampStartupGlitchReported = false;
2471 }
2472 } else {
2473 // Update the mapping between local consumed (mPosition) and server consumed (mServer)
2474 (void) updateAndGetPosition_l();
2475 // Server consumed (mServer) and presented both use the same server time base,
2476 // and server consumed is always >= presented.
2477 // The delta between these represents the number of frames in the buffer pipeline.
2478 // If this delta between these is greater than the client position, it means that
2479 // actually presented is still stuck at the starting line (figuratively speaking),
2480 // waiting for the first frame to go by. So we can't report a valid timestamp yet.
2481 // Note: We explicitly use non-Modulo comparison here - potential wrap issue when
2482 // mPosition exceeds 32 bits.
2483 // TODO Remove when timestamp is updated to contain pipeline status info.
2484 const int32_t pipelineDepthInFrames = (mServer - timestamp.mPosition).signedValue();
2485 if (pipelineDepthInFrames > 0 /* should be true, but we check anyways */
2486 && (uint32_t)pipelineDepthInFrames > mPosition.value()) {
2487 return INVALID_OPERATION;
2488 }
2489 // Convert timestamp position from server time base to client time base.
2490 // TODO The following code should work OK now because timestamp.mPosition is 32-bit.
2491 // But if we change it to 64-bit then this could fail.
2492 // Use Modulo computation here.
2493 timestamp.mPosition = (mPosition - mServer + timestamp.mPosition).value();
2494 // Immediately after a call to getPosition_l(), mPosition and
2495 // mServer both represent the same frame position. mPosition is
2496 // in client's point of view, and mServer is in server's point of
2497 // view. So the difference between them is the "fudge factor"
2498 // between client and server views due to stop() and/or new
2499 // IAudioTrack. And timestamp.mPosition is initially in server's
2500 // point of view, so we need to apply the same fudge factor to it.
2501 }
2502
2503 // Prevent retrograde motion in timestamp.
2504 // This is sometimes caused by erratic reports of the available space in the ALSA drivers.
2505 if (status == NO_ERROR) {
2506 if (previousTimestampValid) {
2507 #define TIME_TO_NANOS(time) ((int64_t)time.tv_sec * 1000000000 + time.tv_nsec)
2508 const int64_t previousTimeNanos = TIME_TO_NANOS(mPreviousTimestamp.mTime);
2509 const int64_t currentTimeNanos = TIME_TO_NANOS(timestamp.mTime);
2510 #undef TIME_TO_NANOS
2511 if (currentTimeNanos < previousTimeNanos) {
2512 ALOGW("retrograde timestamp time");
2513 // FIXME Consider blocking this from propagating upwards.
2514 }
2515
2516 // Looking at signed delta will work even when the timestamps
2517 // are wrapping around.
2518 int32_t deltaPosition = (Modulo<uint32_t>(timestamp.mPosition)
2519 - mPreviousTimestamp.mPosition).signedValue();
2520 // position can bobble slightly as an artifact; this hides the bobble
2521 static const int32_t MINIMUM_POSITION_DELTA = 8;
2522 if (deltaPosition < 0) {
2523 // Only report once per position instead of spamming the log.
2524 if (!mRetrogradeMotionReported) {
2525 ALOGW("retrograde timestamp position corrected, %d = %u - %u",
2526 deltaPosition,
2527 timestamp.mPosition,
2528 mPreviousTimestamp.mPosition);
2529 mRetrogradeMotionReported = true;
2530 }
2531 } else {
2532 mRetrogradeMotionReported = false;
2533 }
2534 if (deltaPosition < MINIMUM_POSITION_DELTA) {
2535 timestamp = mPreviousTimestamp; // Use last valid timestamp.
2536 }
2537 }
2538 mPreviousTimestamp = timestamp;
2539 mPreviousTimestampValid = true;
2540 }
2541
2542 return status;
2543 }
2544
getParameters(const String8 & keys)2545 String8 AudioTrack::getParameters(const String8& keys)
2546 {
2547 audio_io_handle_t output = getOutput();
2548 if (output != AUDIO_IO_HANDLE_NONE) {
2549 return AudioSystem::getParameters(output, keys);
2550 } else {
2551 return String8::empty();
2552 }
2553 }
2554
isOffloaded() const2555 bool AudioTrack::isOffloaded() const
2556 {
2557 AutoMutex lock(mLock);
2558 return isOffloaded_l();
2559 }
2560
isDirect() const2561 bool AudioTrack::isDirect() const
2562 {
2563 AutoMutex lock(mLock);
2564 return isDirect_l();
2565 }
2566
isOffloadedOrDirect() const2567 bool AudioTrack::isOffloadedOrDirect() const
2568 {
2569 AutoMutex lock(mLock);
2570 return isOffloadedOrDirect_l();
2571 }
2572
2573
dump(int fd,const Vector<String16> & args __unused) const2574 status_t AudioTrack::dump(int fd, const Vector<String16>& args __unused) const
2575 {
2576
2577 const size_t SIZE = 256;
2578 char buffer[SIZE];
2579 String8 result;
2580
2581 result.append(" AudioTrack::dump\n");
2582 snprintf(buffer, 255, " stream type(%d), left - right volume(%f, %f)\n", mStreamType,
2583 mVolume[AUDIO_INTERLEAVE_LEFT], mVolume[AUDIO_INTERLEAVE_RIGHT]);
2584 result.append(buffer);
2585 snprintf(buffer, 255, " format(%d), channel count(%d), frame count(%zu)\n", mFormat,
2586 mChannelCount, mFrameCount);
2587 result.append(buffer);
2588 snprintf(buffer, 255, " sample rate(%u), speed(%f), status(%d)\n",
2589 mSampleRate, mPlaybackRate.mSpeed, mStatus);
2590 result.append(buffer);
2591 snprintf(buffer, 255, " state(%d), latency (%d)\n", mState, mLatency);
2592 result.append(buffer);
2593 ::write(fd, result.string(), result.size());
2594 return NO_ERROR;
2595 }
2596
getUnderrunCount() const2597 uint32_t AudioTrack::getUnderrunCount() const
2598 {
2599 AutoMutex lock(mLock);
2600 return getUnderrunCount_l();
2601 }
2602
getUnderrunCount_l() const2603 uint32_t AudioTrack::getUnderrunCount_l() const
2604 {
2605 return mProxy->getUnderrunCount() + mUnderrunCountOffset;
2606 }
2607
getUnderrunFrames() const2608 uint32_t AudioTrack::getUnderrunFrames() const
2609 {
2610 AutoMutex lock(mLock);
2611 return mProxy->getUnderrunFrames();
2612 }
2613
addAudioDeviceCallback(const sp<AudioSystem::AudioDeviceCallback> & callback)2614 status_t AudioTrack::addAudioDeviceCallback(const sp<AudioSystem::AudioDeviceCallback>& callback)
2615 {
2616 if (callback == 0) {
2617 ALOGW("%s adding NULL callback!", __FUNCTION__);
2618 return BAD_VALUE;
2619 }
2620 AutoMutex lock(mLock);
2621 if (mDeviceCallback == callback) {
2622 ALOGW("%s adding same callback!", __FUNCTION__);
2623 return INVALID_OPERATION;
2624 }
2625 status_t status = NO_ERROR;
2626 if (mOutput != AUDIO_IO_HANDLE_NONE) {
2627 if (mDeviceCallback != 0) {
2628 ALOGW("%s callback already present!", __FUNCTION__);
2629 AudioSystem::removeAudioDeviceCallback(mDeviceCallback, mOutput);
2630 }
2631 status = AudioSystem::addAudioDeviceCallback(callback, mOutput);
2632 }
2633 mDeviceCallback = callback;
2634 return status;
2635 }
2636
removeAudioDeviceCallback(const sp<AudioSystem::AudioDeviceCallback> & callback)2637 status_t AudioTrack::removeAudioDeviceCallback(
2638 const sp<AudioSystem::AudioDeviceCallback>& callback)
2639 {
2640 if (callback == 0) {
2641 ALOGW("%s removing NULL callback!", __FUNCTION__);
2642 return BAD_VALUE;
2643 }
2644 AutoMutex lock(mLock);
2645 if (mDeviceCallback != callback) {
2646 ALOGW("%s removing different callback!", __FUNCTION__);
2647 return INVALID_OPERATION;
2648 }
2649 if (mOutput != AUDIO_IO_HANDLE_NONE) {
2650 AudioSystem::removeAudioDeviceCallback(mDeviceCallback, mOutput);
2651 }
2652 mDeviceCallback = 0;
2653 return NO_ERROR;
2654 }
2655
pendingDuration(int32_t * msec,ExtendedTimestamp::Location location)2656 status_t AudioTrack::pendingDuration(int32_t *msec, ExtendedTimestamp::Location location)
2657 {
2658 if (msec == nullptr ||
2659 (location != ExtendedTimestamp::LOCATION_SERVER
2660 && location != ExtendedTimestamp::LOCATION_KERNEL)) {
2661 return BAD_VALUE;
2662 }
2663 AutoMutex lock(mLock);
2664 // inclusive of offloaded and direct tracks.
2665 //
2666 // It is possible, but not enabled, to allow duration computation for non-pcm
2667 // audio_has_proportional_frames() formats because currently they have
2668 // the drain rate equivalent to the pcm sample rate * framesize.
2669 if (!isPurePcmData_l()) {
2670 return INVALID_OPERATION;
2671 }
2672 ExtendedTimestamp ets;
2673 if (getTimestamp_l(&ets) == OK
2674 && ets.mTimeNs[location] > 0) {
2675 int64_t diff = ets.mPosition[ExtendedTimestamp::LOCATION_CLIENT]
2676 - ets.mPosition[location];
2677 if (diff < 0) {
2678 *msec = 0;
2679 } else {
2680 // ms is the playback time by frames
2681 int64_t ms = (int64_t)((double)diff * 1000 /
2682 ((double)mSampleRate * mPlaybackRate.mSpeed));
2683 // clockdiff is the timestamp age (negative)
2684 int64_t clockdiff = (mState != STATE_ACTIVE) ? 0 :
2685 ets.mTimeNs[location]
2686 + ets.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_MONOTONIC]
2687 - systemTime(SYSTEM_TIME_MONOTONIC);
2688
2689 //ALOGV("ms: %lld clockdiff: %lld", (long long)ms, (long long)clockdiff);
2690 static const int NANOS_PER_MILLIS = 1000000;
2691 *msec = (int32_t)(ms + clockdiff / NANOS_PER_MILLIS);
2692 }
2693 return NO_ERROR;
2694 }
2695 if (location != ExtendedTimestamp::LOCATION_SERVER) {
2696 return INVALID_OPERATION; // LOCATION_KERNEL is not available
2697 }
2698 // use server position directly (offloaded and direct arrive here)
2699 updateAndGetPosition_l();
2700 int32_t diff = (Modulo<uint32_t>(mFramesWritten) - mPosition).signedValue();
2701 *msec = (diff <= 0) ? 0
2702 : (int32_t)((double)diff * 1000 / ((double)mSampleRate * mPlaybackRate.mSpeed));
2703 return NO_ERROR;
2704 }
2705
2706 // =========================================================================
2707
binderDied(const wp<IBinder> & who __unused)2708 void AudioTrack::DeathNotifier::binderDied(const wp<IBinder>& who __unused)
2709 {
2710 sp<AudioTrack> audioTrack = mAudioTrack.promote();
2711 if (audioTrack != 0) {
2712 AutoMutex lock(audioTrack->mLock);
2713 audioTrack->mProxy->binderDied();
2714 }
2715 }
2716
2717 // =========================================================================
2718
AudioTrackThread(AudioTrack & receiver,bool bCanCallJava)2719 AudioTrack::AudioTrackThread::AudioTrackThread(AudioTrack& receiver, bool bCanCallJava)
2720 : Thread(bCanCallJava), mReceiver(receiver), mPaused(true), mPausedInt(false), mPausedNs(0LL),
2721 mIgnoreNextPausedInt(false)
2722 {
2723 }
2724
~AudioTrackThread()2725 AudioTrack::AudioTrackThread::~AudioTrackThread()
2726 {
2727 }
2728
threadLoop()2729 bool AudioTrack::AudioTrackThread::threadLoop()
2730 {
2731 {
2732 AutoMutex _l(mMyLock);
2733 if (mPaused) {
2734 mMyCond.wait(mMyLock);
2735 // caller will check for exitPending()
2736 return true;
2737 }
2738 if (mIgnoreNextPausedInt) {
2739 mIgnoreNextPausedInt = false;
2740 mPausedInt = false;
2741 }
2742 if (mPausedInt) {
2743 if (mPausedNs > 0) {
2744 (void) mMyCond.waitRelative(mMyLock, mPausedNs);
2745 } else {
2746 mMyCond.wait(mMyLock);
2747 }
2748 mPausedInt = false;
2749 return true;
2750 }
2751 }
2752 if (exitPending()) {
2753 return false;
2754 }
2755 nsecs_t ns = mReceiver.processAudioBuffer();
2756 switch (ns) {
2757 case 0:
2758 return true;
2759 case NS_INACTIVE:
2760 pauseInternal();
2761 return true;
2762 case NS_NEVER:
2763 return false;
2764 case NS_WHENEVER:
2765 // Event driven: call wake() when callback notifications conditions change.
2766 ns = INT64_MAX;
2767 // fall through
2768 default:
2769 LOG_ALWAYS_FATAL_IF(ns < 0, "processAudioBuffer() returned %" PRId64, ns);
2770 pauseInternal(ns);
2771 return true;
2772 }
2773 }
2774
requestExit()2775 void AudioTrack::AudioTrackThread::requestExit()
2776 {
2777 // must be in this order to avoid a race condition
2778 Thread::requestExit();
2779 resume();
2780 }
2781
pause()2782 void AudioTrack::AudioTrackThread::pause()
2783 {
2784 AutoMutex _l(mMyLock);
2785 mPaused = true;
2786 }
2787
resume()2788 void AudioTrack::AudioTrackThread::resume()
2789 {
2790 AutoMutex _l(mMyLock);
2791 mIgnoreNextPausedInt = true;
2792 if (mPaused || mPausedInt) {
2793 mPaused = false;
2794 mPausedInt = false;
2795 mMyCond.signal();
2796 }
2797 }
2798
wake()2799 void AudioTrack::AudioTrackThread::wake()
2800 {
2801 AutoMutex _l(mMyLock);
2802 if (!mPaused) {
2803 // wake() might be called while servicing a callback - ignore the next
2804 // pause time and call processAudioBuffer.
2805 mIgnoreNextPausedInt = true;
2806 if (mPausedInt && mPausedNs > 0) {
2807 // audio track is active and internally paused with timeout.
2808 mPausedInt = false;
2809 mMyCond.signal();
2810 }
2811 }
2812 }
2813
pauseInternal(nsecs_t ns)2814 void AudioTrack::AudioTrackThread::pauseInternal(nsecs_t ns)
2815 {
2816 AutoMutex _l(mMyLock);
2817 mPausedInt = true;
2818 mPausedNs = ns;
2819 }
2820
2821 } // namespace android
2822