1 //===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the newly proposed standard C++ interfaces for hashing
11 // arbitrary data and building hash functions for user-defined types. This
12 // interface was originally proposed in N3333[1] and is currently under review
13 // for inclusion in a future TR and/or standard.
14 //
15 // The primary interfaces provide are comprised of one type and three functions:
16 //
17 // -- 'hash_code' class is an opaque type representing the hash code for some
18 // data. It is the intended product of hashing, and can be used to implement
19 // hash tables, checksumming, and other common uses of hashes. It is not an
20 // integer type (although it can be converted to one) because it is risky
21 // to assume much about the internals of a hash_code. In particular, each
22 // execution of the program has a high probability of producing a different
23 // hash_code for a given input. Thus their values are not stable to save or
24 // persist, and should only be used during the execution for the
25 // construction of hashing datastructures.
26 //
27 // -- 'hash_value' is a function designed to be overloaded for each
28 // user-defined type which wishes to be used within a hashing context. It
29 // should be overloaded within the user-defined type's namespace and found
30 // via ADL. Overloads for primitive types are provided by this library.
31 //
32 // -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
33 // programmers in easily and intuitively combining a set of data into
34 // a single hash_code for their object. They should only logically be used
35 // within the implementation of a 'hash_value' routine or similar context.
36 //
37 // Note that 'hash_combine_range' contains very special logic for hashing
38 // a contiguous array of integers or pointers. This logic is *extremely* fast,
39 // on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
40 // benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
41 // under 32-bytes.
42 //
43 //===----------------------------------------------------------------------===//
44
45 #ifndef LLVM_ADT_HASHING_H
46 #define LLVM_ADT_HASHING_H
47
48 #include "llvm/Support/DataTypes.h"
49 #include "llvm/Support/Host.h"
50 #include "llvm/Support/SwapByteOrder.h"
51 #include "llvm/Support/type_traits.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstring>
55 #include <iterator>
56 #include <string>
57 #include <utility>
58
59 namespace llvm {
60
61 /// \brief An opaque object representing a hash code.
62 ///
63 /// This object represents the result of hashing some entity. It is intended to
64 /// be used to implement hashtables or other hashing-based data structures.
65 /// While it wraps and exposes a numeric value, this value should not be
66 /// trusted to be stable or predictable across processes or executions.
67 ///
68 /// In order to obtain the hash_code for an object 'x':
69 /// \code
70 /// using llvm::hash_value;
71 /// llvm::hash_code code = hash_value(x);
72 /// \endcode
73 class hash_code {
74 size_t value;
75
76 public:
77 /// \brief Default construct a hash_code.
78 /// Note that this leaves the value uninitialized.
79 hash_code() = default;
80
81 /// \brief Form a hash code directly from a numerical value.
hash_code(size_t value)82 hash_code(size_t value) : value(value) {}
83
84 /// \brief Convert the hash code to its numerical value for use.
size_t()85 /*explicit*/ operator size_t() const { return value; }
86
87 friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
88 return lhs.value == rhs.value;
89 }
90 friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
91 return lhs.value != rhs.value;
92 }
93
94 /// \brief Allow a hash_code to be directly run through hash_value.
hash_value(const hash_code & code)95 friend size_t hash_value(const hash_code &code) { return code.value; }
96 };
97
98 /// \brief Compute a hash_code for any integer value.
99 ///
100 /// Note that this function is intended to compute the same hash_code for
101 /// a particular value without regard to the pre-promotion type. This is in
102 /// contrast to hash_combine which may produce different hash_codes for
103 /// differing argument types even if they would implicit promote to a common
104 /// type without changing the value.
105 template <typename T>
106 typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
107 hash_value(T value);
108
109 /// \brief Compute a hash_code for a pointer's address.
110 ///
111 /// N.B.: This hashes the *address*. Not the value and not the type.
112 template <typename T> hash_code hash_value(const T *ptr);
113
114 /// \brief Compute a hash_code for a pair of objects.
115 template <typename T, typename U>
116 hash_code hash_value(const std::pair<T, U> &arg);
117
118 /// \brief Compute a hash_code for a standard string.
119 template <typename T>
120 hash_code hash_value(const std::basic_string<T> &arg);
121
122
123 /// \brief Override the execution seed with a fixed value.
124 ///
125 /// This hashing library uses a per-execution seed designed to change on each
126 /// run with high probability in order to ensure that the hash codes are not
127 /// attackable and to ensure that output which is intended to be stable does
128 /// not rely on the particulars of the hash codes produced.
129 ///
130 /// That said, there are use cases where it is important to be able to
131 /// reproduce *exactly* a specific behavior. To that end, we provide a function
132 /// which will forcibly set the seed to a fixed value. This must be done at the
133 /// start of the program, before any hashes are computed. Also, it cannot be
134 /// undone. This makes it thread-hostile and very hard to use outside of
135 /// immediately on start of a simple program designed for reproducible
136 /// behavior.
137 void set_fixed_execution_hash_seed(size_t fixed_value);
138
139
140 // All of the implementation details of actually computing the various hash
141 // code values are held within this namespace. These routines are included in
142 // the header file mainly to allow inlining and constant propagation.
143 namespace hashing {
144 namespace detail {
145
fetch64(const char * p)146 inline uint64_t fetch64(const char *p) {
147 uint64_t result;
148 memcpy(&result, p, sizeof(result));
149 if (sys::IsBigEndianHost)
150 sys::swapByteOrder(result);
151 return result;
152 }
153
fetch32(const char * p)154 inline uint32_t fetch32(const char *p) {
155 uint32_t result;
156 memcpy(&result, p, sizeof(result));
157 if (sys::IsBigEndianHost)
158 sys::swapByteOrder(result);
159 return result;
160 }
161
162 /// Some primes between 2^63 and 2^64 for various uses.
163 static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
164 static const uint64_t k1 = 0xb492b66fbe98f273ULL;
165 static const uint64_t k2 = 0x9ae16a3b2f90404fULL;
166 static const uint64_t k3 = 0xc949d7c7509e6557ULL;
167
168 /// \brief Bitwise right rotate.
169 /// Normally this will compile to a single instruction, especially if the
170 /// shift is a manifest constant.
rotate(uint64_t val,size_t shift)171 inline uint64_t rotate(uint64_t val, size_t shift) {
172 // Avoid shifting by 64: doing so yields an undefined result.
173 return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
174 }
175
shift_mix(uint64_t val)176 inline uint64_t shift_mix(uint64_t val) {
177 return val ^ (val >> 47);
178 }
179
hash_16_bytes(uint64_t low,uint64_t high)180 inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
181 // Murmur-inspired hashing.
182 const uint64_t kMul = 0x9ddfea08eb382d69ULL;
183 uint64_t a = (low ^ high) * kMul;
184 a ^= (a >> 47);
185 uint64_t b = (high ^ a) * kMul;
186 b ^= (b >> 47);
187 b *= kMul;
188 return b;
189 }
190
hash_1to3_bytes(const char * s,size_t len,uint64_t seed)191 inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
192 uint8_t a = s[0];
193 uint8_t b = s[len >> 1];
194 uint8_t c = s[len - 1];
195 uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
196 uint32_t z = len + (static_cast<uint32_t>(c) << 2);
197 return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
198 }
199
hash_4to8_bytes(const char * s,size_t len,uint64_t seed)200 inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
201 uint64_t a = fetch32(s);
202 return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
203 }
204
hash_9to16_bytes(const char * s,size_t len,uint64_t seed)205 inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
206 uint64_t a = fetch64(s);
207 uint64_t b = fetch64(s + len - 8);
208 return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
209 }
210
hash_17to32_bytes(const char * s,size_t len,uint64_t seed)211 inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
212 uint64_t a = fetch64(s) * k1;
213 uint64_t b = fetch64(s + 8);
214 uint64_t c = fetch64(s + len - 8) * k2;
215 uint64_t d = fetch64(s + len - 16) * k0;
216 return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d,
217 a + rotate(b ^ k3, 20) - c + len + seed);
218 }
219
hash_33to64_bytes(const char * s,size_t len,uint64_t seed)220 inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
221 uint64_t z = fetch64(s + 24);
222 uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
223 uint64_t b = rotate(a + z, 52);
224 uint64_t c = rotate(a, 37);
225 a += fetch64(s + 8);
226 c += rotate(a, 7);
227 a += fetch64(s + 16);
228 uint64_t vf = a + z;
229 uint64_t vs = b + rotate(a, 31) + c;
230 a = fetch64(s + 16) + fetch64(s + len - 32);
231 z = fetch64(s + len - 8);
232 b = rotate(a + z, 52);
233 c = rotate(a, 37);
234 a += fetch64(s + len - 24);
235 c += rotate(a, 7);
236 a += fetch64(s + len - 16);
237 uint64_t wf = a + z;
238 uint64_t ws = b + rotate(a, 31) + c;
239 uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
240 return shift_mix((seed ^ (r * k0)) + vs) * k2;
241 }
242
hash_short(const char * s,size_t length,uint64_t seed)243 inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
244 if (length >= 4 && length <= 8)
245 return hash_4to8_bytes(s, length, seed);
246 if (length > 8 && length <= 16)
247 return hash_9to16_bytes(s, length, seed);
248 if (length > 16 && length <= 32)
249 return hash_17to32_bytes(s, length, seed);
250 if (length > 32)
251 return hash_33to64_bytes(s, length, seed);
252 if (length != 0)
253 return hash_1to3_bytes(s, length, seed);
254
255 return k2 ^ seed;
256 }
257
258 /// \brief The intermediate state used during hashing.
259 /// Currently, the algorithm for computing hash codes is based on CityHash and
260 /// keeps 56 bytes of arbitrary state.
261 struct hash_state {
262 uint64_t h0, h1, h2, h3, h4, h5, h6;
263
264 /// \brief Create a new hash_state structure and initialize it based on the
265 /// seed and the first 64-byte chunk.
266 /// This effectively performs the initial mix.
createhash_state267 static hash_state create(const char *s, uint64_t seed) {
268 hash_state state = {
269 0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49),
270 seed * k1, shift_mix(seed), 0 };
271 state.h6 = hash_16_bytes(state.h4, state.h5);
272 state.mix(s);
273 return state;
274 }
275
276 /// \brief Mix 32-bytes from the input sequence into the 16-bytes of 'a'
277 /// and 'b', including whatever is already in 'a' and 'b'.
mix_32_byteshash_state278 static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
279 a += fetch64(s);
280 uint64_t c = fetch64(s + 24);
281 b = rotate(b + a + c, 21);
282 uint64_t d = a;
283 a += fetch64(s + 8) + fetch64(s + 16);
284 b += rotate(a, 44) + d;
285 a += c;
286 }
287
288 /// \brief Mix in a 64-byte buffer of data.
289 /// We mix all 64 bytes even when the chunk length is smaller, but we
290 /// record the actual length.
mixhash_state291 void mix(const char *s) {
292 h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
293 h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1;
294 h0 ^= h6;
295 h1 += h3 + fetch64(s + 40);
296 h2 = rotate(h2 + h5, 33) * k1;
297 h3 = h4 * k1;
298 h4 = h0 + h5;
299 mix_32_bytes(s, h3, h4);
300 h5 = h2 + h6;
301 h6 = h1 + fetch64(s + 16);
302 mix_32_bytes(s + 32, h5, h6);
303 std::swap(h2, h0);
304 }
305
306 /// \brief Compute the final 64-bit hash code value based on the current
307 /// state and the length of bytes hashed.
finalizehash_state308 uint64_t finalize(size_t length) {
309 return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
310 hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
311 }
312 };
313
314
315 /// \brief A global, fixed seed-override variable.
316 ///
317 /// This variable can be set using the \see llvm::set_fixed_execution_seed
318 /// function. See that function for details. Do not, under any circumstances,
319 /// set or read this variable.
320 extern size_t fixed_seed_override;
321
get_execution_seed()322 inline size_t get_execution_seed() {
323 // FIXME: This needs to be a per-execution seed. This is just a placeholder
324 // implementation. Switching to a per-execution seed is likely to flush out
325 // instability bugs and so will happen as its own commit.
326 //
327 // However, if there is a fixed seed override set the first time this is
328 // called, return that instead of the per-execution seed.
329 const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
330 static size_t seed = fixed_seed_override ? fixed_seed_override
331 : (size_t)seed_prime;
332 return seed;
333 }
334
335
336 /// \brief Trait to indicate whether a type's bits can be hashed directly.
337 ///
338 /// A type trait which is true if we want to combine values for hashing by
339 /// reading the underlying data. It is false if values of this type must
340 /// first be passed to hash_value, and the resulting hash_codes combined.
341 //
342 // FIXME: We want to replace is_integral_or_enum and is_pointer here with
343 // a predicate which asserts that comparing the underlying storage of two
344 // values of the type for equality is equivalent to comparing the two values
345 // for equality. For all the platforms we care about, this holds for integers
346 // and pointers, but there are platforms where it doesn't and we would like to
347 // support user-defined types which happen to satisfy this property.
348 template <typename T> struct is_hashable_data
349 : std::integral_constant<bool, ((is_integral_or_enum<T>::value ||
350 std::is_pointer<T>::value) &&
351 64 % sizeof(T) == 0)> {};
352
353 // Special case std::pair to detect when both types are viable and when there
354 // is no alignment-derived padding in the pair. This is a bit of a lie because
355 // std::pair isn't truly POD, but it's close enough in all reasonable
356 // implementations for our use case of hashing the underlying data.
357 template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
358 : std::integral_constant<bool, (is_hashable_data<T>::value &&
359 is_hashable_data<U>::value &&
360 (sizeof(T) + sizeof(U)) ==
361 sizeof(std::pair<T, U>))> {};
362
363 /// \brief Helper to get the hashable data representation for a type.
364 /// This variant is enabled when the type itself can be used.
365 template <typename T>
366 typename std::enable_if<is_hashable_data<T>::value, T>::type
367 get_hashable_data(const T &value) {
368 return value;
369 }
370 /// \brief Helper to get the hashable data representation for a type.
371 /// This variant is enabled when we must first call hash_value and use the
372 /// result as our data.
373 template <typename T>
374 typename std::enable_if<!is_hashable_data<T>::value, size_t>::type
375 get_hashable_data(const T &value) {
376 using ::llvm::hash_value;
377 return hash_value(value);
378 }
379
380 /// \brief Helper to store data from a value into a buffer and advance the
381 /// pointer into that buffer.
382 ///
383 /// This routine first checks whether there is enough space in the provided
384 /// buffer, and if not immediately returns false. If there is space, it
385 /// copies the underlying bytes of value into the buffer, advances the
386 /// buffer_ptr past the copied bytes, and returns true.
387 template <typename T>
388 bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
389 size_t offset = 0) {
390 size_t store_size = sizeof(value) - offset;
391 if (buffer_ptr + store_size > buffer_end)
392 return false;
393 const char *value_data = reinterpret_cast<const char *>(&value);
394 memcpy(buffer_ptr, value_data + offset, store_size);
395 buffer_ptr += store_size;
396 return true;
397 }
398
399 /// \brief Implement the combining of integral values into a hash_code.
400 ///
401 /// This overload is selected when the value type of the iterator is
402 /// integral. Rather than computing a hash_code for each object and then
403 /// combining them, this (as an optimization) directly combines the integers.
404 template <typename InputIteratorT>
405 hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
406 const size_t seed = get_execution_seed();
407 char buffer[64], *buffer_ptr = buffer;
408 char *const buffer_end = std::end(buffer);
409 while (first != last && store_and_advance(buffer_ptr, buffer_end,
410 get_hashable_data(*first)))
411 ++first;
412 if (first == last)
413 return hash_short(buffer, buffer_ptr - buffer, seed);
414 assert(buffer_ptr == buffer_end);
415
416 hash_state state = state.create(buffer, seed);
417 size_t length = 64;
418 while (first != last) {
419 // Fill up the buffer. We don't clear it, which re-mixes the last round
420 // when only a partial 64-byte chunk is left.
421 buffer_ptr = buffer;
422 while (first != last && store_and_advance(buffer_ptr, buffer_end,
423 get_hashable_data(*first)))
424 ++first;
425
426 // Rotate the buffer if we did a partial fill in order to simulate doing
427 // a mix of the last 64-bytes. That is how the algorithm works when we
428 // have a contiguous byte sequence, and we want to emulate that here.
429 std::rotate(buffer, buffer_ptr, buffer_end);
430
431 // Mix this chunk into the current state.
432 state.mix(buffer);
433 length += buffer_ptr - buffer;
434 };
435
436 return state.finalize(length);
437 }
438
439 /// \brief Implement the combining of integral values into a hash_code.
440 ///
441 /// This overload is selected when the value type of the iterator is integral
442 /// and when the input iterator is actually a pointer. Rather than computing
443 /// a hash_code for each object and then combining them, this (as an
444 /// optimization) directly combines the integers. Also, because the integers
445 /// are stored in contiguous memory, this routine avoids copying each value
446 /// and directly reads from the underlying memory.
447 template <typename ValueT>
448 typename std::enable_if<is_hashable_data<ValueT>::value, hash_code>::type
449 hash_combine_range_impl(ValueT *first, ValueT *last) {
450 const size_t seed = get_execution_seed();
451 const char *s_begin = reinterpret_cast<const char *>(first);
452 const char *s_end = reinterpret_cast<const char *>(last);
453 const size_t length = std::distance(s_begin, s_end);
454 if (length <= 64)
455 return hash_short(s_begin, length, seed);
456
457 const char *s_aligned_end = s_begin + (length & ~63);
458 hash_state state = state.create(s_begin, seed);
459 s_begin += 64;
460 while (s_begin != s_aligned_end) {
461 state.mix(s_begin);
462 s_begin += 64;
463 }
464 if (length & 63)
465 state.mix(s_end - 64);
466
467 return state.finalize(length);
468 }
469
470 } // namespace detail
471 } // namespace hashing
472
473
474 /// \brief Compute a hash_code for a sequence of values.
475 ///
476 /// This hashes a sequence of values. It produces the same hash_code as
477 /// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
478 /// and is significantly faster given pointers and types which can be hashed as
479 /// a sequence of bytes.
480 template <typename InputIteratorT>
481 hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
482 return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
483 }
484
485
486 // Implementation details for hash_combine.
487 namespace hashing {
488 namespace detail {
489
490 /// \brief Helper class to manage the recursive combining of hash_combine
491 /// arguments.
492 ///
493 /// This class exists to manage the state and various calls involved in the
494 /// recursive combining of arguments used in hash_combine. It is particularly
495 /// useful at minimizing the code in the recursive calls to ease the pain
496 /// caused by a lack of variadic functions.
497 struct hash_combine_recursive_helper {
498 char buffer[64];
499 hash_state state;
500 const size_t seed;
501
502 public:
503 /// \brief Construct a recursive hash combining helper.
504 ///
505 /// This sets up the state for a recursive hash combine, including getting
506 /// the seed and buffer setup.
507 hash_combine_recursive_helper()
508 : seed(get_execution_seed()) {}
509
510 /// \brief Combine one chunk of data into the current in-flight hash.
511 ///
512 /// This merges one chunk of data into the hash. First it tries to buffer
513 /// the data. If the buffer is full, it hashes the buffer into its
514 /// hash_state, empties it, and then merges the new chunk in. This also
515 /// handles cases where the data straddles the end of the buffer.
516 template <typename T>
517 char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) {
518 if (!store_and_advance(buffer_ptr, buffer_end, data)) {
519 // Check for skew which prevents the buffer from being packed, and do
520 // a partial store into the buffer to fill it. This is only a concern
521 // with the variadic combine because that formation can have varying
522 // argument types.
523 size_t partial_store_size = buffer_end - buffer_ptr;
524 memcpy(buffer_ptr, &data, partial_store_size);
525
526 // If the store fails, our buffer is full and ready to hash. We have to
527 // either initialize the hash state (on the first full buffer) or mix
528 // this buffer into the existing hash state. Length tracks the *hashed*
529 // length, not the buffered length.
530 if (length == 0) {
531 state = state.create(buffer, seed);
532 length = 64;
533 } else {
534 // Mix this chunk into the current state and bump length up by 64.
535 state.mix(buffer);
536 length += 64;
537 }
538 // Reset the buffer_ptr to the head of the buffer for the next chunk of
539 // data.
540 buffer_ptr = buffer;
541
542 // Try again to store into the buffer -- this cannot fail as we only
543 // store types smaller than the buffer.
544 if (!store_and_advance(buffer_ptr, buffer_end, data,
545 partial_store_size))
546 abort();
547 }
548 return buffer_ptr;
549 }
550
551 /// \brief Recursive, variadic combining method.
552 ///
553 /// This function recurses through each argument, combining that argument
554 /// into a single hash.
555 template <typename T, typename ...Ts>
556 hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
557 const T &arg, const Ts &...args) {
558 buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg));
559
560 // Recurse to the next argument.
561 return combine(length, buffer_ptr, buffer_end, args...);
562 }
563
564 /// \brief Base case for recursive, variadic combining.
565 ///
566 /// The base case when combining arguments recursively is reached when all
567 /// arguments have been handled. It flushes the remaining buffer and
568 /// constructs a hash_code.
569 hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) {
570 // Check whether the entire set of values fit in the buffer. If so, we'll
571 // use the optimized short hashing routine and skip state entirely.
572 if (length == 0)
573 return hash_short(buffer, buffer_ptr - buffer, seed);
574
575 // Mix the final buffer, rotating it if we did a partial fill in order to
576 // simulate doing a mix of the last 64-bytes. That is how the algorithm
577 // works when we have a contiguous byte sequence, and we want to emulate
578 // that here.
579 std::rotate(buffer, buffer_ptr, buffer_end);
580
581 // Mix this chunk into the current state.
582 state.mix(buffer);
583 length += buffer_ptr - buffer;
584
585 return state.finalize(length);
586 }
587 };
588
589 } // namespace detail
590 } // namespace hashing
591
592 /// \brief Combine values into a single hash_code.
593 ///
594 /// This routine accepts a varying number of arguments of any type. It will
595 /// attempt to combine them into a single hash_code. For user-defined types it
596 /// attempts to call a \see hash_value overload (via ADL) for the type. For
597 /// integer and pointer types it directly combines their data into the
598 /// resulting hash_code.
599 ///
600 /// The result is suitable for returning from a user's hash_value
601 /// *implementation* for their user-defined type. Consumers of a type should
602 /// *not* call this routine, they should instead call 'hash_value'.
603 template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
604 // Recursively hash each argument using a helper class.
605 ::llvm::hashing::detail::hash_combine_recursive_helper helper;
606 return helper.combine(0, helper.buffer, helper.buffer + 64, args...);
607 }
608
609 // Implementation details for implementations of hash_value overloads provided
610 // here.
611 namespace hashing {
612 namespace detail {
613
614 /// \brief Helper to hash the value of a single integer.
615 ///
616 /// Overloads for smaller integer types are not provided to ensure consistent
617 /// behavior in the presence of integral promotions. Essentially,
618 /// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
619 inline hash_code hash_integer_value(uint64_t value) {
620 // Similar to hash_4to8_bytes but using a seed instead of length.
621 const uint64_t seed = get_execution_seed();
622 const char *s = reinterpret_cast<const char *>(&value);
623 const uint64_t a = fetch32(s);
624 return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
625 }
626
627 } // namespace detail
628 } // namespace hashing
629
630 // Declared and documented above, but defined here so that any of the hashing
631 // infrastructure is available.
632 template <typename T>
633 typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
634 hash_value(T value) {
635 return ::llvm::hashing::detail::hash_integer_value(value);
636 }
637
638 // Declared and documented above, but defined here so that any of the hashing
639 // infrastructure is available.
640 template <typename T> hash_code hash_value(const T *ptr) {
641 return ::llvm::hashing::detail::hash_integer_value(
642 reinterpret_cast<uintptr_t>(ptr));
643 }
644
645 // Declared and documented above, but defined here so that any of the hashing
646 // infrastructure is available.
647 template <typename T, typename U>
648 hash_code hash_value(const std::pair<T, U> &arg) {
649 return hash_combine(arg.first, arg.second);
650 }
651
652 // Declared and documented above, but defined here so that any of the hashing
653 // infrastructure is available.
654 template <typename T>
655 hash_code hash_value(const std::basic_string<T> &arg) {
656 return hash_combine_range(arg.begin(), arg.end());
657 }
658
659 } // namespace llvm
660
661 #endif
662