1 //===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for DWARF4 hashing of DIEs.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DwarfDebug.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/CodeGen/AsmPrinter.h"
20 #include "llvm/CodeGen/DIE.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/Dwarf.h"
23 #include "llvm/Support/Endian.h"
24 #include "llvm/Support/MD5.h"
25 #include "llvm/Support/raw_ostream.h"
26
27 using namespace llvm;
28
29 #define DEBUG_TYPE "dwarfdebug"
30
31 /// \brief Grabs the string in whichever attribute is passed in and returns
32 /// a reference to it.
getDIEStringAttr(const DIE & Die,uint16_t Attr)33 static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) {
34 // Iterate through all the attributes until we find the one we're
35 // looking for, if we can't find it return an empty string.
36 for (const auto &V : Die.values())
37 if (V.getAttribute() == Attr)
38 return V.getDIEString().getString();
39
40 return StringRef("");
41 }
42
43 /// \brief Adds the string in \p Str to the hash. This also hashes
44 /// a trailing NULL with the string.
addString(StringRef Str)45 void DIEHash::addString(StringRef Str) {
46 DEBUG(dbgs() << "Adding string " << Str << " to hash.\n");
47 Hash.update(Str);
48 Hash.update(makeArrayRef((uint8_t)'\0'));
49 }
50
51 // FIXME: The LEB128 routines are copied and only slightly modified out of
52 // LEB128.h.
53
54 /// \brief Adds the unsigned in \p Value to the hash encoded as a ULEB128.
addULEB128(uint64_t Value)55 void DIEHash::addULEB128(uint64_t Value) {
56 DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
57 do {
58 uint8_t Byte = Value & 0x7f;
59 Value >>= 7;
60 if (Value != 0)
61 Byte |= 0x80; // Mark this byte to show that more bytes will follow.
62 Hash.update(Byte);
63 } while (Value != 0);
64 }
65
addSLEB128(int64_t Value)66 void DIEHash::addSLEB128(int64_t Value) {
67 DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
68 bool More;
69 do {
70 uint8_t Byte = Value & 0x7f;
71 Value >>= 7;
72 More = !((((Value == 0) && ((Byte & 0x40) == 0)) ||
73 ((Value == -1) && ((Byte & 0x40) != 0))));
74 if (More)
75 Byte |= 0x80; // Mark this byte to show that more bytes will follow.
76 Hash.update(Byte);
77 } while (More);
78 }
79
80 /// \brief Including \p Parent adds the context of Parent to the hash..
addParentContext(const DIE & Parent)81 void DIEHash::addParentContext(const DIE &Parent) {
82
83 DEBUG(dbgs() << "Adding parent context to hash...\n");
84
85 // [7.27.2] For each surrounding type or namespace beginning with the
86 // outermost such construct...
87 SmallVector<const DIE *, 1> Parents;
88 const DIE *Cur = &Parent;
89 while (Cur->getParent()) {
90 Parents.push_back(Cur);
91 Cur = Cur->getParent();
92 }
93 assert(Cur->getTag() == dwarf::DW_TAG_compile_unit ||
94 Cur->getTag() == dwarf::DW_TAG_type_unit);
95
96 // Reverse iterate over our list to go from the outermost construct to the
97 // innermost.
98 for (SmallVectorImpl<const DIE *>::reverse_iterator I = Parents.rbegin(),
99 E = Parents.rend();
100 I != E; ++I) {
101 const DIE &Die = **I;
102
103 // ... Append the letter "C" to the sequence...
104 addULEB128('C');
105
106 // ... Followed by the DWARF tag of the construct...
107 addULEB128(Die.getTag());
108
109 // ... Then the name, taken from the DW_AT_name attribute.
110 StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name);
111 DEBUG(dbgs() << "... adding context: " << Name << "\n");
112 if (!Name.empty())
113 addString(Name);
114 }
115 }
116
117 // Collect all of the attributes for a particular DIE in single structure.
collectAttributes(const DIE & Die,DIEAttrs & Attrs)118 void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) {
119 #define COLLECT_ATTR(NAME) \
120 case dwarf::NAME: \
121 Attrs.NAME = V; \
122 break
123
124 for (const auto &V : Die.values()) {
125 DEBUG(dbgs() << "Attribute: "
126 << dwarf::AttributeString(V.getAttribute())
127 << " added.\n");
128 switch (V.getAttribute()) {
129 COLLECT_ATTR(DW_AT_name);
130 COLLECT_ATTR(DW_AT_accessibility);
131 COLLECT_ATTR(DW_AT_address_class);
132 COLLECT_ATTR(DW_AT_allocated);
133 COLLECT_ATTR(DW_AT_artificial);
134 COLLECT_ATTR(DW_AT_associated);
135 COLLECT_ATTR(DW_AT_binary_scale);
136 COLLECT_ATTR(DW_AT_bit_offset);
137 COLLECT_ATTR(DW_AT_bit_size);
138 COLLECT_ATTR(DW_AT_bit_stride);
139 COLLECT_ATTR(DW_AT_byte_size);
140 COLLECT_ATTR(DW_AT_byte_stride);
141 COLLECT_ATTR(DW_AT_const_expr);
142 COLLECT_ATTR(DW_AT_const_value);
143 COLLECT_ATTR(DW_AT_containing_type);
144 COLLECT_ATTR(DW_AT_count);
145 COLLECT_ATTR(DW_AT_data_bit_offset);
146 COLLECT_ATTR(DW_AT_data_location);
147 COLLECT_ATTR(DW_AT_data_member_location);
148 COLLECT_ATTR(DW_AT_decimal_scale);
149 COLLECT_ATTR(DW_AT_decimal_sign);
150 COLLECT_ATTR(DW_AT_default_value);
151 COLLECT_ATTR(DW_AT_digit_count);
152 COLLECT_ATTR(DW_AT_discr);
153 COLLECT_ATTR(DW_AT_discr_list);
154 COLLECT_ATTR(DW_AT_discr_value);
155 COLLECT_ATTR(DW_AT_encoding);
156 COLLECT_ATTR(DW_AT_enum_class);
157 COLLECT_ATTR(DW_AT_endianity);
158 COLLECT_ATTR(DW_AT_explicit);
159 COLLECT_ATTR(DW_AT_is_optional);
160 COLLECT_ATTR(DW_AT_location);
161 COLLECT_ATTR(DW_AT_lower_bound);
162 COLLECT_ATTR(DW_AT_mutable);
163 COLLECT_ATTR(DW_AT_ordering);
164 COLLECT_ATTR(DW_AT_picture_string);
165 COLLECT_ATTR(DW_AT_prototyped);
166 COLLECT_ATTR(DW_AT_small);
167 COLLECT_ATTR(DW_AT_segment);
168 COLLECT_ATTR(DW_AT_string_length);
169 COLLECT_ATTR(DW_AT_threads_scaled);
170 COLLECT_ATTR(DW_AT_upper_bound);
171 COLLECT_ATTR(DW_AT_use_location);
172 COLLECT_ATTR(DW_AT_use_UTF8);
173 COLLECT_ATTR(DW_AT_variable_parameter);
174 COLLECT_ATTR(DW_AT_virtuality);
175 COLLECT_ATTR(DW_AT_visibility);
176 COLLECT_ATTR(DW_AT_vtable_elem_location);
177 COLLECT_ATTR(DW_AT_type);
178 default:
179 break;
180 }
181 }
182 }
183
hashShallowTypeReference(dwarf::Attribute Attribute,const DIE & Entry,StringRef Name)184 void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute,
185 const DIE &Entry, StringRef Name) {
186 // append the letter 'N'
187 addULEB128('N');
188
189 // the DWARF attribute code (DW_AT_type or DW_AT_friend),
190 addULEB128(Attribute);
191
192 // the context of the tag,
193 if (const DIE *Parent = Entry.getParent())
194 addParentContext(*Parent);
195
196 // the letter 'E',
197 addULEB128('E');
198
199 // and the name of the type.
200 addString(Name);
201
202 // Currently DW_TAG_friends are not used by Clang, but if they do become so,
203 // here's the relevant spec text to implement:
204 //
205 // For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram,
206 // the context is omitted and the name to be used is the ABI-specific name
207 // of the subprogram (e.g., the mangled linker name).
208 }
209
hashRepeatedTypeReference(dwarf::Attribute Attribute,unsigned DieNumber)210 void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute,
211 unsigned DieNumber) {
212 // a) If T is in the list of [previously hashed types], use the letter
213 // 'R' as the marker
214 addULEB128('R');
215
216 addULEB128(Attribute);
217
218 // and use the unsigned LEB128 encoding of [the index of T in the
219 // list] as the attribute value;
220 addULEB128(DieNumber);
221 }
222
hashDIEEntry(dwarf::Attribute Attribute,dwarf::Tag Tag,const DIE & Entry)223 void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag,
224 const DIE &Entry) {
225 assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend "
226 "tags. Add support here when there's "
227 "a use case");
228 // Step 5
229 // If the tag in Step 3 is one of [the below tags]
230 if ((Tag == dwarf::DW_TAG_pointer_type ||
231 Tag == dwarf::DW_TAG_reference_type ||
232 Tag == dwarf::DW_TAG_rvalue_reference_type ||
233 Tag == dwarf::DW_TAG_ptr_to_member_type) &&
234 // and the referenced type (via the [below attributes])
235 // FIXME: This seems overly restrictive, and causes hash mismatches
236 // there's a decl/def difference in the containing type of a
237 // ptr_to_member_type, but it's what DWARF says, for some reason.
238 Attribute == dwarf::DW_AT_type) {
239 // ... has a DW_AT_name attribute,
240 StringRef Name = getDIEStringAttr(Entry, dwarf::DW_AT_name);
241 if (!Name.empty()) {
242 hashShallowTypeReference(Attribute, Entry, Name);
243 return;
244 }
245 }
246
247 unsigned &DieNumber = Numbering[&Entry];
248 if (DieNumber) {
249 hashRepeatedTypeReference(Attribute, DieNumber);
250 return;
251 }
252
253 // otherwise, b) use the letter 'T' as the marker, ...
254 addULEB128('T');
255
256 addULEB128(Attribute);
257
258 // ... process the type T recursively by performing Steps 2 through 7, and
259 // use the result as the attribute value.
260 DieNumber = Numbering.size();
261 computeHash(Entry);
262 }
263
264 // Hash all of the values in a block like set of values. This assumes that
265 // all of the data is going to be added as integers.
hashBlockData(const DIE::const_value_range & Values)266 void DIEHash::hashBlockData(const DIE::const_value_range &Values) {
267 for (const auto &V : Values)
268 Hash.update((uint64_t)V.getDIEInteger().getValue());
269 }
270
271 // Hash the contents of a loclistptr class.
hashLocList(const DIELocList & LocList)272 void DIEHash::hashLocList(const DIELocList &LocList) {
273 HashingByteStreamer Streamer(*this);
274 DwarfDebug &DD = *AP->getDwarfDebug();
275 const DebugLocStream &Locs = DD.getDebugLocs();
276 for (const auto &Entry : Locs.getEntries(Locs.getList(LocList.getValue())))
277 DD.emitDebugLocEntry(Streamer, Entry);
278 }
279
280 // Hash an individual attribute \param Attr based on the type of attribute and
281 // the form.
hashAttribute(DIEValue Value,dwarf::Tag Tag)282 void DIEHash::hashAttribute(DIEValue Value, dwarf::Tag Tag) {
283 dwarf::Attribute Attribute = Value.getAttribute();
284
285 // Other attribute values use the letter 'A' as the marker, and the value
286 // consists of the form code (encoded as an unsigned LEB128 value) followed by
287 // the encoding of the value according to the form code. To ensure
288 // reproducibility of the signature, the set of forms used in the signature
289 // computation is limited to the following: DW_FORM_sdata, DW_FORM_flag,
290 // DW_FORM_string, and DW_FORM_block.
291
292 switch (Value.getType()) {
293 case DIEValue::isNone:
294 llvm_unreachable("Expected valid DIEValue");
295
296 // 7.27 Step 3
297 // ... An attribute that refers to another type entry T is processed as
298 // follows:
299 case DIEValue::isEntry:
300 hashDIEEntry(Attribute, Tag, Value.getDIEEntry().getEntry());
301 break;
302 case DIEValue::isInteger: {
303 addULEB128('A');
304 addULEB128(Attribute);
305 switch (Value.getForm()) {
306 case dwarf::DW_FORM_data1:
307 case dwarf::DW_FORM_data2:
308 case dwarf::DW_FORM_data4:
309 case dwarf::DW_FORM_data8:
310 case dwarf::DW_FORM_udata:
311 case dwarf::DW_FORM_sdata:
312 addULEB128(dwarf::DW_FORM_sdata);
313 addSLEB128((int64_t)Value.getDIEInteger().getValue());
314 break;
315 // DW_FORM_flag_present is just flag with a value of one. We still give it a
316 // value so just use the value.
317 case dwarf::DW_FORM_flag_present:
318 case dwarf::DW_FORM_flag:
319 addULEB128(dwarf::DW_FORM_flag);
320 addULEB128((int64_t)Value.getDIEInteger().getValue());
321 break;
322 default:
323 llvm_unreachable("Unknown integer form!");
324 }
325 break;
326 }
327 case DIEValue::isString:
328 addULEB128('A');
329 addULEB128(Attribute);
330 addULEB128(dwarf::DW_FORM_string);
331 addString(Value.getDIEString().getString());
332 break;
333 case DIEValue::isBlock:
334 case DIEValue::isLoc:
335 case DIEValue::isLocList:
336 addULEB128('A');
337 addULEB128(Attribute);
338 addULEB128(dwarf::DW_FORM_block);
339 if (Value.getType() == DIEValue::isBlock) {
340 addULEB128(Value.getDIEBlock().ComputeSize(AP));
341 hashBlockData(Value.getDIEBlock().values());
342 } else if (Value.getType() == DIEValue::isLoc) {
343 addULEB128(Value.getDIELoc().ComputeSize(AP));
344 hashBlockData(Value.getDIELoc().values());
345 } else {
346 // We could add the block length, but that would take
347 // a bit of work and not add a lot of uniqueness
348 // to the hash in some way we could test.
349 hashLocList(Value.getDIELocList());
350 }
351 break;
352 // FIXME: It's uncertain whether or not we should handle this at the moment.
353 case DIEValue::isExpr:
354 case DIEValue::isLabel:
355 case DIEValue::isDelta:
356 case DIEValue::isTypeSignature:
357 llvm_unreachable("Add support for additional value types.");
358 }
359 }
360
361 // Go through the attributes from \param Attrs in the order specified in 7.27.4
362 // and hash them.
hashAttributes(const DIEAttrs & Attrs,dwarf::Tag Tag)363 void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) {
364 #define ADD_ATTR(ATTR) \
365 { \
366 if (ATTR) \
367 hashAttribute(ATTR, Tag); \
368 }
369
370 ADD_ATTR(Attrs.DW_AT_name);
371 ADD_ATTR(Attrs.DW_AT_accessibility);
372 ADD_ATTR(Attrs.DW_AT_address_class);
373 ADD_ATTR(Attrs.DW_AT_allocated);
374 ADD_ATTR(Attrs.DW_AT_artificial);
375 ADD_ATTR(Attrs.DW_AT_associated);
376 ADD_ATTR(Attrs.DW_AT_binary_scale);
377 ADD_ATTR(Attrs.DW_AT_bit_offset);
378 ADD_ATTR(Attrs.DW_AT_bit_size);
379 ADD_ATTR(Attrs.DW_AT_bit_stride);
380 ADD_ATTR(Attrs.DW_AT_byte_size);
381 ADD_ATTR(Attrs.DW_AT_byte_stride);
382 ADD_ATTR(Attrs.DW_AT_const_expr);
383 ADD_ATTR(Attrs.DW_AT_const_value);
384 ADD_ATTR(Attrs.DW_AT_containing_type);
385 ADD_ATTR(Attrs.DW_AT_count);
386 ADD_ATTR(Attrs.DW_AT_data_bit_offset);
387 ADD_ATTR(Attrs.DW_AT_data_location);
388 ADD_ATTR(Attrs.DW_AT_data_member_location);
389 ADD_ATTR(Attrs.DW_AT_decimal_scale);
390 ADD_ATTR(Attrs.DW_AT_decimal_sign);
391 ADD_ATTR(Attrs.DW_AT_default_value);
392 ADD_ATTR(Attrs.DW_AT_digit_count);
393 ADD_ATTR(Attrs.DW_AT_discr);
394 ADD_ATTR(Attrs.DW_AT_discr_list);
395 ADD_ATTR(Attrs.DW_AT_discr_value);
396 ADD_ATTR(Attrs.DW_AT_encoding);
397 ADD_ATTR(Attrs.DW_AT_enum_class);
398 ADD_ATTR(Attrs.DW_AT_endianity);
399 ADD_ATTR(Attrs.DW_AT_explicit);
400 ADD_ATTR(Attrs.DW_AT_is_optional);
401 ADD_ATTR(Attrs.DW_AT_location);
402 ADD_ATTR(Attrs.DW_AT_lower_bound);
403 ADD_ATTR(Attrs.DW_AT_mutable);
404 ADD_ATTR(Attrs.DW_AT_ordering);
405 ADD_ATTR(Attrs.DW_AT_picture_string);
406 ADD_ATTR(Attrs.DW_AT_prototyped);
407 ADD_ATTR(Attrs.DW_AT_small);
408 ADD_ATTR(Attrs.DW_AT_segment);
409 ADD_ATTR(Attrs.DW_AT_string_length);
410 ADD_ATTR(Attrs.DW_AT_threads_scaled);
411 ADD_ATTR(Attrs.DW_AT_upper_bound);
412 ADD_ATTR(Attrs.DW_AT_use_location);
413 ADD_ATTR(Attrs.DW_AT_use_UTF8);
414 ADD_ATTR(Attrs.DW_AT_variable_parameter);
415 ADD_ATTR(Attrs.DW_AT_virtuality);
416 ADD_ATTR(Attrs.DW_AT_visibility);
417 ADD_ATTR(Attrs.DW_AT_vtable_elem_location);
418 ADD_ATTR(Attrs.DW_AT_type);
419
420 // FIXME: Add the extended attributes.
421 }
422
423 // Add all of the attributes for \param Die to the hash.
addAttributes(const DIE & Die)424 void DIEHash::addAttributes(const DIE &Die) {
425 DIEAttrs Attrs = {};
426 collectAttributes(Die, Attrs);
427 hashAttributes(Attrs, Die.getTag());
428 }
429
hashNestedType(const DIE & Die,StringRef Name)430 void DIEHash::hashNestedType(const DIE &Die, StringRef Name) {
431 // 7.27 Step 7
432 // ... append the letter 'S',
433 addULEB128('S');
434
435 // the tag of C,
436 addULEB128(Die.getTag());
437
438 // and the name.
439 addString(Name);
440 }
441
442 // Compute the hash of a DIE. This is based on the type signature computation
443 // given in section 7.27 of the DWARF4 standard. It is the md5 hash of a
444 // flattened description of the DIE.
computeHash(const DIE & Die)445 void DIEHash::computeHash(const DIE &Die) {
446 // Append the letter 'D', followed by the DWARF tag of the DIE.
447 addULEB128('D');
448 addULEB128(Die.getTag());
449
450 // Add each of the attributes of the DIE.
451 addAttributes(Die);
452
453 // Then hash each of the children of the DIE.
454 for (auto &C : Die.children()) {
455 // 7.27 Step 7
456 // If C is a nested type entry or a member function entry, ...
457 if (isType(C.getTag()) || C.getTag() == dwarf::DW_TAG_subprogram) {
458 StringRef Name = getDIEStringAttr(C, dwarf::DW_AT_name);
459 // ... and has a DW_AT_name attribute
460 if (!Name.empty()) {
461 hashNestedType(C, Name);
462 continue;
463 }
464 }
465 computeHash(C);
466 }
467
468 // Following the last (or if there are no children), append a zero byte.
469 Hash.update(makeArrayRef((uint8_t)'\0'));
470 }
471
472 /// This is based on the type signature computation given in section 7.27 of the
473 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
474 /// with the inclusion of the full CU and all top level CU entities.
475 // TODO: Initialize the type chain at 0 instead of 1 for CU signatures.
computeCUSignature(const DIE & Die)476 uint64_t DIEHash::computeCUSignature(const DIE &Die) {
477 Numbering.clear();
478 Numbering[&Die] = 1;
479
480 // Hash the DIE.
481 computeHash(Die);
482
483 // Now return the result.
484 MD5::MD5Result Result;
485 Hash.final(Result);
486
487 // ... take the least significant 8 bytes and return those. Our MD5
488 // implementation always returns its results in little endian, swap bytes
489 // appropriately.
490 return support::endian::read64le(Result + 8);
491 }
492
493 /// This is based on the type signature computation given in section 7.27 of the
494 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
495 /// with the inclusion of additional forms not specifically called out in the
496 /// standard.
computeTypeSignature(const DIE & Die)497 uint64_t DIEHash::computeTypeSignature(const DIE &Die) {
498 Numbering.clear();
499 Numbering[&Die] = 1;
500
501 if (const DIE *Parent = Die.getParent())
502 addParentContext(*Parent);
503
504 // Hash the DIE.
505 computeHash(Die);
506
507 // Now return the result.
508 MD5::MD5Result Result;
509 Hash.final(Result);
510
511 // ... take the least significant 8 bytes and return those. Our MD5
512 // implementation always returns its results in little endian, swap bytes
513 // appropriately.
514 return support::endian::read64le(Result + 8);
515 }
516