1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <stdio.h>
18 
19 #include <utils/Log.h>
20 
21 #include "Fusion.h"
22 
23 namespace android {
24 
25 // -----------------------------------------------------------------------
26 
27 /*==================== BEGIN FUSION SENSOR PARAMETER =========================*/
28 
29 /* Note:
30  *   If a platform uses software fusion, it is necessary to tune the following
31  *   parameters to fit the hardware sensors prior to release.
32  *
33  *   The DEFAULT_ parameters will be used in FUSION_9AXIS and FUSION_NOMAG mode.
34  *   The GEOMAG_ parameters will be used in FUSION_NOGYRO mode.
35  */
36 
37 /*
38  * GYRO_VAR gives the measured variance of the gyro's output per
39  * Hz (or variance at 1 Hz). This is an "intrinsic" parameter of the gyro,
40  * which is independent of the sampling frequency.
41  *
42  * The variance of gyro's output at a given sampling period can be
43  * calculated as:
44  *      variance(T) = GYRO_VAR / T
45  *
46  * The variance of the INTEGRATED OUTPUT at a given sampling period can be
47  * calculated as:
48  *       variance_integrate_output(T) = GYRO_VAR * T
49  */
50 static const float DEFAULT_GYRO_VAR = 1e-7;      // (rad/s)^2 / Hz
51 static const float DEFAULT_GYRO_BIAS_VAR = 1e-12;  // (rad/s)^2 / s (guessed)
52 static const float GEOMAG_GYRO_VAR = 1e-4;      // (rad/s)^2 / Hz
53 static const float GEOMAG_GYRO_BIAS_VAR = 1e-8;  // (rad/s)^2 / s (guessed)
54 
55 /*
56  * Standard deviations of accelerometer and magnetometer
57  */
58 static const float DEFAULT_ACC_STDEV  = 0.015f; // m/s^2 (measured 0.08 / CDD 0.05)
59 static const float DEFAULT_MAG_STDEV  = 0.1f;   // uT    (measured 0.7  / CDD 0.5)
60 static const float GEOMAG_ACC_STDEV  = 0.05f; // m/s^2 (measured 0.08 / CDD 0.05)
61 static const float GEOMAG_MAG_STDEV  = 0.1f;   // uT    (measured 0.7  / CDD 0.5)
62 
63 
64 /* ====================== END FUSION SENSOR PARAMETER ========================*/
65 
66 static const float SYMMETRY_TOLERANCE = 1e-10f;
67 
68 /*
69  * Accelerometer updates will not be performed near free fall to avoid
70  * ill-conditioning and div by zeros.
71  * Threshhold: 10% of g, in m/s^2
72  */
73 static const float NOMINAL_GRAVITY = 9.81f;
74 static const float FREE_FALL_THRESHOLD = 0.1f * (NOMINAL_GRAVITY);
75 
76 /*
77  * The geomagnetic-field should be between 30uT and 60uT.
78  * Fields strengths greater than this likely indicate a local magnetic
79  * disturbance which we do not want to update into the fused frame.
80  */
81 static const float MAX_VALID_MAGNETIC_FIELD = 100; // uT
82 static const float MAX_VALID_MAGNETIC_FIELD_SQ =
83         MAX_VALID_MAGNETIC_FIELD*MAX_VALID_MAGNETIC_FIELD;
84 
85 /*
86  * Values of the field smaller than this should be ignored in fusion to avoid
87  * ill-conditioning. This state can happen with anomalous local magnetic
88  * disturbances canceling the Earth field.
89  */
90 static const float MIN_VALID_MAGNETIC_FIELD = 10; // uT
91 static const float MIN_VALID_MAGNETIC_FIELD_SQ =
92         MIN_VALID_MAGNETIC_FIELD*MIN_VALID_MAGNETIC_FIELD;
93 
94 /*
95  * If the cross product of two vectors has magnitude squared less than this,
96  * we reject it as invalid due to alignment of the vectors.
97  * This threshold is used to check for the case where the magnetic field sample
98  * is parallel to the gravity field, which can happen in certain places due
99  * to magnetic field disturbances.
100  */
101 static const float MIN_VALID_CROSS_PRODUCT_MAG = 1.0e-3;
102 static const float MIN_VALID_CROSS_PRODUCT_MAG_SQ =
103     MIN_VALID_CROSS_PRODUCT_MAG*MIN_VALID_CROSS_PRODUCT_MAG;
104 
105 static const float SQRT_3 = 1.732f;
106 static const float WVEC_EPS = 1e-4f/SQRT_3;
107 // -----------------------------------------------------------------------
108 
109 template <typename TYPE, size_t C, size_t R>
scaleCovariance(const mat<TYPE,C,R> & A,const mat<TYPE,C,C> & P)110 static mat<TYPE, R, R> scaleCovariance(
111         const mat<TYPE, C, R>& A,
112         const mat<TYPE, C, C>& P) {
113     // A*P*transpose(A);
114     mat<TYPE, R, R> APAt;
115     for (size_t r=0 ; r<R ; r++) {
116         for (size_t j=r ; j<R ; j++) {
117             double apat(0);
118             for (size_t c=0 ; c<C ; c++) {
119                 double v(A[c][r]*P[c][c]*0.5);
120                 for (size_t k=c+1 ; k<C ; k++)
121                     v += A[k][r] * P[c][k];
122                 apat += 2 * v * A[c][j];
123             }
124             APAt[j][r] = apat;
125             APAt[r][j] = apat;
126         }
127     }
128     return APAt;
129 }
130 
131 template <typename TYPE, typename OTHER_TYPE>
crossMatrix(const vec<TYPE,3> & p,OTHER_TYPE diag)132 static mat<TYPE, 3, 3> crossMatrix(const vec<TYPE, 3>& p, OTHER_TYPE diag) {
133     mat<TYPE, 3, 3> r;
134     r[0][0] = diag;
135     r[1][1] = diag;
136     r[2][2] = diag;
137     r[0][1] = p.z;
138     r[1][0] =-p.z;
139     r[0][2] =-p.y;
140     r[2][0] = p.y;
141     r[1][2] = p.x;
142     r[2][1] =-p.x;
143     return r;
144 }
145 
146 
147 template<typename TYPE, size_t SIZE>
148 class Covariance {
149     mat<TYPE, SIZE, SIZE> mSumXX;
150     vec<TYPE, SIZE> mSumX;
151     size_t mN;
152 public:
Covariance()153     Covariance() : mSumXX(0.0f), mSumX(0.0f), mN(0) { }
update(const vec<TYPE,SIZE> & x)154     void update(const vec<TYPE, SIZE>& x) {
155         mSumXX += x*transpose(x);
156         mSumX  += x;
157         mN++;
158     }
operator ()() const159     mat<TYPE, SIZE, SIZE> operator()() const {
160         const float N = 1.0f / mN;
161         return mSumXX*N - (mSumX*transpose(mSumX))*(N*N);
162     }
reset()163     void reset() {
164         mN = 0;
165         mSumXX = 0;
166         mSumX = 0;
167     }
getCount() const168     size_t getCount() const {
169         return mN;
170     }
171 };
172 
173 // -----------------------------------------------------------------------
174 
Fusion()175 Fusion::Fusion() {
176     Phi[0][1] = 0;
177     Phi[1][1] = 1;
178 
179     Ba.x = 0;
180     Ba.y = 0;
181     Ba.z = 1;
182 
183     Bm.x = 0;
184     Bm.y = 1;
185     Bm.z = 0;
186 
187     x0 = 0;
188     x1 = 0;
189 
190     init();
191 }
192 
init(int mode)193 void Fusion::init(int mode) {
194     mInitState = 0;
195 
196     mGyroRate = 0;
197 
198     mCount[0] = 0;
199     mCount[1] = 0;
200     mCount[2] = 0;
201 
202     mData = 0;
203     mMode = mode;
204 
205     if (mMode != FUSION_NOGYRO) { //normal or game rotation
206         mParam.gyroVar = DEFAULT_GYRO_VAR;
207         mParam.gyroBiasVar = DEFAULT_GYRO_BIAS_VAR;
208         mParam.accStdev = DEFAULT_ACC_STDEV;
209         mParam.magStdev = DEFAULT_MAG_STDEV;
210     } else {
211         mParam.gyroVar = GEOMAG_GYRO_VAR;
212         mParam.gyroBiasVar = GEOMAG_GYRO_BIAS_VAR;
213         mParam.accStdev = GEOMAG_ACC_STDEV;
214         mParam.magStdev = GEOMAG_MAG_STDEV;
215     }
216 }
217 
initFusion(const vec4_t & q,float dT)218 void Fusion::initFusion(const vec4_t& q, float dT)
219 {
220     // initial estimate: E{ x(t0) }
221     x0 = q;
222     x1 = 0;
223 
224     // process noise covariance matrix: G.Q.Gt, with
225     //
226     //  G = | -1 0 |        Q = | q00 q10 |
227     //      |  0 1 |            | q01 q11 |
228     //
229     // q00 = sv^2.dt + 1/3.su^2.dt^3
230     // q10 = q01 = 1/2.su^2.dt^2
231     // q11 = su^2.dt
232     //
233 
234     const float dT2 = dT*dT;
235     const float dT3 = dT2*dT;
236 
237     // variance of integrated output at 1/dT Hz (random drift)
238     const float q00 = mParam.gyroVar * dT + 0.33333f * mParam.gyroBiasVar * dT3;
239 
240     // variance of drift rate ramp
241     const float q11 = mParam.gyroBiasVar * dT;
242     const float q10 = 0.5f * mParam.gyroBiasVar * dT2;
243     const float q01 = q10;
244 
245     GQGt[0][0] =  q00;      // rad^2
246     GQGt[1][0] = -q10;
247     GQGt[0][1] = -q01;
248     GQGt[1][1] =  q11;      // (rad/s)^2
249 
250     // initial covariance: Var{ x(t0) }
251     // TODO: initialize P correctly
252     P = 0;
253 }
254 
hasEstimate() const255 bool Fusion::hasEstimate() const {
256     return ((mInitState & MAG) || (mMode == FUSION_NOMAG)) &&
257            ((mInitState & GYRO) || (mMode == FUSION_NOGYRO)) &&
258            (mInitState & ACC);
259 }
260 
checkInitComplete(int what,const vec3_t & d,float dT)261 bool Fusion::checkInitComplete(int what, const vec3_t& d, float dT) {
262     if (hasEstimate())
263         return true;
264 
265     if (what == ACC) {
266         mData[0] += d * (1/length(d));
267         mCount[0]++;
268         mInitState |= ACC;
269         if (mMode == FUSION_NOGYRO ) {
270             mGyroRate = dT;
271         }
272     } else if (what == MAG) {
273         mData[1] += d * (1/length(d));
274         mCount[1]++;
275         mInitState |= MAG;
276     } else if (what == GYRO) {
277         mGyroRate = dT;
278         mData[2] += d*dT;
279         mCount[2]++;
280         mInitState |= GYRO;
281     }
282 
283     if (hasEstimate()) {
284         // Average all the values we collected so far
285         mData[0] *= 1.0f/mCount[0];
286         if (mMode != FUSION_NOMAG) {
287             mData[1] *= 1.0f/mCount[1];
288         }
289         mData[2] *= 1.0f/mCount[2];
290 
291         // calculate the MRPs from the data collection, this gives us
292         // a rough estimate of our initial state
293         mat33_t R;
294         vec3_t  up(mData[0]);
295         vec3_t  east;
296 
297         if (mMode != FUSION_NOMAG) {
298             east = normalize(cross_product(mData[1], up));
299         } else {
300             east = getOrthogonal(up);
301         }
302 
303         vec3_t north(cross_product(up, east));
304         R << east << north << up;
305         const vec4_t q = matrixToQuat(R);
306 
307         initFusion(q, mGyroRate);
308     }
309 
310     return false;
311 }
312 
handleGyro(const vec3_t & w,float dT)313 void Fusion::handleGyro(const vec3_t& w, float dT) {
314     if (!checkInitComplete(GYRO, w, dT))
315         return;
316 
317     predict(w, dT);
318 }
319 
handleAcc(const vec3_t & a,float dT)320 status_t Fusion::handleAcc(const vec3_t& a, float dT) {
321     if (!checkInitComplete(ACC, a, dT))
322         return BAD_VALUE;
323 
324     // ignore acceleration data if we're close to free-fall
325     const float l = length(a);
326     if (l < FREE_FALL_THRESHOLD) {
327         return BAD_VALUE;
328     }
329 
330     const float l_inv = 1.0f/l;
331 
332     if ( mMode == FUSION_NOGYRO ) {
333         //geo mag
334         vec3_t w_dummy;
335         w_dummy = x1; //bias
336         predict(w_dummy, dT);
337     }
338 
339     if ( mMode == FUSION_NOMAG) {
340         vec3_t m;
341         m = getRotationMatrix()*Bm;
342         update(m, Bm, mParam.magStdev);
343     }
344 
345     vec3_t unityA = a * l_inv;
346     const float d = sqrtf(fabsf(l- NOMINAL_GRAVITY));
347     const float p = l_inv * mParam.accStdev*expf(d);
348 
349     update(unityA, Ba, p);
350     return NO_ERROR;
351 }
352 
handleMag(const vec3_t & m)353 status_t Fusion::handleMag(const vec3_t& m) {
354     if (!checkInitComplete(MAG, m))
355         return BAD_VALUE;
356 
357     // the geomagnetic-field should be between 30uT and 60uT
358     // reject if too large to avoid spurious magnetic sources
359     const float magFieldSq = length_squared(m);
360     if (magFieldSq > MAX_VALID_MAGNETIC_FIELD_SQ) {
361         return BAD_VALUE;
362     } else if (magFieldSq < MIN_VALID_MAGNETIC_FIELD_SQ) {
363         // Also reject if too small since we will get ill-defined (zero mag)
364         // cross-products below
365         return BAD_VALUE;
366     }
367 
368     // Orthogonalize the magnetic field to the gravity field, mapping it into
369     // tangent to Earth.
370     const vec3_t up( getRotationMatrix() * Ba );
371     const vec3_t east( cross_product(m, up) );
372 
373     // If the m and up vectors align, the cross product magnitude will
374     // approach 0.
375     // Reject this case as well to avoid div by zero problems and
376     // ill-conditioning below.
377     if (length_squared(east) < MIN_VALID_CROSS_PRODUCT_MAG_SQ) {
378         return BAD_VALUE;
379     }
380 
381     // If we have created an orthogonal magnetic field successfully,
382     // then pass it in as the update.
383     vec3_t north( cross_product(up, east) );
384 
385     const float l_inv = 1 / length(north);
386     north *= l_inv;
387 
388     update(north, Bm,  mParam.magStdev*l_inv);
389     return NO_ERROR;
390 }
391 
checkState()392 void Fusion::checkState() {
393     // P needs to stay positive semidefinite or the fusion diverges. When we
394     // detect divergence, we reset the fusion.
395     // TODO(braun): Instead, find the reason for the divergence and fix it.
396 
397     if (!isPositiveSemidefinite(P[0][0], SYMMETRY_TOLERANCE) ||
398         !isPositiveSemidefinite(P[1][1], SYMMETRY_TOLERANCE)) {
399         ALOGW("Sensor fusion diverged; resetting state.");
400         P = 0;
401     }
402 }
403 
getAttitude() const404 vec4_t Fusion::getAttitude() const {
405     return x0;
406 }
407 
getBias() const408 vec3_t Fusion::getBias() const {
409     return x1;
410 }
411 
getRotationMatrix() const412 mat33_t Fusion::getRotationMatrix() const {
413     return quatToMatrix(x0);
414 }
415 
getF(const vec4_t & q)416 mat34_t Fusion::getF(const vec4_t& q) {
417     mat34_t F;
418 
419     // This is used to compute the derivative of q
420     // F = | [q.xyz]x |
421     //     |  -q.xyz  |
422 
423     F[0].x = q.w;   F[1].x =-q.z;   F[2].x = q.y;
424     F[0].y = q.z;   F[1].y = q.w;   F[2].y =-q.x;
425     F[0].z =-q.y;   F[1].z = q.x;   F[2].z = q.w;
426     F[0].w =-q.x;   F[1].w =-q.y;   F[2].w =-q.z;
427     return F;
428 }
429 
predict(const vec3_t & w,float dT)430 void Fusion::predict(const vec3_t& w, float dT) {
431     const vec4_t q  = x0;
432     const vec3_t b  = x1;
433     vec3_t we = w - b;
434 
435     if (length(we) < WVEC_EPS) {
436         we = (we[0]>0.f)?WVEC_EPS:-WVEC_EPS;
437     }
438     // q(k+1) = O(we)*q(k)
439     // --------------------
440     //
441     // O(w) = | cos(0.5*||w||*dT)*I33 - [psi]x                   psi |
442     //        | -psi'                              cos(0.5*||w||*dT) |
443     //
444     // psi = sin(0.5*||w||*dT)*w / ||w||
445     //
446     //
447     // P(k+1) = Phi(k)*P(k)*Phi(k)' + G*Q(k)*G'
448     // ----------------------------------------
449     //
450     // G = | -I33    0 |
451     //     |    0  I33 |
452     //
453     //  Phi = | Phi00 Phi10 |
454     //        |   0     1   |
455     //
456     //  Phi00 =   I33
457     //          - [w]x   * sin(||w||*dt)/||w||
458     //          + [w]x^2 * (1-cos(||w||*dT))/||w||^2
459     //
460     //  Phi10 =   [w]x   * (1        - cos(||w||*dt))/||w||^2
461     //          - [w]x^2 * (||w||*dT - sin(||w||*dt))/||w||^3
462     //          - I33*dT
463 
464     const mat33_t I33(1);
465     const mat33_t I33dT(dT);
466     const mat33_t wx(crossMatrix(we, 0));
467     const mat33_t wx2(wx*wx);
468     const float lwedT = length(we)*dT;
469     const float hlwedT = 0.5f*lwedT;
470     const float ilwe = 1.f/length(we);
471     const float k0 = (1-cosf(lwedT))*(ilwe*ilwe);
472     const float k1 = sinf(lwedT);
473     const float k2 = cosf(hlwedT);
474     const vec3_t psi(sinf(hlwedT)*ilwe*we);
475     const mat33_t O33(crossMatrix(-psi, k2));
476     mat44_t O;
477     O[0].xyz = O33[0];  O[0].w = -psi.x;
478     O[1].xyz = O33[1];  O[1].w = -psi.y;
479     O[2].xyz = O33[2];  O[2].w = -psi.z;
480     O[3].xyz = psi;     O[3].w = k2;
481 
482     Phi[0][0] = I33 - wx*(k1*ilwe) + wx2*k0;
483     Phi[1][0] = wx*k0 - I33dT - wx2*(ilwe*ilwe*ilwe)*(lwedT-k1);
484 
485     x0 = O*q;
486 
487     if (x0.w < 0)
488         x0 = -x0;
489 
490     P = Phi*P*transpose(Phi) + GQGt;
491 
492     checkState();
493 }
494 
update(const vec3_t & z,const vec3_t & Bi,float sigma)495 void Fusion::update(const vec3_t& z, const vec3_t& Bi, float sigma) {
496     vec4_t q(x0);
497     // measured vector in body space: h(p) = A(p)*Bi
498     const mat33_t A(quatToMatrix(q));
499     const vec3_t Bb(A*Bi);
500 
501     // Sensitivity matrix H = dh(p)/dp
502     // H = [ L 0 ]
503     const mat33_t L(crossMatrix(Bb, 0));
504 
505     // gain...
506     // K = P*Ht / [H*P*Ht + R]
507     vec<mat33_t, 2> K;
508     const mat33_t R(sigma*sigma);
509     const mat33_t S(scaleCovariance(L, P[0][0]) + R);
510     const mat33_t Si(invert(S));
511     const mat33_t LtSi(transpose(L)*Si);
512     K[0] = P[0][0] * LtSi;
513     K[1] = transpose(P[1][0])*LtSi;
514 
515     // update...
516     // P = (I-K*H) * P
517     // P -= K*H*P
518     // | K0 | * | L 0 | * P = | K0*L  0 | * | P00  P10 | = | K0*L*P00  K0*L*P10 |
519     // | K1 |                 | K1*L  0 |   | P01  P11 |   | K1*L*P00  K1*L*P10 |
520     // Note: the Joseph form is numerically more stable and given by:
521     //     P = (I-KH) * P * (I-KH)' + K*R*R'
522     const mat33_t K0L(K[0] * L);
523     const mat33_t K1L(K[1] * L);
524     P[0][0] -= K0L*P[0][0];
525     P[1][1] -= K1L*P[1][0];
526     P[1][0] -= K0L*P[1][0];
527     P[0][1] = transpose(P[1][0]);
528 
529     const vec3_t e(z - Bb);
530     const vec3_t dq(K[0]*e);
531 
532     q += getF(q)*(0.5f*dq);
533     x0 = normalize_quat(q);
534 
535     if (mMode != FUSION_NOMAG) {
536         const vec3_t db(K[1]*e);
537         x1 += db;
538     }
539 
540     checkState();
541 }
542 
getOrthogonal(const vec3_t & v)543 vec3_t Fusion::getOrthogonal(const vec3_t &v) {
544     vec3_t w;
545     if (fabsf(v[0])<= fabsf(v[1]) && fabsf(v[0]) <= fabsf(v[2]))  {
546         w[0]=0.f;
547         w[1] = v[2];
548         w[2] = -v[1];
549     } else if (fabsf(v[1]) <= fabsf(v[2])) {
550         w[0] = v[2];
551         w[1] = 0.f;
552         w[2] = -v[0];
553     }else {
554         w[0] = v[1];
555         w[1] = -v[0];
556         w[2] = 0.f;
557     }
558     return normalize(w);
559 }
560 
561 
562 // -----------------------------------------------------------------------
563 
564 }; // namespace android
565 
566