1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
16 // Third party copyrights are property of their respective owners.
17 //
18 // Redistribution and use in source and binary forms, with or without modification,
19 // are permitted provided that the following conditions are met:
20 //
21 // * Redistribution's of source code must retain the above copyright notice,
22 // this list of conditions and the following disclaimer.
23 //
24 // * Redistribution's in binary form must reproduce the above copyright notice,
25 // this list of conditions and the following disclaimer in the documentation
26 // and/or other materials provided with the distribution.
27 //
28 // * The name of the copyright holders may not be used to endorse or promote products
29 // derived from this software without specific prior written permission.
30 //
31 // This software is provided by the copyright holders and contributors "as is" and
32 // any express or implied warranties, including, but not limited to, the implied
33 // warranties of merchantability and fitness for a particular purpose are disclaimed.
34 // In no event shall the Intel Corporation or contributors be liable for any direct,
35 // indirect, incidental, special, exemplary, or consequential damages
36 // (including, but not limited to, procurement of substitute goods or services;
37 // loss of use, data, or profits; or business interruption) however caused
38 // and on any theory of liability, whether in contract, strict liability,
39 // or tort (including negligence or otherwise) arising in any way out of
40 // the use of this software, even if advised of the possibility of such damage.
41 //
42 //M*/
43
44 #ifndef __OPENCV_CORE_CUDAINL_HPP__
45 #define __OPENCV_CORE_CUDAINL_HPP__
46
47 #include "opencv2/core/cuda.hpp"
48
49 //! @cond IGNORED
50
51 namespace cv { namespace cuda {
52
53 //===================================================================================
54 // GpuMat
55 //===================================================================================
56
57 inline
GpuMat(Allocator * allocator_)58 GpuMat::GpuMat(Allocator* allocator_)
59 : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
60 {}
61
62 inline
GpuMat(int rows_,int cols_,int type_,Allocator * allocator_)63 GpuMat::GpuMat(int rows_, int cols_, int type_, Allocator* allocator_)
64 : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
65 {
66 if (rows_ > 0 && cols_ > 0)
67 create(rows_, cols_, type_);
68 }
69
70 inline
GpuMat(Size size_,int type_,Allocator * allocator_)71 GpuMat::GpuMat(Size size_, int type_, Allocator* allocator_)
72 : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
73 {
74 if (size_.height > 0 && size_.width > 0)
75 create(size_.height, size_.width, type_);
76 }
77
78 inline
GpuMat(int rows_,int cols_,int type_,Scalar s_,Allocator * allocator_)79 GpuMat::GpuMat(int rows_, int cols_, int type_, Scalar s_, Allocator* allocator_)
80 : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
81 {
82 if (rows_ > 0 && cols_ > 0)
83 {
84 create(rows_, cols_, type_);
85 setTo(s_);
86 }
87 }
88
89 inline
GpuMat(Size size_,int type_,Scalar s_,Allocator * allocator_)90 GpuMat::GpuMat(Size size_, int type_, Scalar s_, Allocator* allocator_)
91 : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
92 {
93 if (size_.height > 0 && size_.width > 0)
94 {
95 create(size_.height, size_.width, type_);
96 setTo(s_);
97 }
98 }
99
100 inline
GpuMat(const GpuMat & m)101 GpuMat::GpuMat(const GpuMat& m)
102 : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), allocator(m.allocator)
103 {
104 if (refcount)
105 CV_XADD(refcount, 1);
106 }
107
108 inline
GpuMat(InputArray arr,Allocator * allocator_)109 GpuMat::GpuMat(InputArray arr, Allocator* allocator_) :
110 flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
111 {
112 upload(arr);
113 }
114
115 inline
~GpuMat()116 GpuMat::~GpuMat()
117 {
118 release();
119 }
120
121 inline
operator =(const GpuMat & m)122 GpuMat& GpuMat::operator =(const GpuMat& m)
123 {
124 if (this != &m)
125 {
126 GpuMat temp(m);
127 swap(temp);
128 }
129
130 return *this;
131 }
132
133 inline
create(Size size_,int type_)134 void GpuMat::create(Size size_, int type_)
135 {
136 create(size_.height, size_.width, type_);
137 }
138
139 inline
swap(GpuMat & b)140 void GpuMat::swap(GpuMat& b)
141 {
142 std::swap(flags, b.flags);
143 std::swap(rows, b.rows);
144 std::swap(cols, b.cols);
145 std::swap(step, b.step);
146 std::swap(data, b.data);
147 std::swap(datastart, b.datastart);
148 std::swap(dataend, b.dataend);
149 std::swap(refcount, b.refcount);
150 std::swap(allocator, b.allocator);
151 }
152
153 inline
clone() const154 GpuMat GpuMat::clone() const
155 {
156 GpuMat m;
157 copyTo(m);
158 return m;
159 }
160
161 inline
copyTo(OutputArray dst,InputArray mask) const162 void GpuMat::copyTo(OutputArray dst, InputArray mask) const
163 {
164 copyTo(dst, mask, Stream::Null());
165 }
166
167 inline
setTo(Scalar s)168 GpuMat& GpuMat::setTo(Scalar s)
169 {
170 return setTo(s, Stream::Null());
171 }
172
173 inline
setTo(Scalar s,InputArray mask)174 GpuMat& GpuMat::setTo(Scalar s, InputArray mask)
175 {
176 return setTo(s, mask, Stream::Null());
177 }
178
179 inline
convertTo(OutputArray dst,int rtype) const180 void GpuMat::convertTo(OutputArray dst, int rtype) const
181 {
182 convertTo(dst, rtype, Stream::Null());
183 }
184
185 inline
convertTo(OutputArray dst,int rtype,double alpha,double beta) const186 void GpuMat::convertTo(OutputArray dst, int rtype, double alpha, double beta) const
187 {
188 convertTo(dst, rtype, alpha, beta, Stream::Null());
189 }
190
191 inline
convertTo(OutputArray dst,int rtype,double alpha,Stream & stream) const192 void GpuMat::convertTo(OutputArray dst, int rtype, double alpha, Stream& stream) const
193 {
194 convertTo(dst, rtype, alpha, 0.0, stream);
195 }
196
197 inline
assignTo(GpuMat & m,int _type) const198 void GpuMat::assignTo(GpuMat& m, int _type) const
199 {
200 if (_type < 0)
201 m = *this;
202 else
203 convertTo(m, _type);
204 }
205
206 inline
ptr(int y)207 uchar* GpuMat::ptr(int y)
208 {
209 CV_DbgAssert( (unsigned)y < (unsigned)rows );
210 return data + step * y;
211 }
212
213 inline
ptr(int y) const214 const uchar* GpuMat::ptr(int y) const
215 {
216 CV_DbgAssert( (unsigned)y < (unsigned)rows );
217 return data + step * y;
218 }
219
220 template<typename _Tp> inline
ptr(int y)221 _Tp* GpuMat::ptr(int y)
222 {
223 return (_Tp*)ptr(y);
224 }
225
226 template<typename _Tp> inline
ptr(int y) const227 const _Tp* GpuMat::ptr(int y) const
228 {
229 return (const _Tp*)ptr(y);
230 }
231
232 template <class T> inline
operator PtrStepSz<T>() const233 GpuMat::operator PtrStepSz<T>() const
234 {
235 return PtrStepSz<T>(rows, cols, (T*)data, step);
236 }
237
238 template <class T> inline
operator PtrStep<T>() const239 GpuMat::operator PtrStep<T>() const
240 {
241 return PtrStep<T>((T*)data, step);
242 }
243
244 inline
row(int y) const245 GpuMat GpuMat::row(int y) const
246 {
247 return GpuMat(*this, Range(y, y+1), Range::all());
248 }
249
250 inline
col(int x) const251 GpuMat GpuMat::col(int x) const
252 {
253 return GpuMat(*this, Range::all(), Range(x, x+1));
254 }
255
256 inline
rowRange(int startrow,int endrow) const257 GpuMat GpuMat::rowRange(int startrow, int endrow) const
258 {
259 return GpuMat(*this, Range(startrow, endrow), Range::all());
260 }
261
262 inline
rowRange(Range r) const263 GpuMat GpuMat::rowRange(Range r) const
264 {
265 return GpuMat(*this, r, Range::all());
266 }
267
268 inline
colRange(int startcol,int endcol) const269 GpuMat GpuMat::colRange(int startcol, int endcol) const
270 {
271 return GpuMat(*this, Range::all(), Range(startcol, endcol));
272 }
273
274 inline
colRange(Range r) const275 GpuMat GpuMat::colRange(Range r) const
276 {
277 return GpuMat(*this, Range::all(), r);
278 }
279
280 inline
operator ()(Range rowRange_,Range colRange_) const281 GpuMat GpuMat::operator ()(Range rowRange_, Range colRange_) const
282 {
283 return GpuMat(*this, rowRange_, colRange_);
284 }
285
286 inline
operator ()(Rect roi) const287 GpuMat GpuMat::operator ()(Rect roi) const
288 {
289 return GpuMat(*this, roi);
290 }
291
292 inline
isContinuous() const293 bool GpuMat::isContinuous() const
294 {
295 return (flags & Mat::CONTINUOUS_FLAG) != 0;
296 }
297
298 inline
elemSize() const299 size_t GpuMat::elemSize() const
300 {
301 return CV_ELEM_SIZE(flags);
302 }
303
304 inline
elemSize1() const305 size_t GpuMat::elemSize1() const
306 {
307 return CV_ELEM_SIZE1(flags);
308 }
309
310 inline
type() const311 int GpuMat::type() const
312 {
313 return CV_MAT_TYPE(flags);
314 }
315
316 inline
depth() const317 int GpuMat::depth() const
318 {
319 return CV_MAT_DEPTH(flags);
320 }
321
322 inline
channels() const323 int GpuMat::channels() const
324 {
325 return CV_MAT_CN(flags);
326 }
327
328 inline
step1() const329 size_t GpuMat::step1() const
330 {
331 return step / elemSize1();
332 }
333
334 inline
size() const335 Size GpuMat::size() const
336 {
337 return Size(cols, rows);
338 }
339
340 inline
empty() const341 bool GpuMat::empty() const
342 {
343 return data == 0;
344 }
345
346 static inline
createContinuous(int rows,int cols,int type)347 GpuMat createContinuous(int rows, int cols, int type)
348 {
349 GpuMat m;
350 createContinuous(rows, cols, type, m);
351 return m;
352 }
353
354 static inline
createContinuous(Size size,int type,OutputArray arr)355 void createContinuous(Size size, int type, OutputArray arr)
356 {
357 createContinuous(size.height, size.width, type, arr);
358 }
359
360 static inline
createContinuous(Size size,int type)361 GpuMat createContinuous(Size size, int type)
362 {
363 GpuMat m;
364 createContinuous(size, type, m);
365 return m;
366 }
367
368 static inline
ensureSizeIsEnough(Size size,int type,OutputArray arr)369 void ensureSizeIsEnough(Size size, int type, OutputArray arr)
370 {
371 ensureSizeIsEnough(size.height, size.width, type, arr);
372 }
373
374 static inline
swap(GpuMat & a,GpuMat & b)375 void swap(GpuMat& a, GpuMat& b)
376 {
377 a.swap(b);
378 }
379
380 //===================================================================================
381 // HostMem
382 //===================================================================================
383
384 inline
HostMem(AllocType alloc_type_)385 HostMem::HostMem(AllocType alloc_type_)
386 : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
387 {
388 }
389
390 inline
HostMem(const HostMem & m)391 HostMem::HostMem(const HostMem& m)
392 : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), alloc_type(m.alloc_type)
393 {
394 if( refcount )
395 CV_XADD(refcount, 1);
396 }
397
398 inline
HostMem(int rows_,int cols_,int type_,AllocType alloc_type_)399 HostMem::HostMem(int rows_, int cols_, int type_, AllocType alloc_type_)
400 : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
401 {
402 if (rows_ > 0 && cols_ > 0)
403 create(rows_, cols_, type_);
404 }
405
406 inline
HostMem(Size size_,int type_,AllocType alloc_type_)407 HostMem::HostMem(Size size_, int type_, AllocType alloc_type_)
408 : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
409 {
410 if (size_.height > 0 && size_.width > 0)
411 create(size_.height, size_.width, type_);
412 }
413
414 inline
HostMem(InputArray arr,AllocType alloc_type_)415 HostMem::HostMem(InputArray arr, AllocType alloc_type_)
416 : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
417 {
418 arr.getMat().copyTo(*this);
419 }
420
421 inline
~HostMem()422 HostMem::~HostMem()
423 {
424 release();
425 }
426
427 inline
operator =(const HostMem & m)428 HostMem& HostMem::operator =(const HostMem& m)
429 {
430 if (this != &m)
431 {
432 HostMem temp(m);
433 swap(temp);
434 }
435
436 return *this;
437 }
438
439 inline
swap(HostMem & b)440 void HostMem::swap(HostMem& b)
441 {
442 std::swap(flags, b.flags);
443 std::swap(rows, b.rows);
444 std::swap(cols, b.cols);
445 std::swap(step, b.step);
446 std::swap(data, b.data);
447 std::swap(datastart, b.datastart);
448 std::swap(dataend, b.dataend);
449 std::swap(refcount, b.refcount);
450 std::swap(alloc_type, b.alloc_type);
451 }
452
453 inline
clone() const454 HostMem HostMem::clone() const
455 {
456 HostMem m(size(), type(), alloc_type);
457 createMatHeader().copyTo(m);
458 return m;
459 }
460
461 inline
create(Size size_,int type_)462 void HostMem::create(Size size_, int type_)
463 {
464 create(size_.height, size_.width, type_);
465 }
466
467 inline
createMatHeader() const468 Mat HostMem::createMatHeader() const
469 {
470 return Mat(size(), type(), data, step);
471 }
472
473 inline
isContinuous() const474 bool HostMem::isContinuous() const
475 {
476 return (flags & Mat::CONTINUOUS_FLAG) != 0;
477 }
478
479 inline
elemSize() const480 size_t HostMem::elemSize() const
481 {
482 return CV_ELEM_SIZE(flags);
483 }
484
485 inline
elemSize1() const486 size_t HostMem::elemSize1() const
487 {
488 return CV_ELEM_SIZE1(flags);
489 }
490
491 inline
type() const492 int HostMem::type() const
493 {
494 return CV_MAT_TYPE(flags);
495 }
496
497 inline
depth() const498 int HostMem::depth() const
499 {
500 return CV_MAT_DEPTH(flags);
501 }
502
503 inline
channels() const504 int HostMem::channels() const
505 {
506 return CV_MAT_CN(flags);
507 }
508
509 inline
step1() const510 size_t HostMem::step1() const
511 {
512 return step / elemSize1();
513 }
514
515 inline
size() const516 Size HostMem::size() const
517 {
518 return Size(cols, rows);
519 }
520
521 inline
empty() const522 bool HostMem::empty() const
523 {
524 return data == 0;
525 }
526
527 static inline
swap(HostMem & a,HostMem & b)528 void swap(HostMem& a, HostMem& b)
529 {
530 a.swap(b);
531 }
532
533 //===================================================================================
534 // Stream
535 //===================================================================================
536
537 inline
Stream(const Ptr<Impl> & impl)538 Stream::Stream(const Ptr<Impl>& impl)
539 : impl_(impl)
540 {
541 }
542
543 //===================================================================================
544 // Initialization & Info
545 //===================================================================================
546
547 inline
has(int major,int minor)548 bool TargetArchs::has(int major, int minor)
549 {
550 return hasPtx(major, minor) || hasBin(major, minor);
551 }
552
553 inline
hasEqualOrGreater(int major,int minor)554 bool TargetArchs::hasEqualOrGreater(int major, int minor)
555 {
556 return hasEqualOrGreaterPtx(major, minor) || hasEqualOrGreaterBin(major, minor);
557 }
558
559 inline
DeviceInfo()560 DeviceInfo::DeviceInfo()
561 {
562 device_id_ = getDevice();
563 }
564
565 inline
DeviceInfo(int device_id)566 DeviceInfo::DeviceInfo(int device_id)
567 {
568 CV_Assert( device_id >= 0 && device_id < getCudaEnabledDeviceCount() );
569 device_id_ = device_id;
570 }
571
572 inline
deviceID() const573 int DeviceInfo::deviceID() const
574 {
575 return device_id_;
576 }
577
578 inline
freeMemory() const579 size_t DeviceInfo::freeMemory() const
580 {
581 size_t _totalMemory, _freeMemory;
582 queryMemory(_totalMemory, _freeMemory);
583 return _freeMemory;
584 }
585
586 inline
totalMemory() const587 size_t DeviceInfo::totalMemory() const
588 {
589 size_t _totalMemory, _freeMemory;
590 queryMemory(_totalMemory, _freeMemory);
591 return _totalMemory;
592 }
593
594 inline
supports(FeatureSet feature_set) const595 bool DeviceInfo::supports(FeatureSet feature_set) const
596 {
597 int version = majorVersion() * 10 + minorVersion();
598 return version >= feature_set;
599 }
600
601
602 }} // namespace cv { namespace cuda {
603
604 //===================================================================================
605 // Mat
606 //===================================================================================
607
608 namespace cv {
609
610 inline
Mat(const cuda::GpuMat & m)611 Mat::Mat(const cuda::GpuMat& m)
612 : flags(0), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), datalimit(0), allocator(0), u(0), size(&rows)
613 {
614 m.download(*this);
615 }
616
617 }
618
619 //! @endcond
620
621 #endif // __OPENCV_CORE_CUDAINL_HPP__
622